
Chapter 2

Dynamics of protoplanetary discs

The evolution of protoplanetary discs proceeds, as mentioned in chapter 1, through the

redistribution of angular momentum allowing accretion of disc matter onto the central star.

During this process, the matter in the outer parts of the disc takes up angular momentum

from the matter in the inner parts, so the latter losing angular momentum, gradually falls onto

the central star (e.g., Lynden-Bell and Pringle, 1974; Pringle, 1981). This transport of mass

inwards and angular momentum outwards can be provided by a variety of physical processes,

such as turbulence originating from various instabilities in the disc or, in the case of relatively

massive discs, by disc self-gravity. These processes play a dual role here: firstly, they drive

outward angular momentum transport, which is necessary for accretion to occur, by exerting

torques on the disc and, secondly, they provide a channel of conversion of gravitational energy,

liberated as mass falls towards the centre, into thermal energy. The dissipated energy, in turn,

can influence the observed SED. The angular momentum transport by turbulent torques

(stresses) can be conveniently characterised in terms of so-called turbulent, or ‘anomalous’

viscosity1, the concept of which in the theory of astrophysical discs was first introduced

by von Weizsäcker (1948) and further developed by Shakura and Sunyaev (1973) (see also

comprehensive reviews by Balbus and Hawley 1998 and Balbus 2003). In this chapter, we

outline mechanisms that can provide angular momentum transport in discs and a possible

nature of this anomalous/enhanced viscosity.

1We will show below that ordinary molecular viscosity of gas is far too small to yield typical time-scales of

secular evolution of accretion discs.
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CHAPTER 2. DYNAMICS OF PROTOPLANETARY DISCS

To first gain insight into how viscosity, irrespective of its origin, causes mass and angular

momentum redistribution in discs, following Lynden-Bell and Pringle (1974); Pringle (1981);

Frank et al. (2002), let us consider the simplest model of a protoplanetary disc – a razor-thin

(2D) gaseous disc rotating around a central star with considerably larger mass M⋆, so that

disc self-gravity can be neglected (we will return to self-gravitating discs later). We adopt

cylindrical coordinates (r, φ, z) with the central star at the origin and the disc lying in the

z = 0 plane. The razor-thin disc approximation implies that the typical length-scale in the

vertical direction – the disc scale height H ≃ cs/Ω0, where cs is the gas sound speed and

Ω0 is the angular velocity of disc rotation, is much smaller than the radial distance from

the central star, that is, the aspect ratio H/r ≪ 1.2 In this case, basic hydrodynamical

quantities are vertically averaged, that is, integrated in the vertical direction all over the disc

height, and thus are made 2D (see section 2.3). The disc is then characterised by its surface

density Σ, which is a mass per unit surface area of the disc, obtained by vertically averaging

the gas density ρ. The thin disc approximation is also equivalent to the requirement that

the sound speed cs be much less than the rotation velocity rΩ0(r), that is, the disc flow is

strongly supersonic. From the latter condition, in turn, it follows that the radial gradients

of pressure can be ignored, so that the disc angular velocity is given by a balance between

the gravity force of the central star and centrifugal force due to rotation, resulting in the

Keplerian rotation profile (Pringle, 1981; Frank et al., 2002; Lodato, 2007)

Ω0(r) =

(

GM⋆

r3

)1/2

.

In this case, a disc is said to be rotationally supported. The disc accretes, meaning that in

addition to azimuthal Keplerian velocity it also possesses radial ‘drift’ velocity, ur, directed

towards the central star. As will be clear below, this radial velocity is much smaller than the

Keplerian velocity (the ordering ur ≪ cs ≪ rΩ0 holds) and is directly related to the viscosity

ν. The disc is assumed to be axisymmetric, so that all quantities are functions of only radius

r and time t (z-dependence is absorbed in the vertical averaging). The height-integrated

continuity equation for surface density is

∂Σ

∂t
+

1

r

∂

∂r
(rΣur) = 0. (2.1)

We also need another height-integrated equation for angular momentum conservation, which

2In protoplanetary discs, typically H/r ≃ 0.05 − 0.1 (e.g., Durisen et al., 2007), so the condition for thin

disc limit is marginally satisfied. Nevertheless, many studies are limited just to this approximation, because

it helps to understand basic physical processes and instabilities, which can then be generalised to thick 3D

discs.
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can be similarly derived. The only difference is that now we should include the viscous stress

tensor, which in this special case is dominated by rφ-component proportional to ν,

Wrφ = ν
dΩ0

d ln r
.

As a result, we obtain

∂

∂t
(r2ΣΩ0) +

1

r

∂

∂r
(r3ΣΩ0ur) =

1

r

∂

∂r
(r2ΣWrφ). (2.2)

Equations (2.1-2.2) can be combined into a single equation for surface density evolution

∂Σ

∂t
=

3

r

∂

∂r

[

r1/2
∂

∂r
(νr1/2Σ)

]

. (2.3)

In deriving this equation we have made use of the fact that the rotation is stationary and

Keplerian. Equation (2.3), commonly used in accretion disc modelling, is the basic equation

governing the secular, or viscous evolution of the disc. This equation is a non-linear diffusion-

type equation for Σ, where ν can be a complex function of local variables (surface density,

radius, temperature, ionisation fraction, etc.) so it should generally be solved numerically.

However, if viscosity can be expressed as some power of radius, then analytic solutions are

feasible (Lynden-Bell and Pringle, 1974; Armitage, 2010) that allow us to get the general

feeling of a disc’s viscous evolution.

A simple inspection of the structure of Eq. (2.3) shows that the radial velocity is propor-

tional to viscosity,

ur = −
3

r1/2Σ

∂

∂r
(νr1/2Σ) ∼

ν

r

and the characteristic time-scale of the surface density evolution due to viscosity is

tvisc =
r2

ν
∼

r

ur
.

In real discs, this secular evolution time-scale is usually much larger than the dynami-

cal/orbital time tdyn ≡ Ω−1

0
(see below), implying, as noted above, that the radial accretion

velocity ur is much smaller than the disc’s rotational velocity.

To illustrate viscous evolution more quantitatively, we consider a simple, analytically

tractable case of constant viscosity coefficient, ν = const. Suppose that initially at t = 0

matter is concentrated in a very thin ring with radius r0 and mass m. The surface density

of such a ring has the form

Σ(r, t = 0) =
m

2πr0

δ(r − r0).

An analytic solution can be constructed in terms of Bessel functions describing the time-

development of this initial ring-shaped profile of surface density (e.g., Pringle, 1981; Frank
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Figure 2.1: Evolution of the surface density of a Keplerian spreading ring under the action of constant

viscosity ν, shown as a function of the normalised radius x = r/r0, where r0 is the initial radius of

the ring, and of non-dimensional time τ = 12νt/r2

0
. Adapted from Pringle (1981).

et al., 2002; Lodato, 2007), which we do not give here. Instead, we show it graphically in

Fig. 2.1 at different times. It is clear from this figure that viscosity acts to spread the ring

both inwards and outwards on the time-scale of tvisc. During this process, mass in the inner

parts of the disc, losing angular momentum, moves inwards and eventually falls onto the

central star. At the same time, matter in the outer parts moves to larger radii to take up

outwardly flowing angular momentum. The net angular momentum is conserved; it is merely

redistributed between different annuli. A detailed analysis of the corresponding analytical

solution shows that the boundary between inwardly and outwardly propagating regions of

the spreading ring expands outwards as rb ≃ tν/r0 (Pringle, 1981; Frank et al., 2002; Lodato,

2007). As a result, eventually (at t → ∞) a singular equilibrium state is reached – almost

all the matter stripped of its angular momentum is accreted at the centre, while a negligibly

small amount of mass at infinitely large radii carries all the angular momentum. In another

case, where viscosity has a power-law dependence on radius, an analytic self-similar solution

can also be obtained that gives a qualitatively similar evolutionary picture (Lynden-Bell and

Pringle, 1974; Lodato, 2007; Armitage, 2010).

The above analysis shows that viscosity is crucial for disc evolution – it is a primary

means of outward transport of angular momentum. However, a major unresolved problem

here concerns the physical nature of viscosity ν. It had soon been realised that standard

molecular viscosity is too small to account for observed mass accretion rates and time-scales
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for disc secular evolution. Indeed, molecular viscosity is given by the product of random

velocity of molecules, which is of the order of the sound speed cs, and their collisional mean

free path λ, ν = λcs. In a typical protoplanetary disc with the number density n ∼ 1013 cm−3

of molecules having the cross-section σcoll ∼ 10−16 cm2, the mean free path is λ = 1/(nσcoll) ∼

103 cm. So, the ratio of viscous to dynamical times is tvisc/tdyn = r2/(Hλ) = Re, where

Re ≡ r2Ω0/ν is the Reynolds number of disc flow. If we now take r ∼ 100 AU for the disc

radial size and H/r ∼ 0.1, we obtain tvisc/tdyn = Re ∼ 1013. Since the dynamical time-

scale for protoplanetary discs is of the order of a few years, the viscous time tvis ∼ 1013 yr,

during which the whole disc accretes onto the central star, turns out to be much larger than

observationally inferred disc lifetimes of 106−107 yr. This means that there must exist some

other mechanisms capable of producing orders of magnitude larger, or anomalous, effective

viscosity resulting in mass accretion rates that will be consistent with observed disc lifetimes.

Very large Reynolds numbers, Re ∼ 1013, associated with the disc flow seem to offer a

clue to resolve this problem. In laboratory experiments, hydrodynamic flows usually tend to

become turbulent at high enough Reynolds numbers (e.g., Taylor, 1936; Bayly et al., 1988;

Richard and Zahn, 1999; Drazin and Reid, 1981; Longaretti, 2002). Based on this, it was

originally thought that gas flow in discs with such huge Reynolds numbers should naturally be

strongly turbulent.3 In this case, angular momentum exchange occurs not through collisions

of molecules, but due to the mixing of fluid elements in turbulent motion. The typical

length-scales of such turbulent motions can be several orders of magnitude larger than the

collisional mean free path of molecules and therefore transport becomes much more efficient.

The question is then how such an enhanced turbulent transport can be accommodated in

the framework of a viscous disc model described above, or, in other words, what effective

viscosity coefficient should be used to represent the turbulence.

To understand this, we note that the total gas velocity in a turbulent Keplerian disc can

be written as a sum of the background Keplerian rotation and turbulent fluctuation ut,

u = rΩ0(r)eφ + ut, (2.4)

where eφ is the unit vector in the azimuthal φ-direction. In this case, the mean accretion

velocity is ur = 〈utr〉, where the angle brackets denote vertical and azimuthal averages. We

assume that this accretion velocity is much smaller than the fluctuation velocity amplitude

and hence rotational velocity, so that the ordering 〈utr〉 ≪ ut ≪ rΩ0 holds (see e.g., Balbus,

3We will see below that care is needed in generalising this statement to accretion disc flows, especially to

Keplerian rotation profiles (see section 2.2.1).
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2003). Taking decomposition (2.4) into account, the angular momentum equation (without

molecular viscosity) takes the form (Balbus and Hawley, 1998; Balbus and Papaloizou, 1999;

Balbus, 2003)

∂

∂t
(r2ΣΩ0) +

1

r

∂

∂r
(r3ΣΩ0ur) = −

1

r

∂

∂r
(r2Σ〈utrutφ〉).

Comparing this equation to Eq. (2.2), we see that the averaged turbulent stress 〈utrutφ〉 plays

a similar role as the viscous stress Wrφ. Consequently, we can define the effective turbulent

viscosity as

νt = 〈utrutφ〉

∣

∣

∣

∣

dΩ0

d ln r

∣

∣

∣

∣

−1

∼ λtut,

where λt ∼ ut/Ω0 is the characteristic length-scale of the turbulent motions. This expression

resembles that for molecular viscosity. However, since turbulence is generally a very complex

phenomenon, we do not know how to determine exactly the characteristic length-scales,

λt, and velocities, ut, associated with a turbulent flow without a proper knowledge of the

underlying physical mechanisms causing the transition to turbulence in discs. Nevertheless,

we can use physical arguments to put some constraints on these two quantities. Firstly, the

typical size of the largest turbulent eddies cannot exceed the disc thickness, λt . H, otherwise

turbulence would not be isotropic and transport would not be local, i.e., the characterisation

of turbulent transport in terms of viscosity coefficient would not be possible. Secondly, it

is unlikely that turbulence in discs is very supersonic, because in this case strong shocks

would appear resulting in a high dissipation rate of turbulent motions. As a result, turbulent

velocity would be damped to subsonic values, ut . cs. Based on these two basic arguments, in

their seminal paper, Shakura and Sunyaev (1973) came up with the following parametrisation

of turbulent viscosity:

νt = αcsH,

where, because of the above limits on the size and velocity of turbulent motions, the non-

dimensional parameter α is less than unity. This formulation, also mentioned above, is known

as the ‘α-prescription’ for turbulent viscosity. In fact, α contains in itself all the uncertainties

regarding the onset mechanism and properties of turbulence in discs, that is, the source of

anomalous viscosity. Doing such a scaling, we just replace one unknown parameter νt with

the other unknown one, α. But the usefulness of this approach is that now we measure the

turbulent stress, which determines the angular momentum transport rate, in units of the

local pressure and we know that in these units, if turbulence is local, it should not exceed

unity. In other words, the characterisation of angular momentum transport in terms of the
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α parameter is an inherently local description valid for thin (H ≪ r) discs.4 Although, as

numerical simulations show, α may display both temporal and spatial variations in the disc

(e.g., Papaloizou and Nelson, 2003), in analytical modelling it is often assumed to be constant.

This actually gives reasonably good results as far as disc secular evolution is concerned.

Observations indicate that α ∼ 0.01 for protoplanetary discs (e.g., Hartmann et al., 1998;

Hueso and Guillot, 2005; Andrews et al., 2009), which corresponds to disc evolutionary time-

scales of the order of observed disc lifetimes of a few Myr. Thus, the α parameter is a

key quantity as it can be accessed observationally and can provide a check on the theory of

turbulence and anomalous transport in discs.

It is crucial to have a proper understanding of disc turbulence and its onset mechanisms,

as apart from driving the accretion process, it can also have a profound effect on other pro-

cesses occurring in discs. This, in turn, allows us to determine α in different parts of the disc,

critically examine the validity of the constant-α assumption and also make comparisons with

observations. Great progress has been made in recent years in identifying the mechanisms

of transition to turbulence in astrophysical discs (see e.g., Balbus, 2003). As in the case of

hydrodynamic turbulence in shear flows, turbulence in discs (that in fact represent a special

case of shear flow as discs almost always rotate differentially) should continuously extract

energy from the disc flow at the largest scales (∼ H) and transfer it to motions at smaller

and smaller scales until eventual dissipation on the smallest viscous scales. The extraction

of energy at the largest scales, in turn, is possible owing to various types of instabilities in

the disc. Turbulence should also provide ‘right’ outward transport of angular momentum

for accretion. Thus, the starting point in tackling the disc turbulence problem is to explore

what types of instabilities can develop in accretion discs. The Keplerian differential rota-

tion plays a special role here because, as observations indicate (e.g., Dutrey, 2000; Simon

et al., 2000), in most cases protoplanetary discs do rotate with Keplerian or nearly Keplerian

velocities unless they are strongly self-gravitating. Therefore, research in this direction is

mainly focused on investigating the stability of the Keplerian rotation profile, its subsequent

(possible) transition to turbulence and the properties (e.g., angular momentum transport

rate) of the resulting turbulent state itself when other physical factors specific to discs (mag-

netic fields, self-gravity, radial and vertical stratification, etc.) are involved. However, we

should note in this respect that not all types of disc instabilities in the non-linear regime

necessarily lead to turbulence in the classical sense, but can result in some kind of more or-

4Note that there are also other non-local, long-range angular momentum transport mechanisms, for exam-

ple, gravitational instability described in section 2.2.3 below.
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ganised, quasi-steady, saturated non-linear states (e.g., coherent vortices, quasi-steady spiral

structure, convective rolls) that can also act to maintain angular momentum transport (in

such cases, λt and ut simply correspond to the characteristic sizes and velocities of these or-

ganised non-linear motions). Mechanisms/instabilities causing enhanced angular momentum

transport in discs, broadly speaking, can be divided into two basic categories: magnetohydro-

dynamic (MHD) mechanisms, primarily giving rise to magnetorotational instability (MRI),

and non-magnetic mechanisms, such as a purely hydrodynamical (i.e., driven by shear of disc

flow velocity) turbulence, baroclinic/Rossby wave instability and coherent vortices, spiral

density waves, convection and gravitational instability if the disc is self-gravitating. Below

we describe/review each of these mechanisms separately and then put them into the context

of the main thesis work.5 However, we will not expand much on the MRI and put more

emphasis on non-magnetic means of transport, since the latter is the central subject of study

in the present thesis. Besides, MHD instabilities (mostly the MRI) in accretion discs have

been the focus of numerous studies since the 1990s (see reviews by Balbus and Hawley, 1998;

Balbus, 2003) and today are accepted as the most likely cause of turbulence and enhanced

angular momentum transport in many accretion discs, but not necessarily in protoplanetary

discs. There can be certain conditions in the protoplanetary disc under which the MRI cannot

operate and that is where one has to appeal to non-magnetic means of transport.

In order for the MRI to develop, the disc should necessarily have regions where gas is

sufficiently ionised to couple effectively with magnetic field, so that the latter can affect the

gas dynamics (Blaes and Balbus, 1994; Gammie, 1996; Sano et al., 2000; Fromang et al., 2002;

Sano and Stone, 2002; Salmeron and Wardle, 2003; Desch, 2004). The minimum ionisation

fraction (i.e., the ratio of electron concentration, which are the main carriers of current, to

that of neutrals) required for the onset of the MRI in protoplanetary discs is very low, typically

10−13 (e.g., Gammie, 1996). Above this minimum ionisation, magnetic diffusion is small and

cannot suppress the MRI, while at lower ionisation fractions the MRI is quenched due to

dissipative effects. Disc ionisation can be provided by thermal collisions of molecules, X-rays

and cosmic rays. Thermal ionisation of alkali metals (potassium) can occur at T & 103 K

in the inner parts (. 0.1 AU) of the disc (Umebayashi, 1983) and keep the ionisation level

there above the threshold value, so that these inner regions are maintained magnetically

active. Ionisation due to cosmic rays or due to illumination from the central star’s X-ray

5We do not consider here external factors, such as the effects of a companion star, which can also produce

anomalous angular momentum transport by tidally inducing shocks of spiral density waves in the disc (e.g.,

Rozyczka and Spruit, 1993; Lin and Papaloizou, 1993).
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and UV radiation dominate at larger radii, where the disc is cooler and thermal ionisation

is ineffective. These non-thermal sources, entering the disc from the top and bottom, can

ionise gas only in surface layers with column densities up to a maximum value of 100 g cm−2

above which they cannot penetrate deeper due to attenuation (Umebayashi and Nakano,

1981). As a result, a large magnetically inactive region – so-called ‘dead zone’ – forms near

the disc midplane outside ∼ 0.1 AU, where the ionisation level is much smaller than that

required for magnetic coupling. This dead zone with almost no MHD turbulent activity thus

appears sandwiched between two magnetically active, MRI-turbulent surface layers and can

extend to radii as large as 30 AU (layered accretion disc model, see e.g., Gammie, 1996;

Fromang et al., 2002; Fleming and Stone, 2003). Beyond this radius, the disc surface density

drops below the maximum value, so that cosmic rays can propagate all along the height and

fully ionise the gas, thereby making it turbulent again and the layered structure disappears.

Analogous almost neutral regions can also exist in cataclysmic variable (CV) discs (Gammie

and Menou, 1998) and also in the outer parts of cool active galactic nuclei (AGN) discs

(Menou and Quataert, 2001). The absence of sufficient magnetic coupling, and therefore

of MHD turbulence, within such large portions of the disc necessitates a search for other

alternative non-magnetic mechanisms of angular momentum transport. However, it should

be noted in this regard that it is also possible that the turbulence in the magnetically active

surface layers induces small angular momentum transport in the dead zone by driving velocity

fluctuations (hydrodynamical waves) there and/or through diffusive penetration of magnetic

fields to the midplane (Fleming and Stone, 2003; Turner et al., 2007; Oishi et al., 2007; Turner

and Sano, 2008; Oishi and Mac Low, 2009).

2.1 Magnetorotational instability

The MRI is a linear instability occurring in differentially rotating, ionised gaseous discs

threaded by magnetic field. The remarkable feature of this instability is that it grows on

a characteristic time-scale of the order of the orbital period and even a very weak imposed

magnetic field is sufficient for its activation. In other words, the MRI persists and retains

its key properties in the limit of vanishing magnetic field, B → 0, or equivalently, for weak

ionisation, but, as mentioned above, the ionisation fraction of the disc must still be larger than

a certain minimum value, which can be very small. We note in this respect that the stability

properties of weakly ionised discs are qualitatively different from those of non-magnetised

discs.
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