
Chapter 2

General properties of
shear flows

In this chapter we focus on simple shear flows aiming to describe the
non-modal method as well as the basic properties of flows with inhomo-
geneous velocity fields. We start with the equations of magnetohydrody-
namics and then study the linear perturbations of the non-magnetized
equilibrium state. We illustrate the mathematical formalism of the non-
modal method for a parallel flow with a constant linear velocity shear.
In order to demonstrate the effect of the background shear flow on the
perturbation modes individually we consider limiting cases separately.
In particular, we analyze the effects of shear flow on the vortical and
compressible perturbations when simple analytic solutions may be ob-
tained. Finally, we estimate the possible values of the velocity shear
that may occur in equilibrium flows and introduce the convention used
further throughout the thesis.

2.1 Basic equations

The basic MHD equations are the conservation laws for mass, momentum
and energy. Conservation of the mass is described by the continuity
equation: {

∂

∂t
+ V · ∇

}
ρ + ρ(∇ ·V) = 0. (2.1)

Momentum conservation is written as the equation of motion:

ρ

{
∂

∂t
+ V · ∇

}
V = −∇P + FB +

∑
n

Fn, (2.2)
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where we have neglected all dissipative effects and assume that the flow
is inviscid. The sum of external forces Fn includes the inertial Coriolis
force in the case of rotating medium and the gravity force in the case
of the flow affected by gravity. The effect of the magnetic field in the
equation of motion may be described by the Lorenz force:

FB =
1
4π

(∇×B)×B. (2.3)

The complete description of the magnetized flow needs additional equa-
tions for the evaluation of the magnetic field. For this purpose we em-
ploy the ideal magnetohydrodynamic (MHD) approximation. It uses the
magnetic induction equation for the description of the field dynamics:

∂B
∂t

= ∇× (V ×B), (2.4)

where the magnetic diffusivity is neglected. In this ideal case the mag-
netic flux is “frozen” into the fluid flow. The magnetic field follows
the solenoidal condition which excludes the existence of the magnetic
monopoles:

∇ ·B = 0. (2.5)

The energy conservation law may be written for the entropy of the flow
as: {

∂

∂t
+ V · ∇

}
S = 0, (2.6)

where we assume that the flow is isentropic. This is a well justified
approximation when the effects of heat conductivity and emission or
absorption of radiation are negligible.
For the description of the thermodynamic equilibrium state we can use
the equation of entropy in the ideal gas approximation:

S = cvln
P

ργ
+ constant, (2.7)

where γ is the adiabatic index and cv is the specific heat. In many
cases it is useful to employ the dynamical equation for the hydrodynamic
pressure which can be derived from Eqs. (2.1,6,7):

{
∂

∂t
+ V · ∇

}
P + γP (∇ ·V) = 0. (2.8)

Eqs. (2.1)-(2.7) are the set of equations that describe MHD flow influ-
enced by the Coriolis and gravity forces. In this chapter we focus on
non-rotating flows, we neglect gravity and magnetic field, and focus on
hydrodynamics in order to describe the basic properties of flows with
velocity shear.
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2.2 Shear flow equilibrium and linear per-
turbations

Let us consider an unbounded inviscid hydrodynamic flow. The basic
properties of shear flows may be studied for 2D flows. Thus we con-
sider the simplest possible inhomogeneous flow, namely a 2D flow with
constant linear shear of velocity and homogeneous pressure and density
(plane Couette flow):

V0 = (Ay, 0), P0 = constant, ρ0 = constant. (2.9)

A is the constant parameter of the velocity shear, which is assumed to be
positive (see Fig. 2.1). This gives an exact time independent equilibrium
solution of Eqs. (2.1), (2.2) and (2.8). However, realistic flows are much
more complicated. For their analysis we may employ the perturbative
method. We distinguish the equilibrium and perturbed parts in various
physical quantities and study the perturbations on a known equilibrium
flow. Formally:

V = V0 + V′, P = P0 + P ′, ρ = ρ0 + ρ′, (2.10)

where V′, P ′ and ρ′ are perturbations of the velocity, pressure and den-
sity, respectively. When the perturbations are much smaller in amplitude
than the corresponding equilibrium quantities we can neglect terms that
are higher than the first order in the perturbations and analyze the linear
problem.
Substitution of the variables (2.10) into the Eqs. (2.1), (2.2) and (2.8)
and linearization leads to the following system of partial differential equa-
tions: {

∂

∂t
+ Ay

∂

∂x

}
V ′

x = −AV ′
y −

1
ρ0

∂P ′

∂x
, (2.11)

{
∂

∂t
+ Ay

∂

∂x

}
V ′

y = − 1
ρ0

∂P ′

∂y
, (2.12)

{
∂

∂t
+ Ay

∂

∂x

}
ρ′ + ρ0 (∇ ·V′) = 0, (2.13)

{
∂

∂t
+ Ay

∂

∂x

}
P ′ + γP0 (∇ ·V′) = 0. (2.14)

The effect of the background shear flow enters through the explicit co-
ordinate dependence in the convective derivative.
The principal advantage of linear analysis is that it is possible to identify
the perturbation spectrum. The linear character of the governing equa-
tions permits any solution to be expanded into a linear superposition of
different modes.
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Figure 2.1: Shear flow with constant linear ve-
locity profile V0 = (Ay, 0). This is a simplest
example of the incompressible flow with parallel
streamlines and non-zero vorticity: curlV0 = −A.

It is straightforward to define the linear spectrum in the limiting case
of a static background, when V0 = 0 (A = 0). In this case Eqs. (2.11)
- (2.14) are homogeneous in time as well as in space. Hence, the corre-
sponding solutions may be expressed in terms of harmonic functions of
coordinate and time variables and may be found prescribing the same
(r, t) dependence to all physical variables:

V′(r, t) ∝ exp(ikxx + ikyy − iωt). (2.15)

Substitution of this into Eqs. (2.11-14) in the case of A = 0 leads to the
well known dispersion equation:

ω2(ω2 − c2
sk

2) = 0, (2.16)

where k2 = k2
x +k2

y and c2
s = γP0/ρ0 is the sound speed. This dispersion

describes two types of perturbations:

• Acoustic wave mode with ω2 = c2
sk

2, which corresponds to the os-
cillating compressible perturbations with purely potential velocity
field: P ′, ρ′ 6= 0, ∇×V′ = 0.

• Vortex mode with ω = 0, which corresponds to the aperiodic
incompressible perturbations with purely vortical velocity field:
P ′, ρ′ = 0, ∇×V′ 6= 0.

The different linear modes have clearly distinguishable eigenfrequencies
and do not posses any similar feature in this shearless limit (A = 0).
New effects are introduced when the background flow is sheared (A 6= 0)
and the mean velocity has nonzero vorticity (∇×V0 6= 0).1 In this case
the two modes have a mixed character: the acoustic wave mode acquires
vortical features, while the vortex mode become compressible.
To understand how a shearing (vortical) background flow affects a linear
mode we calculate the contribution of the linear perturbations to the to-
tal velocity circulation of the flow. After straightforward manipulations

1Please, note that we use ∇×F notation for the rotation of a vector in the general
case, not specifying the dimension of the vector F (3D or 2D). While we employ curlF
notation only in the 2D case, stressing therewith that the product of this operator is
a scalar quantity.
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of Eqs. (2.11) - (2.14) we obtain:
{

∂

∂t
+ Ay

∂

∂x

}[(
∂V ′

y

∂x
− ∂V ′

y

∂x

)
−A

ρ′

ρ0

]
= 0. (2.17)

We can somewhat generalize this equation in the case of a 2D flow with
constant velocity shear: 1

{
∂

∂t
+ (V0 · ∇)

} [
curlV′

ρ0
+

ρ′ curlV0

ρ2
0

]
= 0, (2.18)

Hence, the linear perturbations of the potential vorticity curlV/ρ are
convected with the equilibrium flow.
This is the basic property of vorticity which helps us to identify the vorti-
cal modes in simple hydrodynamic situation. However, this conservation
law has its limitations. For instance, the flow viscosity leads to the de-
crease of potential vorticity through the thermal dissipation. Potential
vorticity also varies in baroclinic flows: perturbations of ∇P × ∇ρ act
as the source or the sink of potential vorticity depending on the thermo-
dynamic properties of the background flow. Most profound is the action
of magnetic field, when Lorenz force leads to the oscillatory behavior of
the potential vorticity. Neglecting all these factors in the present sec-
tion allows us to consider potential vorticity conservation and analyze
its consequences for the vortex and acoustic modes in shear flows.
The term in the square brackets of Eq. (2.18) remains constant in La-
grangian coordinates (moves together with fluid) and actually determines
the contribution of perturbations to the total velocity circulation of the
flow. Consequently, perturbations that do not change the circulation of
the background flow velocity should obey the following condition:

ρ0curlV′ + ρ′curlV0 = 0. (2.19)

Hence purely compressible perturbations (ρ′ 6= 0, curlV′ = 0) may not
be expressed as a superposition of only acoustic wave perturbations.
Linear perturbations of the density (or pressure) contribute to the po-
tential vorticity by the background vortical momentum ρ′curlV0. This
means that acoustic wave modes acquire a vortical nature in flows with
inhomogeneous velocity profiles. Perturbations of acoustic vorticity will
propagate with the sound wave frequency:

curlV′(t) = −curlV0
ρ′(t)
ρ0

.

1The same equation may be obtained by the direct calculation of the linear
perturbation of velocity circulation in Eq. (2.18) having in mind that ρ′/ρ0 =∫

S′ df/
∫

S0
df , where S0 and S′ are mean and perturbed components of the area

over which the vorticity is integrated. Note, that in this 2D case df is a scalar
quantity.
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On the other hand vortex modes loose their purely vortical nature and
acquire compressible nature: curlV′ = 0, ρ′ 6= 0 necessarily contains
the vortex mode perturbations, since the resulting contribution into the
total velocity circulation is non-zero. This vortex mode perturbations
of density (and pressure) do not propagate and behave aperiodically2.
In other words, vortical or compressible perturbations are not uniquely
associated with vortex and acoustic wave modes, respectively.
For this simplified 2D hydrodynamic example we have seen that the
vortical character of the equilibrium flow affects basic characteristics of
the perturbation. The effect increases with the velocity shear parameter
A = −curlV0. As we will see later, this is the crucial factor that de-
termines the necessary conditions for different modes to interact in the
linear regime.
It is helpful to reduce the system of partial differential equations to a
set of ordinary differential equations. The common approach to this
problem has been modal analysis. It employs an expansion of the phys-
ical variables in Fourier modes with predefined temporal and x-spatial
structure and study of the boundary value problem with respect to the
y coordinate. For the reasons discussed in the introduction we do not
use the modal analysis but employ an alternative method.

2.3 Non-modal formalism

For shortness of notation we introduce the generalized vector:

Ψ′(r, t) ≡



V′(r, t)
ρ′(r, t)
P ′(r, t)


 . (2.20)

In the non-modal method, we use a transformation of variables from the
stationary to the co-moving frame, a so-called shearing sheet transfor-
mation:

x′ ≡ x−Ayt, y′ ≡ y, t′ ≡ t. (2.21)

This substitution of variables transforms the spatial inhomogeneity of
the equations (2.8-12) into a inhomogeneity:

∂

∂t
+ Ay

∂

∂x
=

∂

∂t′
,

∂

∂x
=

∂

∂x′
,

∂

∂y
=

∂

∂y′
−At′

∂

∂x′
. (2.22)

Hence, the full spatial Fourier expansion is straightforward:

Ψ′(r′, t′) =
∫ ∫ +∞

−∞
ψ(k′, t′) exp

(
ik′xx′ + ik′yy′

)
dk′xdk′y, (2.23)

2This density perturbations are sometimes referred as a pseudo-sound in hydro-
dynamic literature.
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where

ψ(k, t) ≡



v(k, t)
%(k, t)
p(k, t)


 . (2.24)

Similarly, we may choose a particular form of the spatial harmonics and
analyze perturbations in the laboratory frame. Substitution of (2.21)
into the Fourier expansion (2.23) gives us an understanding of the in-
trinsic shape of the spatial harmonics (SFH) of the perturbed quantities
in shear flows: exp(ik′r′) = exp[ik′xx + i(k′y − Atk′x)y]. Hence we seek
solutions of Eqs. (2.11)-(2.14) of the form:

Ψ′(r, t) ∝ ψ(k(t), t) exp(ik(t), r), (2.25)

k(t) = (kx, ky(t)), ky(t) = ky(0)−Akxt. (2.26)

The expansion in spatial harmonics with time dependent wave-numbers
cancels the explicit coordinate dependence in the original equations.
This leads to a system of ordinary differential equations for the per-
turbation SFH in time:

dvx

dt
+ Avy + ikx

p

ρ0
= 0, (2.27)

dvy

dt
+ iky(t)p = 0, (2.28)

d%

dt
+ iρ0(kxvx + ky(t)vy) = 0, (2.29)

dp

dt
+ iγP0(kxvx + ky(t)vy) = 0, (2.30)

Eqs. (2.27) - (2.30) pose an initial value problem. The solution of this
initial value problem describes the temporal evolution of the SFH in
shear flows. Note that the perturbations are described by the individual
SFH obtained from the solution of the above initial value problem, and
also by the fact that every harmonic linearly drifts in the wave-number
space (k-space): k = k(t). The behavior of the perturbations in the
r-space is determined by the combined effect of the amplitude of SFHs
and their drift in k-space. The linear drift of the SFH in a shear flow
is easy to understand. It reveals the fact, that the shearing background
flow stretches the wave-crests in the direction of the streamlines. Linear
drift of SFH is an important property of all perturbations of shear flows.
It reveals an inherent anisotropy of the linear process of energy redis-
tribution in the k-space, the background trend of the energy transport
between the different spatial scales. Temporal characteristics of pertur-
bation modes are defined by their spatial characteristis – wave-numbers.
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Therefore, the time dependence of the wave-numbers indicates the tem-
poral variation of the effective frequencies of the perturbation SFH in
shear flows:

ω = ω(k), ky = ky(t) : ω = ω(t) . (2.31)

A more detailed description of this process will be given later for partic-
ular examples.
Let us consider two limiting cases where simple solutions for sound waves
and vortical perturbations are obtained. This will help us to get a general
insight into the influence of velocity shear on the dynamics.

2.4 Vortex mode perturbations

First we look at the limiting case of a 2D incompressible flow to study
purely vortical perturbations. We neglect the perturbation of the fluid
density % ≡ 0 and adopt a divergence free velocity field:

∇ ·V = 0. (2.32)

We can rewrite Eqs. (2.27)-(2.30) to the following:

dvx

dt
+ Avy + ikx

p

ρ0
= 0, (2.33)

dvy

dt
+ iky(t)

p

ρ0
= 0, (2.34)

kxvx + ky(t)vy = 0. (2.35)

After straightforward manipulations we obtain the following solution of
the system:

vx(t) = − ky(t)
kxk2(t)

C, (2.36)

vy(t) =
C

k2(t)
, (2.37)

ip(t)
ρ0

= −2A
kx

k4(t)
C, (2.38)

where C is a constant of integration. This aperiodic mode is sometimes
called the Kelvin mode, with reference to the pioneering paper by Lord
Kelvin 1887. The solution describes a transient amplification of the
vortical SFH in shear flow. The pressure SFH is complex due to the π/2
phase difference between the velocity and pressure perturbations. In the
incompressible limit the total spectral energy density of perturbations is
only due to kinetic terms and may be written as:

Ek(t) =
ρ0

2
(|vx(t)|2 + |vy(t)|2) =

C2ρ0

2k2
xk2(t)

(2.39)
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Figure 2.2: Transient amplification of the vortical perturbation SFH in shear
flows. kx = 1, ky = 20, C = 10 and A = 0.1. The velocity vx(t), vy(t),
pressure ip(t)/(csρ0), and normalized spectral energy Ek(t)/Ek(0) of SFH are
shown on the a,b,c and d graphs, respectively.

This solution is plotted on Fig. 2.2. It seems that the vortical pertur-
bations are able to extract energy from the mean shear flow and are
amplified by several orders of magnitude (by factor of 400 in the consid-
ered case). The maximal amplification is reached when the wave-number
in the direction of the flow velocity shear is zero: in the present case –
at t = t∗ = 200, when ky(t∗) = ky(0)−Akxt∗ = 0.

The character of the evolution of SFH is defined by its wave-number.
Namely, SFH with ky/Akx > 0 undergoes amplification and SFH with
ky/Akx ≤ 0 looses energy to the background flow and decreases in am-
plitude.

This amplification phenomenon is a direct consequence of the eigenmode
interference and has a transient character. As we shall see later, the tran-
sient amplification may be realized not only for aperiodic vortex modes.
It can also occur for oscillating wave perturbations. The condition in
the latter case is that the oscillating solution has a period much longer
than the time scales on which the amplification occurs.

From a physical point of view, the growth of the energy of perturbations
is due to the anisotropic character of the momentum exchange of the
SFH with specific phases affected by the background velocity shear.
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2.5 Acoustic wave mode perturbations

Combining Eqs. (2.13)-(2.14) we obtain the dynamical equation for the
pressure and density perturbations:

dP ′

dt
= c2

s

dρ′

dt
. (2.40)

For the study of acoustic waves it is useful to assume that there are
no stationary (constant) pressure and density perturbations in the flow.
Stationary perturbations can always be removed by including them into
the mean flow, e.g. by renormalization of the equilibrium flow. Hence,
we may reduce the Eq. (2.39) to the following algebraic form

p = c2
s%. (2.41)

The perturbations are adiabatically compressible. Hence, the equations
that govern the compressible SFH in a 2D unbounded shear flow are:

dvx

dt
+ Avy + ikxc2

s

%

ρ0
= 0 , (2.42)

dvy

dt
+ iky(t)c2

s

%

ρ0
= 0 , (2.43)

d%

dt
+ iρ0 (kxvx + ky(t)vy) = 0 . (2.44)

These equations describe both, the acoustic (sound) waves as well as the
vortex mode, which we have studied in the incompressible limit. In order
to study the purely acoustic modes we should select the initial pertur-
bations so that the vortex mode is excluded from the consideration.
Eqs. (2.42)-(2.44) allow for the following invariant form in time:

dI

dt
= 0 : I(k) = kxvy − ky(t)vx + A

i%
ρ0

, (2.45)

Referring to the Eq. (2.18) we may deduce that I(k) is a spectral form of
the potential vorticity of the SFH. In order to remove the vortex mode
from the analysis we select initial conditions with zero potential vorticity:

I(k) ≡ 0. (2.46)

Using this initial condition in Eqs. (2.42)-(2.44) we derive the second
order differential equation that governs the acoustic wave mode:

d2vx

dt2
+ c2

sk
2(t)vx = 0. (2.47)
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Figure 2.3: Evolution of the acoustic SFH of perturbations in shear flow.
kx = 1, ky = 1, and A = 0.02. The velocity vx(t), vy(t), density i%(t)/ρ0,
and normalized spectral energy Ek(t)/Ek(0) of the harmonic are shown on
the a,b,c and d graphs, respectively. Oscillations of the velocity and density
show the variation of the its frequency, which is apparently increased at longer
times.

To get more insight into the qualitative behaviour of the perturbations
we consider flows with low shear and solve Eq. (2.47) approximately,
rather than trying to find the exact solution in the general case. When
the time dependent parameters of the second order system are varying
adiabatically, the system may be considered as an oscillatory system
with a varying frequency

ω2(t) = c2
sk

2(t), (2.48)

provided that the adiabatic condition of the slow variation is satisfied:
∣∣∣∣
dω(t)

dt

∣∣∣∣ ¿ ω2(t). (2.49)

Hence, the velocity shear affects the acoustic wave frequency due to
the wave-number variation. During the evolution in shear flows the
frequency of the acoustic waves is increased or decreased, depending on
the phase of the SFH. Conservation of the adiabatic invariant in such
system reveals the characteristic behavior of the wave energy:

Ek(t) ∝ ω(t) ∝ |k(t)|. (2.50)

These effects are readily illustrated on Fig. 2.3 where we present the
exact numerical solution of Eqs. (2.42) - (2.44) for specific initial condi-
tions. On the other hand, the analytical solution of this system in the
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WKB approximation is:

i%(t)/ρ0 = Aρ(t) exp [iφ(t)] , (2.51)

vx(t) = Avx(t) exp [i(φ(t) + φvx(t))] , (2.52)

vy(t) = Avy(t) exp [i(φ(t) + φvy(t))] , (2.53)

where

φ(t) = φ0 +
∫ t

0

ω(t)dt . (2.54)

Avx(t), Avy(t), Aρ(t) are amplitudes and φvy(t), φρ(t) time dependent
phase differences between the vx(t), vy(t) and %(t), respectively (We do
not analyze the acoustic wave properties in detail here and refer the
reader to Chagelishvili et al. 1994, 1997 for more details). We rather
emphasize the characteristic properties of the acoustic waves that are
inherent to waves influenced by a mean shear flow.
First of all, as we have already seen in the incompressible limit, the
perturbations exchange energy with the background shear flow. The
character of this process is largely defined by the velocity shear parameter
and the character of perturbations. At low shear rates the equation
describing the evolution of SFH are analogous to an oscillatory equation
with a time dependent frequency. Therefore the shear induced temporal
variation of the mode frequency is due to the time dependence of the SFH
wave-numbers, the linear drift in k-space. ω(t) = ω(k(t)). The adiabatic
character of the system then defines the character of energy exchange
between perturbations and the background flow: Ek(t) ∝ ω(k(t)).
Shear of the flow also affects energy transfer by waves. In the simple case
of uniform flow the energy transport of wave package may be estimated
by the group velocity. However, in the present case the definition of the
group velocity becomes problematic.
Indeed, when we use the classical definition of group velocity (cf. Lighthill
1978) and use Eq. (2.54) we obtain:

U =
∂ω(k)

∂k
=

∂2φ(k, t)
∂k ∂t

(2.55)

However, the phase difference between the SFH of the different physical
quantities (see Eqs. 2.51 - 2.53) is time dependent: the density and ve-
locity perturbations evolve with their corresponding phases. Therefore,
the group velocity calculated for different physical quantities is different:

Uρ = U , (2.56)

Uvx = U +
∂2φvx(k, t)

∂k ∂t
, (2.57)
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Uvy = U +
∂2φvy(k, t)

∂k ∂t
. (2.58)

So, the compressible energy is transported with a different group veloc-
ity than the kinetic one. Even the definition of the kinetic energy is
problematic, since the harmonics of different polarization transport the
energy at different speeds. Two otherwise identical waves with different
velocity components projected along the x and y directions have differ-
ent mean group velocities due to the difference between Uvx and Uvy.
Hence, even the definition of the average group velocity becomes a sub-
ject of approximation. This property is generally inherent to all waves
in shear flows, but is most profound during the non-adiabatic stage of
the wave evolution, when the phases of different physical quantities sig-
nificantly diverge. For the considered sound waves non-adiabaticity is
profound when ky(t)/(Akx) < 1 (see Chagelishvili et al. 1997).

2.6 Velocity shear rate

The dynamics of sheared flows crucially depends on the type of the
velocity inhomogeneity. A major concern in this respect is the stability
of a given flow. In fact, there are several different factors that may
lead to exponential destabilization of the laminar shear flow. Flow may
be fundamentally unstable due to the large amplitude or the specific
geometry of the velocity shear. For instance, a powerful instability may
occur in a flow that has an inflection point in the velocity profile. In
the present thesis we study flows with smooth shear of velocity, i.e.,
velocity profile without an infection point and sufficiently smooth to be
approximated by a linear profile locally. Therefore, we do not consider
effects related to the flow velocity profile, but simply estimate the largest
possible velocity shear that may occur in a spectrally stable flow.
The influence of the velocity shear is different on perturbations of differ-
ent characteristic length-scales. We have already seen that a sheared flow
results in a temporal variation of the wave-numbers thereby stretching
the initial pattern into the direction of the streamlines. Therefore, for
an adequate description of the effect of the shearing background on the
perturbations, it is useful to introduce the non-dimensional shear rate:

R ≡ A/csk‖, (2.59)

where k‖ is the characteristic wave-number of the perturbation along the
flow. The value of the velocity shear rate may be estimated from several
different points of view. The first natural question in this respect: what
is the value of the shear rate R which does not lead to kinematic shocks.
The latter process may occur when the variation of the flow velocity over
a dissipative length scales is of the same order as the sound speed of the
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medium cs. The shear parameter A defines the velocity variation over
a unit length scale. Thus the formation of extreme velocity gradients
necessary for the formation of shock waves is possible when

Alν/cs ≥ 1, (2.60)

where lν is the characteristic dissipative length scale of the flow. Having
in mind that l‖ ∼ 1/k‖ and using Eq. (2.59) we can rewrite Eq. (2.60)
as:

R ≥ l‖/lν . (2.61)

The length scales of the dynamical perturbations are longer than the
dissipative ones: l‖ > lν . Therefore, the critical value of the velocity
shear rate necessary for the formation of shock waves in a laminar flow
should obey the following condition:

R > 1. (2.62)

Note that the stability threshold may be much higher (R À 1) for large
scale perturbations (l‖ À lν). Our further analysis is restricted by the
maximal value of the velocity shear rate for small scale perturbations:
l‖ ≥ lν . Hence, we define the velocity shear rate to be low when R ≤ 0.1,
moderate when 0.1 < R < 1, and high when R ≥ 1.


