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Preface

Always majestic, often spectacularly beautiful, galaxies are the fundamental
building blocks of the Universe. The inquiring mind cannot help asking
how they formed, how they function, and what will become of them in the
distant future. The principal tool used in answering these questions is stellar
dynamics, the study of the motion of a large number of point masses orbiting
under the influence of their mutual self-gravity. The main aim of this book is
to provide the reader with an understanding of stellar dynamics at the level
required to carry out research into the formation and dynamics of galaxies.

Galaxies are not only important in their own right, but also provide
powerful tools for investigating some of the most important and fundamen-
tal problems in physics: our current expectation that the great majority of
the matter in the universe is made up of weakly interacting elementary parti-
cles of unknown nature arose from studies of the outer reaches of galaxies; the
standard theory of the origin of structure in the universe, which rests on ex-
otic hypotheses such as inflation and vacuum energy, is tested and challenged
by observations of the structure of galaxies; and galaxies are frequently used
as enormous laboratories to study the laws of physics in extreme conditions.

The study of galactic dynamics carries the student to the frontiers of
knowledge faster than almost any other branch of theoretical physics, in
part because the fundamental issues in the subject are easy to understand
for anyone with an undergraduate training in physics, and in part because
theorists are scrambling to keep pace with a flood of new observations.

The tools required to reach the research frontier in galactic dynamics
are for the most part ones developed in other fields: classical, celestial, and
Hamiltonian mechanics, fluid mechanics, statistical mechanics, and plasma
physics provide the most relevant backgrounds, and, although there is little
need for quantum mechanics, the mathematical techniques developed in an
introductory quantum mechanics course are in constant use. Brief summaries
of the required background material are given in Appendices B (mathemat-
ics), C (special functions), D (mechanics), and F (fluid mechanics).

This book has been designed for readers with a standard undergradu-
ate preparation in physics. By contrast, we have assumed no background in
astronomy, although the context of many discussions will be clearer to the
reader who has a broad grasp of basic astronomy and astrophysics, at the
level of Shu (1982). A brief summary of the relevant observations is pro-
vided in §1.1. Introductions to galactic astronomy are given in Marochnik
& Suchkov (1996), Elmegreen (1998) and Sparke & Gallagher (2000). For
a comprehensive description of the properties of galaxies and other stellar
systems, see Galactic Astronomy (Binney & Merrifield 1998), which is a
companion to the present book and will be referred to simply as BM.
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A one-semester graduate course on galaxies might be based on the fol-
lowing sections from the two books:

Galactic Astronomy: 1.1, 1.2, 2.1, 2.2, 2.3, 3.6, 3.7, 4.1, 4.2, 4.3,
4.6, 9.1, 10.3, 11.1

Galactic Dynamics: 1.1, 1.2, 2.1, 2.2, 2.3, 2.9, 3.1, 3.2, 3.3, 3.4,
4.1, 4.3, 4.7, 4.8, 4.9, 5.1, 5.2, 6.1, 7.1, 7.2, 7.3, 8.1, 8.3, 8.5

This selection assumes that the students will be exposed in other courses
to the material on cosmology (GD §§1.3 and 9.1–9.3), stellar structure (GA
§§3.1–3.5 and 5.1–5.4), and the interstellar medium (GA§§8.1–8.4 and 9.2–
9.6).

The first edition of this book appeared in 1987, and after two decades
major revisions were in order, both to accommodate the many important ad-
vances in the field and to reflect changes in the perspectives of the authors.
The present edition makes more extensive use of Lagrangian and Hamilton-
ian mechanics, and includes new theoretical topics such as basis-function
expansions for potential theory, angle-action variables, orbit-based meth-
ods of constructing stellar systems, linear response theory, stability analysis
using the Kalnajs matrix method and energy principles, energy and angular-
momentum transport in disks, the fluctuation-dissipation theorem, and the
sheared sheet. N-body simulations of stellar systems have grown enormously
in importance and sophistication, and we have added extensive descriptions
of modern numerical methods for evaluating the gravitational field and fol-
lowing orbits.

The last two chapters of the first edition have been eliminated; much
of the material of the old Chapter 9 is now covered in Galactic Astronomy,
while the topics from the old Chapter 10 have been integrated into earlier
chapters.

The most dramatic change in this subject since the publication of the
first edition has been the development of a theory of structure formation
in the universe of remarkable elegance and predictive power, based on con-
cepts such as inflation, cold dark matter, and vacuum energy. The study
of galactic structure and the study of cosmology are now inseparable, and
one of our struggles was to incorporate the rich new insights that cosmology
has brought to galactic dynamics without writing a superfluous textbook on
cosmology. We have chosen to devote the final chapter to a short but self-
contained outline of the contemporary theory of large-scale structure and
galaxy formation. We introduce the theory of random fields and the linear
theory of the growth of fluctuations in the universe, and give a simple treat-
ment of nonlinear structure formation through the spherical-collapse model
and extended Press–Schechter theory. The final, speculative section sum-
marizes our still incomplete understanding of how the complex physics of
baryons gives rise to the galaxies we see about us.

There are problems at the end of each chapter, many of which are in-
tended to elucidate topics that are not fully covered in the main text. Their
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degree of difficulty is indicated by a number in square brackets at the start
of each problem, ranging from [1] (easy) to [3] (difficult).

One vexing issue in astrophysical notation is how to indicate approxi-
mate equality. We use “=” to denote equality to several significant digits,
“≈” for equality to order of magnitude, and “'” for everything in between.
The ends of proofs are indicated by a sideways triangle, “/”.

Although we have tried to keep jargon to a minimum, we were unable to
resist the economy of a few abbreviations: “distribution function” is written
throughout the book as “df,” “cosmic microwave background” as “cmb,”
“initial mass function” as “imf,” “interstellar medium” as “ism,” “line-of-
sight velocity distribution” as “losvd,” and “root mean square” as “rms.”

We are deeply indebted to many colleagues, both for thoughtful com-
ments on the first edition and for their patient and enthusiastic support
during the preparation of the second.

Errors and inaccuracies in the first edition were pointed out to us by Ed
Bertschinger, Carlo Del Noce, David Earn, Stefan Engström, Andreas Ernst,
Gerry Gilmore, Chris Hunter, Doug Johnstone, Konrad Kuijken, Ari Laor,
Blane Little, Thomas Lydon, Phil Mahoney, Kap-Soo Oh, Maria Petrou,
Sterl Phinney, Gerald Quinlan, James Rhoads, George Rybicki, Jerry Sell-
wood, Yue Shen, David Sher, Min-Su Shin, Noam Soker, Guo-xuan Song, S.
Sridhar, Björn Sundelius, Maria Sundin, Peter Teuben, Alexey Yurchenko,
Rosemary Wyse, and Harold Zapolsky. Marc Kamionkowski and the stu-
dents and postdocs in theoretical astrophysics at Caltech solved most of the
problems and worked with us to improve them. Advice, data, and specially
adapted or constructed figures were provided by Ron Allen, Lia Athanas-
soula, Jeremy Bailin, Rainer Beck, Kirk Borne, Daniela Calzetti, Michele
Cappellari, Roc Cutri, John Dubinski, Doug Finkbeiner, Chris Flynn, Marc
Freitag, Ortwin Gerhard, Mirek Giersz, Oleg Gnedin, Bill Harris, Clovis
Hopman, Adrian Jenkins, Avi Loeb, Robert Lupton, John Magorrian, David
Malin, Tom Oosterloo, Michael Perryman, Fred Rasio, Michael Regan, Jerry
Sellwood, Tom Statler, Max Tegmark, Jihad Touma, Rien van de Weygaert,
and Donghai Zhao. Major portions of this edition were read in draft form
and critiqued by Luca Ciotti, Ken Freeman, Douglas Heggie, Chris Hunter,
Marc Kamionkowski, Jerry Sellwood, and Alar Toomre. We have benefited
greatly from a powerful suite of plain TEX macros written by Nigel Dowrick.

We also thank the many institutions that have provided support and
hospitality to us during the writing of both editions of this book. These
include the Institute of Astronomy, Cambridge; the Massachusetts Institute
of Technology; the Max Planck Institute for Astrophysics, Garching; the
Kapteyn Astronomical Institute, Groningen; Merton College and the De-
partment of Physics, Oxford; the Institute for Advanced Study, Princeton;
Princeton University Observatory; the Weizmann Institute of Science, Re-
hovot; and the Canadian Institute for Theoretical Astrophysics, Toronto.

We are greatly indebted to the Smithsonian/NASA Astrophysics Data
System (see adsabs.harvard.edu) and the arXiv e-print service (arXiv.org),
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which have revolutionized access to the astronomy literature.
Finally we thank our families for their support and understanding over

the years in which Galactic Dynamics has encroached on times such as week-
ends and vacations that are properly reserved for family life.

July 2007 James Binney
Scott Tremaine



1
Introduction

A stellar system is a gravitationally bound assembly of stars or other point
masses. Stellar systems vary over more than fourteen orders of magnitude in
size and mass, from binary stars, to star clusters containing 102 to 106 stars,
through galaxies containing 105 to 1012 stars, to vast clusters containing
thousands of galaxies.

The behavior of these systems is determined by Newton’s laws of motion
and Newton’s law of gravity,1 and the study of this behavior is the branch
of theoretical physics called stellar dynamics. Stellar dynamics is directly
related to at least three other areas of theoretical physics. Superficially, it is
closest to celestial mechanics, the theory of planetary motions—both involve
the study of orbits in a gravitational field—however, much of the formalism
of celestial mechanics is of little use in stellar dynamics, since it is based on
perturbation expansions that do not converge when applied to most stellar
systems. The most fundamental connections of stellar dynamics are with
classical statistical mechanics, since the number of stars in a star cluster or
galaxy is often so large that a statistical treatment of the dynamics is neces-
sary. Finally, many of the mathematical tools that have been developed to
study stellar systems are borrowed from plasma physics, which also involves
the study of large numbers of particles interacting via long-range forces.

1 As yet, there is no direct evidence for stellar systems in which relativistic effects are
important, although such systems are likely to be present at the centers of galaxies.



2 Chapter 1: Introduction

For an initial orientation, it is useful to summarize a few orders of mag-
nitude for a typical stellar system, the one to which we belong. Our Sun is
located in a stellar system called the Milky Way or simply the Galaxy.
The Galaxy contains four principal constituents:

(i) There are about 1011 stars, having a total mass ' 5× 1010 solar masses
(written 5 × 1010 M�; 1M� = 1.99 × 1030 kg).2 Most of the stars in
the Galaxy travel on nearly circular orbits in a thin disk whose radius is
roughly 104 parsecs (1 parsec ≡ 1 pc ≡ 3.086×1016 m), or 10 kiloparsecs
(kpc). The thickness of the disk is roughly 0.5 kpc and the Sun is located
near its midplane, about 8 kpc from the center.

(ii) The disk also contains gas, mostly atomic and molecular hydrogen, con-
centrated into clouds with a wide range of masses and sizes, as well as
small solid particles (“dust”), which render interstellar gas opaque at
visible wavelengths over distances of several kpc. Most of the atomic
hydrogen is neutral rather than ionized, and so is denoted HI. Together,
the gas and dust are called the interstellar medium (ism). The total
ism mass is only about 10% of the mass in stars, so the ism has little
direct influence on the dynamics of the Galaxy. However, it plays a cen-
tral role in the chemistry of galaxies, since dense gas clouds are the sites
of star formation, while dying stars eject chemically enriched material
back into the interstellar gas. The nuclei of the atoms in our bodies were
assembled in stars that were widely distributed through the Galaxy.

(iii) At the center of the disk is a black hole, of mass ' 4 × 106 M�. The
black hole is sometimes called Sagittarius A* or Sgr A*, after the radio
source that is believed to mark its position, which in turn is named after
the constellation in which it is found.

(iv) By far the largest component, both in size and mass, is the dark halo,
which has a radius of about 200 kpc and a mass of about 1012 M� (both
these values are quite uncertain). The dark halo is probably composed of
some weakly interacting elementary particle that has yet to be detected
in the laboratory. For most purposes, the halo interacts with the other
components of the Galaxy only through the gravitational force that it
exerts, and hence stellar dynamics is one of the few tools we have to
study this mysterious yet crucial constituent of the universe.

The typical speed of a star on a circular orbit in the disk is about 200 km s−1.
It is worth remembering that 1 km s−1 is almost exactly 1 pc (actually 1.023)
in 1 megayear (1 megayear≡ 1 Myr = 106 years). Thus the time required to
complete one orbit at the solar radius of 8 kpc is 250 Myr. Since the age of
the Galaxy is about 10 gigayears (1 gigayear≡ 1 Gyr = 109 yr), most disk
stars have completed over forty revolutions, and it is reasonable to assume
that the Galaxy is now in an approximately steady state. The steady-state

2 See Appendix A for a tabulation of physical and astronomical constants, and Tables
1.1, 1.2 and 2.3 for more precise descriptions of the properties of the Galaxy.
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approximation allows us to decouple the questions of the present-day equi-
librium and structure of the Galaxy, to which most of this book is devoted,
from the thornier issue of the formation of the Galaxy, which we discuss only
in the last chapter of this book.

Since the orbital period of stars near the Sun is several million times
longer than the history of accurate astronomical observations, we are forced
to base our investigation of Galactic structure on what amounts to an in-
stantaneous snapshot of the system. To a limited extent, the snapshot can
be supplemented by measurements of the angular velocities (or proper mo-
tions) of stars that are so close that their position on the sky has changed
noticeably over the last few years; and by line-of-sight velocities of stars,
measured from Doppler shifts in their spectra. Thus the positions and ve-
locities of some stars can be determined, but their accelerations are almost
always undetectable with current observational techniques.

Using the rough values for the dimensions of the Galaxy given above,
we can estimate the mean free path of a star between collisions with another
star. For an assembly of particles moving on straight-line orbits, the mean
free path is λ = 1/(nσ), where n is the number density and σ is the cross-
section. Let us make the crude assumption that all stars are like the Sun so
the cross-section for collision is σ = π(2R�)2, where R� = 6.96 × 108 m =
2.26 × 10−8 pc is the solar radius.3 If we spread 1011 stars uniformly over a
disk of radius 10 kpc and thickness 0.5 kpc, then the number density of stars
in the disk is 0.6 pc−3 and the mean free path is λ ' 2×1014 pc. The interval
between collisions is approximately λ/v, where v is the random velocity of
stars at a given location. Near the Sun, the random velocities of stars are
typically about 50 km s−1. With this velocity, the collision interval is about
5×1018 yr, over 108 times longer than the age of the Galaxy. Evidently, near
the Sun collisions between stars are so rare that they are irrelevant—which is
fortunate, since the passage of a star within even 103 solar radii would have
disastrous consequences for life on Earth. For similar reasons, hydrodynamic
interactions between the stars and the interstellar gas have a negligible effect
on stellar orbits.

Thus, each star’s motion is determined solely by the gravitational attrac-
tion of the mass in the galaxy—other stars, gas, and dark matter. Since the
motions of weakly interacting dark-matter particles are also determined by
gravitational forces alone, the tools that we develop in this book are equally
applicable to both stars and dark matter, despite the difference of 70 or more
orders of magnitude in mass.

We show in §1.2 that a useful first approximation for the gravitational
field in a galaxy is obtained by imagining that the mass is continuously
distributed, rather than concentrated into discrete mass points (the stars

3 This calculation neglects the enhancement in collision cross-section due to the mutual
gravitational attraction of the passing stars, but this increases the collision rate by a factor
of less than 100, and hence does not affect our conclusion. See equation (7.195).
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and dark-matter particles) and clouds (the gas). Thus we begin Chapter 2
with a description of Newtonian potential theory, developing methods to
describe the smoothed gravitational fields of stellar systems having a variety
of shapes. In Chapter 3 we develop both quantitative and qualitative tools to
describe the behavior of particle orbits in gravitational fields. In Chapter 4
we study the statistical mechanics of large numbers of orbiting particles to
find equilibrium distributions of stars in phase space that match the observed
properties of galaxies, and learn how to use observations of galaxies to infer
the properties of the underlying gravitational field.

The models constructed in Chapter 4 are stationary, that is, the den-
sity at each point is constant in time because the rates of arrival and depar-
ture of stars in every volume element balance exactly. Stationary models are
appropriate to describe a galaxy that is many revolutions old and hence pre-
sumably in a steady state. However, some stationary systems are unstable,
in that the smallest perturbation causes the system to evolve to some quite
different configuration. Such systems cannot be found in nature. Chapter 5
studies the stability of stellar systems.

In Chapter 6 we describe some of the complex phenomena that are
peculiar to galactic disks. These include the beautiful spiral patterns that
are usually seen in disk galaxies; the prominent bar-like structures seen at
the centers of about half of all disks; and the warps that are present in many
spiral galaxies, including our own.

Even though stellar collisions are extremely rare, the gravitational fields
of passing stars exert a series of small tugs that slowly randomize the orbits
of stars. Gravitational encounters of this kind in a stellar system are analo-
gous to collisions of molecules in a gas or Brownian motion of small particles
in a fluid—all these processes drive the system towards energy equipartition
and a thermally relaxed state. Relaxation by gravitational encounters op-
erates so slowly that it can generally be neglected in galaxies, except very
close to their centers (see §1.2); however, this process plays a central role in
determining the evolution and present form of many star clusters. Chapter 7
describes the kinetic theory of stellar systems, that is, the study of the evo-
lution of stellar systems towards thermodynamic equilibrium as a result of
gravitational encounters. The results can be directly applied to observations
of star clusters in our Galaxy, and also have implications for the evolution
of clusters of galaxies and the centers of galaxies.

Chapter 8 is devoted to the interplay between stellar systems. We de-
scribe the physics of collisions and mergers of galaxies, and the influence of
the surrounding galaxy on the evolution of smaller stellar systems orbiting
within it, through such processes as dynamical friction, tidal stripping, and
shock heating. We also study the effect of irregularities in the galactic grav-
itational field—generated, for example, by gas clouds or spiral arms—on the
orbits of disk stars.

Throughout much of the twentieth century, galaxies were regarded as
“island universes”—distinct stellar systems occupying secluded positions in
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space. Explicitly or implicitly, they were seen as isolated, permanent struc-
tures, each a dynamical and chemical unit that was formed in the distant
past and did not interact with its neighbors. A major conceptual revolution
in extragalactic astronomy—the study of the universe beyond the edges
of our own Galaxy—was the recognition in the 1970s that this view is incor-
rect. We now believe in a model of hierarchical galaxy formation, the
main features of which are that: (i) encounters and mergers of galaxies play a
central role in their evolution, and in fact galaxies are formed by the mergers
of smaller galaxies; (ii) even apparently isolated galaxies are surrounded by
much larger dark halos whose outermost tendrils are linked to the halos of
neighboring galaxies; (iii) gas, stars, and dark matter are being accreted onto
galaxies up to the present time. A summary of the modern view of galaxy
formation and its cosmological context is in Chapter 9.

1.1 An overview of the observations

1.1.1 Stars

The luminosity of the Sun is L� = 3.84 × 1026 W. More precisely, this
is the bolometric luminosity, the total rate of energy output integrated
over all wavelengths. The bolometric luminosity is difficult to determine
accurately, in part because the Earth’s atmosphere is opaque at most wave-
lengths. Hence astronomical luminosities are usually measured in one or
more specified wavelength bands, such as the blue or B band centered on
λ = 450 nm; the visual or V band at λ = 550 nm; the R band at λ = 660 nm;
the near-infrared I band at λ = 810 nm; and the infrared K band centered
on the relatively transparent atmospheric window at λ = 2200 nm = 2.2µm,
all with width ∆λ/λ ' 0.2 (see Binney & Merrifield 1998, §2.3; hereafter
this book is abbreviated as BM). For example, the brightest star in the sky,
Sirius, has luminosities

LV = 22L�V ; LR = 15L�R, (1.1)

while the nearest star, Proxima Centauri, has luminosities

LV = 5.2 × 10−5 L�V ; LR = 1.7 × 10−4 L�R. (1.2)

This notation is usually simplified by dropping the subscript from L�, when
the band to which it refers is clear from the context.

Luminosities are often expressed in a logarithmic scale, by defining the
absolute magnitude

M ≡ −2.5 log10 L+ constant. (1.3)
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The constant is chosen separately and arbitrarily for each wavelength band.
The solar absolute magnitude is

M�B = 5.48 ; M�V = 4.83 ; M�R = 4.42. (1.4)

Sirius has absolute magnitude MV = 1.46, MR = 1.47, and Proxima Cen-
tauri has MV = 15.5, MR = 13.9. The flux from a star of luminosity L at
distance d is f = L/(4πd2), and a logarithmic measure of the flux is provided
by the apparent magnitude

m ≡M + 5 log10(d/10 pc) = −2.5 log10

[
L(10 pc/d)2

]
+ constant; (1.5)

thus, the absolute magnitude is the apparent magnitude that the star would
have if it were at a distance of 10 parsecs. Note that faint stars have large
magnitudes. Sirius is at a distance4 of (2.64 ± 0.01) pc and has apparent
magnitude mV = −1.43, while Proxima Centauri is at (1.295±0.004) pc and
has apparent magnitude mV = 11.1. The faintest stars visible to the naked
eye have mV ' 6, and the limiting magnitude of the deepest astronomical
images at this time is mV ' 29. The apparent magnitudes mV and mR are
often abbreviated simply as V and R.

The distance modulus m −M = 5 log10(d/10 pc) is often used as a
measure of distance.

The color of a star is measured by the ratio of the luminosity in two
wavelength bands, for example by LR/LV or equivalently by MV −MR =
mV −mR = V −R. Sirius has color V − R = −0.01 and Proxima Centauri
has V − R = 1.67. Stellar spectra are approximately black-body and hence
the color is a measure of the temperature at the surface of the star.

A more precise measure of the surface temperature is the effective
temperature Teff , defined as the temperature of the black body with the
same radius and bolometric luminosity as the star in question. If the stellar
radius is R, then the Stefan–Boltzmann law implies that the bolometric
luminosity is

L = 4πR2σT 4
eff , (1.6)

where σ = 5.670×10−8 W m−2 K−4. The relation between color and effective
temperature is tabulated in BM §3.4 and shown in Figure 1.1.

A third measure of the surface temperature of a star is its spectral
class, which is assigned on the basis of the prominence of various absorption
lines in the stellar spectrum. In order of decreasing temperature, the spectral
classes are labeled O, B, A, F, G, K, M, L, and T, and each class is divided
into ten subclasses by the numbers 0, 1, . . . , 9. Thus a B0 star is slightly

4 Throughout this book, quoted errors are all 1 standard deviation, i.e., there is a
probability of 0.68 that the actual error is less than the quoted error. The reader is
warned that astronomical errors are often dominated by unknown systematic effects and
thus tend to be underestimated.
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cooler than an O9 star. Using this scheme, experienced observers can deter-
mine the effective temperature of a star to within about 10% from a quick
examination of its spectrum. For example, Sirius has spectral class A1 and
effective temperature 9500 K, while Proxima Centauri has spectral class M5
and Teff = 3000 K. The Sun is a quite ordinary G2 star, with Teff = 5780 K.

The ultraviolet emission from the hottest stars ionizes nearby interstellar
gas, forming a sphere of ionized hydrogen called an HII region (BM §8.1.3).
The brightest star-like objects in other galaxies are often HII regions shining
in emission lines, rather than normal stars shining from thermal emission
(see, for example, Plate 1).

The color-magnitude diagram is a plot of absolute magnitude against
color; since color is related to effective temperature, each point on this dia-
gram corresponds to a unique luminosity, effective temperature, and stellar
radius (through eq. 1.6). In older work spectral type sometimes replaces
color, since the two quantities are closely related, and in this case the plot
is called a Hertzsprung–Russell or HR diagram (BM §3.5). This simple
diagram has proved to be the primary point of contact between observations
and the theory of stellar structure and evolution.

The distribution of stars in the color-magnitude diagram depends on the
age and chemical composition of the sample of stars plotted. Astronomers
refer to all elements beyond helium in the periodic table as “metals”; with the
exception of lithium, such elements are believed to be formed in stars rather
than at the birth of the universe (see §1.3.5). To a first approximation the
abundances of groups of elements vary in lockstep since they are formed in
the same reaction chain and injected into interstellar space by the same type
of star. At an even cruder level the chemical composition of a star can be
approximately specified by a single number Z, the metallicity, which is the
fraction by mass of all elements heavier than helium. Similarly, the fractions
by mass of hydrogen and helium are denoted X and Y (X + Y + Z = 1).
The Sun’s initial composition was X� = 0.71, Y� = 0.27, Z� = 0.019.

Figure 1.1 shows the color-magnitude diagram for about 104 nearby
stars. The most prominent feature is the well-defined band stretching from
(B − V,MV ) ' (0, 0) to (B − V,MV ) ' (1.5, 11). This band, known as the
main sequence, contains stars that are burning hydrogen in their cores.
In this stage of a star’s life, the mass—and to a lesser extent, chemical
composition—uniquely determine both the effective temperature and the lu-
minosity, so stars remain in a fixed position on the color-magnitude diagram.
Main-sequence stars are sometimes called dwarf stars, to distinguish them
from the larger giant stars that we discuss below. The main sequence is a
mass sequence, with more massive stars at the upper left (high luminosity,
high temperature, blue color) and less massive stars at the lower right (low
luminosity, low temperature, red color). The most and least luminous main-
sequence stars in this figure, with absolute magnitudes M ' −2 and +12,
have masses of about 10M� and 0.2M�, respectively (BM Table 3.13). Ob-
jects smaller than about 0.08M� never ignite hydrogen in their cores, and
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Figure 1.1 The color-magnitude diagram for over 104 nearby stars. Close binary stars
have been excluded, since the companion contaminates the color and magnitude measure-
ments. Most of the stars fall on the main sequence, which runs from upper left to lower
right. The red-giant branch runs upward and to the right from the main sequence. The
red-clump stars form a prominent concentration in the middle of the red-giant branch. The
giants are chosen from a larger volume than the other stars to enhance their numbers and
thereby show the structure of the giant branch more clearly. The absolute magnitudes are
in the V band and the colors are based on B − V , which gives the ratio of fluxes between
λ = 450 nm and 550 nm (BM Table 2.1). The right axis shows the V -band luminosity in
solar units, and the top axis shows approximate values of the effective temperature, which
follows from the color and luminosity because the stars are approximate black bodies.
From Perryman et al. (1995).

are visible mainly from the radiation they emit as they contract and cool.
The luminosity of these objects, known as brown dwarfs, therefore depends
on both mass and age and they do not form a one-parameter sequence like
their more massive siblings.

The massive, high-luminosity stars at the upper end of the main se-
quence exhaust their fuel rapidly and hence are short-lived (∼< 100 Myr for
stars with MV = −2), while stars at the lower end of the main sequence
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burn steadily for much longer than the current age of the universe. The Sun
has a lifetime of 10 Gyr on the main sequence.

From equation (1.6), stars that are luminous and cool (upper right of the
color-magnitude diagram) must be large, while stars that are dim and hot
(lower left of the diagram) must be small. Since the main sequence crosses
from upper left to lower right, this argument suggests that radius is not
a strong function of luminosity along the main sequence. The mass-radius
relation in Table 3.13 of BM bears this out: between M ' 0 and M ' 10,
a factor of 104 in luminosity, the radius varies by only a factor of six, from
3R� to 0.5R�.

The color-magnitude diagram contains a handful of dim blue stars
around (B − V,M) ' (0, 12). These are white dwarfs, stars that have
exhausted their nuclear fuel and are gradually cooling to invisibility. As
their location in the diagram suggests, white dwarfs are very small, with
radii of order 10−2R�. White dwarfs are so dense that the electron gas in
the interior of the star is degenerate; in other words, gravitational contrac-
tion is resisted, not by thermal pressure as in main-sequence stars, but rather
by the Fermi energy of the star’s cold, degenerate electron gas.

Figure 1.1 also contains a prominent branch slanting up and to the right
from the main sequence, from (B−V,M) ' (0.3, 4) to (B−V,M) ' (1.5,−1).
These are red giants, stars that have exhausted hydrogen in their cores and
are now burning hydrogen in a shell surrounding an inert helium core. As
their location in the color-magnitude diagram suggests—red therefore cool,
yet very luminous—red giants are much larger than main-sequence stars; the
stars at the tip of the giant branch have radii ∼> 100R�. In contrast to the
main sequence, on which stars remain in a fixed position determined by their
mass, the red-giant branch is an evolutionary sequence: stars climb the giant
branch from the main sequence to its tip, over an interval of about 1 Gyr for
stars like the Sun.

The prominent concentration in the middle of the red-giant branch, near
(B−V,M) ' (1, 1), is called the red clump. This feature arises from a later
evolutionary stage, which happens to coincide with the red-giant branch for
stars of solar metallicity. Red-clump stars have already ascended the giant
branch to its tip and returned, settling at the red clump when they begin
burning helium in their cores (see below).

Red giants are rare compared to main-sequence stars because the red-
giant phase in a star’s life is much shorter than its main-sequence phase.
Nevertheless, red giants are so luminous that they dominate the total lumi-
nosity of many stellar systems. Another consequence of their high luminosity
is that a far larger fraction of red giants is found in flux-limited samples than
in volume-limited samples. For example, over half of the 100 brightest stars
are giants, but none of the 100 nearest stars is a giant.

Figure 1.2 illustrates the color-magnitude diagram of a typical globular
star cluster (§1.1.4). The advantage of studying a star cluster is that all of
its members lie at almost the same distance, and have the same age and
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Figure 1.2 The color-magnitude diagram for metal-poor globular clusters. The horizontal
axis is the color V − I. Labels denote the main sequence (MS), the main-sequence turnoff
(TO), red giants (RG), horizontal branch (HB), blue stragglers (BS), and white dwarfs
(WD). This is a composite diagram in which data from five globular clusters have been
combined selectively to emphasize the principal sequences; thus the relative numbers of
different types of stars are not realistic. From data supplied by W. E. Harris; see also
Harris (2003).

chemical composition. Thus age and composition differences and distance
errors do not blur the diagram, so the sequences are much sharper than in
Figure 1.1 (BM §6.1.2). In this diagram the main sequence stretches from
(V − I,MV ) ' (0.6, 4) to (V − I,MV ) ' (2.4, 14). In contrast to Figure 1.1,
the main sequence terminates sharply at MV ' 4 (the turnoff); the more
luminous, bluer part of the main sequence that is seen in the sample of nearby
stars is absent in the cluster, because such stars have lifetimes shorter than
the cluster age. Figure 1.2 shows a few stars situated along the extrapolation
of the main sequence past the turnoff point; these “blue stragglers” may arise
from collisions and mergers of stars in the dense core of the cluster or mass
transfer between the components of a binary star (page 628). The white
dwarfs are visible near (V − I,MV ) ' (0.4, 13), and the tip of the red-giant
branch lies at (V − I,MV ) ' (1.3,−2).

As a star evolves, it climbs the giant branch until, at the tip of the
giant branch, helium starts to burn in its core. The stars then evolve rapidly
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Figure 1.3 A schematic picture of the Sun’s location in the Galaxy, illustrating the
Galactic coordinate system. An arrow points in the direction of Galactic rotation, which
is clockwise as viewed from the north Galactic pole.

to the horizontal branch (the sequence of stars near MV ' 0, stretching
from V − I ' 0 to 0.8), where they remain until the helium in the core is
exhausted. The form of the horizontal branch depends on the metallicity: as
the metallicity increases from very low values (Z ' 0.01Z�) the horizontal
branch shortens and moves to the right, until at near-solar metallicity it is
truncated to the red clump seen in Figure 1.1.

Stars in metal-poor globular clusters are among the oldest objects in the
Galaxy. Fits of theoretical models of stellar evolution to the color-magnitude
diagrams of metal-poor globular clusters yield ages of (12.5±1.5) Gyr (Krauss
& Chaboyer 2003). This result is consistent with the age of the universe
determined from measurements of the cosmic background radiation, t0 =
(13.7± 0.2) Gyr (eq. 1.77), if the globular clusters formed when the universe
was about 1 Gyr old.

1.1.2 The Galaxy

Most of the stars in the Galaxy lie in a flattened, roughly axisymmetric struc-
ture known as the Galactic disk. On clear, dark nights the cumulative light
from the myriad of faint disk stars is visible as a luminous band stretching
across the sky, which is the source of the name “Milky Way” for our Galaxy.
The midplane of this disk is called the Galactic plane and serves as the
equator of Galactic coordinates (`, b), where ` is the Galactic longitude
and b is the Galactic latitude (BM §2.1.2). The Galactic coordinate sys-
tem is a heliocentric system in which ` = 0, b = 0 points to the Galactic
center and b = ±90◦ points to the Galactic poles, normal to the disk plane
(see Figure 1.3).

The Sun is located at a distance R0 from the center of the Galaxy; the
best current estimate R0 = (8.0±0.5) kpc comes from the orbits of stars near
the black hole that is believed to mark the center (see §1.1.6 and Eisenhauer
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et al. 2003). One measure of the distribution of stars in the Galactic disk is
the surface brightness, the total stellar luminosity emitted per unit area of
the disk (see Box 2.1 for a more precise definition). Observations of other disk
galaxies suggest that the surface brightness is approximately an exponential
function of radius,

I(R) = Id exp(−R/Rd). (1.7)

The disk scale length Rd is difficult to measure in our Galaxy because of
our position within the disk. Current estimates place Rd between about 2
and 3 kpc. Thus the Sun lies farther from the Galactic center than about
75–90% of the disk stars. The resulting concentration of luminosity towards
the Galactic center is not apparent to the naked eye, since interstellar dust
absorbs the light from distant disk stars (the optical depth in the V band
along a line of sight in the Galactic midplane is unity at a distance of only
about 0.7 kpc); however, in the infrared, where dust extinction is unimpor-
tant, our position near the edge of the disk is immediately apparent from the
strong concentration of light in the direction of the constellation Sagittarius
(at the center of the image in Plate 2). By contrast, the Galaxy is nearly
transparent in the direction of the Galactic poles, which greatly facilitates
studying the extragalactic universe.

The stars of the disk travel in nearly circular orbits around the Galactic
center. The speed of a star in a circular orbit of radius R in the Galactic
equator is denoted vc(R), and a plot of vc(R) versus R is called the circular-
speed curve. The circular speed at the solar radius R0 is

v0 ≡ vc(R0) = (220 ± 20) km s−1. (1.8)

A strong additional constraint on v0 and R0 comes from the angular motion of
the radio source Sgr A* relative to extragalactic sources: if Sgr A* coincides
with the black hole at the Galactic center, and if this black hole is at rest
in the Galaxy—both very plausible assumptions, but not certainties—then
the angular speed of the Sun is v0/R0 = (236 ± 1) km s−1/(8 kpc) (Reid &
Brunthaler 2004).

The Local Standard of Rest (lsr) is an inertial reference frame cen-
tered on the Sun and traveling at speed v0 in the direction of Galactic ro-
tation. Since most nearby disk stars are on nearly circular orbits, their
velocities relative to the Local Standard of Rest are much smaller than v0.
For example, the Sun’s velocity relative to the lsr (the solar motion) is
(BM §10.3.1)

13.4 km s−1 in the direction ` = 28◦, b = 32◦. (1.9)

The root-mean-square (rms) velocity of old disk stars relative to the Local
Standard of Rest is 50 km s−1, larger than the Sun’s velocity but still small
compared to the circular speed v0.
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In the direction perpendicular to the Galactic plane (usually called the
“vertical” direction), the density of stars falls off exponentially,

ρ(R, z) = ρ(R, 0)e−|z|/zd(R), (1.10)

where z is the distance from the midplane and zd(R) is the scale height at
radius R.5 The thickness zd of the Galactic disk depends on the age of the
stars that are being examined. Older stellar populations have larger scale
heights, probably because stochastic gravitational fields due to spiral arms
and molecular clouds gradually pump up the random velocities of stars (see
§8.4). In the solar neighborhood, the scale height ranges from ∼< 100 pc for
the young O and B stars to ' 300 pc for the stars with ages of order 10 Gyr
that constitute the bulk of the disk mass.

A more accurate representation of the vertical structure of the disk
is obtained by superimposing two populations with densities described by
equation (1.10): the thin disk with zd ' 300 pc, and the thick disk with
zd ' 1 kpc (BM Figure 10.25). The stars of the thick disk are older and
have a different chemical composition from those of the thin disk—thick-
disk stars have lower metallicities, and at a given metallicity they have higher
abundances of the α nuclides (16O, 20Ne, 24Mg, 28Si, etc.; see BM §5.2.1 and
Figure 10.17) relative to 56Fe. The surface density of the thick disk is about
7% of that of the thin disk, so in the midplane, thin-disk stars outnumber
thick-disk stars by about 50:1. The thick disk was probably created when
the infant thin disk was shaken and thickened by an encounter with a smaller
galaxy early in its history.

The enhanced α nuclides found in the thick disk are the signature of
stars formed early in the history of the disk, for the following reason. The
interstellar gas is polluted with heavy elements by two main processes: (i)
“core-collapse” supernovae, arising from the catastrophic gravitational col-
lapse of massive stars, which lag star formation by no more than ∼ 40 Myr,
and produce ejecta that are rich in α nuclides; (ii) “thermonuclear” or Type
Ia supernovae, which are caused by runaway nuclear burning on the sur-
face of white-dwarf stars in binary systems, lag star formation by of order
0.5–10 Gyr, and produce mostly nuclei near 56Fe. Thus the chemical com-
position of thick-disk stars suggests that the thick disk formed in less than
about 1 Gyr. In contrast, it appears that stars in the thin disk have formed
at a steady rate throughout the lifetime of the Galaxy.

Throughout this book, we shall distinguish the kinematics of a stellar
system—the observational description of the positions and motions of the
stars in the system—from its dynamics—the interpretation of these motions
in terms of physical laws (forces, masses, etc.). Thus, the description of the

5 This formula has a discontinuous slope at z = 0, which reflects the gravitational
attraction of the much thinner gas layer on the stars. The vertical distribution of stars in
a thin disk is explored theoretically in Problem 4.22.
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Galaxy in this subsection has so far been kinematic. The simplest approxi-
mate dynamical description of the Galaxy is obtained by assuming that its
mass distribution is spherical. Let the mass interior to radius r be M(r).
From Newton’s theorems (§2.2.1) the gravitational acceleration at radius r
is equal to that of a point whose mass is the same as the total mass interior
to r; thus the inward acceleration is GM(r)/r2, where the gravitational
constant G = 6.674 × 10−11 m3 kg−1 s−2. The central or centripetal ac-
celeration required to hold a body in a circular orbit with speed v0 is v2

0/r.
Thus the mass interior to the solar radius R0 in this crude model is

M(R0) =
v2

0R0

G
= 9.0 × 1010 M�

( v0

220 km s−1

)2
(

R0

8 kpc

)
. (1.11)

The approximation that the mass distribution is spherical is reasonable for
the dark halo, but not for the flat stellar disk. Better models suggest that
this estimate is probably high by about 30%, since a disk requires less mass
to produce a given centripetal acceleration (see Figure 2.17).

Most of our understanding of stellar astrophysics comes from observa-
tions of stars within a few hundred parsecs of the Sun. This distance is much
smaller than the disk scale length, and hence it is reasonable to assume that
the distribution of properties of these stars (chemical compositions, ages,
masses, kinematics, fraction of binary stars, etc.) is constant within this
region, even though there may be large-scale gradients in these properties
across the Galactic disk. To formalize this assumption, we define the solar
neighborhood to be a volume centered on the Sun that is much smaller
than the overall size of the Galaxy but large enough to contain a statistically
useful sample of stars. The concept is somewhat imprecise but nevertheless
extremely useful. The appropriate size of the volume depends on which stars
we wish to investigate: for white dwarfs, which are both common and dim,
the “solar neighborhood” may consist of a sphere of radius only 30 pc cen-
tered on the Sun, while for the luminous but rare O and B stars, the solar
neighborhood may be considered to extend as far as 1–2 kpc from the Sun.

Our best estimate of the inventory of the solar neighborhood is summa-
rized in Table 1.1. The category “visible stars” includes all main-sequence
and giant stars. The category “stellar remnants” includes white dwarfs and
neutron stars, while “ism” (interstellar medium) includes atomic and molec-
ular hydrogen, ionized gas, and a small contribution from interstellar dust.
The volume density and luminosity density are quoted in the Galactic mid-
plane and the surface density and surface brightness are integrated over a
column perpendicular to the Galactic plane, extending to ±1.1 kpc from the
midplane. “Dynamical” denotes determinations of the total volume or sur-
face density from the dynamics of disk stars (see §4.9.3). The dynamically
determined volume density in the midplane is consistent with the observed
density in stars and gas to within about 10%, so there is no evidence for a
significant component of dark matter in the disk—in other words, the in-
ventory in Table 1.1 appears to be complete. The dynamically determined
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Table 1.1 Inventory of the solar neighborhood

component volume surface luminosity surface
density density density brightness

(M� pc−3) (M� pc−2) (L� pc−3) (L� pc−2)

visible stars 0.033 29 0.05 29
stellar remnants 0.006 5 0 0
brown dwarfs 0.002 2 0 0
ism 0.050 13 0 0

total 0.09 ± 0.01 49 ± 6 0.05 29
dynamical 0.10 ± 0.01 74 ± 6 – –

notes: Volume and luminosity densities are measured in the Galactic midplane and
surface density is the total within ±1.1 kpc of the plane. Luminosity density and surface
brightness are given in the R band. Dynamical estimates are from §4.9.3. Most other
entries are taken from Flynn et al. (2006).

surface density appears to be higher than the surface density in stars and
gas, by (25 ± 9)M� pc−2; if significant, this excess probably represents the
contribution of the dark halo. The dark halo also contributes to the volume
density in the midplane, but this contribution is undetectably small.

A stellar system is often characterized by its mass-to-light ratio, which
we denote by Υ and write in units of the solar ratio, Υ� = M�/L�. Ac-
cording to Table 1.1, the mass-to-light ratio of the solar neighborhood in the
R band is ΥR ' 2 Υ� in the midplane and ' 2.5 Υ� after integrating to
±1.1 kpc from the plane. The second value is higher because the scale height
zd of luminous young stars is smaller than that of older, dimmer stars.

In addition to the disk, the Galaxy contains a bulge, a small, amor-
phous, centrally located stellar system that is thicker than the disk and
comprises ∼ 15% of the total luminosity. The Galactic bulge is clearly visi-
ble at the center of the disk in infrared images of the Galaxy (Plate 2). The
evolutionary history, kinematics, and chemical composition of bulge stars
are quite different from those of disk stars near the Sun. The bulge stars
are believed to date from near the time of formation of the Galaxy, whereas
the disk stars have a wide range of ages, since star formation in the disk is
an ongoing process. While disk stars in the solar neighborhood are found
in nearly circular orbits with speeds vc(R) ' 220 km s−1 and rms velocity
relative to this speed of only 50 km s−1, the velocity vectors of bulge stars
are randomly oriented, with rms velocity ' 150 km s−1. The bulge stars
exhibit a wide range of metallicities, spread around a median metallicity of
about 0.4Z� (Zoccali et al. 2003), substantially smaller than the metallicity
of young stars in the solar neighborhood—presumably because the interstel-
lar gas from which the local disk stars form has steadily become more and
more polluted by the metal-rich debris of exploding supernovae.

By analogy to the statistical-mechanical concept that temperature is
proportional to mean-square velocity, a stellar population like the disk in
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which the random velocities are much smaller than the ordered or mean
velocity is said to be cool, while the bulge population, in which the random
velocities are larger than the mean velocity, is said to be hot. A hypothetical
disk in which the stars move on precisely circular orbits would be cold.

Although the distribution of bulge stars is symmetric about the Galactic
midplane, the bulge is somewhat brighter and thicker on one side of the
Galactic center (longitude ` > 0) than on the other. This asymmetry arises
because the bulge is triaxial: the lengths of the two principal axes that lie
in the Galactic plane are in the ratio 3:1, and the triaxial structure extends
to about 3 kpc from the center. The long axis is oriented about 20◦ from
the line between the Galactic center and the Sun (§2.7e). Thus the bulge is
brighter and thicker at positive longitudes simply because that side is closer
to the Sun. Because the bulge is triaxial it is also sometimes called a “bar”
and the Milky Way is said to be a barred galaxy (see §1.1.3).

About 1% of the stellar mass in the Galaxy is contained in the stellar
halo, which contains old stars of low metallicity (median about 0.02Z�).
The stellar halo has little or no mean rotation, and a density distribution
that is approximately spherical and a power-law function of radius, ρ ∝ r−3,
out to at least 50 kpc. The metal-poor globular clusters that we describe
below (§1.1.4) are members of the stellar halo. The low metallicity of this
population suggests that it was among the first components of the Galaxy
to form. Much of the halo comprises the debris of disrupted stellar systems,
such as globular clusters and small satellite galaxies.

The dark halo is the least well understood of the Galaxy’s components.
We have only weak constraints on its composition, shape, size, mass, and
local density. A wide variety of candidates for the dark matter have been
suggested, most falling into one of two broad classes: (i) some unknown
elementary particle—the preferred candidates are wimps, an acronym for
weakly interacting massive particles, but there are also more exotic possibil-
ities such as axions; (ii) non-luminous macroscopic objects, such as neutron
stars or black holes, which are usually called machos, for massive compact
halo objects. Measurements of the optical depth to gravitational lensing
through the halo exclude machos in the range 10−7–30M� as the dominant
component of the dark halo (Alcock et al. 2001; Tisserand et al. 2007), and
indirect dynamical arguments (§8.2.2e) suggest that more massive compact
objects are also excluded. On the other hand, hypothetical massive, neutral,
weakly interacting particles could be formed naturally in the early universe
in approximately the numbers required to make a substantial contribution to
the overall density. Thus most physicists and astronomers believe that the
dark halo is probably composed of wimps. Ordinary matter—stars, dust, in-
terstellar gas, machos, etc., whether luminous or dark—derives almost all of
its mass from baryons and hence is usually referred to as baryonic matter
to distinguish it from non-baryonic matter such as wimps.6

6 A baryon is a strongly interacting fermion. The word derives from barus, the Greek
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The formation of flat astrophysical systems such as the solar system
or a galaxy disk requires dissipation, which removes energy but conserves
angular momentum and therefore leads naturally to a rapidly rotating thin
disk. Since wimps cannot dissipate energy, the dark halo is expected to be
approximately spherical. Numerical simulations of the formation of dark
halos suggest that they are triaxial rather than precisely spherical, with
minor-to-major axis ratios of 0.4–0.6, but there is little direct observational
evidence on halo shapes (§9.3.3).

The total size and mass of the Galaxy’s halo can be constrained by
the kinematics of distant globular clusters and nearby galaxies. Using this
method Wilkinson & Evans (1999) find a best-fit mass of 2× 1012 M�, with
a median or half-mass radius (the radius containing half the total mass)
of 100 kpc; however, these values are very uncertain and masses as small as
2 × 1011 M� or as large as 5 × 1012 M� are allowed. A reasonable guess of
the total mass of the Galaxy inside 100 kpc radius is

M(r < 100 kpc) = 5–10 × 1011 M�. (1.12)

The mass distribution in the dark halo is equally uncertain at smaller radii:
the halo contribution to the radial gravitational force at the solar radius,
which determines the circular speed, could lie anywhere from less than 10% to
almost 50% of the total force without violating the observational constraints
(§6.3.3). The uncertain halo mass distribution inside R0 implies an uncertain
halo density at R0, which is a significant concern to experimentalists hoping
to detect the dark matter in laboratory experiments (Gaitskell 2004).

It is useful to parametrize the relative amounts of dark and luminous
matter in a stellar system by the mass-to-light ratio. Stellar systems com-
posed entirely of stars usually have mass-to-light ratios ΥR in the range
1–10Υ�, depending on the age and chemical composition of the stars, while
systems composed entirely of dark matter would have Υ → ∞. The largest
mass-to-light ratios known, ΥR ∼ 500Υ�, occur in dwarf spheroidal galaxies
(page 24). In the R band, the luminosity of the Galaxy is 3× 1010L�, so its
mass-to-light ratio is ∼ 60Υ�, with large uncertainties (7–170Υ�) because
of the uncertain mass of the dark halo.

A summary of properties of the Galaxy is provided in Table 1.2; for
more details see §2.7.

for heavy. The use of the term “baryonic matter” for ordinary matter is conventional,
but less than ideal for several reasons: (i) ordinary matter includes electrons, which are
leptons, not baryons; (ii) the unknown dark-matter particle is likely to be even heavier
than any baryonic particle; (iii) it is not clear whether to count neutrinos as “ordinary”
matter, because they have been known for decades, or as dark matter, because they have
mass and interact only weakly so they are wimps. Usually the latter choice is made.
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Table 1.2 Properties of the Galaxy

Global properties:

disk scale length Rd (2.5 ± 0.5) kpc
disk luminosity (2.5 ± 1) × 1010 L�
bulge luminosity (5 ± 2) × 109L�
total luminosity (3.0 ± 1) × 1010 L�
disk mass (4.5 ± 0.5) × 1010 M�
bulge mass (4.5 ± 1.5) × 109 M�
dark halo mass (2 +3

−1.8 ) × 1012 M�
dark halo half-mass radius (100 +100

−80 ) kpc

disk mass-to-light ratio ΥR (1.8 ± 0.7)Υ�
total mass-to-light ratio ΥR (70+100

−63 )Υ�
black-hole mass (3.9 ± 0.3) × 106 M�
Hubble type Sbc

Solar neighborhood properties:

solar radius R0 (8.0 ± 0.5) kpc
circular speed v0 (220 ± 20) km s−1

angular speed: from v0/R0 (27.5 ± 3) km s−1 kpc−1

from Sgr A* (29.5 ± 0.2) km s−1 kpc−1

disk density ρ0 (0.09 ± 0.01)M� pc−3

disk surface density Σ0 (49 ± 6)M� pc−2

disk thickness Σ0/ρ0 500 pc
scale height zd (old stars) 300 pc
rotation period 2π/Ω0 (220 ± 30) Myr
vertical frequency ν0 =

√
4πGρ0 (2.3 ± 0.1) × 10−15 Hz

= (70 ± 4) km s−1 kpc−1

vertical period 2π/ν0 87 Myr
Oort’s A constant (14.8 ± 0.8) km s−1 kpc−1

Oort’s B constant −(12.4± 0.6) km s−1 kpc−1

epicycle frequency κ0 =
√
−4B(A−B) (37 ± 3) km s−1 kpc−1

radial dispersion of old stars (38 ± 2) km s−1

vertical dispersion of old stars (19 ± 2) km s−1

rms velocity of old stars (50 ± 3) km s−1

escape speed ve(R0) (550 ± 50) km s−1

notes: See §2.7 and §§10.1 and 10.3 of BM for more detail. Luminosities are
in the R band at λ = 660 nm. The halo mass and half-mass radius are taken
from Wilkinson & Evans (1999). The angular speed of the central black hole (Sgr
A*) relative to an extragalactic frame is from Reid & Brunthaler (2004). The
density in the midplane of the disk, ρ0, and the surface density Σ0 are taken from
Table 1.1. The scale height zd is defined by equation (1.10). The rms velocity of
old stars is the square root of the sum of the squared dispersions along the three
principal axes of the velocity-dispersion tensor (BM Table 10.2). Escape speed is
from Smith et al. (2007).
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1.1.3 Other galaxies

The nearest known galaxy to our own is the Sagittarius dwarf galaxy,
(see Table 4.3 of BM or van den Bergh 2000 for a list of nearby galaxies).
The Sagittarius galaxy has a total luminosity L ' 2× 107L� and is located
on the opposite side of the Galaxy from us, about 24 kpc from the Sun and
16 kpc from the Galactic center. The line of sight to the Sagittarius dwarf
passes only 15◦ from the Galactic center, so the galaxy is masked by the
dense star fields of the Galactic bulge, and thus was discovered only in 1994
(from anomalies in the kinematics of what were thought to be bulge stars).
The orbit of Sagittarius carries it so close to the center of the Galaxy that it
is being disrupted by the Galactic tidal field, and a tidal tail or streamer—a
trail of stars torn away from the main body of the galaxy—can be traced
across most of the sky (Figure 8.10).

Our next nearest neighbor is the Large Magellanic Cloud or LMC.
Although some 50 times as luminous than Sagittarius, with luminosity LR '
1×109L�, the LMC is still a relatively modest galaxy. The LMC is 45–50 kpc
from the Sun and is visible to the naked eye in the southern hemisphere as
a faint patch of light (see Plates 2 and 11). Because of its proximity and its
location at relatively high Galactic latitude, where foreground contamination
and dust obscuration are small (b = −30◦), the LMC provides a unique
laboratory for studies of interstellar gas and dust, stellar properties, and
the cosmological distance scale. Also visible to the naked eye is the Small
Magellanic Cloud, located 20◦ from the LMC on the sky, 20% further
away, and with 20% of its luminosity. It is likely that the two Clouds are
a former binary system that has been disrupted by tidal forces from the
Galaxy.

The nearest large disk galaxy similar to our own is called the An-
dromeda galaxy, M31, or NGC 224 (see Plate 3 and Hodge 1992). M31
is more than ten times as far away as the LMC (d ' 740 kpc) and more than
ten times as luminous (L ' 4× 1010 L�). Only the central parts of M31 are
visible to the naked eye, but deep telescopic images show that its stellar disk
extends across more than six degrees on the sky.

Our Galaxy is just one member of a vast sea of some 109 galaxies stretch-
ing to a distance of several thousand megaparsecs (1 megaparsec≡ 1 Mpc =
106 pc = 3.086 × 1022 m). The determination of distances to these galaxies
is one of the most important tasks in extragalactic astronomy, since many of
the properties derived for a galaxy depend on the assumed distance. Meth-
ods for measuring galaxy distances are described in detail in Chapter 7 of
BM. For our purposes it is sufficient to note that in a universe that is homo-
geneous and isotropic, the relative velocity v between two galaxies that are
separated by a large distance r is given by the Hubble law,

v = H0r, (1.13)

where H0 is the Hubble constant (see §1.3.1). Our universe is nearly ho-
mogeneous and isotropic on large scales, so the velocity field or Hubble flow
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implied by the Hubble law is approximately correct: the only significant error
comes from random velocities of a few hundred km s−1 that are generated
by the gravitational acceleration from small-scale irregularities in the cosmic
matter density. Thus, for example, the distance of a galaxy with a velocity
of 7000 km s−1 is known to within about 5% once the Hubble constant is
known.

By comparing the flux from Cepheid variable stars in the Large Magel-
lanic Cloud and more distant galaxies, Freedman et al. (2001) deduce that

H0 = (72 ± 8) km s−1 Mpc−1; (1.14)

while measurements of small fluctuations in the cosmic background radiation
(§1.3.5 and Spergel et al. 2007) give

H0 = (73.5 ± 3.2) km s−1 Mpc−1. (1.15)

When precision is required, we shall write the Hubble constant as

H0 ≡ 70h7 km s−1 Mpc−1

= 2.268h7 × 10−18 Hz,

H−1
0 = 13.97h−1

7 Gyr,

(1.16)

where the dimensionless parameter h7 is probably within 10% of unity. Any
uncertainty in the Hubble constant affects the whole distance scale of the
universe and hence is reflected in many of the average properties of galax-
ies; for example, the mean density of galaxies scales as h3

7 and the mean
luminosity of a galaxy of a given type scales as h−2

7 .
If galaxies suffered no acceleration due to external gravitational forces,

the distance between any two galaxies would be a linear function of time.
Combined with the Hubble law (1.13), this assumption implies that the dis-
tance between any two galaxies was zero at a time H−1

0 (the Hubble time)
before the present. The Hubble time provides a rough estimate of the age
of the universe. The actual age is somewhat different because the relative
velocities of galaxies are decelerated by the gravitational attraction of bary-
onic and dark matter and accelerated by vacuum energy (see §1.3.3); these
effects nearly cancel at present, so the best estimate of the age, t0 = 13.7 Gyr
(eq. 1.77), is accidentally very close to the Hubble time.

Galaxies can usefully be divided into four main types according to the
Hubble classification system—see BM §4.1.1 or Sandage & Bedke (1994)
for a more complete description.

(a) Elliptical galaxies These are smooth, featureless stellar systems con-
taining little or no cool interstellar gas or dust and little or no stellar disk.
The galaxy M87 shown in Plate 4 is a classic example of this type. The stars
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in most elliptical galaxies are old, having ages comparable to the age of the
universe, consistent with the absence of gas from which new stars can form.

The fraction of luminous galaxies that are elliptical depends on the local
density of galaxies, ranging from about 10% in low-density regions to over
40% in the centers of dense clusters of galaxies (BM §4.1.2).

As the name suggests, the contours of constant surface brightness, or
isophotes, of elliptical galaxies are approximately concentric ellipses, with
axis ratio b/a ranging from 1 to about 0.3. The ellipticity is ε ≡ 1 − b/a.
In the Hubble classification system, elliptical galaxies are denoted by the
symbols E0, E1, etc., where a galaxy of type En has axis ratio b/a = 1 −
n/10. The most elongated elliptical galaxies are type E7. Since we see only
the projected brightness distribution, it is impossible to determine directly
whether elliptical galaxies are axisymmetric or triaxial; however, indirect
evidence strongly suggests that both shapes are present (BM §§4.2 and 4.3).

The surface brightness of an elliptical galaxy falls off smoothly with
radius, until the outermost parts are undetectable against the background
sky brightness. Because galaxies do not have sharp outer edges, their sizes
must be defined with care. One useful measure of size is the effective radius
Re, the radius of the isophote containing half of the total luminosity7 (or the
geometric mean of the major and minor axes of this isophote, if the galaxy
is elliptical). The effective radius is correlated with the luminosity of the
elliptical galaxy, ranging from 20 kpc for a giant galaxy such as M87 (Plate 4)
to 0.2 kpc for a dwarf such as M32 (Plate 3).

The Hubble classification is based on the ellipticity of the isophotes near
the effective radius. In many galaxies the isophotes become more elliptical
at large radii; thus, for example, M87 is classified as E0 but the isophotal
axis ratio is only 0.5 in its outermost parts.

Several empirical formulae have been used to fit the surface-brightness
profiles of ellipticals. One of the most successful is the Sérsic law

Im(R) = I(0) exp(−kR1/m) = Ie exp
{
− bm[(R/Re)

1/m − 1]
}

; (1.17)

here I(R) is the surface brightness at radius R and Ie is the surface brightness
at the effective radius Re. The parameter m is the Sérsic index, which is
correlated with the luminosity of the elliptical galaxy, luminous ellipticals
having m ' 6 and dim ones having m ' 2. The middle of this range is
m = 4, which defines the de Vaucouleurs or R1/4 law (de Vaucouleurs
1948). The function bm must be determined numerically from the condition∫ Re

0
dRRIm(R) = 1

2

∫∞
0

dRRIm(R); but the fitting formula bm = 2m−0.324
has fractional error ∼< 0.001 over the range 1 < m < 10 (see Ciotti & Bertin
1999 for properties of Sérsic laws). For m = 1 the Sérsic law reduces to the

7 The effective radius is measured on the plane of the sky, and is not to be confused
with the half-light or median radius (page 17), the radius of a sphere containing half the
luminosity.
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exponential profile (1.7) that describes the surface-brightness distribution of
disk galaxies.

The total luminosity of a galaxy is difficult to define precisely because
the outer parts are too faint to measure. One approach is to define a model
luminosity by fitting the surface-brightness profile to a Sérsic or de Vau-
couleurs profile and then estimating the luminosity as L =

∫
d2R Im(R).

The luminosities of elliptical galaxies range over a factor of 108, from
almost 1012 L� for the very luminous galaxies found at the centers of mas-
sive clusters of galaxies, to ∼< 104L� for the dimmest dwarf galaxies. The
luminosity function φ(L) describes the relative numbers of galaxies of dif-
ferent luminosities, and is defined so that φ(L) dL is the number of galaxies
in the luminosity interval L→ L+ dL in a representative unit volume of the
universe. A convenient analytic approximation to φ(L) is the Schechter
law (BM §4.1.3),

φ(L) dL = φ?

(
L

L?

)α
exp(−L/L?)

dL

L?
, (1.18)

where φ? ' 4.9×10−3 h3
7 Mpc−3, α = −1.1, and L? ' 2.9×1010 h−2

7 L� in the
R band (Brown et al. 2001). The concept of a “universal” luminosity function
embodied in the Schechter law is no more than a good first approximation:
in fact the luminosity function is known to depend on both galaxy type and
environment (BM §4.1.3).

The average R-band luminosity density derived from equation (1.18) is

jR =

∫
dLLφ(L) = φ?L?

∫ ∞

0

dxxα+1e−x = (α+ 1)!φ?L?, (1.19)

where the factorial function is defined for non-integer arguments in Appendix
C.2. For the parameters given above, jR = 1.5 × 108h7 L� Mpc−3, with an
uncertainty of about 30%.

Most luminous elliptical galaxies exhibit little or no rotation, even those
with large ellipticity; this is in contrast to stars or other gravitating gas
masses, which must be spherical if they do not rotate and flattened when
rotating. Among dimmer elliptical galaxies, however, rotation and flatten-
ing do appear to be correlated (see §4.4.2c and Faber et al. 1997). This
distinction between luminous and dim ellipticals may arise because the most
recent mergers of luminous galaxies have been “dry,” that is, between progen-
itors containing little or no gas, while the recent mergers of low-luminosity
ellipticals have involved gas-rich systems. Whether or not this interpre-
tation is correct, the different rotational properties of high-luminosity and
low-luminosity elliptical galaxies illustrate that stellar systems can exhibit a
much greater variety of equilibria than gaseous systems such as stars.

Each star in an elliptical galaxy orbits in the gravitational field of all the
other stars and dark matter in the galaxy. The velocities of individual stars
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can be measured in only a few nearby galaxies, but in more distant galaxies
the overall distribution of stellar velocities along the line of sight can be
determined from the Doppler broadening of lines in the integrated spectrum
of the galaxy. The most important parameter describing this distribution
is the rms line-of-sight velocity σ‖, sometimes called simply the velocity
dispersion (eq. 4.25).

The luminosity, velocity dispersion, and size of elliptical galaxies are
correlated. Astronomers usually plot this correlation using not the lumi-
nosity but the average surface brightness within the effective radius, which
is simply Ie ≡ 1

2L/(πR
2
e). Then if we plot the positions of a sample of

elliptical galaxies in the three-dimensional space with coordinates log10 Ie,
log10Re, and log10 σ‖, they are found to lie on a two-dimensional surface,
the fundamental plane (see BM §4.3.4 and §4.9.2), given by

log10Re = 1.24 log10 σ‖ − 0.82 log10 Ie + constant, (1.20)

with an rms scatter of 0.08 in log10Re or 0.07 in log10 σ‖ (Jørgensen et al.
1996).

The properties of galaxies are determined both by the fundamental plane
and by their distribution within that plane. Let us think of the space with co-
ordinates (log10 Ie, log10 Re, log10 σ‖) as a fictitious three-dimensional space,
and imagine observing the distribution of galaxies from a distance. If the
line of sight to the observer in this fictitious space lies close to the funda-
mental plane, the observer will find that galaxies lie close to a line in the
two-dimensional space normal to the line of sight. This distribution of galax-
ies can be thought of as a projection of the distribution in the fundamental
plane. The most important of these projections are:

(i) The Faber–Jackson law (BM §4.3.4),

log10

( σ‖
150 km s−1

)
' 0.25 log10

(
LR

1010h−2
7 L�

)
. (1.21)

Thus the velocity dispersion of an L? galaxy is σ‖ ' 200 km s−1. The rms

scatter in the Faber–Jackson law is about 0.1 in log10 σ‖ (Davies et al. 1983).
(ii) The Kormendy relation

log10

(
Ie,R

1.2 × 103L� pc−2

)
= −0.8 log10

(
Re

h−1
7 kpc

)
. (1.22a)

Here Ie,R denotes the mean R-band surface brightness interior to Re. The

rms scatter is less than 0.25 in log10 Ie. The Kormendy relation implies that

log10

(
LR

7.7 × 109h−2
7 L�

)
= 1.2 log10

(
Re

h−1
7 kpc

)
. (1.22b)
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Thus more luminous galaxies are larger, but have lower surface brightness.
Careful dynamical modeling (§4.9.2) allows us to determine the mass-to-

light ratio Υ in elliptical galaxies. These studies show that at radii less than ∼
Re the mass-to-light ratio is not strongly dependent on radius, and consistent
with the mass-to-light ratio that we would expect from the observed stellar
population (Cappellari et al. 2006). Thus the contribution of dark matter to
the mass inside Re is ∼< 30%. The mass-to-light ratio is also tightly correlated
with σe, the luminosity-weighted velocity dispersion within Re:

ΥI = (3.80 ± 0.2) Υ� ×
( σe

200 km s−1

)0.84±0.07

(1.23)

with an intrinsic scatter of only 13%.
Just as stars are found in gravitationally bound systems such as galaxies,

many galaxies are found in bound systems called groups or clusters of
galaxies (see §1.1.5). The largest clusters of galaxies are several Mpc in
radius and contain thousands of galaxies. The most luminous galaxy in
a large cluster—more often called a rich cluster—is often exceptional, in
that it is (i) several times more luminous than any other cluster galaxy, and
much more luminous than one would expect from the Schechter law (1.18)
(L/L? ∼ 3–10); (ii) at rest in the center of the cluster; (iii) surrounded by
a dim stellar halo that extends out to ∼ 1 Mpc. Galaxies with these unique
characteristics are called brightest cluster galaxies; the nearest example is
M87 in the Virgo cluster (Plate 4).8 The existence of an extended dim halo is
also the defining property of cD galaxies (BM §4.3.1); in practice, the terms
“brightest cluster galaxy” and “cD galaxy” are often used interchangeably.
The halo probably arises from stars that have been stripped from individual
cluster galaxies by tidal forces and now orbit independently in the cluster’s
gravitational field. Brightest cluster galaxies are believed to form during the
hierarchical assembly of the cluster from smaller subunits (Dubinski 1998).

The dimmest elliptical galaxies are also unusual. In general, dim ellip-
ticals have higher surface brightness than luminous ellipticals, a manifesta-
tion of the Kormendy relation (1.22). However, at luminosities ∼< 109 L� a
distinct family of diffuse dwarf elliptical or dwarf spheroidal galaxies
appears, with much larger effective radii and lower surface brightnesses than
“normal” ellipticals of the same luminosity (Mateo 1998). Dwarf spheroidal
galaxies are difficult to detect because their surface brightness is much less
than that of the night sky; nearby dwarf spheroidals are discovered because
their brightest stars produce a slight enhancement in star counts that are
otherwise dominated by foreground stars belonging to our own Galaxy.

8 The most luminous galaxy in the Virgo cluster is actually the E2 galaxy M49=NGC
4472, rather than M87. The Virgo cluster has a complex structure, consisting of two main
concentrations, a dominant one near M87 and a smaller one near M49. These probably
represent two merging sub-clusters, each with its own brightest cluster galaxy.
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There are at least 20 dwarf spheroidal galaxies within 200 kpc, and
given the limited sky coverage of existing surveys the actual number may
be 50–100 (Belokurov et al. 2007). All appear to be satellites orbiting the
Galaxy.Galaxy, satellites of Their luminosities range from 2 × 107L� to

∼< 104L�. The dwarf spheroidals offer a unique probe of dark matter in
galaxies, for the following reason. In more luminous galaxies, both baryonic
matter (stars and gas) and dark matter contribute comparable amounts to
the total mass within the visible stellar system; thus, disentangling their ef-
fects to isolate the properties of the dark-matter distribution at small radii
is difficult. In some dwarf spheroidal galaxies, however, dark matter con-
tributes 90% or more of the total mass, even at the center of the galaxy,
so the dynamics is determined entirely by the gravitational field of the dark
matter.

The distribution of mass in the dark halos of ellipticals can be con-
strained by several methods, including: (i) The kinematics of tracer particles
such as globular clusters or planetary nebulae, which typically sample radii
from 10–30 kpc (Côté et al. 2003; Romanowsky et al. 2003). This approach
relies on the statistical analysis of the positions and velocities of hundreds
or thousands of objects, assuming they are found at random orbital phases.
(ii) Diffuse X-ray emission from hot gas around the galaxy (Mathews &
Brighenti 2003). Measurements of the emissivity and temperature distribu-
tion, combined with the plausible assumption that the gas is in hydrostatic
equilibrium, can be used to constrain the distribution of the dark matter
out to ∼ 30 kpc in isolated galaxies. The same technique can be applied
to brightest cluster galaxies out to much larger radii, but in this case we
are measuring the combined dark-matter distribution of the galaxy and the
cluster. (iii) Kinematics of satellite galaxies. This technique is similar in
principle to the use of globular clusters or planetary nebulae; the satellite
galaxies have the advantage that they sample much larger radii, from 100–
400 kpc, but the disadvantage that generally no more than one satellite is
detected around a given galaxy, so the method yields only an average of the
dark-matter distribution over many galaxies (Prada et al. 2003). (iv) Weak
gravitational lensing, in which the gravitational field of a nearby galaxy dis-
torts the images of distant background galaxies (Schneider 2006); once again,
this method requires averaging over a large sample of lensing galaxies.

The preliminary conclusion from these studies is that luminous, isolated
elliptical galaxies contain dark halos that are much larger—both in size and
in mass—than the stellar systems they surround. Within uncertainties of at
least a factor of two, the halos extend to ∼ 300 kpc and contain ∼ 10 times
the mass in stars.

(b) Spiral galaxies These are galaxies, like the Milky Way and M31, that
contain a prominent disk composed of stars, gas, and dust. The disk contains
spiral arms, filaments in which stars are continuously being formed. The
same spiral arms are seen in the old stars that dominate the mass of the
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disk (see Figure 6.1 and §6.1.2). The spiral arms vary greatly in their shape,
length and prominence from one galaxy to another but are always present.

In low-density regions of the universe, about 60% of all luminous galaxies
are spirals, but the fraction drops to ∼< 10% in dense regions such as the cores
of galaxy clusters (BM §4.1.2).

The surface brightness in spiral galaxy disks, which traces the radial
distribution of stars, obeys the exponential law (1.7) (de Jong 1996). A
typical disk scale length is Rd ' 2h−1

7 kpc, but scale lengths range from
1h−1

7 kpc to more than 10h−1
7 kpc. The typical central surface brightness

is Id ∼ 100L� pc−2 (BM Figure 4.52). The interstellar gas in spiral galaxy
disks often extends to much larger radii than the stars, probably because star
formation is suppressed when the gas surface density falls below a critical
value (see Plates 5, 6 and BM §8.2.8).

Using the 21-cm line of interstellar neutral hydrogen, the circular-speed
curves vc(R) of spiral galaxies can be followed out to radii well beyond the
outer edge of the stellar distribution. The circular-speed curves of luminous
spirals are nearly flat out to the largest radii at which they can be measured,
often a factor of two or more larger than the edge of the stellar disk (BM
§8.2.4). If most of the mass of the galaxy were in stars, we would expect the
circular-speed curve at these large radii to fall as vc(R) = (GM/R)1/2 where
M is the total stellar mass (see Figure 2.17). The inescapable conclusion is
that the mass of the galaxy at these large radii is dominated by the dark
halo rather than the stars.

Typical circular speeds of spirals are between 100 and 300 km s−1. Just
as the velocity dispersion of elliptical galaxies is related to their luminosity
by the Faber–Jackson law (1.21), the rotation rate of spirals in the flat part of
the circular-speed curve is related to their luminosity by the Tully–Fisher
law (BM §7.3.4; Sakai et al. 2000),

log10

(
LRh

2
7

1010 L�

)
= 3.5 log10

( vc

200 km s−1

)
+ 0.5; (1.24)

the rms scatter in this relation is about 0.14 in log10 LR. The slope of the
Tully–Fisher law is a function of the wavelength band in which the luminosity
is measured, ranging from ' 3 in the B band centered at 0.45µm to ' 4 in
the K band centered at 2.2µm. Applied to our Galaxy, using vc = (220 ±
20) km s−1 from equation (1.8), we find LR = (4.4±1.5)×1010L�, consistent
with Table 1.2.

Like the Milky Way, most spiral galaxies contain a bulge, a centrally con-
centrated stellar system that has a smooth or amorphous appearance—quite
unlike that of the disk, which exhibits spiral arms, dust lanes, concentrations
of young stars, and other structure. The origin of bulges is not well under-
stood: some resemble small elliptical galaxies and presumably formed in the
same way, while others resemble thickened disks, and may have formed from
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the disk through dynamical processes (see §6.6.2 and Kormendy & Kenni-
cutt 2004). Bulges and elliptical galaxies are sometimes called spheroidal
stellar systems or spheroids, even though their shapes are not necessarily
close to mathematical spheroids (page 76)—in particular, many of them are
probably not axisymmetric.

The luminosity of the bulge relative to that of the disk is correlated with
many other properties of the galaxy, such as the fraction of the disk mass
in gas, the color of the disk, and how tightly the spiral arms are wound.
This correlation is the basis of a sub-division in the Hubble classification
system, which breaks up spiral galaxies into four classes or types, called Sa,
Sb, Sc, Sd (Sandage & Bedke 1994). Along the sequence Sa→Sd, (i) the
relative luminosity of the bulge decreases; (ii) the spiral arms become more
loosely wound; (iii) the relative mass of gas increases; and (iv) the spiral
arms become more clumpy, so individual patches of young stars and HII
regions become more prominent. This sequence is illustrated by comparing
the images of M104 (Plate 7), which is classified Sa; M81 (Plate 8), which
is classified Sab (i.e., between Sa and Sb); the Sb galaxy M31 (Plate 3); the
Sbc galaxies M51, M63, and M100 (Plates 1, 9, and 17); the Sc galaxy M101
(Plate 18), and the Scd galaxy M33 (Plate 19). The Milky Way is type Sbc.

The Hubble classification also divides spiral galaxies into “normal” and
“barred” categories. The bar is an elongated, smooth stellar system that is
reminiscent of a rigid paddle or stirrer rotating at the center of the galactic
disk. The bar can be thought of as a triaxial bulge, and in practice there
is no clear distinction between these two categories of stellar system: for
example, a “bar” in a face-on galaxy might well be classified as a “bulge” if
the galaxy were viewed edge-on. Further properties of bars are described in
§6.5.

A classic barred galaxy is NGC 1300 (Plate 10) although most bars
are less prominent than the one in this galaxy. Other barred galaxies are
shown in Figures 6.27 and 6.28. Our own Galaxy and its neighbor, the Large
Magellanic Cloud (Plate 11), are both barred. About half of all spirals are
barred, and bars appear in all of the Hubble classes Sa, Sb, Sc, Sd, where
their presence is indicated by inserting the letter “B” into the notation (SBa,
SBb, etc.). Elliptical galaxies do not have bars.

The first evidence for dark halos in spiral galaxies came from circular-
speed curves; as we have discussed, neutral-hydrogen rotation curves in some
spirals remain flat out to as much as 10 times the scale length of the stellar
disk, which implies that the mass at large radii is dominated by dark matter
rather than stars. At much larger radii, ∼> 100 kpc, the distribution of dark
matter can be measured by the same techniques that are used for ellipti-
cals, in particular satellite galaxy kinematics and weak gravitational lensing.
Within the large uncertainties, the data are consistent with the hypothesis
that the size and mass of the dark halos that surround luminous spiral galax-
ies are the same as those surrounding isolated ellipticals—about 300 kpc in
radius and containing ∼ 10 times the stellar mass of the galaxy.
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For most spiral galaxies, the relative contributions of dark and luminous
matter within the visible stellar system are difficult to disentangle (§6.3.3).
However, in some low-luminosity and low surface-brightness spirals, dark
matter appears to dominate the mass at all radii (Swaters et al. 2003). Like
the dwarf spheroidals, these galaxies provide valuable probes of the properties
of dark halos on small scales.

(c) Lenticular galaxies These are transition objects between elliptical
and spiral galaxies: like spirals, they contain a rapidly rotating disk, a bulge,
and sometimes a bar, and the disk obeys the exponential surface-brightness
law (1.7) characteristic of spirals. Like ellipticals, they have little or no cool
gas or recent star formation, are smooth and featureless in appearance, and
exhibit no spiral structure. The absence of young stars is a consequence of
the absence of gas, since this is the raw material from which stars are formed.

Lenticulars are rare in low-density regions, but comprise almost half
of the galaxies in the high-density centers of galaxy clusters (BM Figure
4.10). This correlation suggests that lenticulars may be spirals that have
been depleted of interstellar gas by interactions with the hot gas in the
cluster (van Gorkom 2004).

Lenticulars are labeled in the Hubble classification by the notation S0,
or SB0 if barred. The transition from ellipticals to lenticulars to spirals is
smooth and continuous, so there are S0 galaxies that might well be classified
as E7 and others that could be Sa (Sandage & Bedke 1994).

(d) Irregular galaxies Along the sequence from Sc to Sd, galaxies be-
come progressively less luminous and their spiral structure becomes less well
defined. These trends continue beyond Sd: we find low-luminosity (“dwarf”)
disk galaxies in which the young stars are arranged chaotically rather than
in spirals. These are called “irregular” galaxies and are denoted in the Hub-
ble classification by Sm or Im, the prototypes of these two classes being the
Large and Small Magellanic Clouds.

Irregular galaxies are extremely common—more than a third of our
neighbors are of this type—but they do not feature prominently in most
galaxy catalogs, because any flux-limited catalog is biased against intrinsi-
cally dim systems.

In irregulars the circular speed is a linear function of radius (corre-
sponding to a constant angular speed) over most of the stellar disk, reaching
a maximum of ∼ 50–70 km s−1 near the edge of the disk. These properties
are in sharp contrast to luminous spiral galaxies, in which the circular speed
is much higher and the circular-speed curve is nearly flat.

Much of the luminosity of irregular galaxies is emitted by massive young
stars and large HII regions. These systems are extremely gas-rich: the in-
terstellar gas in their disks often contains more than 30% of the mass in
stars. Their irregular appearance arises partly because the optical emission
is dominated by a relatively small number of luminous young stars and HII
regions, and partly because the circular speed in the disk is not that much
larger than the turbulent velocities in the interstellar gas (∼ 10 km s−1).
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A minority of galaxies are assigned to the “irregular” bin simply because
they fit nowhere else: these include spiral or elliptical galaxies that have been
violently distorted by a recent encounter with a neighbor (see Plate 12),
galaxies in the last stages of merging, and galaxies that are undergoing an
intense burst of star formation that overwhelms the stellar population that
usually determines the classification.

It is convenient to think of the Hubble classification as a sequence
E→S0→Sa→Sb→Sc→Sd→Sm→Im. Galaxies near the beginning of this se-
quence are called early, while those near the end are late. Thus the term
“early-type galaxies” refers to ellipticals and lenticulars; an Sa galaxy is an
“early-type spiral,” while an Sc or Sd galaxy is a “late-type spiral,” etc. This
terminology is a fossil of the initial incorrect belief that the Hubble sequence
was an evolutionary or time sequence.

1.1.4 Open and globular clusters

A typical galaxy contains many small stellar systems of between 102 and 106

stars. These systems are called star clusters and can be divided into two
main types.

Open clusters are irregular stellar systems that contain ∼ 102 to 104

stars (see Table 1.3, Plate 13, and BM §6.2). New open clusters are formed
continuously in the Galactic disk, and most of the ones we see are younger
than 1 Gyr (Figure 8.5). Older clusters are rare because most have been dis-
rupted, probably by gravitational shocks from passing interstellar gas clouds
(§8.2.2c). There are over 1000 cataloged open clusters out of an estimated
105 throughout the Galaxy. It is likely that most of the stars in the Galactic
disk formed in open clusters that have since dissolved.

Globular clusters are much more massive stellar systems, contain-
ing 104–106 stars in a nearly spherical distribution (BM §§4.5 and 6.1, and
Plate 14; see Ashman & Zepf 1998 and Carney & Harris 2001 for reviews).
Globular clusters do not contain gas, dust, or young stars. Our Galaxy con-
tains about 150 globular clusters, but large elliptical galaxies such as M87
can contain as many as 10 000 (Plate 4). Unlike open clusters, the Galaxy’s
globular clusters are old, and are believed to be relics of the formation of
the Galaxy itself.9 The metallicity appears to be the same for all the stars in
a given cluster—presumably because the cluster formed from a well-mixed
gas cloud—but different clusters have a wide range of metallicity, from only
0.005Z� to nearly solar. The spatial distribution and the kinematics of a
group of clusters are correlated with the metallicity, and for many purposes
the clusters in our Galaxy can be divided into two groups (Zinn 1985): a
roughly spherical population that contains 80% of the clusters, shows little

9 It is a mystery why young globular clusters are absent in our Galaxy but common in
many others, such as M31, the Large Magellanic Cloud, and galaxies that have undergone
recent mergers.
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or no rotation and has metallicity Z < 0.1Z�, and is associated with the
stellar halo; and a flattened population that contains the remaining 20%,
has Z > 0.1Z�, exhibits rapid rotation, and is associated with the disk and
bulge. This bimodal distribution of metallicities is present in the globular-
cluster systems of other galaxies as well (Gebhardt & Kissler–Patig 1999).

The stellar density in the center of a globular cluster is extremely high:
a typical value is 104 M� pc−3, compared with 0.05M� pc−3 in the solar
neighborhood. Because globular clusters have strong or high central con-
centration (the central density is much larger than the mean density) three
different measures of the radius are usually quoted for globular clusters: the
core radius, where the surface brightness has fallen to half its central value;
the median or half-light radius, the radius of a sphere that contains half of
all the luminosity; and the limiting or tidal radius, the outer limit of the
cluster where the density drops to zero. Typical values of these and other
cluster parameters are given in Table 1.3.

Luminous globular clusters emit as much light as dwarf spheroidal galax-
ies. However, a dwarf spheroidal galaxy is a very low surface-brightness ob-
ject with a half-light radius of ∼ 300 pc, while a luminous globular cluster
has a much smaller radius (∼ 3 pc) and a correspondingly higher surface
brightness. A handful of exceptionally luminous globular clusters, such as ω
Centauri in our Galaxy and G1 in M31, may be the dense centers of tidally
disrupted galaxies (Freeman 1993).

Globular clusters are among the simplest stellar systems: they are spher-
ical, they have no dust or young stars to obscure or confuse the observations,
they appear to have no dark matter other than low-luminosity stars, and
they are dynamically old: a typical star in a globular cluster has com-
pleted many orbits (∼ 104) since the cluster was formed. Thus globular
clusters provide the best physical realization we have of the gravitational
N-body problem, which is to understand the evolution of a system of N
point masses interacting only by gravitational forces (Chapter 7).

1.1.5 Groups and clusters of galaxies

Galaxies are not distributed uniformly in the universe. They belong to a
rich hierarchy of structure that includes binary galaxies, small groups of a
few galaxies in close proximity, enormous voids in which the number density
of galaxies is greatly depleted, filaments and walls stretching for tens of
Mpc, and rare giant clusters containing thousands of galaxies (see §9.2.2
and Mulchaey, Dressler, & Oemler 2004). Only on scales ∼> 100 Mpc is the
distribution of galaxies statistically homogeneous.

Associations that contain only a handful of galaxies are called groups
while bigger associations are called clusters of galaxies (see Plates 15 and 16).
The dividing line between groups and clusters is arbitrary, since the distri-
bution of properties is continuous from one class to the other.
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Table 1.3 Parameters of globular and open clusters

globular open

central density ρ0 1 × 104 M� pc−3 10M� pc−3

core radius rc 1 pc 1 pc
half-mass radius rh 3 pc 2 pc
tidal radius rt 35 pc 10 pc
central velocity dispersion σ0 6 km s−1 0.3 km s−1

crossing time rh/σ0 0.5 Myr 7 Myr
(line-of-sight)

mass-to-light ratio ΥR 2Υ� 1Υ�
mass M 2 × 105 M� 300M�
lifetime 10 Gyr 300 Myr
number in the Galaxy 150 105

notes: Values for globular clusters are medians from the compilation of Harris
(1996). Values for open clusters are from Figure 8.5, Piskunov et al. (2007),
and other sources.

The galaxies within ∼ 1 Mpc are members of the Local Group. The
two dominant members of this group are the Galaxy and M31. Dozens of
smaller galaxies, mostly satellites of the two dominant galaxies, are also
members (see BM §4.1.4 and van den Bergh 2000). The Local Group is
believed to be a physical system rather than a chance superposition because
the density of galaxies in this region is substantially higher than average,
and because the Galaxy and M31 are approaching one another rather than
receding with the Hubble flow. It is believed that the gravitational attraction
between these two galaxies slowed and then reversed their recession, and that
they will eventually merge into a single giant stellar system (see Box 3.1 and
Figure 8.1).

Like star clusters, groups and clusters of galaxies may be regarded for
many purposes as assemblies of masses orbiting under their mutual gravita-
tional attraction, except that now the masses are galaxies rather than stars.
However, there are two important differences between the dynamics of star
clusters and galaxy groups or clusters. First, groups and clusters of galaxies
are dynamically young: a typical galaxy in even the largest and most pop-
ulous clusters has completed only a few orbits since the cluster formed, and
in many smaller groups, including the Local Group, galaxies are still falling
towards the group center for the first time. Second, the fractional volume of
a group or cluster that is occupied by galaxies (∼> 10−3) is much larger than
the fractional volume of a star cluster that is occupied by stars (≈ 10−19).
Thus collisions between galaxies in a cluster are much more frequent than
collisions between stars in a star cluster (see Chapter 8).

Clusters of galaxies are the largest equilibrium structures in the uni-
verse. They arose from the gravitational collapse of rare high peaks in the
fluctuating density field of dark matter in the early universe (§9.2). Conse-
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quently their properties provide a sensitive probe of cosmological parame-
ters. Clusters also offer a unique probe of the distribution of dark matter on
large scales. The mass distribution in clusters of galaxies can be measured
by many complementary methods, including (i) statistical analysis of the
velocities and positions of large numbers of galaxies in the cluster; (ii) mea-
surements of the X-ray emissivity and temperature of hot gas in the cluster;
(iii) distortion of the images of background galaxies by weak gravitational
lensing; (iv) strong gravitational lensing, which can produce multiple images
of background galaxies near the center of the cluster; (v) the Sunyaev–
Zeldovich effect, which is a slight depression in the measured temperature
of the cosmic microwave background at the locations of clusters, caused by
Compton scattering of photons by electrons in the hot cluster gas.

The biggest clusters have masses ∼ 1015 M� within 2 Mpc of their cen-
ters and velocity dispersions of ∼ 1000 km s−1. The mass-to-light ratios are

ΥR ' (200 ± 50)h7Υ�, (1.25)

(Fukugita, Hogan, & Peebles 1998), with no detectable dependence on cluster
properties such as velocity dispersion or total population.

Most of the baryons in clusters of galaxies are in the hot gas. The mass

in gas is a fraction 0.11h
−3/2
7 of the total mass (Allen, Schmidt & Fabian

2002), while the mass in stars is only about 0.02h−1
7 of the total. Thus the

fraction of the total mass that resides in baryons is

fb = 0.13 ± 0.02, (1.26)

with the remaining 87% comprised of wimps or other non-baryonic dark
matter. In structures as large as clusters it is difficult to imagine how baryons
and non-baryonic dark matter could be segregated (in contrast to individual
galaxies, where the baryons have concentrated at the center of the dark halo
to form the visible stars). Thus the baryon-to-total mass ratio fb that is
found in clusters should be a fair sample of the universe as a whole.

1.1.6 Black holes

Dynamical studies of the centers of galaxies reveal that they often contain
“massive dark objects”—concentrations of 106–109 M� contained within a
few pc of the center (BM §11.2.2). The best-studied of these objects, the one
at the center of the Galaxy, has a mass of (3.9 ± 0.3) × 106 M� contained
within a radius less than 0.001 pc. Astronomers believe that these objects
must be black holes, for two main reasons. First, dynamical arguments show
that no long-lived astrophysical system other than a black hole could be so
massive and so small (§7.5.2). Second, many galaxies contain strong sources
of non-stellar radiation at their centers, called active galactic nuclei or
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agn; the most luminous and rare of these, the quasars, can achieve luminosi-
ties of 1013 L� and outshine their host galaxies by two orders of magnitude
(see BM §4.6.2 and Krolik 1999). By far the most plausible power source for
agn is accretion onto a massive black hole, and the demography of massive
dark objects in galaxy centers is roughly consistent with the hypothesis that
these are dormant agn.

It appears that most galaxies—or at least most early-type galaxies—
contain a central black hole. The mass of the black hole typically amounts
to ≈ 0.001–0.002 of the total mass of the stars in the host galaxy (Häring &
Rix 2004). Another correlation that is more directly observable is between
the black-hole mass M• and the velocity dispersion σ‖ near the center of the
host galaxy,

log10

(
M•h7

108 M�

)
= (4 ± 0.3) log10

( σ‖
200 km s−1

)
+ (0.2 ± 0.1). (1.27)

The rms scatter in this relation is ∼< 0.3 in log10M• (Tremaine et al. 2002).
Massive black holes are probably formed at the centers of galaxies.

When galaxies merge, their black holes are dragged to the center of the
merged galaxy by dynamical friction (§8.1.1a). If the resulting binary black
hole is so tightly bound that it continues to decay by gravitational radiation,
the two black holes will eventually merge. The final stages of this merger
could provide a powerful source of gravitational radiation (§8.1.1e; Begelman,
Blandford & Rees 1980).

1.2 Collisionless systems and the relaxation time

There is a fundamental difference between galaxies and the systems that are
normally dealt with in statistical mechanics, such as molecules in a box. This
difference lies in the nature of the forces that act between the constituent
particles. The interaction between two molecules is short-range: the force
is small unless the molecules are very close to each other, when it becomes
strongly repulsive. Consequently, molecules in a diffuse gas are subject to
violent and short-lived accelerations as they collide with one another, inter-
spersed with much longer periods when they move at nearly constant velocity.
In contrast, the gravitational force that acts between the stars of a galaxy is
long-range.

Consider the force from the stars in the cone shown in Figure 1.4 on a
star at the apex of the cone. The force from any one star falls off with distance
r as r−2, but if the density of stars is uniform, the number of attracting stars
per unit length of the cone increases as r2. Let us call a factor of two interval
in radius an octave, by analogy with the musical octave. Then each octave
in radius, from r to 2r, has a length proportional to r, so each octave attracts
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Figure 1.4 If the density of stars
were everywhere the same, the stars
in each of the shaded segments of a
cone would contribute equally to the
force on a star at the cone’s apex.
Thus the acceleration of a star at
the apex is determined mainly by
the large-scale distribution of stars in
the galaxy, not by the star’s nearest
neighbors.

the star at the apex with a force proportional to r−2×r2×r = r. This simple
argument shows that the force on the star at the apex is dominated by the
most distant stars in the system, rather than by its closest neighbors. Of
course, if the density of attracting stars were exactly spherical, the star at
the apex would experience no net force because it would be pulled equally
in all directions. But in general the density of attracting stars falls off in one
direction more slowly than in the opposing direction, so the star at the apex
is subject to a net force, and this force is determined by the structure of the
galaxy on the largest scale. Consequently—in contrast to the situation for
molecules—the force on a star does not vary rapidly, and each star may be
supposed to accelerate smoothly through the force field that is generated by
the galaxy as a whole. In other words, for most purposes we can treat the
gravitational force on a star as arising from a smooth density distribution
rather than a collection of mass points.

1.2.1 The relaxation time

We now investigate this conclusion more quantitatively, by asking how accu-
rately we can approximate a galaxy composed of N identical stars of mass
m as a smooth density distribution and gravitational field. To answer this
question, we follow the motion of an individual star, called the subject star,
as its orbit carries it once across the galaxy, and seek an order-of-magnitude
estimate of the difference between the actual velocity of this star after this
interval and the velocity that it would have had if the mass of the other stars
were smoothly distributed. Suppose the subject star passes within distance
b of another star, called the field star (Figure 1.5). We want to estimate
the amount δv by which the encounter deflects the velocity v of the subject
star. In §3.1d we calculate δv exactly, but for our present purposes an ap-
proximate estimate is sufficient. To make this estimate we shall assume that
|δv|/v � 1, and that the field star is stationary during the encounter. In this
case δv is perpendicular to v, since the accelerations parallel to v average to
zero. We may calculate the magnitude of the velocity change, δv ≡ |δv|, by
assuming that the subject star passes the field star on a straight-line trajec-
tory, and integrating the perpendicular force F⊥ along this trajectory. We
place the origin of time at the instant of closest approach of the two stars,
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Figure 1.5 A field star approaches
the subject star at speed v and im-
pact parameter b. We estimate the
resulting impulse to the subject star
by approximating the field star’s tra-
jectory as a straight line.

and find in the notation of Figure 1.5,

F⊥ =
Gm2

b2 + x2
cos θ =

Gm2b

(b2 + x2)
3/2

=
Gm2

b2

[
1 +

(
vt

b

)2]−3/2

. (1.28)

But by Newton’s laws

mv̇ = F so δv =
1

m

∫ ∞

−∞
dt F⊥, (1.29)

and we have

δv =
Gm

b2

∫ ∞

−∞

dt

[1 + (vt/b)2]3/2
=
Gm

bv

∫ ∞

−∞

ds

(1 + s2)3/2
=

2Gm

bv
. (1.30)

In words, δv is roughly equal to the acceleration at closest approach, Gm/b2,
times the duration of this acceleration 2b/v. Notice that our assumption of
a straight-line trajectory breaks down, and equation (1.30) becomes invalid,
when δv ' v; from equation (1.30), this occurs if the impact parameter
b ∼< b90 ≡ 2Gm/v2. The subscript 90 stands for a 90-degree deflection—see
equation (3.51) for a more precise definition.

Now the surface density of field stars in the host galaxy is of order
N/πR2, where N is the number of stars and R is the galaxy’s radius, so in
crossing the galaxy once the subject star suffers

δn =
N

πR2
2πb db =

2N

R2
b db (1.31)

encounters with impact parameters in the range b to b+ db. Each such en-
counter produces a perturbation δv to the subject star’s velocity, but because
these small perturbations are randomly oriented in the plane perpendicular
to v, their mean is zero.10 Although the mean velocity change is zero, the
mean-square change is not: after one crossing this amounts to

∑
δv2 ' δv2δn =

(
2Gm

bv

)2
2N

R2
b db. (1.32)

10 Strictly, the mean change in velocity is zero only if the distribution of perturbing
stars is the same in all directions. A more precise statement is that the mean change
in velocity is due to the smoothed-out mass distribution, and we ignore this because the
goal of our calculation is to determine the difference between the acceleration due to the
smoothed mass distribution and the actual stars.
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Integrating equation (1.32) over all impact parameters from bmin to bmax, we
find the mean-square velocity change per crossing,

∆v2 ≡
∫ bmax

bmin

∑
δv2 ' 8N

(
Gm

Rv

)2

ln Λ, (1.33a)

where the factor

ln Λ ≡ ln

(
bmax

bmin

)
(1.33b)

is called the Coulomb logarithm. Our assumption of a straight-line tra-
jectory breaks down for impact parameters smaller than b90, so we set
bmin = f1b90, where f1 is a factor of order unity. Our assumption of a
homogeneous distribution of field stars breaks down for impact parameters
of order R, so we set bmax = f2R. Then

ln Λ = ln

(
R

b90

)
+ ln(f2/f1). (1.34)

In most systems of interest R � b90 (for example, in a typical elliptical
galaxy R/b90 ∼> 1010), so the fractional uncertainty in ln Λ arising from the
uncertain values of f1 and f2 is quite small, and we lose little accuracy by
setting f2/f1 = 1.

Thus encounters between the subject star and field stars cause a kind
of diffusion of the subject star’s velocity that is distinct from the steady
acceleration caused by the overall mass distribution in the stellar system.
This diffusive process is sometimes called two-body relaxation since it
arises from the cumulative effect of myriad two-body encounters between
the subject star and passing field stars.

The typical speed v of a field star is roughly that of a particle in a
circular orbit at the edge of the galaxy,

v2 ≈ GNm

R
. (1.35)

If we eliminate R from equation (1.33a) using equation (1.35), we have

∆v2

v2
≈ 8 ln Λ

N
. (1.36)

If the subject star makes many crossings of the galaxy, the velocity v will
change by roughly ∆v2 at each crossing, so the number of crossings nrelax

that is required for its velocity to change by of order itself is given by

nrelax ' N

8 ln Λ
. (1.37)
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The relaxation time may be defined as trelax = nrelaxtcross, where
tcross = R/v is the crossing time, the time needed for a typical star to
cross the galaxy once. Moreover Λ = R/b90 ≈ Rv2/(Gm), which is ≈ N by
equation (1.35). Thus our final result is

trelax ' 0.1N

lnN
tcross. (1.38)

After one relaxation time, the cumulative small kicks from many encoun-
ters with passing stars have changed the subject star’s orbit significantly from
the one it would have had if the gravitational field had been smooth. In ef-
fect, after a relaxation time a star has lost its memory of its initial conditions.
Galaxies typically have N ≈ 1011 stars and are a few hundred crossing times
old, so for these systems stellar encounters are unimportant, except very
near their centers. In a globular cluster, on the other hand, N ≈ 105 and
the crossing time tcross ≈ 1 Myr (Table 1.3), so relaxation strongly influences
the cluster structure over its lifetime of 10 Gyr.

In all of these systems the dynamics over timescales ∼< trelax is that of
a collisionless system in which the constituent particles move under the
influence of the gravitational field generated by a smooth mass distribution,
rather than a collection of mass points. Non-baryonic dark matter is also
collisionless, since both weak interactions and gravitational interactions be-
tween individual wimps are negligible in any galactic context.

In most of this book we focus on collisionless stellar dynamics, confin-
ing discussion of the longer-term evolution that is driven by gravitational
encounters among the particles to Chapter 7.

1.3 The cosmological context

This section provides a summary of the aspects of cosmology that we use
in this book. For more information the reader can consult texts such as
Weinberg (1972), Peebles (1993), and Peacock (1999).

To a very good approximation, the universe is observed to be homoge-
neous and isotropic on large scales—here “large” means ∼> 100 Mpc, which
is still much smaller than the characteristic “size” of the universe, the Hub-
ble length c/H0 = 4.3h−1

7 Gpc where 1 Gpc = 109 pc = 103 Mpc and c is
the speed of light. Therefore a useful first approximation is to average over
the small-scale structure and treat the universe as exactly homogeneous and
isotropic. Of course, the universe does not appear isotropic to all observers:
an observer traveling rapidly with respect to the local matter will see galaxies
approaching in one direction and receding in another. Therefore we define
a set of fundamental observers, who are at rest with respect to the mat-
ter around them.11 The universe is expanding, so we may synchronize the

11 A more precise definition is that a fundamental observer sees no dipole component
in the cosmic microwave background radiation (§1.3.5).
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clocks of the fundamental observers by setting them to the same time at the
moment when the universal homogeneous density has some particular value.
This procedure enables us to define a unique cosmic time (Gunn 1978).

The random velocities of galaxies, and the velocities of stars within
galaxies (a few hundred km s−1), are small compared to the relative velocities
of galaxies that are separated by 100 Mpc (many thousand km s−1). Thus,
on scales large enough that the assumption of homogeneity is accurate, any
observer who moves with a typical star in a galaxy is a fundamental observer.

1.3.1 Kinematics

Consider the triangle defined by three nearby fundamental observers. As
the universe evolves, the triangle may change in size, but cannot change
in shape or orientation—in the contrary case, it would define a preferred
direction, thereby violating the isotropy assumption. Thus, if rij(t) is the
length of the side joining observers i and j at cosmic time t, we must have
rij(t) = rij(t0)a(t), where a(t) is independent of i and j. Since this argument
holds for all fundamental observers, the distance between any two of them
must have the form

r(t) = r(t0)a(t), (1.39)

where the scale factor a(t) is a universal function, which we may normalize
so that a(t0) = 1 at the present cosmic time t0. The relative velocity of the
two observers is

v(t) =
dr

dt
= r(t0)ȧ(t) = r(t)

ȧ(t)

a(t)
≡ r(t)H(t), (1.40)

where H(t) is the Hubble parameter. At the present time, H(t0) ≡ H0 is
the Hubble constant, and equation (1.40) is a statement of the Hubble law
(1.13). Thus we see that (i) the Hubble law is a consequence of homogene-
ity and isotropy; (ii) in a homogeneous, isotropic universe the Hubble law
remains true at all times but the Hubble “constant” varies with cosmic time.

Next consider a photon that at cosmic time t passes a fundamental
observer, who observes it to have frequency ν. After an infinitesimal time
interval dt, the photon has traveled a distance dr = c dt and hence is over-
taking a second fundamental observer who is moving away from the first
at speed dv = H(t)dr = H(t)c dt. This observer will measure a different
frequency for the photon because of the Doppler shift. The measured fre-
quency will be ν(1−dv/c) = ν[1−H(t)dt]; the use of this first-order formula
is justified because dv is infinitesimal. Thus the frequency of a propagating
photon as measured by a local fundamental observer decreases at a rate

dν

dt
= −H(t)ν or

ν̇

ν
= − ȧ

a
, thus ν(t) ∝ 1

a(t)
. (1.41)
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In words, a photon emitted by a fundamental observer at frequency νe and
wavelength λe = c/νe, and received by a second fundamental observer at the
present time t0, will be observed to have frequency ν0 and wavelength λ0

given by
νe

ν0
=
λ0

λe
=
a(t0)

a(te)
=

1

a(te)
≡ 1 + z. (1.42)

Here z is the redshift. Redshift is often used instead of time t to describe
the cosmic time of an event, since redshift is directly observable from the
wavelengths of known spectral lines, whereas the relation between time and
redshift depends on the cosmological model (Figure 1.7).

These derivations assume only that spacetime is locally Euclidean, and
thus they are correct even in a curved spacetime, so long as it is homogeneous
and isotropic.

1.3.2 Geometry

Let the position of any fundamental observer be labeled by time-independent
coordinates (q1, q2, q3). At a given cosmic time t, the distance dl between
the observers at (q1, q2, q3) and (q1 + dq1, q2 + dq2, q3 + dq3) can be written
in the form

dr2 = a2(t)hijdqidqj , (1.43)

where we have used the summation convention (page 772), and the metric
tensor hij (cf. eq. B.13) must be independent of time in a homogeneous,
isotropic universe. It can be shown that homogeneity and isotropy also imply
that the qi can be chosen such that equation (1.43) takes the form of the
Robertson–Walker metric,

dr2 = a2(t)

[
dx2

1 − kx2/x2
u

+ x2
(
dθ2 + sin2 θ dφ2

)]
. (1.44)

Here θ and φ are the usual angles in spherical coordinates (Appendix B.2),
x is a radial coordinate, xu is a constant called the radius of curvature,
and k is +1, 0 or −1. Since x remains fixed as the fundamental observers
recede from one another, it is called a comoving coordinate.

In the case k = 0, the metric (1.44) corresponds to ordinary spherical
polar coordinates (cf. eq. B.32), so at a given cosmic time the geometry of
the universe is that of ordinary Euclidean or flat space. In the case k = +1,
(1.44) is the three-dimensional generalization of the metric on the surface
of a sphere of radius xu, dr2 = dx2/(1 − x2/x2

u) + x2dφ2, where x is the
perpendicular distance from the polar axis to the point in question. This
case is said to represent a closed universe, since the volume of space is
finite (Problem 1.7). The case k = −1 has no analogous 2-surface embedded
in Euclidean 3-space (e.g.,Weinberg 1972). It represents an open universe
with infinite volume.
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1.3.3 Dynamics

The evolution of the scale factor a(t) is determined by the equations of
general relativity and the equation of state of the material in the universe.
We shall assume that all of the major components of this material can be
described as (possibly relativistic) fluids. To derive the equations governing
a(t) we then need only one result from relativity: that a fluid with inertial
mass density ρ and pressure p has a gravitational mass density (Problem 9.5)

ρ′ = ρ+
3p

c2
. (1.45)

By isotropy, the universe is spherically symmetric as viewed by any
fundamental observer. Now draw a sphere of radius r around such an
observer, where r is large enough that the approximation of homogene-
ity and isotropy is valid, but small enough that Newtonian physics applies
within it. As shown at the beginning of this section, in practice this means
100 Mpc � r � 4000 Mpc. By analogy with Newton’s famous theorem that
a body experiences no gravitational force from a spherical shell of matter
outside it (§2.2.1), we ignore the effects of material outside the sphere. Then
Newton’s law of gravity tells us that a fundamental observer on the surface
of the sphere is accelerated towards its center at a rate

d2r

dt2
= −GM

r2
, (1.46)

where M is the gravitational mass inside the sphere. Note that there are
no pressure forces, since ∇p = 0 by homogeneity. Since M = ρ′V , where
V = 4

3πr
3, and r = r0a(t), we may rewrite equation (1.46) as

ä

a
= −4πGρ′

3
= −4πG

3

(
ρ+

3p

c2

)
. (1.47)

To integrate this equation, we need to know how p and ρ vary with the
scale factor a(t). The internal energy of the sphere, including its rest-mass
energy, is U = ρc2V . The material satisfies dU + p dV = 0 (eq. F.22 with
dS = 0, since there is no heat flow in a homogeneous, isotropic universe), so

c2d(ρV ) + p dV = 0 or dρ+

(
ρ+

p

c2

)
dV

V
= 0. (1.48)

Since V ∝ a3(t), we have dV/V = 3 da/a, and equations (1.47) and (1.48)
can be combined to eliminate p:

ä

a
=

4πG

3

(
2ρ+ a

dρ

da

)
. (1.49)
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After multiplying by aȧ this equation can be integrated to yield

ȧ2 − 8πGρ

3
a2 = 2E, (1.50)

where E is a constant of integration, analogous to the Newtonian energy.
These equations can also be derived directly from general relativity.

The relativistic derivation also connects the geometry to the energy density,
by relating the parameters of the Robertson–Walker metric (1.44) to the
integration constant E:

2E = −kc
2

x2
u

. (1.51)

Equations (1.44), (1.50), and (1.51) specify the Friedmann–Robertson–
Walker or FRW model of the universe.

When k = 0, space is flat, E = 0, and the density equals the critical
density

ρc(t) ≡
3ȧ2

8πGa2
=

3H2(t)

8πG
. (1.52)

If we define the density parameter

Ω(t) ≡ ρ(t)

ρc(t)
=

8πGρ(t)

3H2(t)
, (1.53)

then equation (1.50) can be written

Ω−1 − 1 =
3E

4πGρa2
= − 3kc2

8πGρa2x2
u

. (1.54)

This result implies that if Ω < 1 at any time, it always remains so; this case
corresponds to a universe that is open (k = −1) and infinite. In contrast, if
Ω exceeds unity it always remains so, and we have a universe that is closed
(k = +1) and finite. Finally, if Ω = 1 at any instant it is unity for all
time, and the universe is always flat. Thus the geometry of the universe is
determined by its mass content, and an open universe cannot turn into a
closed one or vice versa.

The present value of the critical density is

ρc0 = ρc(t0) = 9.204 × 10−27 h2
7 kg m−3 = 1.3599× 1011 h2

7 M� Mpc−3.
(1.55)

We have parametrized galaxies and other stellar systems by their mass-to-
light ratio. Since the universe is homogeneous, the mass-to-light ratio mea-
sured on sufficiently large scales must be the same everywhere at a given
cosmic time. The present R-band luminosity density jR is given by equa-
tion (1.19), so the R-band mass-to-light ratio ΥR is related to the density
parameter by

ΥR =
ρc0Ω0

jR
= (900 ± 300)h7Ω0 Υ�; (1.56)
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the subscript “0” on Ω indicates the density parameter at the present epoch.
An obvious next step is to compare this result to observed mass-to-light

ratios and thereby estimate Ω0. Unfortunately, the total mass-to-light ratios
of individual galaxies are quite uncertain, because the total mass contained
in their dark halos is difficult to determine. However, as we argued after
equation (1.26), it is likely that the mixture of baryonic and non-baryonic
dark matter in rich clusters of galaxies is representative of the universe as a
whole, so we might hope that the mass-to-light ratios of rich clusters are a
reasonable approximation to the total mass-to-light ratios of galaxies. Taking
ΥR ' (200 ± 50)h7Υ� from equation (1.25), we conclude that Ω0 = 0.22 ±
0.09. This argument is subject to at least two possible biases: first, the
galaxy population in rich clusters has a higher fraction of ellipticals than
average, and hence fewer luminous young stars; second, most of the baryons
in rich clusters are in the form of hot gas, which does not contribute to
the R-band luminosity, but in isolated galaxies this gas might cool to form
additional stars. Both of these effects should increase the mass-to-light ratio
in clusters relative to isolated galaxies, and hence lead us to overestimate
Ω0. Thus we can conclude from this argument only that

Ωm0 ∼< 0.3. (1.57)

The subscript “m” on Ω0 is a reminder that this value refers only to the
density in non-relativistic matter that can collapse along with the baryons
into clusters of galaxies. Any uniformly distributed component of the density,
such as a population of relativistic particles or vacuum energy, is excluded.

The inequality (1.57) encapsulates one of the fundamental conclusions
of modern cosmology: the most “natural” model, a matter-dominated flat
universe in which Ω = 1 at all times, is excluded by the observations.

To solve the differential equations that describe FRW models, we need
to know the equation of state relating the pressure p to the density ρ for
each component of the universe. For our purposes a sufficiently general
parametrization is

p = wρc2, (1.58)

where w is a constant. If the equation of state has this form, equation (1.48)
can be integrated to yield

ρ ∝ V −1−w ∝ a−3(1+w). (1.59)

Three major components contribute to the dynamics of the universe:
(i) Non-relativistic matter. This has p� ρc2 so w = 0. We label the corre-

sponding density ρm(t), and for brevity we simply call this component
“matter.” In this case there is no distinction between the inertial mass
density ρm and the gravitational density ρ′m = ρm (eq. 1.45). From
equation (1.59) ρm ∝ a−3, as expected from conservation of mass.
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(ii) Radiation and other massless or highly relativistic particles. We label
this density ργ(t), and call this component “radiation.” In this case
p = 1

3ρc
2 so w = 1

3 , and from equation (1.45) the gravitational attraction
is twice as strong as non-relativistic matter with the same density: ρ′γ =
2ργ . As the universe expands, the radiation density declines as ργ ∝
a−4 from equation (1.59). Physically, this dependence arises because
the number of photons is conserved so the number density declines as
a−3, and their frequency and thus the energy per photon decay as a−1

(eq. 1.42).

(iii) A hypothetical energy density ρΛ associated with the vacuum (Carroll,
Press, & Turner 1992). This must be accompanied by a negative pres-
sure p = −ρΛc

2 (i.e., a tension) because the energy-momentum tensor
of the vacuum must be proportional to the Minkowski metric if the vac-
uum is to appear the same to all observers, regardless of their relative
motion. In the parametrization of equation (1.58), vacuum energy there-
fore has w = −1. Equation (1.59) shows that as the universe expands,
ρΛ is independent of the scale factor, as expected since it is a universal
constant.

A remarkable feature of vacuum energy is that it exerts repulsive gravita-
tional forces—equations (1.45) and (1.58) show that gravity is repulsive for
any medium with w < − 1

3 . Consequently, the gravity from such a medium
tends to accelerate rather than decelerate the expansion of the universe.

Vacuum energy plays a significant role in cosmology only if the vacuum-
energy density ρΛ is comparable to the current critical density ρc (eq. 1.55).
There is no motivation from fundamental physics for a vacuum-energy den-
sity of this magnitude: the theoretical prejudice is that either ρΛ has a very
large value, or else is exactly zero on account of some unidentified symmetry.
There is no known mechanism that would favor a value of ρΛ comparable
to ρc. Moreover, because the critical density evolves with time while the
vacuum-energy density does not, any approximate coincidence between ρΛ

and ρc must be a special feature of the present epoch. These difficulties have
led physicists to explore quantum fields with more general behavior than
vacuum energy, under the general heading of dark energy.

By analogy with equation (1.53), we define

Ωm0 ≡ ρm0

ρc0
; Ωγ0 ≡ ργ0

ρc0
; ΩΛ0 ≡ ρΛ0

ρc0
(1.60)

to be the present densities of matter, radiation, and vacuum energy in units
of the critical density. With this notation Ωm0 + Ωγ0 + ΩΛ0 = Ω0. Then
equation (1.50) can be rewritten as

ȧ2 = H2
0

[
1 + Ωm0(a−1 − 1) + Ωγ0(a−2 − 1) + ΩΛ0(a2 − 1)

]
, (1.61)
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which can be integrated to yield a formula for the time dependence of the
scale factor a(t):

H0t =

∫ a(t)

0

a da√
Ωγ0 + Ωm0a+ (1 − Ωm0 − Ωγ0 − ΩΛ0)a2 + ΩΛ0a4

. (1.62)

This integral can be evaluated analytically or numerically for arbitrary values
of Ωm0, Ωγ0, and ΩΛ0, but it is more illuminating to examine special cases:

(i) A flat, matter-dominated universe (the Einstein-de Sitter universe)
has Ωγ0 = ΩΛ0 = 0, Ωm0 = 1, so

a(t) ∝ t2/3 ; ρm(t) =
1

6πGt2
; (1.63)

the second equation follows when the first is substituted into equa-
tion (1.50) with E = 0.

(ii) A flat, radiation-dominated universe has

a(t) ∝ t1/2 ; ργ(t) =
3

32πGt2
. (1.64)

(iii) A flat universe dominated by vacuum energy has

a(t) ∝ exp(H0t) = exp
[
( 8

3πGρΛ)1/2t
]

; ρΛ =
3H2

0

8πG
= constant.

(1.65)

At the present time, Ωγ0 ' 10−4 (eq. 1.72), so the evolution of the universe is
determined by Ωm0 and ΩΛ0 except at very early times. Thus the properties
of the universe can be parametrized on a diagram such as Figure 1.6. Lines
on this figure mark the boundary between models that have open or closed
geometries (k = −1 or k = +1), and between models that expand forever
and those that collapse at some future time. We have also marked off models
that have no initial singularity: as we follow these “bounce” models back in
time from the present, the repulsion from the vacuum energy becomes so
strong that the expansion rate ȧ reaches zero at some time tb and is negative
for t < tb. Physically, this means that the universe was contracting for
t < tb, coasted to a halt because of increasing repulsion by the vacuum
energy, and then began the expansion that continues at the present time.
Such models are excluded by observations because they predict a maximum
redshift, z ' 2, much smaller than the largest observed redshifts, z ∼> 6.
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Figure 1.6 Characteristics of FRW models of the universe in which the current radiation
density Ωγ0 is negligible. The solutions are parametrized by the current matter density
Ωm0 and vacuum energy ΩΛ0, both relative to the critical density (1.52). The lines divide
models in which the geometry is open from those with closed geometry; models that
will expand forever from those that will eventually collapse; and models in which the
expansion is accelerating (ä > 0) from those in which it is decelerating. The shaded region
denotes models with no initial singularity or Big Bang; these bounced from a collapsing
to an expanding state at some non-zero value a(t) < 1 of the scale factor. The large oval
marked SNe is the 1-σ error ellipse from measurements of distant supernovae (Riess et
al. 2004), and the small oval labeled cmb is the 1-σ error ellipse from measurements of
fluctuations in the cosmic microwave background combined with local measurements of
the Hubble constant (Spergel et al. 2007). For further discussion see page 50.

1.3.4 The Big Bang and inflation

There is strong evidence that the universe was much hotter and denser in
the past—this evidence includes the existence of the cosmic microwave back-
ground and the primordial abundances of the light elements (see §1.3.5).
This is consistent with the discussion of the preceding paragraph, which
shows that all FRW models that are consistent with observations begin from
an initial singularity or Big Bang. Immediately after the Big Bang the
universe satisfied several striking constraints:
(i) A matter- or radiation-dominated FRW universe always evolves away

from Ω = 1: equation (1.54) shows that |Ω−1 − 1| grows in proportion
to 1/ρa2, which grows as a(t) or a2(t), respectively. At present Ω is not
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far from unity, so soon after the Big Bang, when a(t) was much smaller
than now, Ω must have been extremely close to unity. This fine-tuning
of the initial conditions is called the “flatness problem.”

(ii) The universe is homogeneous on large scales. It is natural to ask whether
this property could be the result of physical processes occurring shortly
after the Big Bang. Since information cannot propagate faster than the
speed of light, the size of the largest causally connected region is given by
the distance a photon can propagate since the Big Bang. Light travels
at speed c = dr/dt, where dr is the distance. In the Robertson–Walker
metric (1.44), the comoving coordinate of a photon that is moving to-
wards the origin therefore satisfies

dx

dt
= − c

a(t)

(
1 − kx2

x2
u

)1/2

. (1.66)

We have seen that in the early universe, |Ω − 1| must have been very
small, so the geometry is nearly flat and we may set k = 0. Thus a
photon that is emitted at ti and arrives at the origin at t has come from
a comoving coordinate

x = c

∫ t

ti

dt

a(t)
. (1.67)

The comoving radius of the region that has been in causal contact since
the Big Bang is called the particle horizon xh(t), and is obtained from
equation (1.67) by letting ti shrink to zero. At early times the universe
is expected to be radiation-dominated, since ργ(t) ∝ a−4(t) while ρm ∝
a−3 and ρΛ is constant. In a flat radiation-dominated universe, the scale
factor is a(t) = bt1/2, where b is a constant (eq. 1.64). Thus we obtain

xh(t) =
2ct1/2

b
, (1.68)

which shows that the comoving horizon shrinks to zero as t → 0; this
in turn implies that right after the Big Bang different parts of the uni-
verse are not causally connected, so the large-scale homogeneity of the
universe must be imposed as an initial condition. This uncomfortable
situation is called the “horizon problem.”

(iii) The rich structure in the present universe—galaxies, clusters of galaxies,
etc.—has grown by gravitational instability. The spectrum of perturba-
tions that seeded this growth must be inserted as an initial condition
(the “structure problem”).

Remarkably, all three of these problems can be resolved at one stroke by a
single powerful assumption: that the early universe underwent a phase of
accelerated expansion or inflation. Inflation arises when the dominant con-
tributor to the mass density has an equation of state with w < − 1

3 (eq. 1.58).
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For example, suppose that there is an early inflationary phase in which the
universe is dominated by a large vacuum energy, which has w = −1. Then the
scale factor grows exponentially with time, as described by equation (1.65),
but with much larger constants H0 and ρΛ. As the universe inflates, the
density of non-relativistic matter falls as a−3(t), and the density of pho-
tons and other relativistic matter falls as a−4(t), while the vacuum-energy
density remains constant. Hence the dynamics rapidly becomes completely
dominated by the vacuum energy, equation (1.65) applies with ever greater
precision, and the density parameter Ω tends to unity. More precisely, if the
inflationary phase lasts for n e-foldings of the scale factor, then at the end
of this phase |Ω − 1| will be smaller by a factor ∼ exp(−2n) than it was
at the beginning. Thus inflation naturally produces Ω very close to unity,
thereby solving the flatness problem. Moreover, since |Ω − 1| is zero at the
end of inflation with exponential precision, it is plausible to assume that it
is exactly zero for all practical purposes, even today. Thus inflation strongly
suggests that Ω0 = 1; in other words, Ωγ0 + Ωm0 + ΩΛ0 = 1. Since Ωγ0 is
negligible, the universe must lie on the line Ωm0 + ΩΛ0 = 1 that separates
open from closed universes in Figure 1.6, just as the observations seem to
indicate.

Next, inflation solves the horizon problem: equation (1.65) tells us that
ȧ ∝ a, so the integral in equation (1.67) is

∫
dt/a =

∫
da/(aȧ) ∝

∫
da/a2,

which diverges as a → 0. Thus the region that is in causal contact becomes
arbitrarily large if the inflationary phase begins early enough, so all regions
in the observable universe could have been in causal contact in the interval
between the Big Bang and the onset of inflation.

Inflation also predicts that when quantum fluctuations in the matter
density are inflated past the event horizon, they are frozen into classical den-
sity fluctuations that provide the initial conditions for the growth of structure
in the universe. These fluctuations enjoy a number of properties that greatly
simplify the study of structure formation in the later universe: (i) they are
nearly scale-invariant, in the sense that the rms fluctuations in the gravita-
tional potential are independent of scale; (ii) they form a Gaussian random
field; (iii) they are adiabatic, that is, the entropy per particle is constant (see
§9.1 for further discussion of these concepts).

Finally, inflation solves the monopole problem: point topological de-
fects known as monopoles arise naturally in grand unified theories of particle
physics, and the predicted density of these objects is far larger than al-
lowed by observational constraints. Inflation solves this problem by diluting
the density of monopoles—like non-relativistic matter, this density falls as
a−3(t)—to an undetectably small value.

Particle physics has no difficulty embracing particle fields that could
have caused inflation. Inflation is thought to end when a phase transition
converts the inflating matter to ordinary matter and radiation (in this con-
text, “ordinary” includes wimps or other non-baryonic dark matter). Any
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matter or radiation present before inflation was diluted to negligible densi-
ties by this time. The newly formed matter and radiation will be in thermal
equilibrium, with density parameter Ω = 1 and density fluctuations that are
Gaussian, adiabatic, and nearly scale-invariant—precisely the conditions we
need to explain many of the properties of the observed universe.

Thus the inflationary hypothesis not only solves the horizon, flatness,
and monopole problems but also provides simple, well-defined initial condi-
tions that enable quantitative predictions about the growth of structure in
the universe. It should be kept in mind, however, that despite its central
role in modern cosmology, the inflationary hypothesis is still unsupported by
any evidence from other arenas in theoretical or experimental physics.

1.3.5 The cosmic microwave background

Following inflation, the universe was radiation-dominated, so the scale factor

grew as a(t) ∝ t1/2 and the density fell as ρ ∝ a−4 (eq. 1.64). All particle
species were in thermal equilibrium at a temperature T (t), which declined
approximately as a−1. Once the temperature dropped below 100 MeV, 10−4 s
after the Big Bang, the constituents of this hot plasma consisted of relativistic
electrons, positrons, neutrinos, and photons, and non-relativistic protons,
neutrons, and perhaps wimps.

As the universe continued to expand and cool, the collision time between
particles grew faster than the expansion time, so particles began to drift out
of thermal equilibrium. In particular, weakly interacting particles such as
neutrinos dropped out of thermal equilibrium at T ' 1010 K = 0.86 MeV,
about 1 s after the Big Bang. At this point the neutron/proton ratio, which
had been kept in equilibrium by weak interactions, was frozen at about 0.2.
The free neutrons then began to decay, with e-folding time 886 s. However,
long before this decay process was completed, nucleosynthesis began: be-
low 109 K, at t ' 100 s, kBT was much smaller than the deuteron binding
energy, so deuterium began to accumulate. Eventually its abundance grew
large enough for deuterium to burn to tritium and then helium. Nucleosyn-
thesis was essentially complete 200 s after the Big Bang, leaving most of the
nucleons as hydrogen (75% by mass) or 4He (25% by mass), with traces of
deuterium, 3He and 7Li. The abundance of deuterium, in particular, de-
pends sensitively on the density of baryons at a given temperature, which
is determined by the baryon-to-photon ratio η. Thus measurements of the
abundance of deuterium in primordial astrophysical systems such as inter-
galactic clouds can be used to determine η; measurements of the cosmic
microwave background radiation (see below) determine the current photon
density, and from these two quantities we can determine the baryon density.
This method yields a current density parameter for baryons (Yao et al. 2006)

Ωb0 = (0.042 ± 0.004)h−2
7 . (1.69)
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As the universe expanded further, the density in radiation and rela-
tivistic matter (photons and neutrinos) continued to decline as a−4, while
the density in non-relativistic matter (mostly protons, electrons, and helium
nuclei) declined as a−3. Eventually, at redshift and time

zγm ' 3100, tγm ' 6 × 104 yr, (1.70)

the density of matter equaled that of radiation (see Figure 1.7). At this
point the matter was still fully ionized. However, as the universe continued
to expand, at

zd ' 1100, td ' 4 × 105 yr, (1.71)

the electrons and protons combined to form neutral atomic hydrogen. This
decoupling or recombination epoch was a milestone in the history of
the universe for two reasons: (i) before recombination, the ionized bary-
onic plasma was locked to the photons by Thomson scattering, while after
decoupling, the baryonic matter could move relative to the photons so the
assembly of bound baryonic structures such as galaxies could begin; (ii) the
universe became transparent.

Recombination occurred rather quickly: the fractional rms dispersion
in the scale factor at which photons suffer their last scattering is less than
10%. Thus we can imagine ourselves to be surrounded by an opaque last-
scattering surface that hides the Big Bang from us.12

At recombination, the photons had a black-body spectrum, and this
spectrum was preserved even after the universe became transparent: the
photon frequencies all decline as a−1(t) (eq. 1.42) so the spectrum remained
black-body with a temperature that declined in the same way.

The relic black-body radiation from the last-scattering surface, the
cosmic microwave background or CMB, was discovered in 1965. It
dominates the night sky at wavelengths in the range millimeters to cen-
timeters. The spectrum is accurately black-body, with temperature T =
(2.725 ± 0.001) K, and this finding provides compelling evidence that the
universe arose from a hot, dense initial state—it is only in such a state that
the photons can be thermalized in less than a Hubble time. The energy den-
sity of the cmb photons corresponds to a density parameter 5.04× 10−5h−2

7 ;
to compute the total density in radiation we must add to this the energy
density contributed by relic neutrinos (this cosmic neutrino background has
not yet been detected, but is a firm prediction of Big Bang cosmology). Thus
the current energy density in radiation is

Ωγ0 = 8.48 × 10−5 h−2
7 . (1.72)

12 The last-scattering surface is analogous to a stellar photosphere, except we are in a
cavity in the middle of optically thick material rather than outside a sphere of optically
thick material.
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The cmb is remarkably close to isotropic: apart from a dipole term that
arises from the velocity of the solar system with respect to a fundamental
observer (368±2 km s−1), the largest fractional rms anisotropies are ∼< 10−4.
These are believed to arise from the primordial fluctuations introduced by in-
flation, and the power spectrum of these anisotropies provides an exquisitely
sensitive probe of many of the fundamental parameters of the universe.

In particular, assuming a FRW universe currently dominated by non-
relativistic matter and vacuum energy, and Ω0 = 1 as predicted by inflation,
the power spectrum of cmb fluctuations strongly constrains the Hubble con-
stant, the density in baryons, and the matter density (Spergel et al. 2007):

h7 = 1.05 ± 0.05, Ωb0 = (0.0455± 0.0015)h−2
7 , Ωm0 = 0.237 ± 0.034.

(1.73)
The vacuum-energy density is then ΩΛ0 = 1 − Ωm0 = 0.763 ± 0.034. This
result implies that the dynamics of the universe is currently dominated by
vacuum energy—in other words, the universe appears to have entered a sec-
ond period of inflation.

With these parameters, the density in non-relativistic matter is much
larger than the density in baryons. Thus there must be non-baryonic dark
matter that contributes roughly 19% of the critical density. Note also that
the present density in vacuum energy exceeds the density in matter; since the
former is independent of scale factor and the latter scales as a−3 = (1 + z)3,
equality occurred quite recently (Figure 1.7), at

zmΛ =

(
ΩΛ0

Ωm0

)1/3

− 1 = 0.48 ± 0.09. (1.74)

The fluctuation spectrum deduced from the cmb measurements is also
approximately scale-invariant, again as predicted by inflation.

The parameters in equation (1.73) are consistent with a wide variety
of astronomical measurements, including the following: (i) The Hubble con-
stant is consistent with the best direct estimate of the distance scale, using
Cepheid distances, which yields h7 = 1.03±0.11 (eq. 1.14). Moreover, if mea-
surements of the cmb power spectrum are combined with this measurement
of the Hubble constant, then the assumption that Ω0 = 1 can be eliminated,
and the data yield Ω0 = 1.014 ± 0.017, consistent with the prediction of
inflation that Ω = 1. (ii) The fraction of the total mass composed of baryons
is

fb =
Ωb0

Ωm0
= 0.17 ± 0.01, (1.75)

in reasonable agreement with the estimate from clusters of galaxies, 0.13 ±
0.02 (eq. 1.26). (ii) The baryon density Ωb0 is consistent with the result from
nucleosynthesis, equation (1.69). (iii) The matter density Ωm0 is consistent
with measurements of the geometry of the universe from supernovae, which
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Figure 1.7 The fraction of the critical density provided by radiation (Ωγ), matter (Ωm),
and vacuum energy (ΩΛ) as a function of redshift z or scale factor a(t) = (1 + z)−1

(bottom axis) or age (top axis). The values shown are for a flat FRW universe with present
matter density Ωm0 = 0.24, vacuum-energy density ΩΛ0 = 0.76 (eq. 1.73), and radiation
density Ωγ0 determined from the temperature of the cmb (eq. 1.72). The redshifts of equal
densities of matter and radiation (eq. 1.70), decoupling (eq. 1.71), and equal densities of
matter and vacuum energy (eq. 1.74) are marked.

yield Ωm0 = 0.29 ± 0.04 for a flat universe (see Figure 1.6 and Riess et al.
2004). (iv) The matter density Ωm0, together with equation (1.56), predicts
that the average mass-to-light ratio in the universe is

ΥR = (220 ± 80)Υ�, (1.76)

consistent with the observed mass-to-light ratio of large clusters of galaxies,
ΥR = (210 ± 50)Υ�. (v) Given Ωm0, ΩΛ0, and Ωγ0 (eq. 1.72), the temporal
evolution of the scale factor is entirely determined by equation (1.61) (see
Figure 1.7). The age of the universe is thus found to be

t0 = (13.73 ± 0.16) Gyr, (1.77)

consistent with the ages of globular-cluster stars (§1.1.1) and radioactive
dating of the oldest stars (Cayrel et al. 2001).
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This approximate but encouraging agreement among quite different
methods of measuring the same cosmological parameters strongly suggests
that we live in a universe with a flat geometry containing three main com-
ponents: vacuum energy or some other field with a similar equation of state
(∼ 76%); non-baryonic dark matter (∼ 20%), and baryons (∼ 4%)—for a
detailed inventory see Fukugita, Hogan, & Peebles (1998) and Fukugita &
Peebles (2004).

There are unsatisfying aspects to this picture. In particular, there is
no independent experimental evidence or strong theoretical justification for
three of the central ingredients of this cosmological model: vacuum energy,
the particle(s) that comprise the non-baryonic dark matter, and the field
that drives inflation. There is also no explanation of why we happen to live
at the special epoch when the densities in matter and vacuum energy are
similar. Much work remains to be done.

Problems

1.1 [2] In principle, the density of matter in the solar neighborhood can be measured
from its effects on planetary orbits. Assume that the solar system is permeated by a
uniform medium of density 0.1M� pc−3 (Table 1.1). Estimate the rate of precession of
the perihelion of Neptune (orbital radius 4.5 × 1012 m) due to the perturbing force from
this medium, and compare your result to the minimum measurable precession, which is
≈ 0.01 arcsec yr−1. An answer to within an order of magnitude is sufficient.

1.2 [2] (a) The luminosity density j(r) of a stellar system is the luminosity per unit
volume at position r. For a transparent spherical galaxy, show that the surface brightness
I(R) (Box 2.1) and luminosity density j(r) are related by the formula

I(R) = 2

Z ∞

R
dr

rj(r)√
r2 − R2

. (1.78)

(b) What is the surface brightness of a transparent spherical galaxy with luminosity density
j(r) = j0(1 + r2/b2)−5/2 (this is the Plummer model of §2.2.2c)?
(c) Invert equation (1.78) using Abel’s formula (eq. B.72) to obtain

j(r) = − 1

π

Z ∞

r

dR√
R2 − r2

dI

dR
. (1.79)

(d) Determine numerically the luminosity density in a spherical galaxy that follows the
R1/4 surface-brightness law. Plot log10 j(r) versus log10 r/Re, where Re is the effective
radius.

1.3 [2] The strip brightness S(x) is defined so that S(x) dx is the total luminosity in a
strip of width dx that passes a distance x from the projected center of the system.

(a) Show that in a transparent, spherical system

S(x) = 2

Z ∞

x
dR

RI(R)√
R2 − x2

, (1.80)

where I(R) is the surface brightness at radius R.

(b) Show that the luminosity density and the total luminosity interior to r are related to
the strip brightness by (Plummer 1911)

j(x) = − 1

2πx

dS

dx
; L(r) = −2

Z r

0
dx x

dS

dx
. (1.81)
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1.4 [2] An axisymmetric transparent galaxy has luminosity density that is constant on
spheroids R2 + z2/q2 having axis ratio q. A distant observer located on the symmetry
axis of the galaxy sees an image with circular isophotes and central surface brightness In.
A second distant observer, observing the galaxy from a line of sight that is inclined by an
angle i to the symmetry axis, sees an image with elliptical isophotes with axis ratio Q < 1
and central surface brightness I0.

(a) What is the relation between I0, In, and Q? Hint: the answers are different for oblate
(q < 1) and prolate (q > 1) galaxies.

(b) What is the relation between q, Q, and i?

(c) Assuming that galaxies are oriented randomly, what fraction are seen from a line of
sight that lies within 10◦ of the symmetry axis? From within 10◦ of the equatorial plane?

1.5 [1] (a) Why is the estimated mass-to-light ratio of clusters of galaxies, equation (1.25),
proportional to the assumed value of the Hubble constant h7?

(b) Dark matter was discovered by Zwicky (1933), who compared the mass-to-light ratio
of the Coma cluster of galaxies (as measured by the virial theorem, §4.8.3) with the
mass-to-light ratios of the luminous parts of spiral galaxies as measured by circular-speed
curves, and concluded that there was 400 times as much dark matter as luminous matter
in the Coma cluster. However, Zwicky’s conclusion was based on a Hubble constant
H0 = 558 kms−1 Mpc−1. How would his conclusion about the ratio of dark to luminous
matter have been affected had he used the correct value of the Hubble constant, which is
smaller by a factor of eight?

1.6 [1] (a) Associated with the vacuum-energy density ρΛ is the characteristic timescale
(GρΛ)−1/2. What is its value for the cosmological parameters in equation (1.73), and
what is its physical significance?

(b) Einstein’s original formulation of general relativity included a contribution from vac-
uum energy, which he called the cosmological constant and parametrized by

Λ ≡ 8πGρΛ

c2
. (1.82)

Λ−1/2 is a characteristic length. What is its value for the cosmological parameters in
equation (1.73)?

1.7 [2] Prove that the volume of a closed FRW universe is 2π2a3(t)x3
u.

1.8 [1] Einstein proposed a static FRW universe, that is, one in which the scale factor
a(t) = a0 = constant and the Hubble constant H0 = 0.

(a) If the radiation density is negligible, prove that the matter density in this universe
equals twice the vacuum-energy density.

(b) Suppose that the scale factor is perturbed from a0 by a small amount, a(t) = a0+εa1(t)
with ε � 1. Show that a1(t) grows exponentially, so the static universe is unstable, and
derive the growth rate.

1.9 [1] Assuming a flat FRW universe with parameters given by equation (1.73) at the
present time, what is the value of the Hubble parameter in the distant future? If this is
less than its present value H0, why is the universe said to be accelerating?

1.10 [1] Suppose that some of the dark matter is composed of iron asteroids of density
ρ = 8 g cm−3 and radius r that are uniformly distributed throughout intergalactic space.
If the density in this form is Ωa = 0.01, find an approximate lower limit on r from the
condition that the universe is not opaque, i.e., that we can see distant quasars. Your
answer need be correct only to within a factor of two or so.

1.11 [2] Reproduce Figure 1.6.
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1.12 [2] Write a function to do the following task: given values of the Hubble constant
H0, the density parameters Ωm0, Ωγ0, ΩΛ0, and a specified redshift z, find the age of the
universe at that redshift. For a flat universe with parameters given by equations (1.72)
and (1.73), what is the age at redshifts z = 1000, z = 1, and z = 0?

1.13 [2] The redshift at which the densities in matter and radiation are equal is zγm. For
a flat FRW universe containing matter, radiation, and vacuum energy, with parameters
not too far from our own, prove that (a)

1 + zγm =
Ωm0

Ωγ0
= 1.18 × 104 Ωm0h

2
7 (1.83)

(hint: use eq. 1.72); (b) the age of the universe at zγm is

tγm =
2(2 −√

2)

3H0

Ω
3/2
γ0

Ω2
m0

; (1.84)

(c) the comoving horizon at zγm (eq. 1.67) is

xγm = 2(
√

2 − 1)
c

H0

Ω
1/2
γ0

Ωm0
=

32.7 Mpc

Ωm0h2
7

. (1.85)

Evaluate zγm, tγm, and xγm for the parameters of equation (1.73).

1.14 [1] The universe was opaque before decoupling at z > zd ' 1100 (eq. 1.71) because
the ionized baryonic plasma had a high optical depth to Thomson scattering. For z < zd
the electrons and protons recombined to form neutral atoms and the universe became
transparent. Somewhere between z ∼ 20 and z ∼ 6 high-energy photons from newly
formed quasars reionized most of the intergalactic medium. Why is the universe not
opaque for z ∼< 6?



2
Potential Theory

Much of the mass of a galaxy resides in stars. To compute the gravitational
potential of a large collection of stars, we should in principle simply add
the point-mass potentials of all the stars together. Of course, this is not
practicable for the ≈ 1011 stars in a typical galaxy, and for most purposes it
is sufficient to model the potential by smoothing the mass density in stars on
a scale that is small compared to the size of the galaxy, but large compared
to the mean distance between stars. In particular, in §1.2.1 we saw that we
obtain an excellent approximation to the orbit of a single star in a galaxy by
treating the star as a test particle that moves in a smooth potential of this
kind. In this chapter we show how the force field of such an idealized galaxy
can be calculated.

The chapter is divided into eight sections. We start by reviewing some
general results on potential theory, and then in §2.2 we specialize to discuss
the simplest potentials, those of spherical bodies. In §2.3 we describe flat-
tened density distributions that also have simple potentials. These special
systems give us insight into the potentials of real galaxies and provide useful
prototypes, but they are not adequate for accurate modeling. Therefore in
§2.4 and §2.5 we describe a variety of general techniques for computing the
potentials of aspherical bodies. The potentials of razor-thin disks form an
important limiting case, which we discuss in §2.6. In §2.7 we use these results
to examine the potential of the Milky Way. In §2.8 and §2.9 we describe how
gravitational potentials are found in computer simulations of stellar systems.
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The discussion in §§2.4 to 2.6 is rather mathematical, and readers who
are willing to take a few results on trust may prefer to move straight from
§2.3 to §2.7.

2.1 General results

Our goal is to calculate the force F(x) on a particle of mass ms at position
x that is generated by the gravitational attraction of a distribution of mass
ρ(x′). According to Newton’s inverse-square law of gravitation, the force
F(x) may be obtained by summing the small contributions

δF(x) = Gms
x′ − x

|x′ − x|3 δm(x′) = Gms
x′ − x

|x′ − x|3 ρ(x′) d3x′ (2.1)

to the overall force from each small element of volume d3x′ located at x′.
Thus

F(x) = msg(x) where g(x) ≡ G

∫
d3x′ x′ − x

|x′ − x|3 ρ(x′) (2.2)

is the gravitational field, the force per unit mass.
If we define the gravitational potential Φ(x) by

Φ(x) ≡ −G
∫

d3x′ ρ(x′)

|x′ − x| , (2.3)

and notice that

∇x

(
1

|x′ − x|

)
=

x′ − x

|x′ − x|3 , (2.4)

we find that we may write g as

g(x) = ∇x

∫
d3x′ Gρ(x′)

|x′ − x|
= −∇Φ,

(2.5)

where for brevity we have dropped the subscript x on the gradient operator
∇.

The potential is useful because it is a scalar field that is easier to visu-
alize than the vector gravitational field but contains the same information.
Also, in many situations the easiest way to obtain g is first to calculate the
potential and then to take its gradient.

If we take the divergence of equation (2.2), we find

∇ · g(x) = G

∫
d3x′

∇x ·
(

x′ − x

|x′ − x|3
)
ρ(x′). (2.6)
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Now

∇x ·
(

x′ − x

|x′ − x|3
)

= − 3

|x′ − x|3 +
3(x′ − x) · (x′ − x)

|x′ − x|5 . (2.7)

When x′ − x 6= 0 we may cancel the factor |x′ − x|2 from top and bottom of
the last term in this equation to conclude that

∇x ·
(

x′ − x

|x′ − x|3
)

= 0 (x′ 6= x). (2.8)

Therefore, any contribution to the integral of equation (2.6) must come from
the point x′ = x, and we may restrict the volume of integration to a small
sphere of radius h centered on this point. Since, for sufficiently small h, the
density will be almost constant through this volume, we can take ρ(x′) out
of the integral. The remaining terms of the integrand may then be arranged
as follows:

∇ · g(x) = Gρ(x)

∫

|x′−x|≤h
d3x′

∇x ·
(

x′ − x

|x′ − x|3
)

= −Gρ(x)

∫

|x′−x|≤h
d3x′

∇x′ ·
(

x′ − x

|x′ − x|3
)

= −Gρ(x)

∫

|x′−x|=h
d2S′ · (x′ − x)

|x′ − x|3 .

(2.9a)

The last step in this sequence uses the divergence theorem to convert the
volume integral into a surface integral (eq. B.43). Now on the sphere
|x′ − x| = h we have d2S′ = (x′ − x)h d2Ω, where d2Ω is a small element of
solid angle. Hence equation (2.9a) becomes

∇ · g(x) = −Gρ(x)

∫
d2Ω = −4πGρ(x). (2.9b)

If we substitute from equation (2.5) for ∇ · g, we obtain Poisson’s equation
relating the potential Φ to the density ρ;

∇2Φ = 4πGρ. (2.10)

This is a differential equation that can be solved for Φ(x) given ρ(x) and
an appropriate boundary condition.1 For an isolated system the boundary
condition is Φ → 0 as |x| → ∞. The potential given by equation (2.3)
automatically satisfies this boundary condition. Poisson’s equation provides

1 Using the physically correct boundary condition is essential: for example, if Φ(x) is a
solution, then so is Φ(x)+k ·x, with k an arbitrary constant vector, but the corresponding
gravitational fields differ by k.
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a route to Φ and then to g that is often more convenient than equations (2.2)
or (2.3). In the special case ρ = 0 Poisson’s equation becomes Laplace’s
equation,

∇2Φ = 0. (2.11)

If we integrate both sides of equation (2.10) over an arbitrary volume
containing total mass M , and then apply the divergence theorem (eq. B.43),
we obtain

4πGM = 4πG

∫
d3x ρ =

∫
d3x∇2Φ =

∫
d2S · ∇Φ. (2.12)

This result is Gauss’s theorem, which states that the integral of the nor-
mal component of ∇Φ over any closed surface equals 4πG times the mass
contained within that surface.

Since g is determined by the gradient of a potential, the gravitational
field is conservative, that is, the work done against gravitational forces in
moving two stars from infinity to a given configuration is independent of
the path along which they are moved, and is defined to be the potential
energy of the configuration (Appendix D.1). Similarly, the work done against
gravitational forces in assembling an arbitrary continuous distribution of
mass ρ(x) is independent of the details of how the mass distribution was
assembled, and is defined to be equal to the potential energy of the mass
distribution. An expression for the potential energy can be obtained by the
following argument.

Suppose that some of the mass is already in place so that the density
and potential are ρ(x) and Φ(x). If we now bring in a additional small mass
δm from infinity to position x, the work done is δmΦ(x). Thus, if we add a
small increment of density δρ(x), the change in potential energy is

δW =

∫
d3x δρ(x)Φ(x). (2.13)

According to Poisson’s equation the resulting change in potential δΦ(x) sat-
isfies ∇2(δΦ) = 4πG(δρ), so

δW =
1

4πG

∫
d3x Φ∇2(δΦ) . (2.14)

Using the divergence theorem in the form (B.45), we may write this as

δW =
1

4πG

∫
Φ∇(δΦ) · d2S− 1

4πG

∫
d3x∇Φ · ∇(δΦ), (2.15)

where the surface integral vanishes because Φ ∝ r−1, |∇δΦ| ∝ r−2 as r → ∞,
so the integrand ∝ r−3 while the total surface area ∝ r2. But ∇Φ ·∇(δΦ) =
1
2δ(∇Φ · ∇Φ) = 1

2δ|(∇Φ)|2. Hence

δW = − 1

8πG
δ

(∫
d3x |∇Φ|2

)
. (2.16)
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If we now sum up all of the contributions δW , we have a simple expression
for the potential energy,

W = − 1

8πG

∫
d3x |∇Φ|2. (2.17)

To obtain an alternative expression for W , we again apply the divergence
theorem and replace ∇2Φ by 4πGρ to obtain

W = 1
2

∫
d3x ρ(x)Φ(x). (2.18)

The potential-energy tensor In §4.8.3 we shall encounter the tensor
W that is defined by

Wjk ≡ −
∫

d3x ρ(x)xj
∂Φ

∂xk
, (2.19)

where ρ and Φ are the density and potential of some body, and the integral
is to be taken over all space. We now deduce some useful properties of W,
which is known as the Chandrasekhar potential-energy tensor.2

If we substitute for Φ from equation (2.3), W becomes

Wjk = G

∫
d3x ρ(x)xj

∂

∂xk

∫
d3x′ ρ(x′)

|x′ − x| . (2.20)

Since the range of the integration over x′ does not depend on x, we may
carry the differentiation inside the integral to find

Wjk = G

∫
d3x

∫
d3x′ ρ(x)ρ(x′)

xj(x
′
k − xk)

|x′ − x|3 . (2.21a)

Furthermore, since x and x′ are dummy variables of integration, we may
relabel them and write

Wjk = G

∫
d3x′

∫
d3x ρ(x′)ρ(x)

x′j(xk − x′k)

|x − x′|3 (2.21b)

Finally, on interchanging the order of integration in equation (2.21b) and
adding the result to equation (2.21a), we obtain

Wjk = − 1
2G

∫
d3x

∫
d3x′ ρ(x)ρ(x′)

(x′j − xj)(x
′
k − xk)

|x′ − x|3 . (2.22)

2 Subramanyan Chandrasekhar (1910–1995) was educated in India and England and
spent most of his career at the University of Chicago. He discovered the Chandrasekhar
limit, the maximum mass of a white dwarf star, and elucidated the concept of dynam-
ical friction in astrophysics (§8.1). He shared the 1983 Nobel Prize in Physics with
W. A. Fowler.
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Figure 2.1 Proof of Newton’s first theorem.

From this expression we draw the important inference that the tensor W is
symmetric, that is, that Wjk = Wkj . If the body is flattened along some
axis, say the x3 axis, W33 will be smaller than the other components because
for most pairs of matter elements, |x3 − x′3| < |x1 − x′1| or |x2 − x′2|.

When we take the trace of both sides of equation (2.22), we find

trace(W) ≡
3∑

j=1

Wjj = − 1
2G

∫
d3x ρ(x)

∫
d3x′ ρ(x′)

|x′ − x|

= 1
2

∫
d3x ρ(x)Φ(x).

(2.23)

Comparing this with equation (2.18) we see that trace(W) is simply the total
gravitational potential energy W . Taking the trace of (2.19) we have

W = −
∫

d3x ρx · ∇Φ, (2.24)

which provides another useful expression for the potential energy of a body.

2.2 Spherical systems

2.2.1 Newton’s theorems

Newton proved two results that enable us to calculate the gravitational po-
tential of any spherically symmetric distribution of matter easily:

Newton’s first theorem A body that is inside a spherical shell of matter
experiences no net gravitational force from that shell.

Newton’s second theorem The gravitational force on a body that lies
outside a spherical shell of matter is the same as it would be if all the shell’s
matter were concentrated into a point at its center.
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Figure 2.2 Proof of Newton’s second theorem.

Figure 2.1 illustrates the proof of Newton’s first theorem. Consider the
cone associated with a small solid angle δΩ centered on the point r. This
cone intersects the spherical shell of matter at two points, at distances r1 and
r2 from r. Elementary geometrical considerations assure us that the angles
θ1 and θ2 are equal, and therefore that the masses δm1 and δm2 contained
within δΩ where it intersects the shell are in the ratio δm1/δm2 = (r1/r2)2.
Hence δm2/r

2
2 = δm1/r

2
1 and a particle placed at r is attracted equally in

opposite directions. Summing over all cones centered on r, one concludes
that the body at r experiences no net force from the shell./

An important corollary of Newton’s first theorem is that the gravita-
tional potential inside an empty spherical shell is constant because ∇Φ =
−g = 0. Thus we may evaluate the potential Φ(r) inside the shell by calcu-
lating the integral expression (2.3) for r located at any interior point. The
most convenient place for r is the center of the shell, for then all points on
the shell are at the same distance R, and one immediately has

Φ = −GM
R

. (2.25)

The proof of his second theorem eluded Newton for more than ten years.
Yet with hindsight it is easy. The trick (Figure 2.2) is to compare the poten-
tial Φ at a point p located a distance r from the center of a spherical inner
shell of mass M and radius a (r > a), with the potential Φ′ at a point p′

located a distance a from the center of an outer shell of mass M and radius
r. Consider the contribution δΦ to the potential at p from the portion of
the inner shell with solid angle δΩ located at q′. Evidently

δΦ = − GM

|p− q′|
δΩ

4π
. (2.26a)

But the contribution δΦ′ of the matter in the outer shell near q to the
potential at p′ is

δΦ′ = − GM

|p′ − q|
δΩ

4π
. (2.26b)
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Finally, as |p− q′| = |p′ − q| by symmetry, it follows that δΦ = δΦ′, and
then by summation over all points q and q′ that Φ = Φ′. But we already
know that Φ′ = −GM/r, therefore Φ = −GM/r, which is exactly the poten-
tial that would be generated by concentrating the entire mass of the inner
shell at its center./

Alternative proofs of Newton’s theorems, using the machinery of spher-
ical harmonics, are given in §2.4.

From Newton’s first and second theorems, it follows that the gravita-
tional attraction of a spherical density distribution ρ(r′) on a unit mass at
radius r is entirely determined by the mass interior to r:

F(r) = −GM(r)

r2
êr, (2.27a)

where

M(r) = 4π

∫ r

0

dr′ r′2ρ(r′). (2.27b)

The total gravitational potential may be considered to be the sum of the
potentials of spherical shells of mass dM(r) = 4πρ(r)r2dr, so we may cal-
culate the gravitational potential at r generated by an arbitrary spherically
symmetric density distribution ρ(r′) by adding the contributions to the po-
tential produced by shells (i) with r′ < r, and (ii) with r′ > r. In this way
we obtain

Φ(r) = −G
r

∫ r

0

dM(r′) −G

∫ ∞

r

dM(r′)

r′

= −4πG

[
1

r

∫ r

0

dr′ r′2ρ(r′) +

∫ ∞

r

dr′ r′ρ(r′)

]
.

(2.28)

It is worthwhile to check that the force F = −∇Φ obtained from (2.28)
recovers the simple expression (2.27a).

An important property of a spherical matter distribution is its circular
speed vc(r), defined to be the speed of a particle of negligible mass (a
test particle) in a circular orbit at radius r. We may readily evaluate vc

by equating the gravitational attraction |F| from equation (2.27a) to the
centripetal acceleration v2

c/r:

v2
c = r|F| = r

dΦ

dr
=
GM(r)

r
. (2.29)

The associated angular frequency is called the circular frequency

Ω ≡ vc

r
=

√
GM(r)

r3
. (2.30)
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The circular speed and frequency measure the mass interior to r. Another
important quantity is the escape speed ve defined by3

ve(r) ≡
√

2|Φ(r)|. (2.31)

A star at r can escape from the gravitational field represented by Φ only if it
has a speed at least as great as ve(r), for only then does its (positive) kinetic
energy 1

2v
2 exceed the absolute value of its (negative) potential energy Φ.

The escape speed at r depends on the mass both inside and outside r.

Potential energy of spherical systems The simplest expression for
the potential energy of a spherical body is obtained from equation (2.24).
Substituting equation (2.27a) and integrating over all directions of r, we
obtain

W = −4πG

∫ ∞

0

dr rρ(r)M(r). (2.32)

It is straightforward to show (see Problem 2.2) that the potential-energy
tensor of a spherical body is diagonal, that is, Wjk = 0 for j 6= k, and has
the form

Wjk = 1
3Wδjk , (2.33)

where δij is unity if i = j and zero otherwise. Such tensors are said to be
isotropic.

2.2.2 Potentials of some simple systems

It is instructive to discuss the potentials generated by several simple density
distributions:

(a) Point mass In this case

Φ(r) = −GM
r

; vc(r) =

√
GM

r
; ve(r) =

√
2GM

r
. (2.34)

Potentials of this form, and orbits within them, are frequently referred to
as Keplerian because Kepler first understood that vc ∝ r−1/2 in the solar
system.

(b) Homogeneous sphere If the density is some constant ρ, we have
M(r) = 4

3πr
3ρ and

vc =

√
4πGρ

3
r. (2.35)

3 This result is correct only if the potential Φ(r) → 0 as r → ∞—we have assumed
this so far but for systems with very extended mass distributions other zero points may
be necessary (cf. eq. 2.62).
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Thus in this case the circular speed rises linearly with radius, and the orbital
period of a mass on a circular orbit is

T =
2πr

vc
=

√
3π

Gρ
, (2.36)

independent of the radius of its orbit. The inverse of the angular frequency
of a circular orbit is

r

vc
=

√
3

4πGρ
= 0.4886(Gρ)−1/2. (2.37)

If a small mass is released from rest at radius r in the gravitational field of
a homogeneous sphere, its equation of motion is

d2r

dt2
= −GM(r)

r2
= −4πGρ

3
r, (2.38)

which is the equation of motion of a harmonic oscillator of angular frequency
2π/T . Therefore no matter what is the initial value of r, the test mass will
reach r = 0 in a quarter of a period, or in a time

√
3π

16Gρ
= 0.767(Gρ)−1/2. (2.39)

The times in equations (2.37) and (2.39) are rather similar, and this suggests
that the time taken for a particle to complete a significant fraction of its orbit
is ∼ (Gρ)−1/2, independent of the size and shape of the orbit. This result
also holds for inhomogeneous systems, so long as ρ is replaced by the mean
density ρ interior to the particle’s current radius. Thus we estimate the
crossing time (sometimes also called the dynamical time) to be

tcross ' tdyn ' (Gρ)−1/2 (2.40)

and shall use this as a measure of the characteristic time associated with the
orbital motion of a star. Note that a complete orbital period is larger than
tcross by a factor ' 2π ' 6.

The potential energy of a homogeneous sphere of radius a and density ρ
is conveniently obtained from equation (2.32). We have M(r) = 4

3πρr
3, and

therefore

W = −16π2

3
Gρ2

∫ a

0

dr r4 = − 16
15π

2Gρ2a5 = − 3
5

GM2

a
. (2.41)

Sometimes it is useful to characterize the size of a system that lacks a
sharp boundary by quoting the gravitational radius, which is defined as

rg ≡ GM2

|W | . (2.42)
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For a homogeneous sphere of radius a, rg = 5
3a.

From equation (2.28) the gravitational potential of a homogeneous sphere
of radius a is

Φ(r) =





−2πGρ(a2 − 1
3r

2) (r < a),

−4πGρa3

3r
(r > a).

(2.43)

(c) Plummer model We might expect that in many spherical systems
the density is roughly constant near the center, and falls to zero at large
radii. The potential of a system of this type would be proportional to r2 +
constant at small radii and to r−1 at large radii. A simple potential with
these properties is the Plummer model

Φ = − GM√
r2 + b2

. (2.44a)

The linear scale of the system that generates this potential is set by the
Plummer scale length b, while M is the system’s total mass.

From equation (B.53) for ∇2 in spherical polar coordinates we have

∇2Φ =
1

r2

d

dr

(
r2 dΦ

dr

)
=

3GMb2

(r2 + b2)5/2
. (2.45)

Thus from Poisson’s equation (2.10) we have that the density corresponding
to the potential (2.44a) is

ρ(r) =
3M

4πb3

(
1 +

r2

b2

)−5/2

. (2.44b)

The potential energy of a Plummer model is

W = −3πGM2

32b
. (2.46)

Plummer (1911) used the potential-density pair that is described by
equations (2.44) to fit observations of globular clusters. We shall encounter
it again in §4.3.3a as a member of the family of stellar systems known as
polytropes.

(d) Isochrone potential The position of a star orbiting in a Plummer
potential cannot be given in terms of elementary functions. However, in
Chapter 3 we shall see that all orbits are analytic in the isochrone potential

Φ(r) = − GM

b+
√
b2 + r2

, (2.47)
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Figure 2.3 Projection of a spherical
body along the line of sight.

which owes its name to a property of its orbits that we shall derive in §3.1c.
By equation (2.29) we have for the circular speed at radius r

v2
c (r) =

GMr2

(b+ a)2a
, (2.48a)

where
a ≡

√
b2 + r2. (2.48b)

When r is large vc '
√
GM/r, as required for a system of finite mass and

extent. By Poisson’s equation the density associated with the isochrone
potential is

ρ(r) =
1

4πG

1

r2

d

dr

(
r2 dΦ

dr

)
= M

[
3(b+ a)a2 − r2(b+ 3a)

4π(b+ a)3a3

]
. (2.49)

Thus the central density is

ρ(0) =
3M

16πb3
, (2.50)

and at large radii the density tends to

ρ(r) ' bM

2πr4
(r � b). (2.51)

(e) Modified Hubble model The surface brightnesses of many elliptical
galaxies may be approximated over a large range of radii by the Hubble–
Reynolds law

IH(R) =
I0

(1 +R/RH)2
, (2.52)

or the R1/4 law (eq. 1.17 with m = 4). It is possible to solve for the spher-
ical luminosity density j(r) that generates a given axisymmetric brightness
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Box 2.1: Definitions of surface brightness

Two definitions of surface brightness are used in the astronomical liter-
ature. Consider the radiative power that enters a telescope of aperture
dA at normal incidence from directions in the element of solid angle d2Ω
due to the distribution of luminosity density j(r). We take the coordi-
nate origin to lie at the center of the telescope aperture. Then in the
distance range (r, r+dr) the volume that lies within the given solid-angle
element is r2dr d2Ω, and the associated luminosity is dL = j(r)r2dr d2Ω.
A fraction dA/(4πr2) of this luminosity enters the telescope, so the power
received in the given solid-angle element from the given distance range
is (4π)−1j(r)dr d2Ω dA. Summing over all distances and dividing by
d2Ω dA we find that the flux per unit solid angle is

Î =
1

4π

∫
dr j(r).

The surface brightness Î might be reported in units of W m−2 sr−1.
The second definition of surface brightness is the integral

I =

∫
dr j(r).

I is the galaxy’s luminosity per unit area when viewed from the given
direction, and is conveniently given in units of solar luminosities per
square parsec. Surface brightnesses are often reported by observers as
so many magnitudes per square arcsecond, for example 20 mag arcsec−2,
meaning that in one square arcsecond of the image as much radiation
is received as from a 20th magnitude star. In this book we follow the
second convention and call I the “surface brightness.”

distribution I(R) (see Problem 1.2). However, the resulting formulae for the
luminosity distribution of a galaxy that obeys either of these empirical laws
are cumbersome (Hubble 1930). Fortunately, the simple luminosity density

jh(r) = j0

(
1 +

r2

a2

)−3/2

, (2.53)

where a is a constant, gives rise to a surface-brightness distribution that is
similar to IH (Rood et al. 1972). In fact, in the notation of Figure 2.3 we
have that

Ih(R) = 2

∫ ∞

0

dz jh(r) = 2j0

∫ ∞

0

dz

(
1 +

R2

a2
+
z2

a2

)−3/2

. (2.54)
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Figure 2.4 Circular speed versus
radius for a body whose projected
density follows the modified Hubble
model (2.55). The circular speed vc
is plotted in units of

p
Gj0Υa2.

Using the substitution y ≡ z/
√
a2 +R2, we obtain the modified Hubble

model

Ih(R) =
2j0a

1 +R2/a2

∫ ∞

0

dy

(1 + y2)3/2
=

2j0a

1 +R2/a2
. (2.55)

Thus Ih(a) = 1
2Ih(0), so a is the core radius as defined on page 30. At large

R, Ih(R) ∝ R−2, just as in the Hubble–Reynolds law (2.52). However, the
Hubble–Reynolds law and the modified Hubble model behave quite differ-
ently near the center: while the luminosity density jh is well behaved at the
origin, in the Hubble–Reynolds law, dIH/dR 6= 0 at R = 0, which implies
that the luminosity density jH(r) diverges as r → 0 (Hubble 1930).

Using equation (2.28) we can calculate the potential that would be gen-
erated by the modified Hubble model if its mass were distributed in the same
way as its light. If ρ(r) = Υj(r), where Υ is the constant mass-to-light ratio
in the galaxy, one has

Mh(r) = 4πa3Υj0

[
ln

(
r

a
+

√
1 +

r2

a2

)
− r

a

(
1 +

r2

a2

)−1/2]
, (2.56)

Φh = −GMh(r)

r
− 4πGΥj0a

2

√
1 + (r/a)2

. (2.57)

One feature of both the Hubble–Reynolds law and the modified Hubble model
is that the mass diverges logarithmically at large r; from equation (2.56)
Mh ' 4πa3Υj0 [ln(2r/a) − 1] for r � a. In practice, a galaxy must have a
finite mass, so j(r) must fall below jh(r) at sufficiently large r. Nevertheless,
the potential Φh is finite, and in fact rather nearly equal to −GMh(r)/r
whenever r � a. This behavior indicates that from the gravitational point
of view the density distribution of equation (2.53) behaves much like a point
mass at large radii. The circular speed is shown in Figure 2.4. It peaks at
r = 2.9a and then falls nearly as steeply as in the Keplerian case.

(f) Power-law density model Many galaxies have luminosity profiles
that approximate a power law over a large range in radius. Consider the
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structure of a system in which the mass density drops off as some power of
the radius:

ρ(r) = ρ0

(r0
r

)α
. (2.58)

The surface density of this system is

Σ(R) =
ρ0r

α
0

Rα−1

(− 1
2 )!(α−3

2 )!

(α−2
2 )!

. (2.59)

We assume that α < 3, since only in this case is the mass interior to r finite,
namely

M(r) =
4πρ0r

α
0

3 − α
r3−α. (2.60)

From equations (2.60) and (2.29) the circular speed is given by

v2
c (r) =

4πGρ0r
α
0

3 − α
r2−α. (2.61)

In Chapter 1 we saw that the circular-speed curves of many galaxies are
remarkably flat. Equation (2.61) suggests that the mass density in these
galaxies is proportional to r−2, corresponding to α = 2. In §4.3.3(b) we shall
find that this is the density profile characteristic of a stellar-dynamical model
called the “singular isothermal sphere.”

The potential difference between radius r and the reference radius r0 is

Φ(r) − Φ(r0) = G

∫ r

r0

dr′
M(r′)

r′2
=

4πGρ0r
α
0

3 − α

∫ r

r0

dr′ r′(1−α)

=




v2

c (r0) − v2
c (r)

α− 2
for α 6= 2

v2
c ln(r/r0) for α = 2

(2.62)

Equation (2.60) shows that M(r) diverges at large r for all α < 3. However,
such models are still useful because by Newton’s first theorem, the mass
exterior to any radius r does not affect the dynamics interior to r. For
3 > α > 2, v2

c (r) decreases with increasing r (eq. 2.61), so by (2.62) there is
only a finite potential difference between radius r and infinity. In fact, the
escape speed ve(r) from radius r is given by

v2
e (r) = 2[Φ(∞) − Φ(r)] = 2

v2
c (r)

α− 2
(α > 2). (2.63)

For α < 2, Φ(r) grows without limit as r → ∞, so the interpretation of
Φ as the energy per unit mass required to remove a particle to infinity is
no longer valid. The potential is nevertheless a useful concept because the
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gravitational field is given by g = −∇Φ. Since the light distributions of
elliptical galaxies suggest α ' 3 at large r (see eq. 2.53), while the flatness
of the circular-speed curves in spiral galaxies suggest α ' 2, it is clear that
the escape speeds of galaxies are very uncertain.

(g) Two-power density models The luminosity density of many el-
liptical galaxies can be approximated as a power law in radius at both the
largest and smallest observable radii, with a smooth transition between these
power laws at intermediate radii (BM §4.3.1). Numerical simulations of the
clustering of dark-matter particles suggest that the mass density within a
dark halo has a similar structure (§9.3). For these reasons much attention
has been devoted to models in which the density is given by

ρ(r) =
ρ0

(r/a)α(1 + r/a)β−α
. (2.64)

With β = 4 these models have particularly simple analytic properties, and
are known as Dehnen models (BM eq. 4.15; Dehnen 1993; Tremaine et
al. 1994). BM Table 4.5 gives formulae for the projected surface density of
Dehnen models for the cases α = 0, 1, 3

2 , and 2. The model with α = 1
and β = 4 is called a Hernquist model (Hernquist 1990), while that with
α = 2 and β = 4 is called a Jaffe model (Jaffe 1983). Dehnen models with
α in the range (0.6, 2) provide reasonable models of the centers of elliptical
galaxies (BM §4.3.1).

Dark halos can be modeled by equation (2.64) with β ' 3 and α in the
range (1, 1.5). The model with (α, β) = (1, 3) is called the NFW model
after Navarro, Frenk, & White (1995). The NFW formula contains two
free parameters: ρ0 and a. Navarro, Frenk, & White (1996) showed that
the values taken by these parameters for the halos that formed in their
simulations were strongly correlated, so the halos were essentially members of
a one-parameter family. The conventional choice of parameter is the distance
r200 from the center of the halo at which the mean density is 200 times
the cosmological critical density, ρc (eq. 1.52).4 A more physical choice of
parameter is the mass interior to r200, which is M = 200ρc

4
3πr

3
200. The

concentration of the halo is c ≡ r200/a. The central result of Navarro,
Frenk, & White (1996) is that at a given value of M (and therefore r200),
halos show a relatively small scatter in c. The mean value of c falls from ' 16
to ' 6 as the halo mass increases from ∼ 3 × 1011 M� to ∼ 3 × 1015 M�.

According to (2.64) the mass interior to radius r is

M(r) = 4πρ0a
3

∫ r/a

0

ds
s2−α

(1 + s)β−α
. (2.65)

4 In §9.2.1 we shall show that r200 approximately divides the interior region in which
material has crossed the halo at least once from the exterior one in which matter is still
falling in to the halo for the first time.
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Figure 2.5 Circular speed versus
radius for the Jaffe, Hernquist, and
NFW models.

This integral is readily evaluated for integer values of α, β. For the important
cases of the Jaffe, Hernquist, and NFW models, we have

M(r) = 4πρ0a
3 ×





r/a

1 + r/a
for a Jaffe model

(r/a)2

2(1 + r/a)2
for a Hernquist model

ln(1 + r/a) − r/a

1 + r/a
for a NFW model.

(2.66)

In the Jaffe and Hernquist models the mass asymptotes to a finite value as
r → ∞, while in the NFW model the mass diverges logarithmically with r.
The circular speed in each model, which follows immediately from (2.66) and
(2.29), is plotted in Figure 2.5. From equation (2.29) the potentials of the
three models are

Φ = −G
∫ ∞

r

dr
M(r)

r2

= −4πGρ0a
2 ×





ln (1 + a/r) for a Jaffe model
1

2(1 + r/a)
for a Hernquist model

ln(1 + r/a)

r/a
for a NFW model.

(2.67)

From these formulae and equations (2.32) and (2.42) it is straightforward to
show that the Jaffe and Hernquist models have gravitational radii rg = 2a
and 6a, respectively, while for the NFW model rg is undefined.
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Figure 2.6 At the point (R,−|z|) below
Kuzmin’s disk, the potential is identical with
that of a point mass located distance a above
the disk’s center.

2.3 Potential-density pairs for flattened systems

Later in this chapter we will show how to obtain the gravitational potentials
of systems of arbitrary shape. However, we shall find that the calculation
of the gravitational potential and field generated by a given distribution of
matter is often an arduous task that leads to cumbersome formulae involving
special functions, or numerical calculations. Fortunately, for many purposes
it suffices to represent a galaxy by a simple model that has the same gross
structure as the galaxy. In this section we describe families of potentials that
are generated by fairly simple and realistic axisymmetric density distribu-
tions. These potentials help us to understand how the gravitational potential
of an initially spherical body is affected by flattening, and in later chapters
we shall use several of these potentials to illustrate features of dynamics in
axisymmetric galaxies.

2.3.1 Kuzmin models and generalizations

Consider the axisymmetric potential

ΦK(R, z) = − GM√
R2 + (a+ |z|)2

(a ≥ 0). (2.68a)

As Figure 2.6 indicates, at points with z < 0, ΦK is identical with the
potential of a point mass M located at the point (R, z) = (0, a); and when
z > 0, ΦK coincides with the potential generated by a point mass at (0,−a).
Hence ∇2ΦK must vanish everywhere except on the plane z = 0. By applying
Gauss’s theorem (2.12) to a flat volume that contains a small portion of the
plane z = 0, we conclude that ΦK is generated by the surface density

ΣK(R) =
aM

2π(R2 + a2)3/2
. (2.68b)

The potential-density pair of equations (2.68) was introduced by Kuzmin
(1956), but it is often referred to as “Toomre’s model 1” because it became
widely known in the West only after Toomre (1963) unknowingly re-derived
it.
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Consider next the potential

ΦM(R, z) = − GM√
R2 + (a+

√
z2 + b2 )2

. (2.69a)

When a = 0, ΦM reduces to Plummer’s spherical potential (2.44a), and when
b = 0, ΦM reduces to Kuzmin’s potential of a razor-thin disk (2.68a). Thus,
depending on the choice of the two parameters a and b, ΦM can represent the
potential of anything from an infinitesimally thin disk to a spherical system.
If we calculate ∇2ΦM, we find that the mass distribution with which it is
associated is (Miyamoto & Nagai 1975)

ρM(R, z) =

(
b2M

4π

)
aR2 + (a+ 3

√
z2 + b2 )(a+

√
z2 + b2 )2

[
R2 + (a+

√
z2 + b2 )2

]5/2
(z2 + b2)3/2

. (2.69b)

In Figure 2.7 we show contour plots of ρM(R, z) for various values of b/a.
When b/a ' 0.2, these are qualitatively similar to the light distributions of
disk galaxies, although there are quantitative differences. For example, from
equation (2.69b) we have that ρ(R, 0) ∝ R−3 when R is large, whereas the
brightness profiles of disks fall off at least as fast as exp(−R/Rd) (eq. 1.7).

Since Poisson’s equation is linear in Φ and ρ, the difference between any
two potential-density pairs is itself a potential-density pair. Therefore, if we
differentiate a potential-density pair with respect to one of its parameters,
we obtain a new potential-density pair. For example, Toomre (1963) derived
a family of potential-density pairs by differentiating ΦK(R, z)/a n times with
respect to a2. Similarly, Satoh (1980) obtained a series of spherical potential-
density pairs by differentiating b−2 times the Plummer potential and density
(eq. 2.44) n times with respect to b2. He flattened these potentials by re-
placing r2 + b2 with R2 + (a+

√
z2 + b2 )2, and in the limit n→ ∞ obtained

ΦS(R, z) = −GM
S

, (2.70a)

where
S2 ≡ R2 + z2 + a

(
a+ 2

√
z2 + b2

)
. (2.70c)

The corresponding density distribution follows from Poisson’s equation:

ρS(R, z) =
ab2M

4πS3(z2 + b2)

[
1√

z2 + b2
+

3

a

(
1 − R2 + z2

S2

)]
. (2.70b)

Figure 2.8 shows that at large b/a the isodensity surfaces ΦS are more nearly
elliptical than those of ΦM.
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Figure 2.7 Contours of equal density in the (R, z) plane for the Miyamoto–Nagai density
distribution (2.69b) when: b/a = 0.2 (top); b/a = 1 (middle); b/a = 5 (bottom). There
are two contours per decade, and the highest contour levels are 0.3M/a3 (top), 0.03M/a3

(middle), and 0.001M/a3 (bottom).

2.3.2 Logarithmic potentials

Since the Kuzmin and other models in the previous subsection all have finite
mass, the circular speed associated with these potentials falls off in Keplerian
fashion, vc ∝ R−1/2, at large R. However, in Chapter 1 it was shown that
the circular-speed curves of spiral galaxies tend to be flat at large radii.
If at large R, vc = v0, a constant, then dΦ/dR = v2

0/R, and hence Φ ∝
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Figure 2.8 Contours of equal density in the (R, z) plane for Satoh’s density distribution
(2.70c) when: b/a = 1 (top); b/a = 10 (bottom). There are two contours per decade, and
the highest contour levels are 0.1M/a3 (top), and 0.001M/a3 (bottom).

v2
0 lnR+ constant in this region. Therefore, consider the potential

ΦL = 1
2v

2
0 ln

(
R2

c +R2 +
z2

q2
Φ

)
+ constant, (2.71a)

where Rc and v0 are constants, and qΦ is the axis ratio of the equipotential
surfaces. The circular speed at radius R in the equatorial plane of ΦL is

vc =
v0R√
R2

c +R2
. (2.71b)

The density distribution to which ΦL corresponds is

ρL(R, z) =
v2

0

4πGq2
Φ

(2q2
Φ + 1)R2

c +R2 + (2 − q−2
Φ )z2

(R2
c +R2 + z2q−2

Φ )2
. (2.71c)
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Figure 2.9 Contours of equal density in the (R, z) plane for ρL (eq. 2.71c) when qΦ = 0.95
(top), qΦ = 0.7 (bottom). There are two contours per decade and the highest contour
level is 0.1v20/(GR

2
c ). When qΦ = 0.7 the models are unphysical because the density is

negative near the z axis for |z| ∼> 7Rc.

At small R and z, ρL tends to a constant value, and when R or |z| is large,
ρL falls off as R−2 or z−2.

The equipotential surfaces of ΦL are spheroids5 of axial ratio qΦ, but
Figure 2.9 shows that the equidensity surfaces are rather flatter and can
deviate strongly from spheroids. In fact, if we define the axial ratio qρ of the
isodensity surfaces by the ratio zm/Rm of the distances down the z and R
axes at which a given isodensity surface cuts the z axis and the x or y axis,
we find

q2
ρ ' 1 + 4q2

Φ

2 + 3/q2
Φ

(r � Rc) (2.72a)

5 A spheroid is the surface generated by rotating an ellipse about one of its principal
axes. An oblate, or flattened, spheroid is generated if the axis of rotation is the minor
axis, and a prolate, or elongated, spheroid is generated if this axis is the major axis.
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or

q2
ρ ' q4

Φ

(
2 − 1

q2
Φ

)
(r � Rc). (2.72b)

Outside the core, the flattening 1− qΦ of the potential is only about a third
that of the density distribution: 1− qΦ ' 1

3 (1− qρ). The density ρL becomes
negative on the z axis when qΦ < 1/

√
2 = 0.707.

2.3.3 Poisson’s equation in very flattened systems

In any axisymmetric system with density ρ(R, z), Poisson’s equation can be
written (eq. B.52)

∂2Φ

∂z2
= 4πGρ(R, z) +

1

R

∂

∂R
(RFR) , (2.73)

where FR = −∂Φ/∂R is the radial force. Now consider, for example, the
Miyamoto–Nagai potential-density pair given by equations (2.69). As the
parameter b→ 0, the density distribution becomes more and more flattened,
and at fixed R the density in the plane z = 0 becomes larger and larger as
b−1. However, the radial force FR remains well behaved as b → 0; indeed,
in the limit b = 0, FR = −∂ΦK/∂R, where ΦK(R, z) is simply the Kuzmin
potential (2.68a). Thus, near z = 0 the first term on the right side of equation
(2.73) becomes very large compared to the second, and Poisson’s equation
simplifies to the form

∂2Φ(R, z)

∂z2
= 4πGρ(R, z). (2.74)

This result applies to almost any thin disk system. It implies that the vertical
variation of the potential at a given radius R depends only on the density dis-
tribution at that radius. Effectively, this means that the solution of Poisson’s
equation in a thin disk can be decomposed into two steps: (i) Approximate
the thin disk as a surface density layer of zero thickness and determine the
potential in the plane of the disk Φ(R, 0) using the models of this section
or the more general techniques of §2.6. (ii) At each radius R solve equation
(2.74) to find the vertical variation of Φ(R, z).

Thus we have
Φ(R, z) = Φ(R, 0) + Φz(R, z) (2.75a)

where

Φz(R, z) ≡ 4πG

∫ z

0

dz′
∫ z′

0

dz′′ρ(R, z′′) + a(R)z. (2.75b)

The constant of integration, a, is zero if the disk is symmetric around the
equatorial plane.
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2.4 Multipole expansion

In the last section we encountered a number of axisymmetric density distri-
butions that give rise to potentials of known form. By adding a few of these
distributions together one can obtain quite a wide range of model galaxies
that have readily available potentials. However, for many purposes one re-
quires a systematic procedure for calculating the potential of an arbitrary
density distribution to whatever accuracy one pleases. The next few sections
are devoted to this task.

The first such technique, based on spherical harmonics, works best for
systems that are neither very flattened nor very elongated. Hence it is a
good method for calculating the potentials of bulges and dark-matter halos
(§§1.1.2 and 1.1.3).

Our first step is to obtain the potential of a thin spherical shell of variable
surface density. Since the shell has negligible thickness, the task of solving
Poisson’s equation ∇2Φ = 4πGρ reduces to that of solving Laplace’s equation
∇2Φ = 0 inside and outside the shell, subject to suitable boundary conditions
at infinity, at the origin, and on the shell. Now in spherical coordinates
Laplace’s equation is (eq. B.53)

1

r2

∂

∂r

(
r2 ∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂φ2
= 0. (2.76)

This may be solved by the method of separation of variables. We seek
special solutions that are the product of functions of one variable only:

Φ(r, θ, φ) = R(r)P (θ)Q(φ). (2.77a)

Substituting equation (2.77a) into (2.76) and rearranging, we obtain

sin2 θ

R

d

dr

(
r2 dR

dr

)
+

sin θ

P

d

dθ

(
sin θ

dP

dθ

)
= − 1

Q

d2Q

dφ2
. (2.77b)

The left side of this equation does not depend on φ, and the right side does
not depend on r or θ. It follows that both sides are equal to some constant,
say m2. Hence

− 1

Q

d2Q

dφ2
= m2, (2.78a)

sin2 θ

R

d

dr

(
r2 dR

dr

)
+

sin θ

P

d

dθ

(
sin θ

dP

dθ

)
= m2. (2.78b)

Equation (2.78a) may be immediately integrated to

Q(φ) = Q+
meimφ +Q−

me−imφ. (2.79a)
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We require Φ to be a periodic function of φ with period 2π, som can take only
integer values. Since equations (2.78) depend only on m2, we could restrict
our attention to non-negative values ofm without loss of generality. However,
a simpler convention is to allow m to take both positive and negative values,
so the second exponential in equation (2.79a) becomes redundant, and we
may write simply

Q = Qmeimφ (m = . . . ,−1, 0, 1, . . .). (2.79b)

Equation (2.78b) can be written

1

R

d

dr

(
r2 dR

dr

)
=

m2

sin2 θ
− 1

P sin θ

d

dθ

(
sin θ

dP

dθ

)
. (2.80)

Since the left side of this equation does not depend on θ and the right side
does not depend on r, both sides must equal some constant, which we write
as l(l+ 1). Thus equation (2.80) implies

d

dr

(
r2 dR

dr

)
− l(l + 1)R = 0, (2.81a)

and in terms of x ≡ cos θ,

d

dx

[
(1 − x2)

dP

dx

]
− m2

1 − x2
P + l(l + 1)P = 0. (2.81b)

Two linearly independent solutions of equation (2.81a) are

R(r) = Arl and R(r) = Br−(l+1). (2.82)

The solutions of equation (2.81b) are associated Legendre functions
Pml (x) (see Appendix C.5). Physically acceptable solutions exist only when
l is an integer. Without loss of generality we can take l to be non-negative,
and then physically acceptable solutions exist only for |m| ≤ l. When m = 0
the solutions are simply polynomials in x, called Legendre polynomials Pl(x).

Rather than write out the product Pml (cos θ)eimφ again and again,
it is helpful to define the spherical harmonic Ym

l (θ, φ), which is equal to
Pml (cos θ)eimφ times a constant chosen so the Ym

l satisfy the orthogonality
relation (see eq. C.44)

∫
d2Ω Ym

l
∗(Ω)Ym′

l′ (Ω) ≡
∫ π

0

dθ sin θ

∫ 2π

0

dφYm
l

∗(θ, φ)Ym′

l′ (θ, φ)

= δll′δmm′ ,

(2.83)

where we have used Ω as a shorthand for (θ, φ) and d2Ω for sin θ dθ dφ. The
spherical harmonics with l ≤ 2 are listed in equation (C.50).
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Putting all these results together, we have from equations (2.77a),
(2.79b), and (2.82) that

Φlm(r,Ω) =
(
Almr

l +Blmr
−(l+1)

)
Ym
l (Ω) (2.84)

is a solution of ∇2Φ = 0 for all non-negative integers l and integer m in the
range −l ≤ m ≤ l.

Now let us apply these results to the problem of determining the po-
tential of a thin shell of radius a and surface density σ(Ω). We write the
potential internal and external to the shell as

Φint(r,Ω) =

∞∑

l=0

l∑

m=−l

(
Almr

l +Blmr
−(l+1)

)
Ym
l (Ω) (r ≤ a), (2.85a)

and

Φext(r,Ω) =

∞∑

l=0

l∑

m=−l

(
Clmr

l +Dlmr
−(l+1)

)
Ym
l (Ω) (r ≥ a). (2.85b)

The potential at the center must be non-singular, so Blm = 0 for all l,m.
Similarly, the potential at infinity must be zero, so Clm = 0 for all l,m.
Furthermore, Φext(a,Ω) must equal Φint(a,Ω) because no work can be done
in passing through an infinitesimally thin shell. Hence from equations (2.85)
we have

∞∑

l=0

l∑

m=−l
Alma

lYm
l (Ω) =

∞∑

l=0

l∑

m=−l
Dlma

−(l+1)Ym
l (Ω). (2.86)

The coefficients Alma
l etc. of each spherical harmonic Ym

l on the two
sides of equation (2.86) must be equal, as can be shown by multiplying

both sides of the equation by Ym′

l′
∗
(Ω), integrating over Ω, and using the

orthogonality relation (2.83). Therefore, from equation (2.86) we have

Dlm = Alma
2l+1. (2.87)

Now let us expand the surface density of the thin shell as

σ(Ω) =
∞∑

l=0

l∑

m=−l
σlmYm

l (Ω), (2.88)

where the σlm are numbers yet to be determined. To obtain the coefficient

σl′m′ , we multiply both sides of equation (2.88) by Ym′

l′
∗
(Ω) and integrate

over Ω. With equation (2.83) we find
∫

d2Ω Ym′

l′
∗
(Ω)σ(Ω) = σl′m′ . (2.89)
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Since Y0
0 = 1/

√
4π, σ00 = M/(2a2√π), where M is the mass of the shell.

Gauss’s theorem (2.12) applied to a small piece of the shell tells us that
(
∂Φext

∂r

)

r=a

−
(
∂Φint

∂r

)

r=a

= 4πGσ(Ω), (2.90)

so inserting equations (2.85) and (2.88) into equation (2.90), we obtain

−
∞∑

l=0

l∑

m=−l

(
(l + 1)Dlma

−(l+2)+lAlma
l−1

)
Ym
l (Ω) =

4πG

∞∑

l=0

l∑

m=−l
σlmYm

l (Ω).

(2.91)

Once again the coefficients of Ym
l on each side of the equation must be

identical, so with (2.87) we have

Alm = −4πGa−(l−1) σlm
2l+ 1

; Dlm = −4πGal+2 σlm
2l+ 1

. (2.92)

Collecting these results together, we have from equations (2.85) that

Φint(r,Ω) = −4πGa
∞∑

l=0

(r
a

)l l∑

m=−l

σlm
2l+ 1

Ym
l (Ω),

Φext(r,Ω) = −4πGa

∞∑

l=0

(a
r

)l+1 l∑

m=−l

σlm
2l+ 1

Ym
l (Ω),

(2.93)

where the σlm are given by equation (2.89).
Finally we evaluate the potential of a solid body by breaking it down

into a series of spherical shells. We let δσlm(a) be the σ-coefficient of the shell
lying between a and a+ δa, and δΦ(r,Ω; a) be the corresponding potential
at r. Then we have by equation (2.89)

δσlm(a) =

∫ π

0

dθ sin θ

∫ 2π

0

dφYm
l

∗(Ω)ρ(a,Ω)δa ≡ ρlm(a)δa. (2.94)

Substituting these values of σlm into equations (2.93) and integrating over
all a, we obtain the potential at r generated by the entire collection of shells:

Φ(r,Ω) =

r∑

a=0

δΦext +

∞∑

a=r

δΦint

= −4πG
∑

l,m

Ym
l (Ω)

2l + 1

(
1

rl+1

∫ r

0

da al+2ρlm(a) + rl
∫ ∞

r

da

al−1
ρlm(a)

)
.

(2.95)
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Figure 2.10 Equipotentials of Satoh’s density distribution (2.70c) with b/a = 1. Full
curves show the exact equipotentials computed from equation (2.70a), and dashed curves
show the estimate provided by equation (2.95) with the sum over l extending to l = 2.
Contours based on the sum to l = 8 are also plotted (dotted contours) but almost overlie
the full curves.

This equation gives the potential generated by the body as an expansion
in multipoles: the terms associated with l = m = 0 are the monopole
terms, those associated with l = 1 are dipole terms, those with l = 2 are
quadrupole terms, and those with larger l are 2l-poles. Similar expansions
occur in electrostatics (e.g., Jackson 1999). The monopole terms are the
same as in equation (2.28) for the potential of a spherical system.6 Since
there is no gravitational analog of negative charge, pure dipole or quadrupole
gravitational potentials cannot arise, in contrast to the electrostatic case. In
fact, if one places the origin of coordinates at the center of mass of the system,
the dipole term vanishes identically outside any matter distribution. While
the monopole terms generate a circular-speed curve vc(r) =

√
GM(r)/r

that never declines with increasing r more steeply than in the Keplerian case
(vc ∝ r−1/2), over a limited range in r the higher-order multipoles may cause
the circular speed to fall more steeply with increasing radius.

As an illustration of the effectiveness of the multipole expansion, we
show in Figure 2.10 the contours of Satoh’s potential ΦS(R, z) (eq. 2.70a),
together with the approximations to this potential that one obtains from
equation (2.95) if one includes only terms with l ≤ 2 or 8. The flexibility

6 Thus the spherical-harmonic expansion provides an alternative proof of Newton’s
first and second theorems.
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Figure 2.11 Curves of constant u and v in the (R, z) plane. Semi-ellipses are curves of
constant u, and hyperbolae are curves of constant v. The common focus of all curves is
marked by a dot. In order to ensure that each point has a unique v-coordinate, we exclude
the disk (z = 0, R ≤ ∆) from the space to be considered.

of the multipole expansion makes it a powerful tool for numerical work, and
it plays a central role in some of the Poisson solvers for N-body codes that
will be described in §2.9. However, multipole expansions are poorly suited
for modeling the potentials of disks.

2.5 The potentials of spheroidal and ellipsoidal
systems

Many galaxies have nearly spheroidal or ellipsoidal equidensity surfaces (BM
§4.3.3). Moreover, Newton’s theorems for spherical bodies can be general-
ized to include spheroidal and ellipsoidal bodies, so models with isodensity
surfaces of this shape are relatively easy to construct. Finally, as the axis
ratio shrinks to zero a spheroid becomes a disk, and thus we can obtain the
potentials of razor-thin disks as a limiting case of spheroids.

In this section we develop efficient techniques for calculating the po-
tentials of such objects. In §§2.5.1 and 2.5.2 we derive formulae for oblate
(i.e., flattened) spheroidal systems, and in §2.5.3 we briefly discuss ellipsoidal
systems. Results for prolate spheroidal systems can be obtained either by
adapting our derivations for oblate systems, or by specializing the results for
ellipsoidal systems. The principal formulae for all three geometries are given
in Tables 2.1 and 2.2.
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2.5.1 Potentials of spheroidal shells

Consider a system in which the isodensity surfaces are similar concentric
spheroids. We align our coordinate system such that the z axis is the mi-
nor axis of the spheroids, and designate the principal-axis lengths of the
spheroids by a and c, with a ≥ c. Spheroidal bodies call for spheroidal coor-
dinates, so we consider the form of Laplace’s equation, ∇2Φ = 0, in oblate
spheroidal coordinates. These coordinates employ the usual azimuthal
angle φ of cylindrical coordinates, but replace the coordinates (R, z) with
new coordinates (u, v) that are defined by

R = ∆ coshu sin v ; z = ∆ sinhu cos v (u ≥ 0, 0 ≤ v ≤ π), (2.96)

where ∆ is a constant. Figure 2.11 shows the curves of constant u and v in
the (R, z) plane. The curves u = constant are confocal half-ellipses with foci
at (R, z) = (∆, 0), namely

R2

cosh2 u
+

z2

sinh2 u
= ∆2. (2.97)

Similarly, the curves v = constant coincide with the hyperbolae

R2

sin2 v
− z2

cos2 v
= ∆2 (2.98)

formed by the normals to these ellipses.
From equations (2.96) we see that if we increase one of u, v, and φ by

a small amount while holding the other two coordinates constant, the point
(u, v, φ) moves parallel to the three orthogonal unit vectors êu, êv, êφ by the
distances huδu, hvδv and hφδφ, where the scale factors are

hu = hv = ∆
√

sinh2 u+ cos2 v ; hφ = ∆ coshu sin v. (2.99)

Hence the gradient of a potential Φ may be expressed in these coordinates
as (eq. B.39)

∇Φ =
1

∆
√

sinh2 u+ cos2 v

[
∂Φ

∂u
êu +

∂Φ

∂v
êv

]
+

1

∆ coshu sin v

∂Φ

∂φ
êφ. (2.100)

We further have (eq. B.54)

∇2Φ =
1

∆2(sinh2 u+ cos2 v)

[
1

coshu

∂

∂u

(
coshu

∂Φ

∂u

)

+
1

sin v

∂

∂v

(
sin v

∂Φ

∂v

)]
+

1

∆2 cosh2 u sin2 v

∂2Φ

∂φ2
.

(2.101)
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Figure 2.12 A homoeoid of density
ρ is bounded by the surfaces R2/a2+
z2/b2 = 1 and R2/a2 + z2/b2 = (1 +
δβ)2 . The perpendicular distance s
between the bounding surfaces varies
with position around the homoeoid.

We concentrate on potentials that are functions Φ(u) of only the “radial”
coordinate u. For potentials of this class, ∇2Φ = 0 reduces to

d

du

(
coshu

dΦ

du

)
= 0. (2.102)

Hence either
Φ = Φ0 (a constant), (2.103a)

or dΦ/du = A sechu, where A is a constant. Integrating this last equation
we find

Φ = −A sin−1(sechu) +B, (2.103b)

where B is a constant.
For u large, sechu → ∆/r → 0, where r is the usual spherical radius.

So a potential of the form (2.103b) varies as

Φ ' −A sechu+B → −A∆

r
+B, (2.104)

Hence, if we set B = 0 and A = GδM/∆, the potential given by equation
(2.103b) tends to zero at infinity like the gravitational potential of a shell of
mass δM . Thus we are led to consider the potential defined by

Φ = −GδM
∆

×
{

sin−1(sechu0) (u < u0),
sin−1(sechu) (u ≥ u0).

(2.105)

This potential is everywhere continuous and solves ∇2Φ = 0 everywhere
except on the spheroid u = u0 (see eqs. 2.103). Hence it is the gravitational
potential of a shell of material on the surface u = u0. This shell has principal
semi-axes of lengths a ≡ ∆ coshu0 and c ≡ ∆ sinhu0. Hence the shell’s
eccentricity

e ≡
√

1 − c2

a2
= sechu0, (2.106)

and we may rewrite equations (2.105) as

Φ = −GδM
ae

×
{

sin−1(e) (u < u0),
sin−1(sechu) (u ≥ u0).

(2.107)
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We can find the surface density of the shell u = u0 by applying Gauss’s
theorem (2.12) to the potential (2.107). Since ∇Φ = 0 inside the shell, by
equation (2.100) the surface density of the shell is

Σ(v) =
êu·∇Φ

4πG
=

1

4πG∆
√

sinh2 u0 + cos2 v

(
dΦ

du

)

u=u0+

=
δM

4πa2
√

1 − e2 sin2 v
,

(2.108)

where evaluation at u0+ denotes the limiting value as u→ u0 from above.
Equation (2.108) has a simple physical interpretation: Σ(v) is the surface

density of the thin shell of uniform density ρ that is bounded by the two
surfaces β and β + δβ of the set of similar spheroids,

R2

a2
+
z2

c2
= β2, (2.109)

where δβ and δM are related by (2.113) below. Proof: The small perpen-
dicular s in Figure 2.12 runs between the shell’s inner and outer skins. Thus
s = s∇β/|∇β|, and at any point on the surface we have δβ = (s · ∇β) =
s|∇β|. Hence s = δβ/|∇β| and the surface density of the shell is

Σ̃ = ρs =
ρδβ

|∇β| =

(
R2

a4
+
z2

c4

)−1/2

ρβ δβ. (2.110)

Finally, writing R = βa sin v, z = βc cos v, and e =
√

1 − c2/a2, we find

Σ̃ =
a
√

1 − e2 ρ δβ√
1 − e2 sin2 v

. (2.111)

The volume inside an oblate spheroidal shell with semi-axis lengths aβ and
cβ is

V = 4
3πa

2cβ3 = 4
3πa

3β3
√

1 − e2, (2.112)

so the mass that is bounded by the surfaces β and β + δβ is

δM = 4πρa3
√

1 − e2 β2δβ. (2.113)

We can now set β = 1 and substitute (2.113) into equation (2.111) to find

that Σ̃ = Σ, where Σ is given by equation (2.108)./

We have shown that the potential (2.107) is generated by a thin shell of
uniform density that is bounded by similar spheroids of eccentricity e. We
call such a shell a thin homoeoid and have:
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Homoeoid theorem The exterior isopotential surfaces of a thin homoeoid
are the spheroids that are confocal with the shell itself. Inside the shell the
potential is constant.

The homoeoid theorem applies only to a thin homoeoid. But it imme-
diately yields a remarkable property of any homoeoid—that is, of any shell
of constant density, no matter how thick, whose inner and outer surfaces are
similar (not confocal) spheroids:

Newton’s third theorem A mass that is inside a homoeoid experiences no
net gravitational force from the homoeoid.
Proof: Break the given homoeoid into a series of thin homoeoids. The interior
of the thick homoeoid lies in the interior of each of its component thin ho-
moeoids, and the interior potential of each thin homoeoid is constant. Hence
the aggregate interior potential is constant and generates no gravitational
force./

Newton’s first theorem, for spherical systems, thus emerges as a special
case of Newton’s third theorem for spheroidal systems. Newton’s second
theorem, for spherical systems, has no analog for spheroidal systems because
the potential outside a spheroidal body does depend on the distribution of
matter within it.

These theorems help us to understand qualitatively the potential of an
inhomogeneous spheroidal body. Each shell of the body makes a contribu-
tion to the potential that is constant interior to the shell and on the shell,
and gradually becomes rounder as one moves outward from the shell. This
tendency of isopotentials to become spherical at large radii manifested itself
already in §2.4 in the rapid radial decay of the higher multipole components
of the gravitational potential. The shape of the isopotential surface at a
distance r from the center of an inhomogeneous spheroidal body represents
a compromise between the rather round contributions of the central shells,
and the more aspherical contributions of the shells just interior to r. Thus,
if the body is very centrally concentrated, the isopotentials near its edge will
be nearly round, while a more homogeneous spheroidal body will have more
flattened isopotentials.

2.5.2 Potentials of spheroidal systems

We now use equation (2.107) to calculate the gravitational potential of a
body whose isodensity surfaces are the similar spheroids

constant = m2 ≡ R2 +
z2

1 − e2
, (2.114)

i.e., a body in which ρ = ρ(m2). Comparing equations (2.109) and (2.114),
we see that m = βa, so the mass of the shell between m and m+ δm is given
by equation (2.113) as

δM = 4πρ(m2)
√

1 − e2m2δm. (2.115)
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For a spherical system (e = 0) this reduces to the familiar formula δM =
4πρr2δr.

There is a unique family of confocal spheroids such that one member of
the family coincides with the homoeoid labeled by m. Let um(R0, z0) be the
label of the member of this family that passes through the point (R0, z0) at
which the potential is required (see eq. 2.122 below for an explicit formula).
Then if (R0, z0) lies inside the homoeoid m, we have on setting a = m in
equation (2.107) and substituting for δM from equation (2.115) that the
contribution of m to the potential at (R0, z0) is

δΦint ≡ δΦ(R0, z0) = −4πGρ(m2)mδm

√
1 − e2

e
sin−1(e). (2.116a)

Similarly, if (R0, z0) lies outside the homoeoid,

δΦext ≡ δΦ(R0, z0) = −4πGρ(m2)mδm

√
1 − e2

e
sin−1(sechum). (2.116b)

The potential of the entire body is the sum of contributions (2.116) from all
the homoeoids that make up the body. If we define

ψ(m) ≡
∫ m2

0

dm2 ρ(m2), (2.117)

the sum of the δΦint is

∑

m>m0

δΦint = −2πG

√
1 − e2

e
sin−1(e) [ψ(∞) − ψ(m0)] , (2.118)

where m0 is the label of the homoeoid that passes through (R0, z0):

m2
0 ≡ R2

0 +
z2

0

1 − e2
. (2.119)

Similarly,

∑

m<m0

δΦext = −2πG

√
1 − e2

e

∫ m2
0

0

dm2 ρ(m2) sin−1(sechum). (2.120)

Integrating equation (2.120) by parts,

∑

m<m0

δΦext = −2πG

√
1 − e2

e

×
{
[
ψ(m) sin−1(sechum)

]m0

m=0
−
∫ m0

m=0

ψ(m)d sechum√
1 − sech2 um

}
.

(2.121)
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The quantity um appearing in equation (2.121) is a function um(R0, z0) by
virtue of the condition that um label the spheroid through (R0, z0) that is
confocal with the homoeoid m = constant . Let the ∆ parameter of the
confocal family of spheroids containing m be ∆m, and let u? be the label of
the homoeoid m within this family. Then m = ∆m coshu? and

√
1 − e2m =

∆m sinhu?, so ∆m = me, and we have from equation (2.97) that

R2
0

∆2
m cosh2 um

+
z2

0

∆2
m sinh2 um

= 1,

which implies
R2

0

1 + sinh2 um
+

z2
0

sinh2 um
= m2e2.

(2.122)

This is the required equation for um. Thus, in particular, m = 0 implies
sinhum = ∞, and m = m0 implies sinhum =

√
1 − e2 /e. Inserting these

limits into equation (2.121), and adding the result to equation (2.116), we
find

Φ(R0, z0) = −2πG

√
1 − e2

e

×
(
ψ(∞) sin−1 e−

∫ ∞

sinhum=
√

1−e2 /e
ψ(m)

d sinhum

1 + sinh2 um

)
.

(2.123)

We can simplify this equation by defining a new variable of integration

τ ≡ a2
0e

2

[
sinh2 um −

(
1

e2
− 1

)]
, (2.124)

where a0 is any constant. Then equation (2.122) becomes

R2
0

τ + a2
0

+
z2

0

τ + c20
=
m2

a2
0

(c0 ≡
√

1 − e2a0), (2.125a)

and equation (2.123) becomes

Φ(R0, z0) = −2πG

√
1 − e2

e

×
(
ψ(∞) sin−1 e− a0e

2

∫ ∞

0

dτ
ψ(m)

(τ + a2
0)
√
τ + c20

)
.

(2.125b)

The integral in this equation gives the contributions to Φ from homoeoids for
which (R0, z0) is an exterior point, with τ = 0 corresponding to the homoeoid
that touches (R0, z0), and large τ corresponding to small homoeoids.

It is instructive to apply equations (2.125) to the determination of the
interior potential of a homogeneous spheroid of density ρ0 and eccentricity e
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that has semi-axes of lengths a1 and a3 =
√

1 − e2 a1. For this case, equation
(2.117) yields

ψ(m) = ρ0 ×
{
m2 (m2 < a2

1),
a2

1 (m2 ≥ a2
1).

(2.126)

Equation (2.125b) takes on a particularly simple form if we set the arbi-
trary constant a0 equal to a1. If (R0, z0) lies inside the spheroid, m(τ) is
always smaller than a0. Hence, we may substitute from equation (2.125a)
and (2.126) into (2.125b), to obtain

Φ(R0, z0) = −2πGρ0a
2
1

√
1 − e2

e

[
sin−1 e

−a1e

2

∫ ∞

0

dτ

(τ + a2
1)
√
τ + a2

3

(
R2

0

τ + a2
1

+
z2

0

τ + a2
3

)]
.

(2.127)

This potential is quadratic in the coordinates and may be written

Φ(x) = −πGρ0(Ia2
1 −A1R

2 −A3z
2), (2.128)

where the dimensionless coefficients I and Ai are given in Table 2.1. An
expression for the exterior potential of the homogeneous spheroid is given in
Table 2.2.

With the help of equations (2.117) and (2.125) we obtain the gravita-
tional field generated by a spheroidal system as

g = −∇Φ = −πG
√

1 − e2 a0

∫ ∞

0

dτ
ρ(m2)∇m2

(τ + a2
0)
√
τ + c20

, (2.129a)

where

∇m2 = 2a2
0

(
R

τ + a2
0

êR +
z

τ + c20
êz

)
. (2.129b)

We may use equation (2.129) to find the circular speed vc(R) in the equatorial
plane of an oblate spheroidal galaxy. The radial component of the field
(2.129) is

gR(R, z) = −2πG
√

1 − e2 a3
0R

∫ ∞

0

dτ
ρ(m2)

(τ + a2
0)2
√
τ + c20

. (2.130)

In the equatorial plane z = 0, equation (2.125a) yields

m =
a0R√
τ + a2

0

. (2.131a)

Hence
dτ

(τ + a2
0)2

= − 2m

R2a2
0

dm, (2.131b)
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Figure 2.13 Circular speed versus radius for three bodies with the same face-on projected
density profile (the modified Hubble model, eq. 2.133) but different axis ratios q = c/a.
Though all three bodies have the same mass inside a spheroid of given semi-major axis,
vc increases with flattening 1 − q.

and equation (2.130) yields

v2
c (R) = −RgR(R, 0) = 4πG

√
1 − e2

∫ R

0

dm
m2ρ(m2)√
R2 −m2e2

. (2.132)

Let us see how these formulae work out in a specific case. Consider the
oblate spheroidal density distribution

ρ(m2) = ρ0

[
1 +

(
m

a0

)2]−3/2

, (2.133)

where a0 is the core radius and the parameter e that appears in the definition
(2.114) of m is the eccentricity of the system. In the limit e→ 0 this reduces
to the modified Hubble model (2.53). We substitute for ρ in equation (2.132)
to obtain

v2
c (R) = 4πGρ0a

3
0

√
1 − e2

e

∫ R

0

m2dm

(a2
0 +m2)3/2

√
R2/e2 −m2

. (2.134)

By making the substitution

m =
R sin θ

e

√
1 + (R/ea0)

2
cos2 θ

(2.135)
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Figure 2.14 The ellipticity εΦ of an equipotential surface versus the surface’s semi-major
axis length r. Each curve is labeled by the ellipticity ερ = 1 − q of the body with density
(2.133) that generates the corresponding potential. Notice the rapidity with which the
equipotential surfaces become spherical at large r/a0.

one may show that the integral of equation (2.134) equals

ek

R
[F (θm, k) −E(θm, k)] , (2.136)

where F and E are incomplete elliptic integrals (see Appendix C.4),

k ≡ R√
e2a2

0 +R2
, and θm ≡ sin−1

√
e2a2

0 +R2

a2
0 +R2

. (2.137a)

Hence

v2
c (R) = 4πGρ0a

3
0

√
1 − e2

R
k [F (θm, k) −E(θm, k)] . (2.137b)

We may use this result to investigate how strongly a galaxy’s circular
speed is affected by its shape. In Figure 2.13 we plot the circular-speed curves
of three galaxies whose density profiles are given by equation (2.133) for axis
ratio q =

√
1 − e2 = 1 (spherical system), q = 0.5 (E5 galaxy), and q = 0.1

(the flatness characteristic of disk galaxies). The central density has in each
case been adjusted so as to hold constant the mass M(a) interior to the
spheroid of semi-major axis a. The peak circular speed of the q = 0.1 model
is about 20% higher than that of the spherical system because flattening the
system increases the radial component of the force between a given mass
element and a test mass in the equatorial plane.
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For the density distribution defined by equation (2.133), Figure 2.14
shows the ellipticity εΦ of the isopotential surfaces for several values of the
ellipticity ερ ≡ 1 − q of the density distribution. One sees that in the core
r < a0, εΦ ∼> 1

2ερ, while at a few core radii εΦ ≈ 1
3ερ, and at r � a, εΦ rapidly

approaches zero. Thus, in the region containing the bulk of the mass, the
potential is generally flattened only about a third as much as the density,
just as we found for logarithmic potentials in §2.3.2.

2.5.3 Potentials of ellipsoidal systems

The problem of calculating the gravitational potential of a body whose iso-
density surfaces are similar, coaxial ellipsoids challenged some of the best
minds of the eighteenth and nineteenth centuries—see Chandrasekhar (1969)
for details. The general problem was solved by George Green (1793–1841), a
Nottingham millwright, in 1835 using rather specialized geometrical methods
that we shall not present here. Green’s results are natural generalizations of
the ones we deduced above by a more accessible technique for axisymmetric
systems. We now summarize the results for triaxial systems and refer readers
to Kellogg (1953) or Chandrasekhar (1969) for proofs.

On surfaces of constant density, the variable

m2 ≡ a2
1

3∑

i=1

x2
i

a2
i

(2.138)

is constant, where (x1, x2, x3) are Cartesian coordinates and a1, a2, a3 are the
semi-axes of the ellipsoid. A thin shell of uniform density, whose inner and
outer skins are the surfaces m and m+ δm, generates an exterior potential
that is constant on the ellipsoidal surfaces

m2 = a2
1

3∑

i=1

x2
i

a2
i + τ

, (2.139)

where τ ≥ 0 labels the surfaces. (This is a straightforward extension of the
homoeoid theorem proved in §2.5.1.) There is no gravitational field inside
such a shell.

We may find the gravitational potential of any body in which ρ = ρ(m2)
by breaking the body down into thin triaxial homoeoids: the triaxial analog
of equation (2.125b) is

Φ(x) = −πGa2a3

a1

∫ ∞

0

dτ
ψ(∞) − ψ(m)√

(τ + a2
1)(τ + a2

2)(τ + a2
3)
, (2.140)

where ψ(m) is again defined by (2.117) and m = m(x, τ) through equation
(2.139). Merritt & Fridman (1996) give expressions derived from (2.140)
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for the gravitational potentials and fields of triaxial generalizations of the
Dehnen models of §2.2.2g.

(a) Ferrers potentials A particularly simple application of equation
(2.140) is to the case in which

ρ(m2) =

{
ρ0

(
1 −m2/a2

1

)n
for m ≤ a1

0 for m > a1,
(2.141)

where m = m(x) through equation (2.138). By (2.117) we now have

ψ(∞) − ψ(m) =
ρ0a

2
1

n+ 1

(
1 − m2

a2
1

)n+1

(m ≤ a1). (2.142)

Hence the internal potential of a body whose density is of the form (2.141)
is

Φ(x) = −πGρ0a1a2a3

n+ 1

∫ ∞

0

dτ√
(τ + a2

1)(τ + a2
2)(τ + a2

3)

×
(

1 −
3∑

i=1

x2
i

τ + a2
i

)n+1

.

(2.143)

If n is an integer, the bracket involving x in equation (2.143) can be multiplied
out, and the potential at any point obtained as a sum of terms of the form
Apqrx

p
1x
q
2x
r
3, where the coefficients Apqr are independent of x. Potentials of

this simple form are ideally suited to numerical studies of orbits in triaxial
galaxies, such as we shall describe in §3.3. We shall refer to these as Ferrers
potentials.

The n = 0 Ferrers potential arises from a homogeneous ellipsoid with
semi-axes a1, a2, a3. Expressions for the interior and exterior potentials of
such bodies can be derived from equations (2.140) and (2.143) and are given
in Tables 2.1 and 2.2.

(b) Potential-energy tensors of ellipsoidal systems Roberts (1962)
showed that for ellipsoidal bodies equation (2.22) has a remarkably simple
form:

Wjk = −π2G
a2a3

a2
1

(
aj
a1

)2

Ajδjk

∫ ∞

0

dm [ψ(∞) − ψ(m)]2 , (2.144)

where the Aj are given in Table 2.1. Notice that the right side of equation
(2.144) comprises a constant times the product of two factors: (i) a factor
(aj/a1)2Ajδjk that depends only on the axial ratios (a2/a1) etc.; and (ii)

a factor
∫

dm [ψ(∞) − ψ(m)]
2

that is independent of the body’s ellipticity
and the same for all components of the tensor; this integral can be evaluated
from a knowledge of the radial density structure alone. In particular, ratios
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Figure 2.15 A spheroid of axis ratio
q and semi-major axis a is viewed
along a line of sight that cuts the
spheroid’s equatorial plane perpen-
dicularly at radius R. This line of
sight cuts through the spheroid for a
distance 2q

√
a2 −R2.

of potential-energy terms, for example W11/W33, depend only on the body’s
ellipticity, and are entirely independent of the radial density structure so long
as the density is stratified on similar ellipsoids. We shall exploit this useful
result in §4.8.3. In Table 2.2 we give expressions for the potential-energy
tensors of homogeneous ellipsoids.

2.6 The potentials of disks

Most of the light emitted by a typical spiral galaxy comes from a thin disk.
Thus we anticipate that a substantial fraction of the galaxy’s mass is con-
centrated in the disk, and it is therefore important to be able to calculate
efficiently the gravitational field of a thin disk. We begin by investigating
the potential of an idealized axisymmetric disk of zero thickness.

2.6.1 Disk potentials from homoeoids

We may consider any axisymmetric disk to be a very flat spheroid and use the
formulae of §2.5.1 to obtain the potential. A homogeneous spheroid of density
ρ, semi-axes a and c, and axial ratio q = c/a has mass M(a) = 4

3πρqa
3

(eq. 2.112) and surface density (see Figure 2.15)

Σ(a,R) = 2ρq
√
a2 −R2, (2.145)

where R is the usual cylindrical radius. Differentiating these expressions with
respect to a, we obtain the mass δM(a) and the surface density δΣ(a,R) of
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the thin homoeoid of density ρ, semi-major axis a, thickness δa, and axial
ratio q:

δM(a) = 4πρqa2δa ; δΣ(a,R) =
2ρqa√
a2 −R2

δa. (2.146)

If we now let q tend to zero while holding 2ρqa ≡ Σ0 constant, we obtain
the mass and surface density of an infinitely flattened homoeoid:

δM(a) = 2πΣ0a δa ; δΣ(a,R) =
Σ0 δa√
a2 −R2

. (2.147)

We may construct a razor-thin disk of known surface density Σ(R) by
finding the family of homoeoids whose combined surface density equals Σ(R)
at all R. In mathematical language, we have to find the function Σ0(a) that
satisfies the integral equation

Σ(R) =
∑

a≥R
δΣ(a,R) =

∫ ∞

R

da
Σ0(a)√
a2 −R2

. (2.148a)

This is an Abel integral equation. Its solution is (eq. B.72)

Σ0(a) = − 2

π

d

da

∫ ∞

a

dR
RΣ(R)√
R2 − a2

. (2.148b)

Note that Σ0(a) is not the same function as Σ(R). In particular, some of
the mass that lies interior to radius R comes from homoeoids having a > R.
By Newton’s third theorem, this portion of matter does not contribute to
the gravitational force at R, because a point in the equatorial plane at radius
R is an interior point of all homoeoids with a > R. Thus two disks can have
identical surface-density distributions for R′ < R and yet have very different
force fields at R. In this respect disks differ from spherical distributions of
mass, for which the force at r0 depends only on the density at r < r0. In fact,
the surface density of a disk at R′ > R affects the attraction at R because
the annulus of material exterior to R actually pulls a star placed at radius
R outward, thus partially compensating the inward attraction of the interior
matter. For example on the perimeter of a sharp-edged disk, the circular
speed can be much higher than at the edge of a spherical body, or a more
extended disk, with the same mass interior to this point.

We now calculate the potential of a thin disk by adding the potentials of
the thin homoeoids into which we have decomposed it. By Gauss’s theorem,
the gravitational field is discontinuous across a sheet of finite surface density,
but the potential is continuous. Consequently, the potential in the equatorial
plane differs infinitesimally from the potential just above or below the disk.
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Therefore we need only calculate the potential at points that are external to
all homoeoids, and take the limit z → 0 to find the potential in the plane.

Equation (2.107) gives the potential outside a homoeoid of mass M .
For a completely flattened homoeoid, we have e = 1 and the mass is given in
terms of Σ0 by the first of equations (2.147). Hence, at location (R, z) the
potential of this homoeoid is

δΦ(R, z) = −2πGΣ0δa sin−1(sechu), (2.149)

where u is determined by the equations R = a coshu sin v, z = a sinhu cos v
(eq. 2.96). Eliminating v from these equations by using 1 = cos2 v + sin2 v,
we obtain a quadratic equation for cosh2 u:

a2 cosh4 u− (R2 + z2 + a2) cosh2 u+R2 = 0. (2.150)

The root that we require is the one with cosh2 u ≥ 1, which is

cosh2 u =
1

2a2

[
R2 + z2 + a2 +

√
(R2 + z2 + a2)2 − 4a2R2

]

=
1

4a2

[√
z2 + (a+R)2 +

√
z2 + (a−R)2

]2
.

(2.151)

Taking the square root of both sides and substituting the result into equation
(2.149), we obtain

δΦ = −2πGΣ0 δa sin−1

(
2a√

z2 + (a+R)2 +
√
z2 + (a−R)2

)
. (2.152)

Finally, the potential of an axisymmetric disk of arbitrary surface-density
profile is obtained by combining this result with equations (2.148), which
decompose a disk into homoeoids. We have (Cuddeford 1993)

Φ(R, z) = 4G

∫ ∞

0

da sin−1

(
2a√

+ +
√
−

)
d

da

∫ ∞

a

dR′ R
′Σ(R′)√
R′2 − a2

. (2.153a)

where √
± ≡

√
z2 + (a±R)2. (2.153b)

An alternative form is obtained by integrating by parts:

Φ(R, z) = −2
√

2G

∫ ∞

0

da
[(a+R)/

√
+] − [(a−R)/

√
−]√

R2 − z2 − a2 +
√

+
√
−

×
∫ ∞

a

dR′ R
′Σ(R′)√
R′2 − a2

.

(2.154)
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This form does not require differentiation of the term that depends on the
surface density. Equations (2.153a) and (2.154) are numerically convenient
because the inner integrals depend only on a, and thus can be tabulated on
a grid of values of a at the outset. Then only a single integral is required
to evaluate Φ at each fresh point (R, z). Moreover, the integrands do not
oscillate in sign, so numerical integrations converge rapidly.

We are particularly interested in the value of the potential in the equa-
torial plane. Consider first the case a > R. For small z, it is easy to see
that

√
± → (a±R)+O(z2), with the consequence that the numerator of the

fraction in the first line in equation (2.154) vanishes like z2 as z → 0. In the
same limit the denominator vanishes too, but more slowly, like z. Hence, for
a > R the integrand tends to zero with z and we readily find that

Φ(R, 0) = −4G

∫ R

0

da√
R2 − a2

∫ ∞

a

dR′ R
′Σ(R′)√
R′2 − a2

. (2.155)

To obtain the circular speed at radius R in the equatorial plane, the
natural procedure is to differentiate this expression with respect to R, which
is the upper limit of the outer integral. The usual formula for differentiating
such an integral requires us to evaluate the integrand at a = R, when it
diverges. Instead of resolving this problem we return to equation (2.153a),
in which we may put z to zero without any awkwardness, to obtain

Φ(R, 0) = 4G

∫ ∞

0

da sin−1

(
2a

(a+R) + |a−R|

)
d

da

∫ ∞

a

dR′ R
′Σ(R′)√
R′2 − a2

.

(2.156)
The argument of sin−1 is unity for R < a and a/R otherwise. Consequently,
when we differentiate with respect to R we obtain

v2
c (R) = R

∂Φ

∂R
= −4G

∫ R

0

da
a√

R2 − a2

d

da

∫ ∞

a

dR′ R
′Σ(R′)√
R′2 − a2

. (2.157)

(a) The Mestel disk As a simple application of equation (2.157) consider
a disk in which the surface density is given by

Σ(R) =





v2
0

2πGR
for R < Rmax

0 otherwise,
(2.158)

where v0 and Rmax are constants with dimensions of velocity and length,
respectively. For this surface density the inner integral in equation (2.157) is
proportional to cosh−1(Rmax/a), so its derivative with respect to a follows
from

d

da
cosh−1(Rmax/a) = − Rmax

a
√
R2

max − a2
. (2.159)
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We let the outer radius of the disk, Rmax, tend to infinity. In this limit
the disk becomes the Mestel disk (Mestel 1963) and the derivative (2.159)
becomes −1/a. Substituting this value into equation (2.157), we find that
the circular speed in the Mestel disk is

v2
c =

2v2
0

π

∫ R

0

da√
R2 − a2

= v2
0 . (2.160)

Hence, the circular speed of a disk in which the surface density is inversely
proportional to radius is independent of radius. Moreover, for this surface-
density law, vc(R) is given by the simple formula

v2
c (R) =

GM(R)

R
, (2.161a)

where

M(R) = 2π

∫ R

0

dR′R′Σ(R′) =
v2

0R

G
(2.161b)

is the mass interior to R. This is precisely analogous to equation (2.29)
for a spherical system. Although we have argued that for general disks the
circular speed is affected by the mass exterior to R, for the particular case
of the Mestel disk the simple formula (2.161a) happens to give the correct
answer—we are aware of no other disks with this property.

(b) The exponential disk The surface-brightness profiles of many galac-
tic disks are approximately exponential in form (eq. 1.7). Let us use the re-
sults just derived to calculate the potential that such a disk would generate
if its surface mass density were also exponential. Setting

Σ(R) = Σ0e−R/Rd , (2.162)

we use equation (C.69) to show that the inner integral in equations (2.153a)
to (2.157) is ∫ ∞

a

dR′R
′Σ0e−R

′/Rd

√
R′2 − a2

= Σ0aK1(a/Rd), (2.163)

where K1 is a modified Bessel function (Appendix C.7). Figure 2.16 shows
contours of the potential that one obtains by substituting this formula into
equation (2.154).

The potential in the equatorial plane is given by substituting (2.163)
into equation (2.155):

Φ(R, 0) = −4GΣ0

∫ R

0

da
aK1(a/Rd)√
R2 − a2

= −πGΣ0R
[
I0(y)K1(y) − I1(y)K0(y)

]
,

(2.164a)
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Figure 2.16 Contours in the (R, z) plane of constant potential Φ for a razor-thin exponen-
tial disk. The contour levels are GMd/Rd divided by 1.5, 2, 2.5, . . ., where Md = 2πΣ0R2

d
is the mass of the disk.

where

y ≡ R

2Rd
, (2.164b)

we have used equation (C.70), and the In are modified Bessel functions
(Appendix C.7).

If we differentiate equation (2.164a) with respect to R, we obtain the
circular speed of the exponential disk (Freeman 1970):

v2
c (R) = R

∂Φ

∂R
= 4πGΣ0Rdy

2 [I0(y)K0(y) − I1(y)K1(y)] . (2.165)

In Figure 2.17 we show this circular speed together with the circular speed
of the spherical body that has as much mass Ms(r) interior to r = R as the
exponential disk, that is,

Ms(R) = Md(R) = 2π

∫ R

0

dR′R′Σ0e−R
′/Rd

= 2πΣ0R
2
d

[
1 − e−R/Rd

(
1 +

R

Rd

)]
.

(2.166)

The exponential disk achieves a peak circular speed that is about 15% higher
than that of the equivalent spherical distribution. The dotted line in Fig-
ure 2.17 gives the Keplerian circular speed for a system in which the entire
mass of the disk is concentrated at the center. Notice that the disk’s circular
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Figure 2.17 The circular-speed curves of: an exponential disk (full curve); a point with
the same total mass (dotted curve); the spherical body for which M(r) is given by equation
(2.166) (dashed curve).

speed approaches the Keplerian speed only slowly and from above, whereas
the circular speed of the equivalent spherical distribution tends rapidly to
the Keplerian speed from below.

(c) Thick disks Although galactic disks are thin in the sense that the
density falls off much faster perpendicular to the equatorial plane than in
the radial direction within the plane, it is frequently essential to take into
account the non-zero thickness of the disk in the perpendicular direction.
For example, the dynamics of the solar neighborhood, and of the Sun itself,
would be very different if the Galactic disk were razor-thin rather than some
hundreds of parsecs thick. The techniques for deriving the potential of a
spheroidal system that are described in §2.5.1 are not directly applicable to
this problem because the density of a galactic disk is generally not constant
on spheroids. The multipole expansion described in §2.4 is also not suit-
able, because it converges slowly for flat systems. Here we describe how to
calculate the potential of a disk when the density is of the form

ρ(R, z) = Σ(R)ζ(z). (2.167)

Physically, this formula implies that a cross-section through the disk always
has the same shape, no matter at what radius it is taken. In particular, the
characteristic scale height of the disk is independent of R, an assumption
that is in reasonable agreement with observations of edge-on disk galaxies
(BM §4.4.3).

It is convenient to normalize the function ζ(z) in equation (2.167) such
that

∫
dz ζ(z) = 1. With this normalization, Σ(R) is the total surface density
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and Σ(R)ζ(z) dz is the surface density of the layer of material of thickness
dz that lies a distance z above the equatorial plane. Let Φ0(R, z) be the
potential that would be generated by a razor-thin disk with surface density
Σ(R) that lay in the plane z = 0. Then the potential generated at (R, z) by
the layer at distance z′ from the plane is

dΦ(R, z) = dz′ Φ0(R, z − z′)ζ(z′). (2.168)

Adding the contributions to the disk’s potential from every layer, we obtain
for the overall potential

Φ(R, z) =

∫ ∞

−∞
dz′ ζ(z′)Φ0(R, z − z′), (2.169)

where Φ0 can be obtained from either (2.153a) or (2.154).
Consider, for example, the exponential disk (2.162). Then inserting

into equation (2.153a) the derivative −Σ0(a/Rd)K0(a/Rd) with respect to
a of equation (2.163), and then substituting the resulting value of Φ0 into
equation (2.169), we find

Φ(R, z) = −4GΣ0

Rd

∫ ∞

−∞
dz′ ζ(z′)

∫ ∞

0

da sin−1

(
2a√

+ +
√
−

)
aK0(a/Rd),

(2.170)
where

√
± is defined by equation (2.153b) with z replaced by z − z ′. We

shall use this formula in §2.7 below.

2.6.2 Disk potentials from Bessel functions

Disk galaxies generally contain non-axisymmetric features such as a bar or
spiral arms. Hence it is essential to know how to calculate the potential of a
flattened, non-axisymmetric system. Several methods may be employed and
none is ideal for every problem. Evans & de Zeeuw (1992) show how the
results of §2.5.3 may be used to obtain the potential of razor-thin, elliptical
disks in analogy with the work of §2.6.1. However, the technique they present
is not easy to apply, so in the rest of this section we present three alternatives,
each with its own strengths when applied to particular problems. All these
methods can also be applied to axisymmetric disks, and all yield alternatives
to the formulae of §2.5.

Above and below an isolated razor-thin disk the gravitational potential
satisfies Laplace’s equation, ∇2Φ = 0, with appropriate boundary conditions
on the disk and at infinity. In cylindrical coordinates Laplace’s equation is
(eq. B.52)

1

R

∂

∂R

(
R
∂Φ

∂R

)
+

1

R2

∂2Φ

∂φ2
+
∂2Φ

∂z2
= 0. (2.171)
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Figure 2.18 The disk mass within the box shown in cross-section equals −(4πG)−1 times
the integral of the normal component of ∇Φkm over the surface of the box. The horizontal
component of ∇Φkm is due to the gravitational attraction from the rest of the galaxy.

Writing
Φ(R, z) = J(R)F (φ)Z(z), (2.172)

we obtain by the method of separation of variables (see §2.4)

1

J(R)R

d

dR

(
R

dJ

dR

)
+

1

F (φ)R2

d2F

dφ2
= − 1

Z(z)

d2Z

dz2
= −k2, (2.173)

where k is an arbitrary real or complex number. Thus

0 =
d2Z

dz2
− k2Z,

0 =
1

J(R)R

d

dR

(
R

dJ

dR

)
+

1

F (φ)R2

d2F

dφ2
+ k2.

(2.174)

The first of equations (2.174) may be immediately integrated to

Z(z) = e±kz. (2.175)

When multiplied by R2, the second of equations (2.174) separates into
equations for J and F :

0 =
d2F

dφ2
+m2F

0 = R
d

dR

(
R

dJ

dR

)
+ k2R2J(R) −m2J.

(2.176)

The first of these equations trivially yields F ∝ eimφ, where m is an integer.
If we make the substitution u ≡ kR, the second equation simplifies to

u
d

du

(
u

dJ

du

)
+ (u2 −m2)J(u) = 0. (2.177)

We require the solution of this equation to be finite at u = 0 (R = 0). This
solution is conventionally written Jm(u) = Jm(kR) and is called the Bessel
function of order m (Appendix C.7). Summarizing these results, we have
that the functions

Φ±(R, z) = ei(mφ±kz)Jm(kR) (2.178)

are solutions of ∇2Φ = 0.
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Now consider the function

Φkm(R, z) = eimφ−k|z|Jm(kR), (2.179a)

where k is real and positive. Φkm satisfies all the conditions required for it
to be the potential generated by an isolated density distribution: it is non-
singular at R = 0, periodic in φ and vanishes at large distances from the
origin. Furthermore, for z > 0, Φkm coincides with Φ−, and for z < 0, Φkm
coincides with Φ+. Therefore, Φkm solves ∇2Φ = 0 everywhere except in
the plane z = 0. At z = 0, Φkm does not satisfy Laplace’s equation because
its gradient suffers a discontinuity. Figure 2.18 illustrates how we may use
Gauss’s theorem (eq. 2.12) to evaluate the surface density Σkm(R, φ) of the
sheet that generates this discontinuity. We have that

lim
z→0+

∂Φkm
∂z

= −keimφJm(kR) and lim
z→0−

∂Φkm
∂z

= +keimφJm(kR).

(2.180)
The integral of ∇Φkm over the closed unit surface that is shown in the figure
must equal 4πGΣkm from which it follows that

Σkm(R, φ) = − k

2πG
eimφJm(kR). (2.179b)

We now use equations (2.179) to find the potential generated by a disk
of arbitrary surface density Σ(R, φ). If we can find functions Sm(k) such
that

Σ(R, φ) =

∞∑

m=−∞

∫ ∞

0

dk Sm(k)Σkm(R, φ)

= − 1

2πG

∞∑

m=−∞

∫ ∞

0

dk kSm(k)eimφJm(kR),

(2.181)

then we will have

Φ(R, φ, z) =

∞∑

m=−∞

∫ ∞

0

dk Sm(k)Φkm(R, φ, z)

=

∞∑

m=−∞

∫ ∞

0

dk Sm(k)Jm(kR)eimφ−k|z|.

(2.182)

Multiplying (2.181) through by e−im′φ and averaging over φ, we obtain

Σm′(R) ≡ 1

2π

∫ 2π

0

dφ e−im′φΣ(R, φ) = − 1

2πG

∫ ∞

0

dk kSm′(k)Jm′(kR).

(2.183)
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Equation (2.183) states that Sm(k) is the mth-order Hankel transform of
−2πGΣm (eq. C.60b). Hankel transforms have properties that are similar to
those of the familiar Fourier transforms (Appendix B.4). In particular, they
may be inverted by use of equation (C.60a). We find

Sm(k) = −2πG

∫ ∞

0

dRRJm(kR)Σm(R). (2.184)

When we eliminate Sm(k) between this equation and (2.182), we obtain
finally

Φ(R, φ, z) = −2πG
∞∑

m=−∞

∫ ∞

0

dk eimφ−k|z|Jm(kR)

∫ ∞

0

dR′R′Jm(kR′)Σm(R′).

(2.185)

Application to axisymmetric disks Potential-density pairs for axisym-
metric disks are obtained by setting z = 0 in equation (2.182) and restricting
the sum to the case m = 0. We have (Toomre 1963)

Φ(R, 0) =

∫ ∞

0

dk S0(k)J0(kR). (2.186)

Differentiating with respect to R and using the identity dJ0(x)/dx = −J1(x)
(eq. C.58), we obtain

v2
c (R) = R

∂Φ

∂R
= −R

∫ ∞

0

dk kS0(k)J1(kR). (2.187)

Substituting for S0(k) from equation (2.184) this can be rewritten

v2
c (R) = 2πGR

∫ ∞

0

dk kJ1(kR)

∫ ∞

0

dR′R′Σ(R′)J0(kR′). (2.188)

Applying to equation (2.187) the inversion formula for Hankel trans-
forms (eqs. C.60) we find

S0(k) = −
∫ ∞

0

dR′ v2
c (R′)J1(kR′). (2.189)

Substituting this expression for S0 into equation (2.181), we have

Σ(R) =
1

2πG

∫ ∞

0

dk kJ0(kR)

∫ ∞

0

dR′ v2
c (R′)J1(kR′). (2.190)

Comparison of this formula with our expression (2.188) for the reverse rela-
tion reveals complete symmetry between the quantities vc(R) and 2πGRΣ(R)
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(Kalnajs 1999). Hence our mathematics seems to be saying that it is as easy
to determine a disk’s surface density from measurements of its circular speed,
as to obtain the circular speed from the surface density. Unfortunately, ob-
servational constraints destroy this symmetry. The key point is that the left
side of either equation (2.188) or (2.190) can be determined at any given
value of R only if the variable on the right side can be measured out to radii
at which its value becomes negligible. The surface density declines rapidly
with radius, so equation (2.188) can be used to derive accurate values of vc.
Circular speeds, by contrast, decline little if at all out to the largest observ-
able radii. Consequently, in practice we cannot obtain the data needed to
determine Σ accurately from equation (2.190).

2.6.3 Disk potentials from logarithmic spirals

An alternative technique for finding non-axisymmetric potential-density pairs
was introduced by Kalnajs (1971). The potential Φ(R, φ) at any point in the
plane of a disk is

Φ(R, φ) = −G
∫

dR′R′
∫

dφ′
Σ(R′, φ′)

|x − x′|

= −G
∫ ∞

0

dR′R′
∫ 2π

0

dφ′
Σ(R′, φ′)√

R′2 +R2 − 2RR′ cos(φ′ − φ)
.

(2.191)
The integral in this expression can be simplified if we define a new radial
coordinate,

u ≡ lnR, (2.192)

and introduce the reduced potential V and the reduced surface density
S by

R1/2Φ ≡ V (u, φ) = eu/2Φ [R(u), φ]

R3/2Σ ≡ S(u, φ) = e3u/2Σ [R(u), φ] .
(2.193)

With these substitutions (2.191) becomes

V (u, φ) = −G
∫ ∞

−∞
du′
∫ 2π

0

dφ′K(u− u′, φ− φ′)S(u′, φ′), (2.194a)

where

K(u− u′, φ− φ′) ≡ 1√
2
√

cosh(u− u′) − cos(φ − φ′)
. (2.194b)

Now consider the reduced potential Vαm(u, φ) that is generated by the par-
ticular reduced surface density

Sαm(u, φ) = ei(αu+mφ), (2.195)
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where α is a real number and m is an integer. We have

Vαm(u, φ) = −G
∫ ∞

−∞
du′
∫ 2π

0

dφ′K(u− u′, φ− φ′)ei(αu′+mφ′)

= −Gei(αu+mφ)

∫ ∞

−∞
du′
∫ 2π

0

dφ′K(u− u′, φ− φ′)ei[α(u′−u)+m(φ′−φ)].

(2.196)
If we change to new variables of integration u′′ ≡ u − u′ and φ′′ ≡ φ − φ′,
equation (2.196) becomes

Vαm = −GN(α,m)ei(αu+mφ), (2.197)

where

N(α,m) ≡
∫ ∞

−∞
du′′

∫ 2π

0

dφ′′K(u′′, φ′′)e−i(αu′′+mφ′′)

= π
( 1

2m− 3
4 + 1

2 iα)!( 1
2m− 3

4 − 1
2 iα)!

( 1
2m− 1

4 + 1
2 iα)!( 1

2m− 1
4 − 1

2 iα)!
.

(2.198)

The kernelN(α,m) is real and even in both α andm.7 The reduced potential
generated by an arbitrary linear combination

S(u, φ) ≡
∞∑

m=−∞

∫ ∞

−∞

dα

2π
Am(α)ei(αu+mφ) (2.199a)

of surface densities of the form (2.195) is

V (u, φ) = −G
∞∑

m=−∞

∫ ∞

−∞

dα

2π
N(α,m)Am(α)ei(αu+mφ). (2.199b)

Furthermore, equation (2.199a) states that Am(α) is nothing but the Fourier
transform of the reduced surface density S(u, φ) (eqs. B.64 and B.67). Con-
sequently,

Am(α) =
1

2π

∫ ∞

−∞
du

∫ 2π

0

dφS(u, φ)e−i(αu+mφ). (2.199c)

So we may use equations (2.199) to obtain the potential in the plane z = 0
that is generated by any distribution of surface density. Since αu + mφ =
α lnR+mφ is constant on logarithmic spirals, equations (2.199) determine
the potential of a disk by decomposing the density into spirals. Note that
this derivation does not produce an expression for the value of the potential
away from the plane z = 0 (Problem 2.19 remedies this defect).

7 These statements can be proved using equations (C.12) and (C.14).
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2.6.4 Disk potentials from oblate spheroidal coordinates

In some situations we require the potential of a disk with a sharp outer edge.
If the outer edge is circular, this problem can be efficiently solved using the
oblate spheroidal coordinates of §2.5.1.8 We substitute Φ = U(u)V (v)eimφ

into Laplace’s equation using (2.101), and separate variables in the usual
way. Then we find that U and V satisfy

m2

sin2 v
− 1

V sin v

d

dv

(
sin v

dV

dv

)
= l(l + 1), (2.200a)

m2

cosh2 u
+

1

U coshu

d

du

(
coshu

dU

du

)
= l(l + 1), (2.200b)

where l(l+1) is the separation constant. The left side of equation (2.200a) is
the same as the right side of equation (2.80) with V (v) substituted for P (θ).
Furthermore, the boundary conditions at v = 0 or π (i.e., along the z axis)
that must be satisfied by a physically acceptable function V (v) are the same
as the conditions we imposed on P (θ). Hence

V (v, φ) = VlmYm
l (v, φ), (2.201)

where Vlm is a constant and Ym
l is the spherical harmonic defined by equation

(C.42). Since the potential must be symmetrical about the plane of the disk
v = π/2, we must restrict ourselves to values of l and m for which Ym

l (v, φ)
is an even function of cos v. Hence we require l −m to be even.

If we change the independent variable in equation (2.200b) to x =
i sinhu, the equation becomes the associated Legendre equation (2.81b) with
x now pure imaginary. If the potential is to vanish at infinity (large u), it
must be proportional to the solution of equation (2.81b) that vanishes at
large x. This is written Qml (x) (see Appendix C.5). Hence the functions

Φlm(u, v, φ) ≡ Vlm
Qml (0)

Qml (i sinhu)Ym
l (v, φ) (l −m even) (2.202)

satisfy Laplace’s equation everywhere outside the excluded disk u = 0 (z = 0,
R ≤ ∆) and vanish at infinity. However, there is a discontinuity in the
gradient of Φlm on the excluded disk. By Gauss’s theorem, this discontinuity
is generated by a surface density Σlm(v, φ); thus from equation (2.100) we
have

4πGΣlm(v, φ) = 2 (êu·∇Φlm)u→0+ =
2

∆| cos v| lim
u→0+

(
∂Φlm
∂u

)

= 2Vlmi lim
x→0

[
d lnQml (x)

dx

]
Ym
l (v, φ)

∆| cos v| ,
(2.203)

8 In the more general case in which the outer edge is an ellipse, one uses ellipsoidal
coordinates (Morse & Feshbach 1953; Tremaine 1976b; Evans & de Zeeuw 1992).
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where x approaches zero along the positive imaginary axis. Using equations
(C.31) and (C.13) to evaluate the limit in equation (2.203), we then find
(Hunter 1963)

Σlm = − 2Vlm
π2G∆glm

Ym
l (v, φ)

| cos v| , (2.204a)

where

glm ≡ (l +m)!(l −m)!

22l−1
[(
l+m

2

)
!
(
l−m

2

)
!
]2 . (2.204b)

A general disk potential, which is a sum over l and m of potentials
of the form (2.202), is generated by the surface density Σ(v, φ) that is
the sum of surface densities Σlm(v, φ). According to equation (2.204a),
−2Vlm/(π

2G∆glm) is the coefficient of Ym
l (v, φ) when | cos v|Σ(v, φ) is ex-

panded in spherical harmonics. Thus with the orthogonality relation (C.44)
we have

2Vlm
π2G∆glm

= −
∫ 2π

0

dφ

∫ π

0

dv sin v | cos v|Σ(v, φ)Ym
l

∗(v, φ). (2.205)

The integrand in equation (2.205) is symmetrical about v = π/2 when l−m
is even, so we may restrict the v integration to the range (0, π/2) and double
the result. Hence

Vlm = −π
2Gglm

∆

∫ 2π

0

dφ

∫ ∆

0

dRRΣ(R, φ)Ym
l

∗
(

sin−1(R/∆), φ
)
. (2.206)

All the techniques in this section are special cases of a general method
for finding disk potential-density pairs that is described by Qian (1992).

2.7 The potential of our Galaxy

In this section we investigate the gravitational field of our own galaxy, the
Milky Way. The Galaxy is made of several components, the disk, the bulge,
the stellar halo, and the dark halo. The mix of stars, gas and dark matter
that makes up a galaxy such as our own varies from component to component
and is even likely to depend on location within each component.

Ideally, we should rely solely on dynamical tracers, such as the velocity
fields of gas and stars and observations of gravitational lensing, to map out
the distribution of mass in the Galaxy. Sadly, at the present time such a
project is unfeasible.

Since we are not yet in a position to model the Galactic density and
gravitational field in a purely dynamical way, we flesh out the available dy-
namical constraints with photometric information. In particular, we simply
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assume that each component has a mass-to-light ratio Υ that is independent
of position. For the reason given above, this procedure is arbitrary and un-
satisfactory, but it yields concrete Galactic potentials, which make testable
predictions regarding the kinematics of stars and gas. Proceeding in this
spirit, we now investigate models of our Galaxy, following Dehnen & Binney
(1998a) and BM §10.6.

The brightness distribution of each component is assumed to be similar
to those of external galaxies (BM §§4.3 and 4.4), while the size and total lu-
minosity of each component is determined from photometry and star counts,
or by fitting to the available dynamical constraints. We do not model the
stellar halo here since its contribution to the potential is negligible.

The models are constrained by fitting to the following data (cf. Ta-
ble 1.2):
(i) The circular-speed curve vc(R) for an assumed value of the solar circular

speed, v0 ≡ vc(R0). Since this curve is determined from the line-of-sight
velocities of tracers such as HI clouds and Cepheid stars, the circular-
speed curve depends on v0, which must be determined by other methods.

(ii) The values of the Oort constants (Table 1.2, eq. 3.83, and BM §10.3.3).
(iii) The total surface density within 1.1 kpc of the Galactic plane near the

Sun, Σ1.1(R0), and the contribution of the disk to this density (Ta-
ble 1.1).

(iv) The velocity dispersion of bulge stars in Baade’s window, a line of sight
that passes ∼ 500 pc from the Galactic center in which absorption by
intervening dust is unusually low. We take this dispersion to be 117 ±
15 km s−1.

(v) The total mass within 100 kpc of the Galactic center (eq. 1.12).
(vi) The solar radius R0 = 8 kpc.

The functional forms assumed for each of the Galaxy’s components are as
follows.

(a) The bulge The density of this component is assumed to be

ρb(R, z) = ρb0

(m
ab

)−αb

e−m
2/r2b , (2.207a)

where

m =
√
R2 + z2/q2

b. (2.207b)

For qb < 1 this is an oblate, spheroidal power-law model that is truncated
at an outer radius rb. Its potential is conveniently calculated from equations
(2.125) with

e =
√

1 − q2
b ; ψ(m) = ρb0

∫ m

0

dm2
(m
ab

)−αb

e−m
2/r2b . (2.208)

Near-infrared photometry (BM §10.2.1) suggests values for three of the pa-
rameters, αb = 1.8, qb = 0.6, rb = 1.9 kpc, and without loss of generality,
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we can set ab = 1 kpc. The parameter ρb0, and hence the mass of the bulge,
are determined by fitting the dynamical constraints.

(b) The dark halo By extending the spherical two-power-law models of
§2.2.2f to oblate models, the density of this component is taken to have the
form

ρh(R, z) = ρh0

(m
ah

)−αh
(

1 +
m

ah

)αh−βh

, (2.209)

where m is again given by equation (2.207b) with qb replaced by qh. The
potential of this component, in which the density varies as r−αh for r � ah

and r−βh at large r, can also be obtained from equation (2.125). Clearly,
photometry provides no guidance as to the values of any of the parameters
in equation (2.209); all five parameters ρh0, ah, αh, βh, and qh can only be
determined by fitting the dynamical constraints. The data we use have little
sensitivity to qh, and we arbitrarily set it to 0.8.

(c) The stellar disk The density of the stellar disk is assumed to fall off
exponentially with radius R, as in equation (1.7), and to depend on distance
from the midplane z through the sum of two exponentials, representing the
thin and thick disks described on page 13—this dependence on z is motivated
by observations such as those of Gilmore & Reid (1983), shown in BM Figure
10.25. Mathematically,

ρd(R, z) = Σde−R/Rd

(
α0

2z0
e−|z|/z0 +

α1

2z1
e−|z|/z1

)
, (2.210)

where α0 + α1 = 1, Σd is the central surface density, Rd is the disk scale
length, and z0 = 0.3 kpc and z1 = 1 kpc are scale heights for the thin and
thick components. The potential generated by this density distribution is
given by equation (2.170) with ζ(z) replaced by the expression in large brack-
ets in equation (2.210).

(d) The interstellar medium The disk formed by a galaxy’s interstellar
medium (ism) is thinner and more extended radially than the galaxy’s stellar
disk (see, for example, BM Figures 8.25 and 9.19). In the case of the Milky
Way there is a hole of radius ∼ 4 kpc at the center of the disk of the ism

(BM Figure 9.19). These observations are crudely represented by taking the
density of the ism to be

ρg(R, z) =
Σg

2zg
exp

(
− R

Rg
− Rm

R
− |z|
zg

)
, (2.211)

with Rm = 4 kpc and zg = 80 pc. The parameters Σg and Rg are related
to the parameters Σd and Rd of equation (2.210) by the assumption that
Rg = 2Rd and that the ism contributes 25% of the total disk surface density
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Table 2.3 Parameters of Galaxy models

Parameter Model I Model II

Rd/kpc 2 3.2
(Σd + Σg)/M� pc−2 1905 536
ρb0/M� pc−3 0.427 0.3
ρh0/M� pc−3 0.711 0.266
αh −2 1.63
βh 2.96 2.17
ah/kpc 3.83 1.90
Md/1010 M� 5.13 4.16
Mb/1010 M� 0.518 0.364
Mh,<10 kpc/1010 M� 2.81 5.23
Mh,<100 kpc/1010 M� 60.0 55.9
ve(R0)/km s−1 520 494
fb 0.05 0.04
fd 0.60 0.33
fh 0.35 0.63

notes: In both models 0.75Σ(R0) is contributed by stars, of which 0.05Σ(R0)
is in the thick disk. Interstellar gas accounts for the remaining 0.25Σ(R0). The
thin and thick disks have the same scale length Rd, while the gas disk has scale
length 2Rd and a central hole of radius Rm = 4 kpc. The thicknesses of the disks
are z0 = 300 pc, z1 = 1 kpc, zg = 80 pc. In both models the bulge parameters are
ab = 1 kpc, αb = 1.8, rb = 1.9 kpc, qb = 0.6, while the halo axis ratio qh = 0.8.
The quantity ve(R0) is the escape speed from the solar neighborhood; fb, fd
and fh are the fractions of the radial force supplied by bulge, disk and halo at
R0 = 8 kpc. These are slightly modified forms of Models 1 and 4 of Dehnen &
Binney (1998a).

at the solar radius, R0. The potential implied by equation (2.211) is best
found from equation (2.154).

Dehnen & Binney (1998a) found that fits to the constraints described
above could be obtained for a wide range of models made up of the compo-
nents (a) to (d). The most important single parameter for determining the
properties of a model is the scale length of the stellar disk, Rd. In §1.1.2 we
estimated that Rd lies between 2 and 3 kpc. When Rd is at the lower end
of this range, the disk dominates the gravitational field out to beyond the
solar radius, whereas when Rd = 3 kpc, the halo dominates at all radii. It
is useful to examine the properties of two extreme models, namely the most
and the least halo-dominated models; we designate them Models I and II
and list their parameters in Table 2.3.

Model I has a small scale length, Rd = 2 kpc, and gives rise to the iso-
potential surfaces and circular-speed curves shown in Figures 2.19 and 2.20.
At small radii the halo density is ρh ∝ r−αh = r2, which is the smallest value
of αh allowed by the fitting program—with this disk scale length, the best fit
has the smallest possible halo contribution near the center. Figure 2.20 illus-
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Figure 2.19 The lower right panel shows equipotential contours of a model of the Galaxy
with Rd = 2 kpc (Model I). Contour levels are (−0.5,−1, −1.5 . . .) × (100 km s−1)2. The
top left panel shows the potential of the bulge, while the potentials of halo and disk are
shown at top right and lower left, respectively. From top left to lower right the potentials
at (R, z) = (8 kpc, 0) are −0.28, −10.2, −2.98, −13.46 × (100 kms−1)2.

Figure 2.20 The full curve shows
the circular-speed curve of Model I,
whose potential is contoured in Fig-
ure 2.19. The contributions from the
bulge, halo and disk are shown by
the long-dashed, dotted and short-
dashed curves, respectively. Notice
that the total circular speed is given
by the sum in quadrature of the cir-
cular speeds of the components.

trates the dynamical importance of the disk and bulge interior to the solar
radius, showing that at such radii the halo makes only a small contribution
to the overall circular speed—since v2

c ∝ g, the contribution to the gravita-
tional force is even smaller. This dominance is reflected in the contour plots
of Figure 2.19 by the much closer packing of the equipotential contours of
the bulge (top left panel) and disk (lower left panel) than those of the halo
(top right panel). The equipotential surfaces of the disk are naturally more
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Figure 2.21 Equipotential contours of the halo-dominated Galaxy model, Model II,
which has Rd = 3.2 kpc. The top left panel shows the potential of the bulge, while
the potentials of halo and disk are shown at top right and lower left, respectively. The
lower right panel shows the overall potential with contour levels (−0.5,−1, −1.5 . . .) ×
(100 km s−1)2. From top left to lower right the potentials at (R, z) = (8 kpc, 0) are
−0.20, −9.83, −2.19, −12.21 × (100 km s−1)2 .

highly flattened than those of either the bulge or the halo, so the equipo-
tential surfaces of the total potential are most flattened at radii r ∼ 5 kpc,
where the disk’s potential dominates.

Although in Model I the disk dominates the gravitational field (potential
gradient) at R0, the halo makes by far the largest contribution to the total
potential at all radii. For example, at the Sun’s location the halo contributes
−10.2 × (100 km s−1)2 to the overall potential, while the disk and bulge to-
gether contribute only −3.26 × (100 km s−1)2. The large contribution from
the halo reflects the its enormous mass, most of it beyond R0. Just how
much mass the halo contains is ill-determined because the Galaxy’s circular
speed vc(R) is uncertain beyond ≈ 2R0.

Figures 2.21 and 2.22 analyze the potential of Model II, a model that has
a larger disk scale length, Rd = 3.2 kpc. As Figure 2.22 shows, in this model
the halo dominates the circular speed at all radii. It does so because it is much
more centrally concentrated than the halo of Model I: at small r its density
rises towards the center as r−1.63 rather than falling as in Model I. At the
solar position the escape speed in this model is ve(R0) = 494 km s−1, which is
observationally indistinguishable from ve(R0) = 520 km s−1 in Model I; both
are consistent with the observational estimate ve(R0) = (550± 50) km s−1 in
Table 1.2.
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Figure 2.22 The full curve shows
the circular-speed curve of Model II.
The contributions from the bulge,
halo and disk are shown by the long-
dashed, dotted and short-dashed
curves, respectively.

Figure 2.23 In each panel the full curve shows as a function of z in a Galactic model the
force towards the galactic plane, Kz = ∂Φ/∂z at R0 = 8 kpc. The contributions from the
bulge plus halo and disk are shown by the dotted and dashed curves, respectively. The
left panel is for disk-dominated model, Model I (Figures 2.19 and 2.20), while the right
panel is for Model II (Figures 2.21 and 2.22).

One of the striking conclusions from these models is that the relative
contributions of the disk and the halo to the interior mass and the circular
speed at R0 are very uncertain. As Rd varies from 3.2 kpc to 2 kpc, the
mass of the dark halo inside 10 kpc decreases by nearly a factor 2 and the
fraction of the gravitational force at R0 contributed by the halo falls9 from
0.63 to 0.35. Similar uncertainties are encountered in models of external
disk galaxies (van Albada et al. 1985; Sellwood 1999). This degeneracy
between the disk and halo parameters has to be resolved by bringing other
observational constraints or dynamical arguments to bear, such as those
obtained from measurements of the dynamics of galactic bars (§6.5.2e), and

9 Models in which most of the force at ∼ 2Rd comes from the disk are called
“maximum-disk models”—see §6.3.3.
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Figure 2.24 Schematic diagram of the Galactic
bar.

the optical depth to gravitational microlensing towards the Galactic center
(Bissantz & Gerhard 2002; Famaey & Binney 2005).

Even though the halo of Model II dominates the circular speed at R0,
Figure 2.23 shows that the vertical force towards the disk, Kz = ∂Φ/∂z, is
dominated by the disk within ∼ 2 kpc of the plane. Even a relatively low-
mass disk can dominate Kz in this way because a disk’s contribution to Kz

rises extremely quickly near the plane, where the density of disk material is
high. Above one scale height, ∼ 200 pc, the disk’s contribution to Kz flattens
off to the nearly constant value 2πGΣ(R) (cf. Problem 2.3). By contrast,
in both panels of Figure 2.23 the halo’s contribution to Kz (dotted curves)
rises nearly linearly with z out to several kiloparsecs above the Sun. Notice
how similar the full curves in Figure 2.23 are: despite the very different
contributions to vc from disk and halo in the two models, the shape of the
observationally measurable quantity Kz (§4.9.3) is almost the same in the
two cases.

(e) The bulge as a bar There is both kinematic and photometric evi-
dence that the Milky Way’s bulge is in fact a bar, that is, a highly elongated,
rapidly rotating stellar system (§6.5 and BM §§9.4 and 10.1). From the van-
tage point of the Sun, it is hard to determine the precise shape of the bar,
but, as sketched in Figure 2.24, the bar is believed to extend to a Galacto-
centric radius ∼ 3 kpc, with its longest axis inclined by about 20◦ to the line
from the Sun to the Galactic center (Bissantz & Gerhard 2002). The lengths
of the bar’s semi-axes are roughly in the ratios 1 : 0.3 : 0.3.

Both photometric studies of the bar itself and comparisons with bars in
other galaxies suggest that the isodensity surfaces deviate significantly from
ellipsoids (López–Corredoira et al. 2005). Nonetheless, when considering the
impact that the bar has on the Galaxy’s gravitational potential, it is useful to
start by approximating the isodensity surfaces by ellipsoids for in this case we
can obtain the potential from equation (2.140)—if a more exact result were
required, one could expand the difference ρ(x) − ρe(x) between the actual
density distribution ρ and the elliptical model ρe in spherical harmonics,
and obtain the small correction to the potential from equation (2.95). In
this spirit, we estimate the effect of the bar on the Galaxy’s potential by
fashioning a bar out of the axisymmetric bulge of Model I as follows.

In equations (2.207) we increase the scale radius rb from 1.9 kpc to 3 kpc,
and redefine m by m2 = x2 + (y2 + z2)/q2, where x runs along the bar’s long
axis. We adopt q = 0.35 and increase ρ0 so that the bar has roughly the
same mass as the original bulge. In Figure 2.25 the full curves show the
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Figure 2.25 Full curves show the intersection with the Galactic plane of the isopotential
surfaces of a model of the galactic bar. For comparison the dotted curves show the same
curves for the axisymmetric bulge of Model I.

intersection with the Galactic plane of the bar’s isopotential surfaces, while
the dotted curves show the corresponding curves for the bulge of Model I.
As expected, the bar’s isopotential surfaces are elongated. The effect is very
small near the solar circle but appreciable at R ∼< 5 kpc. On account of this
elongation, the potential now generates tangential forces: Along a radius
that makes an angle of 45◦ with the bar’s long axis, the ratio Fφ/Fr of the
tangential and radial forces from the bar falls from 0.4 at the center to 0.27 at
2 kpc and 0.125 at 4 kpc. From Figure 2.20 we see that the bulge dominates
Fr at R ∼< 1 kpc, so in this crude model tangential forces are very important
at small radii. Conversely, at R ' 4 kpc the bulge contributes only 11% of
Fr, so at that radius Fφ is only ∼ 1% of Fr. Nonetheless, the tangential
forces that the bar induces can be dynamically significant for resonant orbits
as far out as the solar circle because along such orbits the effect of Fφ can
accumulate over several periods (§3.7.2 and Dehnen 2000a).

We conclude that accurate models of the triaxial bar are needed to
understand the dynamics of the Milky Way at R ∼< 2–3 kpc, and possibly
beyond.

2.8 Potentials from functional expansions

A common theme of many of the methods we have described is the expan-
sion of the gravitational potential and density in a set of functions that are
potential-density pairs. We shall encounter such methods again in §2.9.4
as efficient tools for N-body simulation, and in §5.3.2, where we study lin-
ear response theory for stellar systems. In this section we re-examine these
techniques from a general standpoint.

The basic idea of §2.3 was to approximate a real galactic density dis-
tribution by a density for which the potential is known analytically. Only a
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small number of different functional forms for the density were presented, so
with them the potential of a given galaxy could not be calculated to arbitrary
accuracy. In §§2.6.2 to 2.6.4 we described a second approach: representing
the system’s density as an infinite sum of density distributions of known
potential—for example the Bessel-function distributions Σkm(R, φ) that are
defined by equations (2.179). This second approach has the advantage that
the potential and density can be approximated to arbitrarily high accuracy.
However, a good approximation will require that a large number of terms are
taken in the sum for the potential, because none of the density distributions
of individual terms resembles real galaxies.

Here we show how to combine the best aspects of these two approaches.
In mathematical language, we find pairs of (possibly complex) basis func-
tions Φβ(x) and ρβ(x) for β = 1, 2, . . ., that satisfy

∇2Φβ = 4πGρβ , (2.212)

and determine coefficients aβ such that the density of the system under study
can be written as the sum

ρ(x) =
∑

β

aβρβ(x); (2.213a)

then the system’s potential Φ(x) is given by

Φ(x) =
∑

β

aβΦβ(x). (2.213b)

We determine the coefficients aβ as follows. We multiply equation
(2.213a) by −Φ∗

α and integrate over all space to obtain

sα =
∑

β

Mαβaβ, (2.214a)

where

sα = −
∫

d3x Φ∗
α(x)ρ(x) ; Mαβ = −

∫
d3x Φ∗

α(x)ρβ(x). (2.214b)

The elements of the matrix M have a simple physical interpretation: Mαβ is
minus the potential energy of the density distribution ρβ in the gravitational
potential Φ∗

α. Using Poisson’s equation (2.212) and applying the divergence
theorem (B.45), we can show that M is a Hermitian matrix:10

Mαβ = − 1

4πG

∫
d3x Φ∗

α∇2Φβ

= − 1

4πG

∮
Φ∗
α∇Φβ · d2S +

1

4πG

∫
d3x∇Φ∗

α · ∇Φβ .

(2.215)

10 In the language of linear operators, the natural inner product on the space spanned
by {Φα} is (f, g) = −(4πG)−1

R
d3x f∗∇2g. Then (f, g) = (g, f)∗ is minus the interaction

energy of the density distributions associated with the potentials f∗ and g.
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The surface term vanishes when the integral is taken over all space, because
Φα falls off at least as fast as r−1. This result shows that Mαβ = M∗

βα so M is
Hermitian. Note that M does not depend on the galactic mass distribution,
so it can be computed once and for all after the basis potentials Φα have been
chosen, and subsequently used time and again to follow the evolution of the
potentials of many different galaxies, or of a single dynamically evolving
galaxy.

The coefficients aβ can now be found by solving the linear equation
(2.214a). We can choose the basis functions to facilitate this process. There
are two strategies for exploiting this freedom.

(a) Bi-orthonormal basis functions We choose the basis functions
such that M is the unit matrix, so equation (2.214a) has the trivial solution
aα = sα. From equation (2.214b) we see that this requires that the basis
functions are bi-orthonormal:

−
∫

d3x Φ∗
α(x)ρβ(x) = δαβ . (2.216)

A straightforward way of ensuring bi-orthonormality is to require that the
Φα are eigenfunctions of the Hermitian operator ∇2—in this case ρα ∝ Φα,
and the orthogonality of Φα and ρβ is assured by the usual theorem that the
eigenfunctions of a Hermitian operator are mutually orthogonal. Examples
include the three functional expansions for disk potentials described in §§2.6.2
to 2.6.4. In §5.3.2 we shall use bi-orthonormal functional expansions to
investigate the stability of stellar systems.

(b) Designer basis functions In principle a and s are vectors of infi-
nite dimension. In practice it is necessary to truncate them and work with
finite-dimensional vectors and matrices. The philosophy of designer ba-
sis functions is to choose the basis functions so that the galaxy can be
accurately represented by the smallest possible number of them; the compu-
tational savings of having smaller vectors and matrices can more than offset
the disadvantage that M no longer has a simple form. The approach is most
easily described by a concrete example. We examine the important special
case in which each basis function is the product of a function of radius r and
a spherical harmonic:

Φn(x) = Fn(r)Ym
l (Ω), (2.217)

where the potentials are enumerated by the vector n = (n, l,m), which has
integer components, rather than the index α used above; here n indexes an
infinite number of radial functions for each spherical harmonic. Since the
spherical harmonics (eq. C.44) are orthogonal, M is now block diagonal,
that is, Mn′n = 0 for l′ 6= l or m′ 6= m. Thus the equations (2.214a) can be
solved separately for each spherical-harmonic index pair (l,m).

Applying the Laplacian operator (C.49) to equation (2.217), we find
with Poisson’s equation (2.212) that ρn is given by

4πGρn(x) = ∇2Φn = Ym
l (Ω)

[
1

r2

d

dr

(
r2 dFn

dr

)
− l(l + 1)

r2
Fn

]
. (2.218)
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For any choice of the radial function Fn, equations (2.217) and (2.218) yield
a potential-density pair. We now exploit this freedom to arrange for the first
few functions Φn in the set to provide a good approximation to the potentials
of real galaxies. One way of doing this is to set F000(r) equal to the potential
of one of the two-power-law models described in §2.2.2g. For guidance in
choosing F0lm for l > 0 we turn to the solution of Poisson’s equation that we
obtained in terms of spherical harmonics in §2.4. Considering the coefficient
of Ym

l in equation (2.95), we see that the terms proportional to rl will be

dominant at small r and the terms proportional to r−(l+1) will be dominant
at large r. These observations imply that a promising choice for F0lm is

F0lm(r) = Fl(r) ≡
rl

(1 + r/r0)2l+1
(l > 0), (2.219)

where r0 is a suitable scale radius. If we also apply this equation for l = 0,
then F0(r) is proportional to the potential of a Hernquist model (eq. 2.67),
consistent with our earlier argument that F000 should be the potential of a
two-power-law galaxy model.

We must still expand our basis to include functions Fn(r) for each given
(l,m) and n > 0 to describe accurately the radial dependence. To this end
we write

Fnl(r) ≡ Fn(r) = Un(r)Fl(r), (2.220)

where U0(r) = 1 and the set of Un is complete. A possible choice would be

Un(r) = un where u ≡ r/r0 − 1

r/r0 + 1
(−1 ≤ u < 1). (2.221)

When our choice of basis functions is inserted in equation (2.214b), we find
with equation (2.218) that the matrix M and the vector s take the forms

Mn′n = −(4πG)−1δl′lδm′m

∫
dr F ∗

n′l(r)

[
d

dr

(
r2 d

dr

)
− l(l+ 1)

]
Fnl(r)

sn′ = −
∫

d3x Ym∗
l (Ω)F ∗

n′l(r)ρ(x).

(2.222)
It is possible to combine the best features of bi-orthonormal and designer

basis functions. For example, if we choose Fnl(r) = Unl(r)Fl(r), where Fl(r)
is given by (2.219) and Unl(r) is an appropriate polynomial in the variable u
defined by equation (2.221), the designer basis functions are bi-orthonormal
(Hernquist & Ostriker 1992).
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2.9 Poisson solvers for N-body codes

Our understanding of stellar dynamics has been profoundly advanced by N-
body codes, computer programs that follow the motion of a large number of
masses under their mutual gravitational attraction. Our discussion of these
codes is in three parts: here we discuss the algorithms they use to find forces,
in §3.4 we discuss the algorithms they use to move particles, and in §4.7.1
we discuss their general principles.

Realistic systems often contain many more particles than it is feasible
to follow in a computer—for example, the Milky Way contains in excess of
1011 stars and 1069 GeV/(mc2) dark-matter particles of mass m. Currently
even the largest computers cannot work efficiently with more than ∼ 1010

particles. Therefore there are two distinct types of N-body calculation with
very different methodologies and problems. Collisional N-body codes
simulate the evolution of a system with N∗ stars by numerically integrating
the equations of motion of exactly N = N∗ particles. Collisionless N-body
codes simulate the evolution of N∗ stars by following the motion of N � N∗
particles.

Collisional N-body codes are used to model systems in which relaxation
is important (§1.2 and Chapter 7), in the sense that the relaxation time (1.38)
is less than the duration of the numerical integration. They must accurately
follow close encounters between stars, the formation and evolution of binary
and triple stars, etc. These are challenging tasks because of the wide range
of time and length scales involved. For example, a globular cluster may have
binary stars with periods as short as hours, and yet evolve on a timescale of
10 Gyr.

Collisionless codes are easier to write but harder to understand and
justify. They are used to model systems over times much shorter than the
relaxation time. Since the number of particles N � N∗, the relaxation
time in the model system is much smaller than that in the system being
modeled; the philosophy is that the model is nevertheless accurate because
the duration of the integration is much less than the relaxation time of either
the real system or the model.

In essence, a collisionless code attempts to mimic the evolution of a
system that contains infinitely many particles. Consequently, the system’s
density distribution is to be thought of as a continuum ρ(x, t), and the actual
locations of the particles that model the system in the computer should be
regarded as Monte-Carlo samplings of the probability-density distribution in
position and velocity (§4.1).

N-body simulations—whether collisional or collisionless—use a simple
principle: from the current positions of the particles, we derive the gravita-
tional force on each particle. Then we use this force to advance the position
and momentum of each particle for a short time, and find new forces. A
major challenge is to produce code that will efficiently calculate the gravi-
tational forces on a large number of bodies. We call such code a Poisson
solver.
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Poisson solvers for collisional problems can be designed to be essen-
tially perfect: in §7.4.6d we shall see that the conceptually difficult part of a
collisional simulation is integrating the orbits of particles. By contrast, Pois-
son solvers for collisionless simulations are fundamentally limited by particle
noise: since we do not really know ρ(r) but only the locations of a finite
number of particles that sample ρ(r), we cannot recover Φ(r) accurately no
matter how much potential theory we know. On account of this fundamen-
tal limitation, Poisson solvers for collisionless simulations inevitably involve
a compromise between inadequate resolution and excessive statistical noise.
Some solvers are undoubtedly better than others, but the solver that is best
suited to a given simulation depends on the scientific problem that is to be
addressed. In this section we describe the most important types of Poisson
solver, and discuss their strengths and weaknesses.

2.9.1 Direct summation

Consider evaluating the force on particle α by simply summing the contri-
butions from all the other particles in the simulation,

Fα =
∑

β 6=α
Gmβ

rβ − rα
|rβ − rα|3

. (2.223)

Each such force evaluation involves the calculation ofN−1 distances |rβ−rα|.
Each distance can be used twice, once for the contribution of particle β to
the force on particle α and once for the force from particle α on particle β.
So, if forces are evaluated by direct summation a minimum of 1

2N(N − 1)
distances have to be evaluated, where N � 1 is the number of particles in
the simulation. Thus, the work per timestep increases with N as N 2. Below
we shall see that there are vastly more efficient ways of evaluating forces,
which scale as N lnN .

The first N-body calculations were restricted to small values of N , for
which the difference between N2 and N lnN is not large, so direct sum-
mation was a viable option. For the values of N > 10 000 now current,
N2/(N lnN) > 103, so direct summation is in principle not an attractive
strategy. Notwithstanding this fact it is still in use because its simple formu-
lae can be encoded in hardware, so special-purpose processors can calculate
forces between tens of thousands of particles at acceptable speeds (Makino
et al. 2003).

Softening If two particles, say α and β, approach each other closely, the
term in equation (2.223) that describes the force Fαβ between them becomes
large. This phenomenon is problematic for both collisional and collisionless
calculations, for different reasons.

In the collisional case the divergence of Fαβ as rα → rβ is a real physical
effect, but one that is computationally awkward because it implies that the
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equations of motion of particles α and β have to be integrated with very
small timesteps. Unless sophisticated workarounds such as “regularization”
(§3.4.7) are employed to handle this situation, close encounters can bring the
integration virtually to a halt. “Softening” of the force-law as described be-
low is an expedient that keeps the integration moving along at an acceptable
pace at the price of a loss of realism.

In the collisionless case the divergence of Fαβ predicted by equation
(2.223) is entirely unphysical, for the mass distribution we are trying to
model is inherently smooth. The divergence is an artifact of the Monte-
Carlo sampling of the density distribution. In this case softening can enhance
rather than detract from the realism of the simulation.

Softening involves replacing equation (2.223) with

Fα =
∑

β 6=α
GmβSF(|rβ − rα|)

rβ − rα
|rβ − rα|

. (2.224)

This equation differs from (2.223) only in the replacement of r−2 by SF(r),
where r = rβ−rα. SF(r), the force softening kernel, is some function that
tends to r−2 for values of its argument bigger than the softening length
ε, and tends smoothly to zero for small values of its argument. Equation
(2.224) has the desirable features that: (i) the force exerted by particle β
on particle α, GmαmβSF (r)r/r, is equal and opposite to the force exerted
by α on β, so Newton’s third law is satisfied; (ii) the force between any
two particles acts along the line that joins them; (iii) the force approaches
the usual gravitational force at large separations; (iv) the force between two
particles at the same location is zero.

SF(r) is the derivative of another function S(r), the softening kernel,
which appears in the equation for the potential at the location of particle α:

Φα ≡ Φ(rα) =
∑

β 6=α
GmβS(|rβ − rα|). (2.225)

A widely used form of S is

S(r) = − 1√
r2 + ε2

. (2.226)

In this case, the gravitational potential of each particle is just that of a
Plummer sphere of scale length ε (eq. 2.44a). In a collisionless simulation this
makes physical sense: the mass that is represented by a particle is in reality
distributed through a non-zero volume.11 The density law of a Plummer
sphere (eq. 2.44b) places most of the sphere’s mass inside r = ε, so the
natural choice is to make ε of order the inter-particle separation.

11 Note that in this model the softened force between two particles is the force between
a point mass and a Plummer sphere, not the force between two Plummer spheres.



2.9 Poisson solvers for N-body codes 125

In collisionless simulations the choice of softening kernel and softening
length is a compromise between maximizing the smoothness of the force-
field and minimizing the degradation of the spatial resolution caused by the
softening. Despite its popularity, the choice (2.226) of S is not optimal in
this sense, because the density of a Plummer sphere falls off too slowly with
radius. A better choice is

S(r) = − r2 + 3
2ε

2

(r2 + ε2)3/2
, (2.227)

which amounts to replacing the potential of each particle with that of a
sphere of radius ε in which the density is proportional to (r2 + ε2)−7/2. See
Dehnen (2001) for a discussion of the merits of various softening kernels.

An ideal Poisson solver would allow ε to vary as a particle moves from a
high-density to a low-density region. In practice most contemporary Poisson
solvers use fixed softening due to technical difficulties associated with energy
conservation.

We now consider algorithms that enable one to evaluate the sum (2.225)
to high accuracy in a number of arithmetic operations that scales as N lnN ,
rather as N2.

2.9.2 Tree codes

Our discussion is based on Dehnen (2000b). The particles are first organized
into a structure that was introduced by Barnes & Hut (1986): we place an
imaginary cube around the simulation and divide it into eight equal sub-
cubes. If any sub-cube contains more than one particle, we divide it in turn
into eight equal cubes, and so on until every cube contains at most one
particle. This hierarchy of cubes forms an oct-tree, and the original cube is
called the root of the tree. Each cube after the root has a parent cube, and
seven sibling cubes. Any cube that contains more than one particle has eight
child cubes. There is a clear analogy with a real tree, whose trunk divides
into great boughs, which divide into branches, which divide into twigs, which
ultimately carry leaves. Particles are the leaves of our oct-tree.

Suppose now that we locate the center of mass of the particles in each
cube and evaluate the sums

M0 ≡
∑

α

mα ; Mij =
∑

α

mαx
α
i x

α
j ; Mijk =

∑

α

mαx
α
i x

α
j x

α
k

(2.228)
and so forth, where the sums run over the particles in the cube and xα is
the position vector of particle α relative to the cube’s center of mass. This
hierarchy of sums is closely related to the multipole expansion of §2.4, and
these quantities are called the Cartesian multipole moments. The three
in equation (2.228) are the monopole, quadrupole, and octopole moments.
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Box 2.2: Scaling of tree codes

Consider the work involved in determining the potential at the location
of one of N simulation particles. For simplicity we assume that the
system is not very inhomogeneous, although the argument we give can
be generalized. The sum over cubes for the potential includes some cubes
(“leaves”) that contain only one particle, the rest being “branches” that
contain more than one particle. All branch cubes have opening angle
≤ θo, while most of the leaf cubes have opening angle > θo. If the
simulation is representing a system of linear size L, the leaf cubes have a
characteristic linear size l = L/N 1/3 and lie within distance ∼ D = l/θo

of the given particle; hence there are ∼ (D/l)3 = θ−3
o leaf cubes.

Suppose we now increase the number of simulation particles by a
factor 8. Then branch cubes will continue to be branch cubes and will
not require further subdivision because the angles they subtend are < θo.
Hence the extra work that comes with increased N arises mainly from
the θ−3

o leaf cubes that previously had only one particle; most will now
need to be subdivided. Thus every time we increase N by a factor 8
we have to do a fixed amount of additional work. It now follows that
the work required to determine the potential at the location of a given
particle is proportional to lnN , and the work involved in determining
the forces on all particles scales as N lnN .

The object Mi =
∑

αmαx
α
i that might have been listed in equation (2.228)

is the cube’s dipole moment, and it vanishes identically by virtue of the fact
that xα is the position of α relative to the center of mass. If the cube is one
of the tree’s leaves, M0 = mα and all the other multipoles vanish. There
are of order N log2N cubes in the tree, so the labor involved in setting it up
scales as N lnN .

Once the tree has been constructed, we can evaluate the sum (2.225)
that yields the potential at any location x to good accuracy with only ∼
lnN operations as follows. We first consider evaluating the force as the
sum of the forces due to the monopole, quadrupole, octopole, . . . , 2k-pole
etc., of the root cube, up to some predetermined order k = K. This sum
would converge rapidly and could be truncated after a few terms without
unacceptable inaccuracy if x were remote from the root cube in the sense
that the root cube subtended a small opening angle θo, say θo ∼< 1◦, at
x. In general, x will lie within the root cube, so the desired condition will
be not be satisfied. However, we may then instead consider evaluating the
potential by summing the multipole contributions from each of the root’s
eight child cubes. If any of these subtends an angle at x that exceeds θo, we
consider the sum of the multipoles of its children, and so on recursively until
the whole potential is obtained as a sum of the multipoles from cubes that
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subtend angles at x smaller than θo. Some of these final cubes will be leaves,
which are deemed to subtend zero angle, because they contain only a single
particle. The key point is that as the number of particles in the simulation
is increased, the number of cubes over which we sum to get the force at x
increases much more slowly—see Box 2.2.

Cartesian multipole expansion To derive explicit formulae for the po-
tential in terms of the multipoles of cubes, we now develop some of the theory
of Cartesian multipoles. We consider the contribution to the gravitational
potential Φ at position X in cube A that is generated by the matter in cube
B. We have

Φ(X) = G

∫

cube B

d3Y S(X−Y)ρ(Y), (2.229)

where ρ is the matter density and S is the softening kernel (eq. 2.225). We

specialize to the case of well-separated cubes and write X = X̂ + x and
Y = Ŷ + y, where X̂ and Ŷ are the centers of mass of cubes A and B,
respectively. Then we Taylor expand S(X − Y) in powers of x − y around

X̂ − Ŷ:

S(X−Y) = S(X̂ − Ŷ) +

3∑

i=1

(x − y)i
∂S(R)

∂Ri

∣∣∣∣
R=X̂−Ŷ

+
1

2!

3∑

i,j=1

(x − y)i(x − y)j
∂2S(R)

∂Ri∂Rj

∣∣∣∣
R=X̂−Ŷ

+ · · ·

=
∑

n

1

n!
(x − y)(n) ·

[
∂(n)S(R)

]
R=X̂−Ŷ

.

(2.230)

Here the last line employs a notation in which r(n) ≡ ri1ri2 · · · rin is a product
of n components of the vector r and ∂(n) is the corresponding product of
partial derivatives with respect to these components, while the centered dot
implies summation over all the n indices ik (a total of 3n terms). Substituting
(2.230) into (2.229), we obtain

Φ(X̂ + x) = G
∑

n

1

n!

[ ∫
d3y ρ(Ŷ + y)(x − y)(n)

]
·
[
∂(n)S(R)

]
R=X̂−Ŷ

.

(2.231)
Using the expansion

(x − y)(n) =

n∑

k=0

n!

k!(n− k)!
x(k)y(n−k), (2.232)

we have

Φ(X̂ + x) = G
∑

n

n∑

k=0

1

k!(n− k)!
x(k)M(n−k) ·

[
∂(n)S(R)

]
R=X̂−Ŷ

, (2.233)
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Box 2.3: Derivatives of a spherically
symmetric softening kernel

Consider the case of a spherically symmetric softening kernel S(R), i.e.,
one of the form S(|R|). In this case the evaluation of the first few tensors
∂(n)S is straightforward:

∂(1)S(R) = S′Ri
R

∂(2)S(R) =
(
S′′ − S′

R

)RiRj
R2

+
S′

R
δij

∂(3)S(R) =
(
S′′′ − 3

S′′

R
+ 3

S′

R2

)RiRjRk
R3

+
(
S′′ − S′

R

)δijRk + δjkRi + δkiRj
R2

∂(4)S(R) =
(
Siv − 6

S′′′

R
+ 9

S′′

R2
− 9

S′

R3

)RiRjRkRl
R4

+
(
S′′′ − 3

S′′

R
+ 3

S′

R2

)(
δijRkRl + δjkRiRl + δkiRjRl

+ δilRjRk + δljRiRk + δlkRiRj
)
/R3

+
(
S′′ − S′

R

)δijδkl + δikδjl + δilδjk
R2

where

M(k) ≡
∫

cube B

d3y ρ(Ŷ + y)y(k). (2.234)

When the density distribution is simulated with particles, ρ(r) =
∑
αmαδ(r−

rα) is a sum of delta functions centered on the locations of the particles. In
this case the integral in (2.234) can be immediately evaluated and yields the
objects defined by equations (2.228).

Equation (2.233) expresses the potential generated by cube B at an
arbitrary point in cube A as a power series in the components of x, the
separation between the point of observation and A’s center of mass. The
coefficients in this power series are made up of (a) the multipole moments
of B, which were evaluated during tree construction, and (b) the derivatives
∂(n)S of the softening kernel evaluated on the vector R that joins the centers
of mass of the two cubes, which can be evaluated once and for all at the
start of the integration. Once these quantities are all to hand, we can quickly
evaluate the force on every particle in cube A by summing the series with
the appropriate value of x. The derivatives ∂(n)S are explicitly evaluated for
a spherically symmetric kernel in Box 2.3.
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An important simplification arises because the same derivatives occur
in the analogous series for the potential that cube A generates at a point
within cube B. Dehnen (2000b) explains how one can exploit this fact, both
to accelerate the computation and to achieve exact momentum conservation.

Unlike some of the codes that we are about to present, a tree code em-
ploys no grid. This feature enables tree codes to handle problems such as
galaxy mergers, in which dense stellar systems move through a large volume
of nearly empty space—most grid-based codes cannot handle such problems
efficiently because they would waste most of their computing resources cover-
ing low-density regions with the same high-resolution grid that they require
to handle the dense stellar systems. Another merit of tree codes is that they
are readily parallelized by, for example, delegating to a different processor
construction of each of the trees that emerge from the root’s eight child
cubes.

2.9.3 Particle-mesh codes

A wide variety of N-body codes solve Poisson’s equation using estimates
of the density at a set of regularly spaced points, the nodes of a mesh or
grid. The simplest mesh is a Cartesian grid and we concentrate on this case,
although most of the principles we describe carry over to other meshes, such
as ones based on spherical polar coordinates. More detail can be found in
Hockney & Eastwood (1988).

The process of estimating the density on a grid from the positions of a
large number of particles that trace the density is called mass assignment
because it involves assigning the mass of each particle to one or more nearby
nodes. The simplest algorithm is to assign all of the mass of each particle to
the nearest node. This procedure, which is known as the nearest grid point
(NGP) scheme, is rarely used for two reasons. First, the NGP scheme only
samples the density distribution crudely. Second, as explained on page 134
below, for technical reasons associated with momentum conservation the
NGP scheme leads to solutions of Poisson’s equation in which forces change
discontinuously midway between nodes.

Better mass-assignment schemes spread the mass of each particle over
several nearby nodes. Box 2.4 describes a hierarchy of widely used schemes
that spread the mass over 1, 2D, 3D, . . . nodes of a D-dimensional grid. If
we decide on one node, we have the NGP scheme. If we want to split a
particle’s mass over 2D nodes, the resulting scheme is called the cloud in cell
(CIC) mass-assignment scheme because it may be visualized by expanding
every mass point into a homogeneous cube with side length equal to the
grid spacing, and assigning every mass element in this cube to the nearest
node (Figure 2.26). If we split a particle’s mass over 3D nodes, we have
the triangular shaped cloud (TSC) mass-assignment scheme, so called
because the scheme may be derived by regarding the particle to be a cloud
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Box 2.4: Mass assignment schemes

A mass-assignment scheme is a function Wp(r) that gives the fraction of
the mass of a particle at r that is assigned to node p. Here p is a triple
of integers and the node’s location is xp = (p1, p2, p3)∆, with ∆ the grid
spacing. The simplest schemes for a three-dimensional Cartesian grid are
the product of three functions, each evaluated on one component of r

Wp(r) = w(x − p1∆)w(y − p2∆)w(z − p3∆).

The condition that all the mass is assigned somewhere is
∑

pWp(r) = 1,

which is assured if M0 ≡∑i w(x− i∆) = 1. Additional constraints arise
from demanding that the grid-scale fluctuations are as small as possible
at large distances. Suppose that we are modeling a one-dimensional
potential with softening kernel S(x). Then the potential due to a mass
m at x is Φ(x′) = mS(x′ − x). The potential computed from a grid is

Φg(x′) = m
∑

i

w(x − i∆)S(x′ − i∆).

If |x′ − x| � ∆, we can Taylor expand S(x′ − i∆) in powers of x− i∆:

Φg(x′) = m
∑

i

∞∑

n=0

1

n!
w(x − i∆)S(n)(x′ − x)(x − i∆)n,

where S(n) is the nth derivative of S. If condition M0 = 1 is satisfied,
the n = 0 term equals the exact potential, so grid-scale fluctuations are
minimized if

Mn ≡
∑

i

(x− i∆)nw(x − i∆) = constant for n = 1, 2, . . .

If the mass is distributed between two nodes,

w(x) =

{
1 − |x|/∆ for |x| < ∆,
0 otherwise,

(1)

satisfiesM0 = 1, M1 = 0. This is the cloud in cell (CIC) mass-assignment
scheme. If the mass is distributed between three nodes,

w(x) =





3
4 − |x|2/∆2 for |x| < 1

2∆

1
2 ( 3

2 − |x|/∆)2 for 1
2∆ < |x| < 3

2∆

0 otherwise.

(2)

satisfies M0 = 1, M1 = 0, M2 = 1
4∆2. This is the triangular shaped

cloud (TSC) mass-assignment scheme. There is an alternative three-
node scheme in which M2 = 0, but in this scheme w(x) is discontinuous
at |x|/∆ = 1

2 ,
3
2 , whereas in the TSC scheme w(x) is continuous and

differentiable.
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Figure 2.26 The CIC (left) and TSC (right) mass-assignment schemes in one dimension.
The dotted lines mark the boundaries between cells of the grid, and the rectangle (CIC) and
triangle (TSC) represent the mass of the particle. Mass is assigned to cells in proportion
to the fraction of the area of the rectangle or triangle that lies in each cell—for example,
the shaded portions are assigned to cell 1.

in which the mass density falls linearly with coordinate differences from the
location of the particle (Figure 2.26).

In the NGP scheme, the mass assigned to a node changes discontinuously
as a particle moves through the grid. In the CIC scheme, the mass changes
continuously but with discontinuous first derivative. In the TSC scheme,
both the mass and its derivative change continuously. In view of the role a
mass-assignment scheme plays in force interpolation—see page 134 below—
the progressive increase in smoothness as one proceeds up this hierarchy of
mass-assignment schemes is valuable. This advantage must be set against
two disadvantages of proceeding up the hierarchy: (i) in three dimensions
the computational cost increases rapidly as the number of nodes to which
mass is assigned increases from 1 for NGP, to 8 for CIC, 27 for CIC, etc.;
(ii) spreading mass over many nodes involves a loss of spatial resolution. In
practice the most widely used schemes are CIC and TSC.

Given the density on the mesh, we are ready to solve Poisson’s equation
for the potential. To do this we must specify boundary conditions, which in
practice are one of two types: periodic and vacuum. Periodic boundary
conditions are used when the grid is imagined to be one cell of an infinite
lattice; these are natural for cosmological simulations. With vacuum bound-
ary conditions we require that at large distances Φ → −GM/r, where M is
the total mass on the grid. These are appropriate for simulations of isolated
stellar systems.

(a) Periodic boundary conditions We solve Poisson’s equation by rep-
resenting ∇2 as a finite-difference operator. For example, we can make the
approximation

(
∇2Φ

)
lmn

'
(
Φl+1,m,n + Φl−1,m,n + Φl,m+1,n + Φl,m−1,n

+ Φl,m,n+1 + Φl,m,n−1 − 6Φl,m,n
)
/∆2,

(2.235)

where ∆ is the mesh spacing. This substitution converts the Poisson equa-
tion into a large system of linear equations for the Φlmn in terms of the
known ρlmn. The system obtained by equating (2.235) to 4πGρlmn is most
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efficiently solved using discrete Fourier transforms (DFTs; see Appendix G
and Problem 2.23).

(b) Vacuum boundary conditions Consider now how to solve Poisson’s
equation with vacuum boundary conditions. We use the integral form of
Poisson’s equation (2.3), or its smoothed form (2.229), in which the softening
kernel S already contains our choice of boundary conditions. We write

Φ(r) = G
∑

p

S(r− rp)mp, (2.236)

where mp is the mass assigned to node p. The labor required to evaluate
Φ at the location of every particle is proportional to the number of particles
times the number of nodes. A much more efficient approach is to evaluate Φ
only at the nodes, and then to interpolate to the locations of particles. At
the nodes, equation (2.236) reads

Φq = G
∑

p

Sq−pmp, (2.237)

where p and q are three-vectors with integer components in the range (0,K−
1), with K the number of nodes along a side of the computational box. In
equation (2.237), each component of S’s subscript ranges from −(K − 1)
(when q1 = 0 and p1 = K − 1) to K − 1 (when q1 = K − 1 and p1 =
0). Thus S’s subscript has components that take on 2K − 1 values, while
the subscript of m has components that range over only K possible values.
Discrete Fourier transforms provide an extremely efficient way of solving
equations of this form, but before we can apply them, we have to make
the problem symmetrical in the subscripts, and arrange for them to take 2n

values, for some integer n. We do this by taking K = 2n−1 and padding m
out to a matrix of size (2K)3, whose subscripts cover the range (−K,K− 1)
with mp set to zero when any component of the subscript lies outside the
physically significant range, (0,K−1). Finally we eliminate negative indices
by making S and m periodic functions of each index with period 2K. Thus
extended, equation (2.237) takes the form of a discrete convolution. So we
take the DFT of both sides of this equation, and, with the aid of the discrete
Fourier convolution theorem (eq. G.5), we obtain

Φ̂k = GŜkm̂k. (2.238)

According to this equation, the DFT of Φ can be obtained from that of
m simply by multiplying by the DFT of S. With Φ̂k in hand, Φ is easily
obtained by doing an inverse DFT. Moreover, the DFT of S can be calculated
once and for all at the start of the simulation and stored for use at each
timestep.
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Box 2.5: James’s Fourier Poisson solver

We describe the method of James (1977) for imposing vacuum boundary
conditions on the system (2.235) without doubling the range of all the
indices. This method is both fast and economical with computer memory.

We start from the density values on a cubical grid and imagine the
values to represent electric charge density rather than mass density. Next,
we find the potential that would be generated by the charges attached
to the interior of the grid if the boundary of the grid were grounded—
that is, if the potential Φ vanished on the boundary. This potential is
the solution of Poisson’s equation for the given charge density at interior
points of the grid, subject to the boundary condition Φ = 0 on the grid
boundary. We obtain the required solution by writing Φ in terms of its
sine transform (eq. G.7a)

Φlmn =

K−1∑

αβγ=1

Φαβγ(SSS) sin
(πlα
K

)
sin
(πmβ

K

)
sin
(πnγ
K

)
, (1)

where 0 ≤ l,m, n ≤ K. The sine transform automatically ensures that
Φlmn vanishes on the boundary. Substituting this expression for Φlmn

into the numerical approximation (2.235) for the Laplacian, and then
equating this to 4πGρlmn with ρlmn expressed in terms of its sine trans-
form, we discover that each amplitude Φαβγ(SSS) is simply a multiple of
the corresponding amplitude ραβγ(SSS). Since the sine transform is its
own inverse (eq. G.7b), it is a simple matter to recover the Φlmn from
the Φαβγ(SSS).

The potential we obtain in this way differs from the one we require
because the walls bear charges that differ from those specified in the
original problem. (When the walls of the grid are grounded, charges flow
along the grounding cables until Φ vanishes on the boundary.) We use
Gauss’s theorem to determine the actual surface density of wall charges
Σ—since the potential vanishes outside the box, Σ = −g⊥/(4πG), where
g⊥ = |n · ∇Φ| is the magnitude of the force field just inside the walls
of the grounded box. Finally, we convolve the resulting charge distribu-
tion on the walls with a softening kernel to obtain the potential that it
generates when vacuum boundary conditions are applied, and subtract
this potential from the potential generated by the mass in the grounded
box, to get the potential that the originally specified density distribu-
tion generates with vacuum boundary conditions. The softening kernel
should be the inverse of the discrete Laplacian used in the calculation of
Φαβγ(SSS)—see James (1977) for details.

The key to the success of this procedure is that the convolution of the
wall charge density with the softening kernel is simple because the charge
density is hollow—see Appendix G or Magorrian (2007) for details.
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This approach to imposing vacuum boundary conditions is very wasteful
of computer memory. Box 2.5 describes a clever and much more economical
alternative.

Once the potential has been obtained at every node, we use numerical
differentiation to obtain the gravitational field gn at the nodes: for example,
the component parallel to the first axis might be

ê1 · gn = − 1

2∆
(Φ(n1+1,n2,n3) − Φ(n1−1,n2,n3)). (2.239)

More generally

gj =
∑

n

AnΦj+n, (2.240)

where An = −A−n defines some numerical differentiation scheme. Values
of the forces on individual particles are then obtained by interpolation from
these values.

In any such scheme, it is desirable that the sum of the forces on all the
particles is zero to machine precision, because this is a prerequisite for con-
servation of the simulation’s total momentum; if momentum is not conserved
the system is liable to rocket off the grid. Consider therefore the sum of all
forces. We let Wp(r) denote the fraction of the mass of a particle that lies
at r that is assigned to node p, so

mp =
∑

particles β

mβWp(rβ). (2.241)

We introduce similar functions Qj(r) to describe the interpolation scheme
used to calculate forces on particles given the field on the mesh: let the
gravitational field at r be

g(r) =
∑

nodes j

Qj(r)gj. (2.242)

Then with equation (2.237), (2.240) and (2.241), the sum of all particle forces
is

Ftot =
∑

particles α

mαg(rα) =
∑

α

mα

∑

nodes j

Qj(rα)
∑

n

AnΦj+n

= G
∑

jp

∑

αβ

mαmβQj(rα)Wp(rβ)
∑

n

AnSj+n−p.
(2.243)

The sum over n, which is the numerical derivative of the softening kernel, is
antisymmetric in j and p, as can seen by replacing the dummy variable n
by −n and exploiting the antisymmetry of An and the symmetry of Sq. In
view of this antisymmetry, Ftot vanishes if Qp = Wp, and in fact only this
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choice of Qp guarantees symmetry of the sum over αβ for all possible particle
locations. Therefore, we conclude that net momentum can be conserved if
and only if we use the same scheme to interpolate forces from the grid as
we use to assign mass to the grid. In particular, if we use the NGP scheme,
forces change discontinuously midway between nodes.

(c) Mesh refinement Stellar systems, whether galaxies, galactic nuclei,
star clusters or clusters of galaxies, tend to develop small, tightly bound
condensations. These objects are often of considerable astronomical interest.
For example, the visible stars of the Milky Way are a dense condensation in a
much larger dark-matter halo. The ideal Poisson solver would determine the
gravitational field of a structure no matter how small the structure becomes.

In the CIC and TSC mass-assignment schemes, the force between two
particles that are separated by no more than the mesh spacing is significantly
smaller than the value predicted by Newton’s inverse-square law, regardless
of the value of ε that is used in the softening kernel. Hence the dynamics of
structures smaller than a few mesh spacings cannot be faithfully followed.

Stellar systems usually have large volumes in which the density is low,
and small volumes in which it is high. Hence achieving higher spatial reso-
lution by subdividing the grid (mesh refinement) throughout the volume
occupied by a system is undesirable: in low-density regions a fine mesh is
both computationally expensive and pointless. If higher resolution is to be
attained by mesh refinement, we must refine locally and adaptively—at each
timestep, high-density regions must be located and equipped with a finer
mesh. Handling an adaptive mesh requires intricate code, and if the mesh
has a complex geometry, it will not be possible to use DFTs to evaluate the
sum (2.237) efficiently. For a discussion of adaptive-mesh codes see Knebe,
Green, & Binney (2001).

(d) P3M codes The Particle-particle-particle-mesh or P3M tech-
nique provides a simpler way of enhancing the spatial resolution of a PM
code. The idea behind a P3M code is to use the standard PM algorithm to
calculate the contribution from distant particles to the force F on a particle,
while using the direct sum (2.224) to get the contribution to F from particles
that lie in the same or adjacent cells. The softening kernel SF used for the
direct sum must be carefully chosen to provide only the difference between
the Newtonian force and the force already obtained from the grid.

The efficiency of a P3M code depends sensitively on the number of par-
ticles, Nmax, in the most densely populated cell, since the cost of evaluating
the direct sum scales as N2

max rather than asNmax ln(Nmax). P3M codes have
been extensively used for cosmological simulations (Efstathiou et al. 1985).
In these simulations, galaxy formation leads gradually to higher and higher
densities, so Nmax eventually becomes very large and the simulations grind to
a halt. This problem can be resolved by using either a tree algorithm (Bode
& Ostriker 2003) or a separate P3M implementation (Couchman 1991) to
handle sums within populous cells.
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2.9.4 Spherical-harmonic codes

We saw in §2.4 and Figure 2.10 that good approximations to the potentials
of stellar systems that are not too far from spherical can be obtained from
the first few terms of the spherical-harmonic expansion (2.95).

Two rather different approaches to the numerical implementation of
equation (2.95) have been widely used. In the first (McGlynn 1984; Bontekoe
1988), we cover the computational volume with a spherical mesh centered on
the estimated location of the center of the system. We identify the particles
that lie within each spherical shell around this center, say between radii
ai−∆/2 and ai+∆/2, and then evaluate the integrals (2.94) up to l = lmax,
using the formula

mlm(ai) '
∑

ai−∆/2<rα≤ai+∆/2

mαYm
l

∗(θα, φα). (2.244)

Once the mlm(ai) have been evaluated for each shell i, we use an interpo-
lation algorithm to construct a continuous function mlm(a). Then we can
numerically estimate at r the value of the big brackets in equation (2.95):

Qlm(r) ≡ 1

rl+1

∫ r

0

da a(l+2)mlm(a) + rl
∫ ∞

r

da

al−1
mlm(a). (2.245)

The potential at the location of any particle can be calculated from the sum

Φ(rα) = −4πG

lmax∑

l=0

l∑

m=−l

Ym
l (θα, φα)

2l+ 1
Qlm(rα). (2.246)

The second approach uses the functional-expansion technique intro-
duced in §2.8 (Saha 1993). When setting up the simulation we choose a set
of functions Fnl(r) in which to do the expansion, and for the first few values
of l evaluate the matrix M that is defined by the first of equations (2.222).
Finally we store the inverses of these matrices. Then at each timestep we ap-
proximate the quantities that are defined by the second of equations (2.222)
as sums over particles

sn '
∑

α

mαYm∗
l (θα, φα)Fnl(rα), (2.247)

where n ≡ (n, l,m). Now we solve the linear equations (2.214) for the an

and have that the potential is

Φ(r) =
∑

n

anYm
l (Ω)Fnl(r). (2.248)

When properly constructed—in particular when the code includes all
allowed values of m for each l—spherical-harmonic codes conserve angular
momentum (relative to the chosen center) to machine accuracy, but they do
not conserve linear momentum.
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2.9.5 Simulations of planar systems

Studies of the dynamics of thin disks often confine the particles to a plane.
In this case the softening length ε can be interpreted as the characteristic
thickness of the disk: if two particles pass at a fixed vertical separation ∆z
from one another, their mutual interaction potential is given by equation
(2.225) with rα and rβ two-dimensional vectors, and ε set equal to ∆z in
equation (2.226).

A two-dimensional mesh that is K cells on a side consumes less computer
memory and CPU time than the corresponding three-dimensional mesh by a
factor K, so PM codes are much more attractive in two dimensions than in
three. Both rectangular (Hohl & Hockney 1969) and polar (Sellwood 1983)
meshes have been widely used. On going from three dimensions to two, the
functional expansion technique yields a similar efficiency gain because the
number of subscripts n, l etc., that need be summed over decreases from
three to two (Earn & Sellwood 1995).

Problems

2.1 [1] Show that the gravitational potential energy of a spherical system of finite mass
in which the density satisfies limr→0 ρr5/2 = 0 can be written

W = −G
2

Z ∞

0
dr

M2(r)

r2
, (2.249)

where M(r) is the mass interior to radius r.

2.2 [1] Prove that the Chandrasekhar potential-energy tensor for any spherical body has
the form Wjk = 1

3
Wδjk, where W is the potential energy. Hint: start from equation

(2.19).

2.3 [1] Show that the potential of an infinite razor-thin sheet of surface density Σ in the
plane z = 0 is Φ = 2πGΣ|z|+ constant, (a) using Gauss’s theorem, and (b) from Poisson’s
equation.

2.4 [1] (Suggested by A. Toomre) Show that Φ = ln[r(1 + | cos(θ)|)] solves Laplace’s
equation everywhere except when r = 0 or θ = π/2. By applying Gauss’s theorem near
θ = π/2, find the potential of the Mestel disk (2.158) in the limit Rmax → ∞.

2.5 [2] The finite Mestel disk is a razor-thin disk with surface density Σ(R) such that
(i) Σ(R) = 0 for all R > R0; (ii) the circular speed is vc(R) = v0 = constant for all
R < R0. The surface density of the finite Mestel disk was first derived by Mestel (1963)
but here we describe a short, elegant derivation due to Brada & Milgrom (1995).

(a) Consider a spherical mass distribution with density ρ(r) = 1
2
Ar−2 for r < R0 and zero

for r > R0, where A is a constant. Argue that the circular speed is independent of radius
and independent of R0 so long as r < R0.

(b) Now squash the sphere along one direction, so that its isodensity surfaces are spheroids
with axis ratio q. Argue that the circular speed in the equatorial plane of the squashed
system is still independent of radius and independent of R0 so long as the equatorial radius
R < R0. Hint: use Newton’s third theorem.

(c) By considering the limit q → 0, show that a disk with surface density

Σ(R) =


(A/R) cos−1(R/R0) (R < R0)

0 (R > R0)
(2.250)

has a flat circular-speed curve for R < R0.
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(d) Show that v20 = π2GA. Hint: let R0 → ∞ and compare to the infinite Mestel disk.

2.6 [1] Defining prolate spheroidal coordinates (u, v) by R = a sinhu sin v, z =
a cosh u cos v, where a > 0 is a constant, show that R2 +(a+ |z|)2 = a2(cosh u+ | cos v|)2.
Hence show that the potential (2.68a) of the Kuzmin disk can be written

ΦK(u, v) = −GM
a

coshu− | cos v|
sinh2 u+ sin2 v

. (2.251)

In §3.5.3 we show that this potential is an example of a Stäckel potential, in which orbits
admit an extra isolating integral.

2.7 [2] Astronauts orbiting an unexplored planet find that (i) the surface of the planet is
precisely spherical and centered on r = 0; and (ii) the potential exterior to the planetary
surface is Φ = −GM/r exactly, that is, there are no non-zero multipole moments other
than the monopole. Can they conclude from these observations that the mass distribution
in the interior of the planet is spherically symmetric? If not, give a simple example of a
non-spherical mass distribution that would reproduce the observations.

2.8 [1] (Suggested by L. Ciotti) If a transparent, spherical stellar system has constant
mass-to-light ratio Υ, prove that the potential at radius r is

Φ(r) = −2GΥ

r

Z r

0
dxS(x), (2.252)

where S(x) is the strip brightness defined in Problem 1.3.

2.9 [1] If a transparent, spherical stellar system has constant mass-to-light ratio Υ, prove
that the central potential is (Ciotti 1991)

Φ(0) = −4GΥ

Z ∞

0
dRI(R), (2.253)

where I(R) is the surface brightness at projected radius R.

2.10 [2] Consider an axisymmetric body whose density distribution is ρ(R, z) and total
mass is M =

R
d3r ρ(R, z). Assume that the body has finite extent, ρ(R, z) = 0 for

r2 = R2 + z2 > r2max, and is symmetric about its equator, that is, ρ(R,−z) = ρ(R, z).

(a) Show that at distances large compared to rmax, the potential arising from this body
can be written in the form

Φ(R, z) ' −GM
r

− G

4

(R2 − 2z2)

r5

Z
d3r′ ρ(R′, z′)(R′2 − 2z′2), (2.254)

where the error is of order (rmax/r)2 smaller than the second term.

(b) Show that at large distances from an exponential disk with surface density Σ(R) =
Σ0 exp(−R/Rd), the potential has the form

Φ(R, z) ' −GM
r

"
1 +

3R2
d(R2 − 2z2)

2r4
+ O(R4

d/r
4)

#
, (2.255)

where M is the mass of the disk.

2.11 [2] Show that the potential energy of an exponential disk is W ' −11.627GΣ2
0R

3
d.

Show further that if all stars move on circular orbits, the disk’s angular momentum is

J ' 17.462G1/2Σ
3/2
0 R

7/2
d and its kinetic energy is K ' 5.813GΣ2

0R
3
d. Hence show that

for this disk the dimensionless spin parameter λ ≡ J |E|1/2/GM5/2 ' 0.4255, where
E = K +W is the total energy.

2.12 [1] The r−1 dependence of the gravitational potential on distance arises because the
graviton, which carries the gravitational field, is massless. If the graviton had a mass mg,
the gravitational potential due to a body of mass M would be Φ(r) = −GMe−αr/r, where
α = mgc/h̄ (the Yukawa potential), which reduces to the Newtonian potential in the
limit α→ 0. What is the analog of Poisson’s equation (2.10) for the Yukawa potential?
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2.13 [2] Prove that the external potentials and gravitational fields of any two confocal
spheroids of uniform density and equal mass are everywhere the same.

2.14 [2] Use equation (2.140) to show that a prolate body with density ρ = ρ0(1+R2/a21+
z2/a23)−2, where a3 > a1, generates the potential

Φ(u, v) = −πGρ0a21a3
Z ∞

0
dτ

q
a23 + τ

(τ + a23 + λ)(τ + a23 + µ)
, (2.256)

where (u, v) are oblate spheroidal coordinates defined by equation (2.96) with ∆2 = a23−a21,
and we have written λ ≡ ∆2 sinh2 u, µ ≡ −∆2 cos2 v. Decompose the integral in (2.256)
into partial fractions to show (without evaluating the integrals) that Φ is a Stäckel potential

Φ(λ, µ) =
H(λ) −H(µ)

λ− µ
, (2.257)

where H is a continuous function (de Zeeuw 1985 and §3.5.3). Finally, show that

Φ(u, v) = −2πGa21a3ρ0

∆2

f(∆ sinhu) − f(i∆ cos v)

sinh2 u+ cos2 v
, (2.258a)

where
f(z) ≡ z tan−1(z/a3). (2.258b)

Hint: to ensure convergence of the integrals, you may wish to add (τ+a2
3)−

1
2 to one of the

integrands and subtract it from the other. The body with this potential is called the per-

fect prolate spheroid, because it is the only prolate axisymmetric density distribution
of constant ellipticity that has a Stäckel potential.

2.15 [1] Show that the central potential of a thin axisymmetric disk is

Φ(0, 0) = −2πG

Z ∞

0
dRΣ(R). (2.259)

Hint: use equation (C.68).

2.16 [1] Prove that the potential Φ(r) is a non-decreasing function of r in any spherical
system. Does the same conclusion hold in an axisymmetric razor-thin disk? If so, prove
it; if not, find a counter-example.

2.17 [2] (Suggested by M. Merrifield) An axisymmetric disk is seen edge-on and has
projected mass per unit length µ(X). Show that its surface density is

Σ(R) = − 1

π

Z ∞

R

dX√
X2 −R2

dµ

dX
, (2.260)

and that its potential is

Φ(R, z) = 2G

Z ∞

0
dX

dµ

dX
sin−1

 
2Xp

z2 + (R +X)2 +
p
z2 + (R −X)2

!
. (2.261)

Hint: use (2.153a).

2.18 [1] Use equation (2.190) to show that the razor-thin disk for which the circular speed
is given by

v2c =
v20p

1 + R2/a2
(2.262a)

has surface density (Toomre 1963)

Σ(R) =
v20

2πGR

 
1 − 1p

1 + a2/R2

!
. (2.262b)

Show that these formulae correspond to the Mestel disk in an appropriate limit. Show
that the surface density (2.68b) of the Kuzmin disk is obtained when Σ(R) is differentiated
with respect to a2 , and hence recover the circular speed of this model.
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2.19 [3] We have derived relations between the potential and surface density of non-
axisymmetric disks by solving Laplace’s equation in cylindrical coordinates (§2.6.2) and
oblate spheroidal coordinates (§2.6.4). Derive a relation of this kind by solving Laplace’s
equation in spherical coordinates, and show that the result is identical with the formula
derived using logarithmic spirals (eq. 2.199). Hint: you may need associated Legendre
functions Pmλ (x), where λ is a real number. See also equations (C.12) and (C.31).

2.20 [2] Show that the circular speed vc(R) in a thin axisymmetric disk of surface density
Σ(R) may be written in the form (Mestel 1963)

v2c (R) =
GM(R)

R
+ 2G

∞X

k=1

αk

»
2k + 1

R2k+1

Z R

0
dR′ Σ(R′)R′2k+1

− 2kR2k

Z ∞

R
dR′ Σ(R′)

R′2k

–
,

(2.263)

where

αk ≡
Z π

0
dθP2k(cos θ) = π

»
(2k)!

22k(k!)2

–2
. (2.264)

Hint: start with equation (2.3) and expand |x − x′|−1 in Legendre polynomials using
equation (C.35).

2.21 [2] Show that the potential of an axisymmetric disk with surface density Σ(R) is

Φ(R, z) = − 2G√
R

Z ∞

0
dR′ Σ(R′)kK(k)

√
R′, (2.265)

where K(k) is a complete elliptic integral (Appendix C.4) and

k2 ≡ 4RR′

(R +R′)2 + z2
. (2.266)

Hint: start with equation (2.3) and show that |x−x′|2 = 4RR′k−2{1−k2 cos2[ 1
2
(φ−φ′)]}.

Note that the integral (2.265) has a logarithmic singularity when z = 0 and R′ → R, which
requires some care when the integral is being evaluated numerically.

2.22 [3] (Suggested by H. Dejonghe) Prove that the surface density Σ(x, y) and potential
Φ(x, y) in a disk occupying the plane z = 0 are related by

Σ(x′, y′) =
1

4π2G

Z Z
dx dy

|x− x′|

„
∂2Φ

∂x2
+
∂2Φ

∂y2

«
. (2.267)

2.23 [1] Consider the discrete form of Poisson’s equation with periodic boundary condi-
tions that is obtained by using the approximation (2.235) for the value of the Laplacian
on a grid with K mesh cells on a side. Write Φlmn and ρlmn in terms of their DFTs,

Φr =
X

k

Φ̂ke2πik·r/K ; ρr =
X

k

ρ̂ke2πik·r/K , (2.268)

where r and k are vectors with integer components in the range (0, K − 1). Show that

Φk =
2πGρk∆2

cos(2πkx/K) + cos(2πky/K) + cos(2πkz/K) − 3
. (2.269)

2.24 [2] In some numerical simulations of spherical stellar systems, spherical symmetry
is enforced by treating each of the N stars as a “superstar,” that is, a spherical shell
containing a large number of stars with randomly oriented orbits but the same radius,
radial velocity, and scalar angular momentum. Let mn and rn be the mass and radius
of the nth superstar. Assume that the superstars are sorted in order of increasing radius,
that is, r1 < r2 < · · · < rN .
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(a) Show that the force on superstar n is

Fn = −êr
GMn

r2n
where Mn ≡

n−1X

j=1

mj . (2.270)

Thus show that the force on every star can be computed in O(N) steps once the stars are
sorted in radius, in contrast to direct summation (§2.9.1), which requires O(N 2) steps.

(b) A set of N superstars can be sorted into increasing order in O(N lnN) steps (e.g.,
Press et al. 1986). Thus, the initial calculation of the forces for an unsorted system
requires O(N lnN) steps. Show that force calculations at subsequent timesteps require
only O(N) steps.



3
The Orbits of Stars

In this chapter we examine the orbits of individual stars in gravitational
fields such as those found in stellar systems. Thus we ask the questions,
“What kinds of orbits are possible in a spherically symmetric, or an axially
symmetric potential? How are these orbits modified if we distort the poten-
tial into a bar-like form?” We shall obtain analytic results for the simpler
potentials, and use these results to develop an intuitive understanding of how
stars move in more general potentials.

In §§3.1 to 3.3 we examine orbits of growing complexity in force fields
of decreasing symmetry. The less symmetrical a potential is the less likely
it is that we can obtain analytic results, so in §3.4 we review techniques for
integrating orbits in both a given gravitational field, and the gravitational
field of a system of orbiting masses. Even numerically integrated orbits in
gravitational fields of low symmetry often display a high degree of regularity
in their phase-space structures. In §3.5 we study this structure using ana-
lytic models, and develop analytic tools of considerable power, including the
idea of adiabatic invariance, which we apply to some astronomical problems
in §3.6. In §3.7 we develop Hamiltonian perturbation theory, and use it to
study the phenomenon of orbital resonance and the role it plays in generat-
ing orbital chaos. In §3.8 we draw on techniques developed throughout the
chapter to understand how elliptical galaxies are affected by the existence of
central stellar cusps and massive black holes at their centers.

All of the work in this chapter is based on a fundamental approximation:
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although galaxies are composed of stars, we shall neglect the forces from
individual stars and consider only the large-scale forces from the overall
mass distribution, which is made up of thousands of millions of stars. In
other words, we assume that the gravitational fields of galaxies are smooth,
neglecting small-scale irregularities due to individual stars or larger objects
like globular clusters or molecular clouds. As we saw in §1.2, the gravitational
fields of galaxies are sufficiently smooth that these irregularities can affect
the orbits of stars only after many crossing times.

Since we are dealing only with gravitational forces, the trajectory of
a star in a given field does not depend on its mass. Hence, we examine
the dynamics of a particle of unit mass, and quantities such as momentum,
angular momentum, and energy, and functions such as the Lagrangian and
Hamiltonian, are normally written per unit mass.

3.1 Orbits in static spherical potentials

We first consider orbits in a static, spherically symmetric gravitational field.
Such fields are appropriate for globular clusters, which are usually nearly
spherical, but, more important, the results we obtain provide an indispens-
able guide to the behavior of orbits in more general fields.

The motion of a star in a centrally directed gravitational field is greatly
simplified by the familiar law of conservation of angular momentum (see
Appendix D.1). Thus if

r = rêr (3.1)

denotes the position vector of the star with respect to the center, and the
radial acceleration is

g = g(r)êr, (3.2)

the equation of motion of the star is

d2r

dt2
= g(r)êr . (3.3)

If we remember that the cross product of any vector with itself is zero, we
have

d

dt

(
r×dr

dt

)
=

dr

dt
× dr

dt
+ r × d2r

dt2
= g(r)r × êr = 0. (3.4)

Equation (3.4) says that r × ṙ is some constant vector, say L:

r × dr

dt
= L. (3.5)

Of course, L is simply the angular momentum per unit mass, a vector
perpendicular to the plane defined by the star’s instantaneous position and
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velocity vectors. Since this vector is constant, we conclude that the star
moves in a plane, the orbital plane. This finding greatly simplifies the
determination of the star’s orbit, for now that we have established that the
star moves in a plane, we may simply use plane polar coordinates (r, ψ) in
which the center of attraction is at r = 0 and ψ is the azimuthal angle in the
orbital plane. In terms of these coordinates, the Lagrangian per unit mass
(Appendix D.3) is

L = 1
2

[
ṙ2 + (rψ̇)2

]
− Φ(r), (3.6)

where Φ is the gravitational potential and g(r) = −dΦ/dr. The equations
of motion are

0 =
d

dt

∂L
∂ṙ

− ∂L
∂r

= r̈ − rψ̇2 +
dΦ

dr
, (3.7a)

0 =
d

dt

∂L
∂ψ̇

− ∂L
∂ψ

=
d

dt

(
r2ψ̇

)
. (3.7b)

The second of these equations implies that

r2ψ̇ = constant ≡ L. (3.8)

It is not hard to show that L is actually the length of the vector r × ṙ,
and hence that (3.8) is just a restatement of the conservation of angular
momentum. Geometrically, L is equal to twice the rate at which the radius
vector sweeps out area.

To proceed further we use equation (3.8) to replace time t by angle ψ
as the independent variable in equation (3.7a). Since (3.8) implies

d

dt
=

L

r2

d

dψ
, (3.9)

equation (3.7a) becomes

L2

r2

d

dψ

(
1

r2

dr

dψ

)
− L2

r3
= −dΦ

dr
. (3.10)

This equation can be simplified by the substitution

u ≡ 1

r
, (3.11a)

which puts (3.10) into the form

d2u

dψ2
+ u =

1

L2u2

dΦ

dr

(
1/u

)
. (3.11b)



3.1 Orbits in spherical potentials 145

The solutions of this equation are of two types: along unbound orbits r →
∞ and hence u→ 0, while on bound orbits r and u oscillate between finite
limits. Thus each bound orbit is associated with a periodic solution of this
equation. We give several analytic examples later in this section, but in
general the solutions of equation (3.11b) must be obtained numerically.

Some additional insight is gained by deriving a “radial energy” equation
from equation (3.11b) in much the same way as we derive the conservation of
kinetic plus potential energy in Appendix D; we multiply (3.11b) by du/dψ
and integrate over ψ to obtain

(
du

dψ

)2

+
2Φ

L2
+ u2 = constant ≡ 2E

L2
, (3.12)

where we have used the relation dΦ/dr = −u2(dΦ/du).

This result can also be derived using Hamiltonians (Appendix D.4).
From (3.6) we have that the momenta are pr = ∂L/∂ṙ = ṙ and pψ =

∂L/∂ψ̇ = r2ψ̇, so with equation (D.50) we find that the Hamiltonian per
unit mass is

H(r, pr, pψ) = pr ṙ + pψψ̇ −L

= 1
2

(
p2
r +

p2
ψ

r2

)
+ Φ(r)

= 1
2

(
dr

dt

)2

+ 1
2

(
r

dψ

dt

)2

+ Φ(r).

(3.13)

When we multiply (3.12) by L2/2 and exploit (3.9), we find that the constant
E in equation (3.12) is simply the numerical value of the Hamiltonian, which
we refer to as the energy of that orbit.

For bound orbits the equation du/dψ = 0 or, from equation (3.12)

u2 +
2[Φ(1/u) −E]

L2
= 0 (3.14)

will normally have two roots u1 and u2 between which the star oscillates
radially as it revolves in ψ (see Problem 3.7). Thus the orbit is confined
between an inner radius r1 = u−1

1 , known as the pericenter distance, and
an outer radius r2 = u−1

2 , called the apocenter distance. The pericenter
and apocenter are equal for a circular orbit. When the apocenter is nearly
equal to the pericenter, we say that the orbit has small eccentricity, while
if the apocenter is much larger than the pericenter, the eccentricity is said to
be near unity. The term “eccentricity” also has a mathematical definition,
but only for Kepler orbits—see equation (3.25a).
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Figure 3.1 A typical orbit in a
spherical potential (the isochrone,
eq. 2.47) forms a rosette.

The radial period Tr is the time required for the star to travel from
apocenter to pericenter and back. To determine Tr we use equation (3.8) to

eliminate ψ̇ from equation (3.13). We find

(
dr

dt

)2

= 2(E − Φ) − L2

r2
, (3.15)

which may be rewritten

dr

dt
= ±

√
2[E − Φ(r)] − L2

r2
. (3.16)

The two possible signs arise because the star moves alternately in and out.
Comparing (3.16) with (3.14) we see that ṙ = 0 at the pericenter and apocen-
ter distances r1 and r2, as of course it must. From equation (3.16) it follows
that the radial period is

Tr = 2

∫ r2

r1

dr√
2[E − Φ(r)] − L2/r2

. (3.17)

In traveling from pericenter to apocenter and back, the azimuthal angle
ψ increases by an amount

∆ψ = 2

∫ r2

r1

dψ

dr
dr = 2

∫ r2

r1

L

r2

dt

dr
dr. (3.18a)

Substituting for dt/dr from (3.16) this becomes

∆ψ = 2L

∫ r2

r1

dr

r2
√

2[E − Φ(r)] − L2/r2
. (3.18b)
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The azimuthal period is

Tψ =
2π

|∆ψ|Tr; (3.19)

in other words, the mean angular speed of the particle is 2π/Tψ. In general
∆ψ/2π will not be a rational number. Hence the orbit will not be closed: a
typical orbit resembles a rosette and eventually passes close to every point
in the annulus between the circles of radii r1 and r2 (see Figure 3.1 and
Problem 3.13). There are, however, two and only two potentials in which all
bound orbits are closed.

(a) Spherical harmonic oscillator We call a potential of the form

Φ(r) = 1
2 Ω2r2 + constant (3.20)

a spherical harmonic oscillator potential. As we saw in §2.2.2b, this potential
is generated by a homogeneous sphere of matter. Equation (3.11b) could be
solved analytically in this case, but it is simpler to use Cartesian coordinates
(x, y) defined by x = r cosψ, y = r sinψ. In these coordinates, the equations
of motion are simply

ẍ = −Ω2x ; ÿ = −Ω2y, (3.21a)

with solutions

x = X cos(Ωt+ εx) ; y = Y cos(Ωt+ εy), (3.21b)

whereX , Y , εx, and εy are arbitrary constants. Every orbit is closed since the
periods of the oscillations in x and y are identical. The orbits form ellipses
centered on the center of attraction. The azimuthal period is Tψ = 2π/Ω
because this is the time required for the star to return to its original azimuth.
During this time, the particle completes two in-and-out cycles, so the radial
period is

Tr = 1
2Tψ =

π

Ω
. (3.22)

(b) Kepler potential When the star is acted on by an inverse-square
field g(r) = −GM/r2 due to a point mass M , the corresponding potential
is Φ = −GM/r = −GMu. Motion in this potential is often called Kepler
motion. Equation (3.11b) becomes

d2u

dψ2
+ u =

GM

L2
, (3.23)

the general solution of which is

u(ψ) = C cos(ψ − ψ0) +
GM

L2
, (3.24)
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where C > 0 and ψ0 are arbitrary constants. Defining the orbit’s eccentri-
city by

e ≡ CL2

GM
(3.25a)

and its semi-major axis by

a ≡ L2

GM(1 − e2)
, (3.25b)

equation (3.24) may be rewritten

r(ψ) =
a(1 − e2)

1 + e cos(ψ − ψ0)
. (3.26)

An orbit for which e ≥ 1 is unbound, since r → ∞ as (ψ − ψ0) →
± cos−1(−1/e). We discuss unbound orbits in §3.1d below. Bound orbits
have e < 1 and along them r is a periodic function of ψ with period 2π, so
the star returns to its original radial coordinate after exactly one revolution
in ψ. Thus bound Kepler orbits are closed, and one may show that they
form ellipses with the attracting center at one focus. The pericenter and
apocenter distances are

r1 = a(1 − e) and r2 = a(1 + e). (3.27)

In many applications, equation (3.26) for r along a bound Kepler orbit
is less convenient than the parameterization

r = a(1 − e cos η), (3.28a)

where the parameter η is called the eccentric anomaly to distinguish it
from the true anomaly, ψ − ψ0. By equating the right sides of equations
(3.26) and (3.28a) and using the identity cos θ = (1− tan2 1

2θ)/(1 + tan2 1
2θ),

it is straightforward to show that the true and eccentric anomalies are related
by √

1 − e tan 1
2 (ψ − ψ0) =

√
1 + e tan 1

2η. (3.29)

Equation (3.326) gives alternative relations between the two anomalies.

Taking t = 0 to occur at pericenter passage, from L = r2ψ̇ we have

t =

∫ ψ

ψ0

dψ

ψ̇
=

∫
dψ

r2

L
=
a2

L

∫ η

0

dη
dψ

dη
(1 − e cosη)2. (3.30)

Evaluating dψ/dη from (3.29), integrating, and using trigonometrical iden-
tities to simplify the result, we obtain finally

t =
a2

L

√
1 − e2 (η − e sin η) =

Tr
2π

(η − e sin η), (3.28b)
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where the second equality follows because the bracket on the right increases
by 2π over an orbital period. This is called Kepler’s equation, and the
quantity 2πt/Tr is sometimes called the mean anomaly. Hence

Tr = Tψ =
a2

L

√
1 − e2 = 2π

√
a3

GM
, (3.31)

where the second equality uses (3.25b).
From (3.12) the energy per unit mass of a particle on a Kepler orbit is

E = −GM
2a

. (3.32)

To unbind the particle, we must add the binding energy −E.
The study of motion in nearly Kepler potentials is central to the dy-

namics of planetary systems (Murray & Dermott 1999).
We have shown that a star on a Kepler orbit completes a radial oscil-

lation in the time required for ψ to increase by ∆ψ = 2π, whereas a star
that orbits in a harmonic-oscillator potential has already completed a radial
oscillation by the time ψ has increased by ∆ψ = π. Since galaxies are more
extended than point masses, and less extended than homogeneous spheres,
a typical star in a spherical galaxy completes a radial oscillation after its an-
gular coordinate has increased by an amount that lies somewhere in between
these two extremes; π < ∆ψ < 2π (cf. Problem 3.17). Thus, we expect a star
to oscillate from its apocenter through its pericenter and back in a shorter
time than is required for one complete azimuthal cycle about the galactic
center.

It is sometimes useful to consider that an orbit in a non-Kepler force
field forms an approximate ellipse, though one that precesses by ψp =
∆ψ−2π in the time needed for one radial oscillation. For the orbit shown in
Figure 3.1, and most galactic orbits, this precession is in the sense opposite
to the rotation of the star itself. The angular velocity Ωp of the rotating
frame in which the ellipse appears closed is

Ωp =
ψp

Tr
=

∆ψ − 2π

Tr
. (3.33)

Hence we say that Ωp is the precession rate of the ellipse. The concept of
closed orbits in a rotating frame of reference is crucial to the theory of spiral
structure—see §6.2.1, particularly Figure 6.12.

(c) Isochrone potential The harmonic oscillator and Kepler potentials
are both generated by mass distributions that are qualitatively different from
the mass distributions of galaxies. The only known potential that could be
generated by a realistic stellar system for which all orbits are analytic is the
isochrone potential of equation (2.47) (Hénon 1959).
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Box 3.1: Timing the local group

The nearest giant spiral galaxy is the Sb galaxy M31, at a distance of
about (740 ± 40) kpc (BM §7.4.1). Our galaxy and M31 are by far the
two largest members of the Local Group of galaxies. Beyond these, the
next nearest prominent galaxies are in the Sculptor and M81 groups, at
a distance of 3 Mpc. Thus the Local Group is an isolated system.

The line-of-sight velocity of the center of M31 relative to the center
of the Galaxy is −125 km s−1 (for a solar circular speed v0 = 220 km s−1,
eq. 1.8); it is negative because the two galaxies are approaching one an-
other. It seems that gravity has halted and reversed the original motion
of M31 away from the Galaxy. Since M31 and the Galaxy are by far the
most luminous members of the Local Group, we can treat them as an
isolated system of two point masses, and estimate their total mass (Kahn
& Woltjer 1959; Wilkinson & Evans 1999). Moreover, the original Hub-
ble recession corresponded to an orbit of zero angular momentum, so we
expect the angular momentum of the current orbit to be negligible. Thus
we assume that the eccentricity e = 1.

We may now apply equations (3.28) for a Kepler orbit. Taking the
log of both equations, differentiating with respect to η, and taking the
ratio, we obtain

d ln r

d ln t
=
t

r

dr

dt
=
e sin η(η − e sin η)

(1 − e cos η)2
. (1)

We set e = 1, and require that r = 740 kpc, dr/dt = −125 km s−1, and
t = 13.7 Gyr, the current age of the universe (eq. 1.77). Inserting these
constraints in (1) gives a nonlinear equation for η, which is easily solved
numerically to yield η = 4.29. Then equations (3.28) yield a = 524 kpc
and Tr = 16.6 Gyr, and equation (3.31) finally yields M = 4.6×1012 M�
for the total mass of M31 and the Galaxy. The uncertainty in this result,
assuming that our model is correct, is probably about a factor of 1.5.

This calculation assumes that the vacuum-energy density ρΛ is zero.
Inclusion of non-zero ρΛ is simple (Problem 3.5); with parameters from
equations (1.52) and (1.73), the required mass M increases by 15%.

The luminosity of the Galaxy in the R band is 3×1010L� (Table 1.2)
and M31 is about 1.5 times as luminous (BM Table 4.3); thus, if our
mass estimate is correct, the mass-to-light ratio for the Local Group is
ΥV ' 60Υ�. This is far larger than expected for any normal stellar
population, and the total mass is far larger than the masses within the
outer edges of the disks of these galaxies, as measured by circular-speed
curves. Thus the Kahn–Woltjer timing argument provided the first direct
evidence that most of the mass of the Local Group is composed of dark
matter. For a review see Peebles (1996).
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Box 3.2: The eccentricity vector for Kepler orbits

The orbit of a test particle in the Kepler potential can also be found using
vector methods. Since the angular momentum per unit mass L = r × v
is constant in any central field g(r), with the equation of motion (3.3)
and the vector identity (B.9) we have

d

dt
(v × L) =

dv

dt
× L = g(r)êr × (r × v) = g(r) [(êr · v)r − rv] . (1)

The time derivative of the unit radial vector is

dêr
dt

=
d

dt

(r

r

)
=

v

r
− r · v

r3
r =

1

r2
[rv − (êr · v)r] . (2)

Comparing equations (1) and (2) we have

d

dt
(v × L) = −g(r)r2 dêr

dt
. (3)

If and only if the field is Kepler, g(r) = −GM/r2, this equation can be
integrated to yield

v × L = GM(êr + e), (4)

where e is a vector constant, or integral of motion (see §3.1.1). Taking
the dot product of L with equation (4), we find that e · L = 0, so e lies
in the orbital plane. Taking the dot product of r with equation (4) and
using the vector identity (B.8), we have

L2 = GM(r + e · r). (5)

If we now define ψ to be an azimuthal angle in the orbital plane, with e
at azimuth ψ0, then e · r = er cos(ψ − ψ0), where e = |e|, and equation
(5) can be rewritten

r =
L2

GM

1

1 + e cos(ψ − ψ0)
, (6)

which is the same as equations (3.25b) and (3.26) for a Kepler orbit if we
identify e with the eccentricity. It is therefore natural to call the vector
constant e the eccentricity vector, also sometimes called the Laplace
or Runge–Lenz vector. The eccentricity vector has length equal to the
eccentricity and points from the central mass towards the pericenter. The
direction of the eccentricity vector is called the line of apsides.

Orbits in other central fields have integrals of motion analogous to
the scalar eccentricity, but they do not have vector integrals analogous to
the eccentricity vector, because orbits in non-Kepler potentials are not
closed.
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It is convenient to define an auxiliary variable s by

s ≡ −GM
bΦ

= 1 +

√
1 +

r2

b2
. (3.34)

Solving this equation for r, we find that

r2

b2
= s2

(
1 − 2

s

)
(s ≥ 2). (3.35)

Given this one-to-one relationship between s and r, we may employ s as a
radial coordinate in place of r. The integrals (3.17) and (3.18b) for Tr and
∆ψ both involve the infinitesimal quantity

dI ≡ dr√
2(E − Φ) − L2/r2

. (3.36)

When we use equation (3.35) to eliminate r from this expression, we find

dI =
b(s− 1)ds√

2Es2 − 2(2E −GM/b)s− 4GM/b− L2/b2
. (3.37)

As the star moves from pericenter r1 to apocenter r2, s varies from the
smaller root s1 of the quadratic expression in the denominator of equation
(3.37) to the larger root s2. Thus, combining equations (3.17) and (3.37),
the radial period is

Tr =
2b√
−2E

∫ s2

s1

ds
(s− 1)√

(s2 − s)(s− s1)
=

2πb√
−2E

[
1
2 (s1 + s2) − 1

]
, (3.38)

where we have assumed E < 0 since we are dealing with bound orbits. But
from the denominator of equation (3.37) it follows that the roots s1 and s2

obey

s1 + s2 = 2 − GM

Eb
, (3.39a)

and so the radial period

Tr =
2πGM

(−2E)3/2
, (3.39b)

exactly as in the Kepler case (the limit of the isochrone as b→ 0). Note that
Tr depends on the energy E but not on the angular momentum L—it is this
unique property that gives the isochrone its name.

Equation (3.18b), for the increment ∆ψ in azimuthal angle per cycle in
the radial direction, yields

∆ψ = 2L

∫ s2

s1

dI

r2
=

2L

b
√
−2E

∫ s2

s1

ds
(s− 1)

s(s− 2)
√

(s2 − s)(s− s1)

= π sgn(L)

(
1 +

|L|√
L2 + 4GMb

)
,

(3.40)
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where sgn(L) = ±1 depending on the sign of L. From this expression we see
that

π < |∆ψ| < 2π. (3.41)

The only orbits for which |∆ψ| approaches the value 2π characteristic of
Kepler motion are those with L2 � 4GMb. Such orbits never approach the
core r ∼< b of the potential, and hence always move in a near-Kepler field.
In the opposite limit, L2 � 4GMb, |∆ψ| → π; physically this implies that
low angular-momentum orbits fly straight through the core of the potential.
In fact, the behavior |∆ψ| → π as L → 0 is characteristic of any spherical
potential that is not strongly singular at r = 0—see Problem 3.19.

Inserting equations (3.39b) and (3.40) into equation (3.19), we have that
the azimuthal period of an isochrone orbit is

Tψ =
4πGM

(−2E)3/2

√
L2 + 4GMb

|L| +
√
L2 + 4GMb

. (3.42)

(d) Hyperbolic encounters In Chapter 7 we shall find that the dynami-
cal evolution of globular clusters is largely driven by gravitational encounters
between stars. These encounters are described by unbound Kepler orbits.

Let (xM ,vM ) and (xm,vm) be the positions and velocities of two point
masses M and m, respectively; let r = xM − xm and V = ṙ. Then the
separation vector r obeys equation (D.33),

(
mM

M +m

)
r̈ = −GMm

r2
êr or µr̈ = −G(M +m)µ

r2
êr. (3.43)

This is the equation of motion of a fictitious particle, called the reduced par-
ticle, which has mass µ = Mm/(M +m) and travels in the Kepler potential
of a fixed body of mass M +m (see Appendix D.1). If ∆vm and ∆vM are
the changes in the velocities of m and M during the encounter, we have

∆vM − ∆vm = ∆V. (3.44a)

Furthermore, since the velocity of the center of mass of the two bodies is
unaffected by the encounter (eq. D.19), we also have

M∆vM +m∆vm = 0. (3.44b)

Eliminating ∆vm between equations (3.44) we obtain ∆vM as

∆vM =
m

M +m
∆V. (3.45)
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Figure 3.2 The motion of the re-
duced particle during a hyperbolic
encounter.

We now evaluate ∆V.
Let the component of the initial separation vector that is perpendicular

to the initial velocity vector V0 = V(t = −∞) have length b (see Figure 3.2),
the impact parameter of the encounter. Then the conserved angular mo-
mentum per unit mass associated with the motion of the reduced particle
is

L = bV0. (3.46)

Equation (3.24), which relates the radius and azimuthal angle of a particle
in a Kepler orbit, reads in this case,

1

r
= C cos(ψ − ψ0) +

G(M +m)

b2V 2
0

, (3.47)

where the angle ψ is shown in Figure 3.2. The constants C and ψ0 are
determined by the initial conditions. Differentiating equation (3.47) with
respect to time, we obtain

dr

dt
= Cr2ψ̇ sin(ψ − ψ0)

= CbV0 sin(ψ − ψ0),
(3.48)

where the second line follows because r2ψ̇ = L. If we define the direction
ψ = 0 to point towards the particle as t → −∞, we find on evaluating
equation (3.48) at t = −∞,

−V0 = CbV0 sin(−ψ0). (3.49a)

On the other hand, evaluating equation (3.47) at this time we have

0 = C cosψ0 +
G(M +m)

b2V 2
0

. (3.49b)

Eliminating C between these equations, we obtain

tanψ0 = − bV 2
0

G(M +m)
. (3.50)
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But from either (3.47) or (3.48) we see that the point of closest approach
is reached when ψ = ψ0. Since the orbit is symmetrical about this point,
the angle through which the reduced particle’s velocity is deflected is θdefl =
2ψ0−π (see Figure 3.2). It proves useful to define the 90◦ deflection radius
as the impact parameter at which θdefl = 90◦:

b90 ≡ G(M +m)

V 2
0

. (3.51)

Thus

θdefl = 2 tan−1

(
G(M +m)

bV 2
0

)
= 2 tan−1(b90/b). (3.52)

By conservation of energy, the relative speed after the encounter equals the
initial speed V0. Hence the components ∆V‖ and ∆V⊥ of ∆V parallel and
perpendicular to the original relative velocity vector V0 are given by

|∆V⊥| = V0 sin θdefl = V0| sin 2ψ0| =
2V0| tanψ0|
1 + tan2 ψ0

=
2V0(b/b90)

1 + b2/b290

, (3.53a)

|∆V‖| = V0(1 − cos θdefl) = V0(1 + cos 2ψ0) =
2V0

1 + tan2 ψ0

=
2V0

1 + b2/b290

. (3.53b)

∆V‖ always points in the direction opposite to V0. By equation (3.45) we
obtain the components of ∆vM as

|∆vM⊥| =
2mV0

M +m

b/b90

1 + b2/b290

, (3.54a)

|∆vM‖| =
2mV0

M +m

1

1 + b2/b290

. (3.54b)

∆vM‖ always points in the direction opposite to V0. Notice that in the limit
of large impact parameter b, |∆vM⊥| = 2Gm/(bV0), which agrees with the
determination of the same quantity in equation (1.30).

3.1.1 Constants and integrals of the motion

Any stellar orbit traces a path in the six-dimensional space for which the co-
ordinates are the position and velocity x,v. This space is called phase
space.1 A constant of motion in a given force field is any function

1 In statistical mechanics phase space usually refers to position-momentum space
rather than position-velocity space. Since all bodies have the same acceleration in a given
gravitational field, mass is irrelevant, and position-velocity space is more convenient.
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C(x,v; t) of the phase-space coordinates and time that is constant along
stellar orbits; that is, if the position and velocity along an orbit are given by
x(t) and v(t) = dx/dt,

C[x(t1),v(t1); t1] = C[x(t2),v(t2); t2] (3.55)

for any t1 and t2.
An integral of motion I(x,v) is any function of the phase-space co-

ordinates alone that is constant along an orbit:

I [x(t1),v(t1)] = I [x(t2),v(t2)]. (3.56)

While every integral is a constant of the motion, the converse is not
true. For example, on a circular orbit in a spherical potential the azimuthal
coordinate ψ satisfies ψ = Ωt + ψ0, where Ω is the star’s constant angular
speed and ψ0 is its azimuth at t = 0. Hence C(ψ, t) ≡ t−ψ/Ω is a constant
of the motion, but it is not an integral because it depends on time as well as
the phase-space coordinates.

Any orbit in any force field always has six independent constants of mo-
tion. Indeed, since the initial phase-space coordinates (x0,v0) ≡ [x(0),v(0)]
can always be determined from [x(t),v(t)] by integrating the equations of
motion backward, (x0,v0) can be regarded as six constants of motion.

By contrast, orbits can have from zero to five integrals of motion. In
certain important cases, a few of these integrals can be written down easily:
in any static potential Φ(x), the Hamiltonian H(x,v) = 1

2v
2 + Φ is an

integral of motion. If a potential Φ(R, z, t) is axisymmetric about the z
axis, the z-component of the angular momentum is an integral, and in a
spherical potential Φ(r, t) the three components of the angular-momentum
vector L = x × v constitute three integrals of motion. However, we shall
find in §3.2 that even when integrals exist, analytic expressions for them are
often not available.

These concepts and their significance for the geometry of orbits in phase
space are nicely illustrated by the example of motion in a spherically sym-
metric potential. In this case the Hamiltonian H and the three components
of the angular momentum per unit mass L = x×v constitute four integrals.
However, we shall find it more convenient to use |L| and the two independent
components of the unit vector n̂ = L/|L| as integrals in place of L. We have
seen that n̂ defines the orbital plane within which the position vector r and
the velocity vector v must lie. Hence we conclude that the two independent
components of n̂ restrict the star’s phase point to a four-dimensional region
of phase space. Furthermore, the equations H(x,v) = E and |L(x,v)| = L,
where L is a constant, restrict the phase point to that two-dimensional sur-
face in this four-dimensional region on which vr = ±

√
2[E − Φ(r)] − L2/r2

and vψ = L/r. In §3.5.1 we shall see that this surface is a torus and that the
sign ambiguity in vr is analogous to the sign ambiguity in the z-coordinate
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of a point on the sphere r2 = 1 when one specifies the point through its x
and y coordinates. Thus, given E, L, and n̂, the star’s position and velocity
(up to its sign) can be specified by two quantities, for example r and ψ.

Is there a fifth integral of motion in a spherical potential? To study this
question, we examine motion in the potential

Φ(r) = −GM
(

1

r
+

a

r2

)
. (3.57)

For this potential, equation (3.11b) becomes

d2u

dψ2
+

(
1 − 2GMa

L2

)
u =

GM

L2
, (3.58)

the general solution of which is

u = C cos

(
ψ − ψ0

K

)
+
GMK2

L2
, (3.59a)

where

K ≡
(

1 − 2GMa

L2

)−1/2

. (3.59b)

Hence

ψ0 = ψ −K Arccos

[
1

C

(
1

r
− GMK2

L2

)]
, (3.60)

where t = Arccosx is the multiple-valued solution of x = cos t, and C can
be expressed in terms of E and L by

E = 1
2

C2L2

K2
− 1

2

(
GMK

L

)2

. (3.61)

If in equations (3.59b), (3.60) and (3.61) we replace E by H(x,v) and L by
|L(x,v)| = |x × v|, the quantity ψ0 becomes a function of the phase-space
coordinates which is constant as the particle moves along its orbit. Hence ψ0

is a fifth integral of motion. (Since the function Arccosx is multiple-valued,
a judicious choice of solution is necessary to avoid discontinuous jumps in
ψ0.) Now suppose that we know the numerical values of E, L, ψ0, and the
radial coordinate r. Since we have four numbers—three integrals and one
coordinate—it is natural to ask how we might use these numbers to determine
the azimuthal coordinate ψ. We rewrite equation (3.60) in the form

ψ = ψ0 ±K cos−1

[
1

C

(
1

r
− GMK2

L2

)]
+ 2nKπ, (3.62)
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where cos−1(x) is defined to be the value of Arccos (x) that lies between 0
and π, and n is an arbitrary integer. If K is irrational—as nearly all real
numbers are—then by a suitable choice of the integer n, we can make ψ
modulo 2π approximate any given number as closely as we please. Thus
for any values of E and L, and any value of r between the pericenter and
apocenter for the given E and L, an orbit that is known to have a given
value of the integral ψ0 can have an azimuthal angle as close as we please to
any number between 0 and 2π.

On the other hand, if K is rational these problems do not arise. The
simplest and most important case is that of the Kepler potential, when a = 0
and K = 1. Equation (3.62) now becomes

ψ = ψ0 ± cos−1

[
1

C

(
1

r
− GM

L2

)]
+ 2nπ, (3.63)

which yields only two values of ψ modulo 2π for given E, L and r.

These arguments can be restated geometrically. The phase space has
six dimensions. The equation H(x,v) = E confines the orbit to a five-
dimensional subspace. The vector equation L(x,v) = constant adds three
further constraints, thereby restricting the orbit to a two-dimensional surface.
Through the equation ψ0(x,v) = constant the fifth integral confines the orbit
to a one-dimensional curve on this surface. Figure 3.1 can be regarded as
a projection of this curve. In the Kepler case K = 1, the curve closes on
itself, and hence does not cover the two-dimensional surface H = constant ,
L = constant . But when K is irrational, the curve is endless and densely
covers the surface of constant H and L.

We can make an even stronger statement. Consider any volume of phase
space, of any shape or size. Then if K is irrational, the fraction of the time
that an orbit with given values of H and L spends in that volume does not
depend on the value that ψ0 takes on this orbit.

Integrals like ψ0 for irrational K that do not affect the phase-space dis-
tribution of an orbit, are called non-isolating integrals. All other integrals
are called isolating integrals. The examples of isolating integrals that we
have encountered so far, namely, H , L, and the function ψ0 when K = 1,
all confine stars to a five-dimensional region in phase space. However, there
can also be isolating integrals that restrict the orbit to a six-dimensional
subspace of phase space—see §3.7.3. Isolating integrals are of great practical
and theoretical importance, whereas non-isolating integrals are of essentially
no value for galactic dynamics.
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3.2 Orbits in axisymmetric potentials

Few galaxies are even approximately spherical, but many approximate figures
of revolution. Thus in this section we begin to explore the types of orbits
that are possible in many real galaxies. As in Chapter 2, we shall usually
employ a cylindrical coordinate system (R, φ, z) with origin at the galactic
center, and shall align the z axis with the galaxy’s symmetry axis.

Stars whose motions are confined to the equatorial plane of an axisym-
metric galaxy have no way of perceiving that the potential in which they
move is not spherically symmetric. Therefore their orbits will be identical
with those we discussed in the last section; the radial coordinate R of a star
on such an orbit oscillates between fixed extrema as the star revolves around
the center, and the orbit again forms a rosette figure.

3.2.1 Motion in the meridional plane

The situation is much more complex and interesting for stars whose motions
carry them out of the equatorial plane of the system. The study of such
general orbits in axisymmetric galaxies can be reduced to a two-dimensional
problem by exploiting the conservation of the z-component of angular mo-
mentum of any star. Let the potential, which we assume to be symmetric
about the plane z = 0, be Φ(R, z). Then the motion is governed by the
Lagrangian

L = 1
2

[
Ṙ2 +

(
Rφ̇
)2

+ ż2
]
− Φ(R, z). (3.64)

The momenta are

pR = Ṙ ; pφ = R2φ̇ ; pz = ż, (3.65)

so the Hamiltonian is

H = 1
2

(
p2
R +

p2
φ

R2
+ p2

z

)
+ Φ(R, z). (3.66)

From Hamilton’s equations (D.54) we find that the equations of motion are

ṗR = R̈ =
p2
φ

R3
− ∂Φ

∂R
, (3.67a)

ṗφ =
d

dt

(
R2φ̇

)
= 0, (3.67b)

ṗz = z̈ = −∂Φ

∂z
. (3.67c)

Equation (3.67b) expresses conservation of the component of angular mo-
mentum about the z axis, pφ = Lz (a constant), while equations (3.67a) and
(3.67c) describe the coupled oscillations of the star in the R and z-directions.
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Figure 3.3 Level contours of the effective potential of equation (3.70) when v0 = 1,
Lz = 0.2. Contours are shown for Φeff = −1, −0.5, 0, 0.5, 1, 1.5, 2, 3, 5. The axis ratio
is q = 0.9 in the left panel and q = 0.5 in the right.

After replacing pφ in (3.67a) by its numerical value Lz, the first and last of
equations (3.67) can be written

R̈ = −∂Φeff

∂R
; z̈ = −∂Φeff

∂z
, (3.68a)

where

Φeff ≡ Φ(R, z) +
L2
z

2R2
(3.68b)

is called the effective potential. Thus the three-dimensional motion of
a star in an axisymmetric potential Φ(R, z) can be reduced to the two-
dimensional motion of the star in the (R, z) plane (the meridional plane)
under the Hamiltonian

Heff = 1
2 (p2

R + p2
z) + Φeff(R, z). (3.69)

Notice that Heff differs from the full Hamiltonian (3.66) only in the substi-
tution of the constant Lz for the azimuthal momentum pφ. Consequently,
the numerical value of Heff is simply the orbit’s total energy E. The dif-
ference E − Φeff is the kinetic energy of motion in the (R, z) plane, equal
to 1

2 (p2
R + p2

z). Since kinetic energy is non-negative, the orbit is restricted
to the area in the meridional plane satisfying the inequality E ≥ Φeff . The
curve bounding this area is called the zero-velocity curve, since the orbit
can only reach this curve if its velocity in the (R, z) plane is instantaneously
zero.

Figure 3.3 shows contour plots of the effective potential

Φeff = 1
2v

2
0 ln

(
R2 +

z2

q2

)
+

L2
z

2R2
, (3.70)
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Figure 3.4 Two orbits in the potential of equation (3.70) with q = 0.9. Both orbits are
at energy E = −0.8 and angular momentum Lz = 0.2, and we assume v0 = 1.

for v0 = 1, Lz = 0.2 and axial ratios q = 0.9 and 0.5. This resembles the
effective potential experienced by a star in an oblate spheroidal galaxy that
has a constant circular speed v0 (§2.3.2). Notice that Φeff rises very steeply
near the z axis, as if the axis of symmetry were protected by a centrifugal
barrier.

The minimum in Φeff has a simple physical significance. The minimum
occurs where

0 =
∂Φeff

∂R
=
∂Φ

∂R
− L2

z

R3
; 0 =

∂Φeff

∂z
. (3.71)

The second of these conditions is satisfied anywhere in the equatorial plane
z = 0 on account of the assumed symmetry of Φ about this place, and the
first is satisfied at the guiding-center radius Rg where

(
∂Φ

∂R

)

(Rg,0)

=
L2
z

R3
g

= Rgφ̇
2. (3.72)

This is simply the condition for a circular orbit with angular speed φ̇. Thus
the minimum of Φeff occurs at the radius at which a circular orbit has angular
momentum Lz, and the value of Φeff at the minimum is the energy of this
circular orbit.

Unless the gravitational potential Φ is of some special form, equations
(3.68a) cannot be solved analytically. However, we may follow the evolution
of R(t) and z(t) by integrating the equations of motion numerically, starting
from a variety of initial conditions. Figure 3.4 shows the result of two such
integrations for the potential (3.69) with q = 0.9 (see Richstone 1982). The
orbits shown are of stars of the same energy and angular momentum, yet they
look quite different in real space, and hence the stars on these orbits must
move through different regions of phase space. Is this because the equations
of motion admit a third isolating integral I(R, z, pR, pz) in addition to E and
Lz?
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3.2.2 Surfaces of section

The phase space associated with the motion we are considering has four
dimensions, R, z, pR, and pz, and the four-dimensional motion of the phase-
space point of an individual star is too complicated to visualize. Nonetheless,
we can determine whether orbits in the (R, z) plane admit an additional
isolating integral by use of a simple graphical device. Since the Hamiltonian
Heff(R, z, pR, pz) is constant, we could plot the motion of the representative
point in a three-dimensional reduced phase space, say (R, z, pR), and then
pz would be determined (to within a sign) by the known value E of Heff .
However, even three-dimensional spaces are difficult to draw, so we simply
show the points where the star crosses some plane in the reduced phase space,
say the plane z = 0; these points are called consequents. To remove the
sign ambiguity in pz, we plot the (R, pR) coordinates only when pz > 0. In
other words, we plot the values of R and pR every time the star crosses the
equator going upward. Such plots were first used by Poincaré and are called
surfaces of section.2 The key feature of the surface of section is that, even
though it is only two-dimensional, no two distinct orbits at the same energy
can occupy the same point. Also, any orbit is restricted to an area in the
surface of section defined by the constraint Heff ≥ 1

2 Ṙ
2 + Φeff ; the curve

bounding this area is often called the zero-velocity curve of the surface of
section, since it can only be reached by an orbit with pz = 0.

Figure 3.5 shows the (R, pR) surface of section at the energy of the orbits
of Figure 3.4: the full curve is the zero-velocity curve, while the dots show
the consequents generated by the orbit in the left panel of Figure 3.4. The
cross near the center of the surface of section, at (R = 0.26, pR = 0), is the
single consequent of the shell orbit, in which the trajectory of the star is
restricted to a two-dimensional surface. The shell orbit is the limit of orbits
such as those shown in Figure 3.4 in which the distance between the inner
and outer boundaries of the orbit shrinks to zero.

In Figure 3.5 the consequents of the orbit of the left panel of Figure 3.4
appear to lie on a smooth curve, called the invariant curve of the orbit. The
existence of the invariant curve implies that some isolating integral I is re-
spected by this orbit. The curve arises because the equation I = constant re-
stricts motion in the two-dimensional surface of section to a one-dimensional
curve (or perhaps to a finite number of discrete points in exceptional cases).
It is often found that for realistic galactic potentials, orbits do admit an in-
tegral of this type. Since I is in addition to the two classical integrals H and
pφ, it is called the third integral. In general there is no analytic expression
for I as a function of the phase-space variables, so it is called a non-classical
integral.

2 A surface of section is defined by some arbitrarily chosen condition, here z = 0, pz >
0. Good judgment must be used in the choice of this condition lest some important orbits
never satisfy it, and hence do not appear on the surface of section.
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Figure 3.5 Points generated by the orbit of the left panel of Figure 3.4 in the (R, pR)
surface of section. If the total angular momentum L of the orbit were conserved, the points
would fall on the dashed curve. The full curve is the zero-velocity curve at the energy of
this orbit. The × marks the consequent of the shell orbit.

Figure 3.6 The total angular momentum is almost constant along the orbit shown in the
left panel of Figure 3.5. For clarity L(t) is plotted only at the beginning and end of a long
integration.

We may form an intuitive picture of the nature of the third integral by
considering two special cases. If the potential Φ is spherical, we know that the
total angular momentum |L| is an integral. This suggests that for a nearly
spherical potential—this one has axis ratio q = 0.9—the third integral may
be approximated by |L|. The dashed curve in Figure 3.5 shows the curve
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on which the points generated by the orbit of the left panel of Figure 3.4
would lie if the third integral were |L|, and Figure 3.6 shows the actual time
evolution of |L| along that orbit—notice that although |L| oscillates rapidly,
its mean value does not change even over hundreds of orbital times. From
these two figures we see that |L| is an approximately conserved quantity,
even for orbits in potentials that are significantly flattened. We may think
of these orbits as approximately planar and with more or less fixed peri- and
apocenter radii. The approximate orbital planes have a fixed inclination to
the z axis but precess about this axis, at a rate that gradually tends to zero
as the potential becomes more and more nearly spherical.

The second special case is when the potential is separable in R and z:

Φ(R, z) = ΦR(R) + Φz(z). (3.73)

Then the third integral can be taken to be the energy of vertical motion

Hz = 1
2p

2
z + Φz(z). (3.74)

Along nearly circular orbits in a thin disk, the potential is approximately
separable, so equation (3.74) provides a useful expression for the third inte-
gral. In §3.6.2b we discuss a more sophisticated approximation to the third
integral for orbits in thin disks.

3.2.3 Nearly circular orbits: epicycles and the velocity ellipsoid

In disk galaxies many stars are on nearly circular orbits, so it is useful to
derive approximate solutions to equations (3.68a) that are valid for such
orbits. We define

x ≡ R−Rg, (3.75)

where Rg(Lz) is the guiding-center radius for an orbit of angular momentum
Lz (eq. 3.72). Thus (x, z) = (0, 0) are the coordinates in the meridional plane
of the minimum in Φeff . When we expand Φeff in a Taylor series about this
point, we obtain

Φeff = Φeff(Rg, 0)+ 1
2

(
∂2Φeff

∂R2

)

(Rg,0)

x2+ 1
2

(
∂2Φeff

∂z2

)

(Rg,0)

z2+O(xz2). (3.76)

Note that the term that is proportional to xz vanishes because Φeff is assumed
to be symmetric about z = 0. The equations of motion (3.68a) become very
simple in the epicycle approximation in which we neglect all terms in Φeff

of order xz2 or higher powers of x and z. We define two new quantities by

κ2(Rg) ≡
(
∂2Φeff

∂R2

)

(Rg,0)

; ν2(Rg) ≡
(
∂2Φeff

∂z2

)

(Rg,0)

, (3.77)
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for then equations (3.68a) become

ẍ = −κ2x, (3.78a)

z̈ = −ν2z. (3.78b)

According to these equations, x and z evolve like the displacements of two
harmonic oscillators, with frequencies κ and ν, respectively. The two frequen-
cies κ and ν are called the epicycle or radial frequency and the vertical
frequency. If we substitute from equation (3.68b) for Φeff we obtain3

κ2(Rg) =

(
∂2Φ

∂R2

)

(Rg,0)

+
3L2

z

R4
g

=

(
∂2Φ

∂R2

)

(Rg ,0)

+
3

Rg

(
∂Φ

∂R

)

(Rg ,0)

, (3.79a)

ν2(Rg) =

(
∂2Φ

∂z2

)

(Rg,0)

. (3.79b)

Since the circular frequency is given by

Ω2(R) =
1

R

(
∂Φ

∂R

)

(R,0)

=
L2
z

R4
, (3.79c)

equation (3.79a) may be written

κ2(Rg) =

(
R

dΩ2

dR
+ 4Ω2

)

Rg

. (3.80)

Note that the radial and azimuthal periods (eqs. 3.17 and 3.19) are simply

Tr =
2π

κ
; Tψ =

2π

Ω
. (3.81)

Very near the center of a galaxy, where the circular speed rises approx-
imately linearly with radius, Ω is nearly constant and κ ' 2Ω. Elsewhere Ω
declines with radius, though rarely faster than the Kepler falloff, Ω ∝ R−3/2,
which yields κ = Ω. Thus, in general,

Ω ∼< κ ∼< 2Ω. (3.82)

Using equations (3.19) and (3.81), it is easy to show that this range is con-
sistent with the range of ∆ψ given by equation (3.41) for the isochrone
potential.

3 The formula for the ratio κ2/Ω2 from equations (3.79) was already known to Newton;
see Proposition 45 of his Principia.
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It is useful to define two functions

A(R) ≡ 1
2

(
vc

R
− dvc

dR

)
= − 1

2R
dΩ

dR
,

B(R) ≡ − 1
2

(
vc

R
+

dvc

dR

)
= −

(
Ω + 1

2R
dΩ

dR

)
,

(3.83)

where vc(R) = RΩ(R) is the circular speed at radius R. These functions are
related to the circular and epicycle frequencies by

Ω = A−B ; κ2 = −4B(A−B) = −4BΩ. (3.84)

The values taken by A and B at the solar radius can be measured directly
from the kinematics of stars in the solar neighborhood (BM §10.3.3) and
are called the Oort constants.4 Taking values for these constants from
Table 1.2, we find that the epicycle frequency at the Sun is κ0 = (37 ±
3) km s−1 kpc−1, and that the ratio κ0/Ω0 at the Sun is

κ0

Ω0
= 2

√
−B
A−B

= 1.35 ± 0.05. (3.85)

Consequently the Sun makes about 1.3 oscillations in the radial direction in
the time it takes to complete an orbit around the galactic center. Hence its
orbit does not close on itself in an inertial frame, but forms a rosette figure
like those discussed above for stars in spherically symmetric potentials.

The equations of motion (3.78) lead to two integrals, namely, the one-
dimensional Hamiltonians

HR ≡ 1
2 (ẋ2 + κ2x2) ; Hz ≡ 1

2 (ż2 + ν2z2) (3.86)

of the two oscillators. Thus if the star’s orbit is sufficiently nearly circular
that our truncation of the series for Φeff (eq. 3.76) is justified, then the orbit
admits three integrals of motion: HR, Hz , and pφ. These are all isolating
integrals.

From equations (3.75), (3.77), (3.78), and (3.86) we see that the Hamil-
tonian of such a star is made up of three parts:

H = HR(R, pR) +Hz(z, pz) + Φeff(Rg, 0). (3.87)

4 Jan Hendrik Oort (1900–1992) was Director of Leiden Observatory in the Nether-
lands from 1945 to 1970. In 1927 Oort confirmed Bertil Lindblad’s hypothesis of galactic
rotation with an analysis of the motions of nearby stars that established the mathematical
framework for studying Galactic rotation. With his student H. van de Hulst, he predicted
the 21-cm line of neutral hydrogen. Oort also established the Netherlands as a world
leader in radio astronomy, and showed that many comets originate in a cloud surrounding
the Sun at a distance ∼ 0.1 pc, now called the Oort cloud.
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Thus the three integrals of motion can equally be chosen as (HR, Hz, pφ) or
(H,Hz , pφ), and in the latter case Hz, which is a classical integral, is playing
the role of the third integral.

We now investigate what the ratios of the frequencies κ, Ω and ν tell
us about the properties of the Galaxy. At most points in a typical galactic
disk (including the solar neighborhood) vc ' constant , and from (3.80) it is
easy to show that in this case κ2 = 2Ω2. In cylindrical coordinates Poisson’s
equation for an axisymmetric galaxy reads

4πGρ =
1

R

∂

∂R

(
R
∂Φ

∂R

)
+
∂2Φ

∂z2

' 1

R

dv2
c

dR
+ ν2,

(3.88)

where in the second line we have approximated the right side by its value
in the equatorial plane and used equation (3.79b). If the mass distribution
were spherical, we would have Ω2 ' GM/R3 = 4

3πGρ, where M is the mass
and ρ is the mean density within the sphere of radius R about the galactic
center. From the plot of the circular speed of an exponential disk shown in
Figure 2.17, we know that this relation is not far from correct even for a flat
disk. Hence, at a typical point in a galaxy such as the Milky Way

ν2

κ2
' 3

2ρ/ρ. (3.89)

That is, the ratio ν2/κ2 is a measure of the degree to which the galactic
material is concentrated towards the plane, and will be significantly greater
than unity for a disk galaxy. From Table 1.1 we see that at the Sun ρ '
0.1M� pc−3, so the Sun’s vertical period of small oscillations is 2π/ν '
87 Myr. For vc = 220 km s−1 and R0 = 8 kpc (Table 1.2) we find ρ =
0.039M� pc−3. Equation (3.89) then yields ν/κ ' 2.0 for the Sun.

From equation (3.88) it is clear that we expect Φeff ∝ z2 only for values
of z small enough that ρdisk(z) ' constant , i.e., for z � 300 pc at R0. For
stars that do not rise above this height, equation (3.78b) yields

z = Z cos(νt+ ζ), (3.90)

where Z and ζ are arbitrary constants. However, the orbits of the majority
of disk stars carry these stars further above the plane than 300 pc (Prob-
lem 4.23). Therefore the epicycle approximation does not provide a reliable
guide to the motion of the majority of disk stars in the direction perpendicu-
lar to the disk. The great value of this approximation lies rather in its ability
to describe the motions of stars in the disk plane. So far we have described
only the radial component of this motion, so we now turn to the azimuthal
motion.
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Equation (3.78a), which governs the radial motion, has the general so-
lution

x(t) = X cos(κt+ α), (3.91)

where X ≥ 0 and α are arbitrary constants. Now let Ωg = Lz/R
2
g be

the angular speed of the circular orbit with angular momentum Lz. Since
pφ = Lz is constant, we have

φ̇ =
pφ
R2

=
Lz
R2

g

(
1 +

x

Rg

)−2

' Ωg

(
1 − 2x

Rg

)
.

(3.92)

Substituting for x from (3.91) and integrating, we obtain

φ = Ωgt+ φ0 − γ
X

Rg
sin(κt+ α), (3.93a)

where

γ ≡ 2Ωg

κ
= − κ

2B
, (3.93b)

where the second equality is derived using (3.84). The nature of the mo-
tion described by these equations can be clarified by erecting Cartesian axes
(x, y, z) with origin at the guiding center, (R, φ) = (Rg,Ωgt + φ0). The
x and z coordinates have already been defined, and the y coordinate is per-
pendicular to both and points in the direction of rotation.5 To first order in
the small parameter X/Rg we have

y = −γX sin(κt+ α)

≡ −Y sin(κt+ α).
(3.94)

Equations (3.91) and (3.94) are the complete solution for an equatorial orbit
in the epicycle approximation. The motion in the z-direction is independent
of the motion in x and y. In the (x, y) plane the star moves on an ellipse
called the epicycle around the guiding center (see Figure 3.7). The lengths
of the semi-axes of the epicycle are in the ratio

X

Y
= γ−1. (3.95)

For a harmonic oscillator potential X/Y = 1 and for a Kepler potential
X/Y = 1

2 ; the inequality (3.82) shows that in most galactic potentials

5 In applications to the Milky Way, which rotates clockwise when viewed from the
north Galactic pole, either êz is directed towards the south Galactic pole, or (x, y, z) is a
left-handed coordinate system; we make the second choice in this book.
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Figure 3.7 An elliptical Kepler orbit
(dashed curve) is well approximated
by the superposition of motion at
angular frequency κ around a small
ellipse with axis ratio 1

2
, and motion

of the ellipse’s center in the opposite
sense at angular frequency Ω around
a circle (dotted curve).

Y > X , so the epicycle is elongated in the tangential direction.6 From
equation (3.85), X/Y ' 0.7 in the solar neighborhood. The motion around
the epicycle is in the opposite sense to the rotation of the guiding center
around the galactic center, and the period of the epicycle motion is 2π/κ,
while the period of the guiding-center motion is 2π/Ωg.

Consider the motion of a star on an epicyclic orbit, as viewed by an
astronomer who sits at the guiding center of the star’s orbit. At different
times in the orbit the astronomer’s distance measurements range from a max-
imum value Y down to X . Since by equation (3.95), X/Y = κ/(2Ωg), these
measurements yield important information about the galactic potential. Of
course, the epicycle period is much longer than an astronomer’s lifetime, so
we cannot in practice measure the distance to a given star as it moves around
its epicycle. Moreover, in general we do not know the location of the guiding
center of any given star. But we can measure vR and vφ(R0) − vc(R0) for a
group of stars, each of which has its own guiding-center radius Rg, as they
pass near the Sun at radius R0. We now show that from these measurements
we can determine the ratio 2Ω/κ. We have

vφ(R0) − vc(R0) = R0(φ̇− Ω0) = R0(φ̇− Ωg + Ωg − Ω0)

' R0

[
(φ̇ − Ωg) −

(
dΩ

dR

)

Rg

x

]
.

(3.96a)

With equation (3.92) this becomes

vφ(R0) − vc(R0) ' −R0x

(
2Ω

R
+

dΩ

dR

)

Rg

. (3.96b)

6 Epicycles were invented by the Greek astronomer Hipparchus (190–120 BC) to de-
scribe the motion of the planets about the Sun. Hipparchus also measured the distance
to the Moon and discovered the precession of the Earth’s spin axis. Epicycles—the first
known perturbation expansion—were not very successful, largely because Hipparchus used
circular epicycles with X/Y = 1. If only he had used epicycles with the proper axis ratio
X/Y = 1

2
!
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If we evaluate the coefficient of the small quantity x at R0 rather than Rg,
we introduce an additional error in vφ(R0) which is of order x2 and therefore
negligible. Making this approximation we find

vφ(R0) − vc(R0) ' −x
(

2Ω +R
dΩ

dR

)

R0

. (3.96c)

Finally using equations (3.83) to introduce Oort’s constants, we obtain

vφ(R0) − vc(R0) ' 2Bx =
κ

γ
x =

κ

γ
X cos(κt+ α). (3.97)

Averaging over the phases α of stars near the Sun, we find

[vφ − vc(R0)]2 =
κ2X2

2γ2
= 2B2X2. (3.98)

Similarly, we may neglect the dependence of κ on Rg to obtain with equation
(3.84)

v2
R = 1

2κ
2X2 = −2B(A−B)X2. (3.99)

Taking the ratio of the last two equations we have

[vφ − vc(R0)]2

v2
R

' −B
A−B

= − B

Ω0
=

κ2
0

4Ω2
0

= γ−2 ' 0.46. (3.100)

In §4.4.3 we shall re-derive this equation from a rather different point of view
and compare its predictions with observational data.

Note that the ratio in equation (3.100) is the inverse of the ratio of the
mean-square azimuthal and radial velocities relative to the guiding center:
by (3.95)

ẏ2

ẋ2
=

1
2 (κY )2

1
2 (κX)2

= γ2. (3.101)

This counter-intuitive result arises because one measure of the rms tangential
velocity (eq. 3.101) is taken with respect to the guiding center of a single star,
while the other (eq. 3.100) is taken with respect to the circular speed at the
star’s instantaneous radius.

This analysis also leads to an alternative expression for the integral of
motion HR defined in equation (3.86). Eliminating x using equation (3.97),
we have

HR = 1
2 ẋ

2 + 1
2γ

2[vφ(R0) − vc(R0)]2. (3.102)
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3.3 Orbits in planar non-axisymmetric potentials

Many, possibly most, galaxies have non-axisymmetric structures. These are
evident near the centers of many disk galaxies, where one finds a luminous
stellar bar—the Milky Way possesses just such a bar (BM §10.3). Non-
axisymmetry is harder to detect in an elliptical galaxy, but we believe that
many elliptical galaxies, especially the more luminous ones, are triaxial rather
than axisymmetric (BM §4.2). Evidently we need to understand how stars
orbit in a non-axisymmetric potential if we are to model galaxies successfully.

We start with the simplest possible problem, namely, planar motion in
a non-rotating potential.7 Towards the end of this section we generalize
the discussion to two-dimensional motion in potentials whose figures rotate
steadily, and in the next section we show how an understanding of two-
dimensional motion can be exploited in problems involving three-dimensional
potentials.

3.3.1 Two-dimensional non-rotating potential

Consider the logarithmic potential (cf. §2.3.2)

ΦL(x, y) = 1
2v

2
0 ln

(
R2

c + x2 +
y2

q2

)
(0 < q ≤ 1). (3.103)

This potential has the following useful properties:
(i) The equipotentials have constant axial ratio q, so the influence of the

non-axisymmetry is similar at all radii. Since q ≤ 1, the y axis is the
minor axis.

(ii) For R =
√
x2 + y2 � Rc, we may expand ΦL in powers of R/Rc and

find

ΦL(x, y) ' v2
0

2R2
c

(
x2 +

y2

q2

)
+ constant (R � Rc), (3.104)

which is just the potential of the two-dimensional harmonic oscillator.
In §2.5 we saw that gravitational potentials of this form are generated
by homogeneous ellipsoids. Thus for R ∼< Rc, ΦL approximates the
potential of a homogeneous density distribution.

(iii) For R � Rc and q = 1, ΦL ' v2
0 lnR, which yields a circular speed

vc ' v0 that is nearly constant. Thus the radial component of the force
generated by ΦL with q ' 1 is consistent with the flat circular-speed
curves of many disk galaxies.

The simplest orbits in ΦL are those that are confined to R � Rc; when ΦL

is of the form (3.104), the orbit is the sum of independent harmonic motions

7 This problem is equivalent to that of motion in the meridional plane of an axisym-
metric potential when Lz = 0.
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Figure 3.8 Two orbits of a com-
mon energy in the potential ΦL

of equation (3.103) when v0 = 1,
q = 0.9 and Rc = 0.14: top, a box
orbit; bottom, a loop orbit. The
closed parent of the loop orbit is also
shown. The energy, E = −0.337, is
that of the isopotential surface that
cuts the long axis at x = 5Rc.

parallel to the x and y axes. The frequencies of these motions are ωx = v0/Rc

and ωy = v0/qRc, and unless these frequencies are commensurable (i.e.,
unless ωx/ωy = n/m for some integers n and m), the star eventually passes
close to every point inside a rectangular box. These orbits are therefore
known as box orbits.8 Such orbits have no particular sense of circulation
about the center and thus their time-averaged angular momentum is zero.
They respect two integrals of the motion, which we may take to be the
Hamiltonians of the independent oscillations parallel to the coordinate axes,

Hx = 1
2v

2
x + 1

2v
2
0

x2

R2
c

; Hy = 1
2v

2
y + 1

2v
2
0

y2

q2R2
c

. (3.105)

To investigate orbits at larger radii R ∼> Rc, we must use numerical
integrations. Two examples are shown in Figure 3.8. Neither orbit fills the
elliptical zero-velocity curve ΦL = E, so both orbits must respect a second
integral in addition to the energy. The upper orbit is still called a box orbit
because it can be thought of as a distorted form of a box orbit in the two-
dimensional harmonic oscillator. Within the core the orbit’s envelope runs
approximately parallel to the long axis of the potential, while for R � Rc

the envelope approximately follows curves of constant azimuth or radius.
In the lower orbit of Figure 3.8, the star circulates in a fixed sense about

the center of the potential, while oscillating in radius. Orbits of this type
are called loop orbits. Any star launched from R � Rc in the tangential
direction with a speed of order v0 will follow a loop orbit. If the star is
launched at speed ∼ v0 at a large angle to the tangential direction, the
annulus occupied by the orbit will be wide, while if the launch angle is small,
the annulus is narrow. This dependence is analogous to the way in which

8 The curve traced by a box orbit is sometimes called a Lissajous figure and is easily
displayed on an oscilloscope.
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Figure 3.9 The (x, ẋ) surface of section formed by orbits in ΦL of the same energy as the
orbits depicted in Figure 3.8. The isopotential surface of this energy cuts the long axis at
x = 0.7. The curves marked 4 and 1 correspond to the box and loop orbits shown in the
top and bottom panels of Figure 3.8.

the thickness of the rosette formed by an orbit of given energy in a planar
axisymmetric potential depends on its angular momentum. This analogy
suggests that stars on loop orbits in ΦL may respect an integral that is some
sort of generalization of the angular momentum pφ.

We may investigate these orbits further by generating a surface of sec-
tion. Figure 3.9 is the surface of section y = 0, ẏ > 0 generated by orbits
in ΦL of the same energy as the orbits shown in Figure 3.8. The boundary
curve in this figure arises from the energy constraint

1
2 ẋ

2 + ΦL(x, 0) ≤ 1
2 (ẋ2 + ẏ2) + ΦL(x, 0) = Hy=0. (3.106)

Each closed curve in this figure corresponds to a different orbit. All these
orbits respect an integral I2 in addition to the energy because each orbit is
confined to a curve.

There are two types of closed curve in Figure 3.9, corresponding to
the two basic types of orbit that we have identified. The lower panel of
Figure 3.8 shows the spatial form of the loop orbit that generates the curve
marked 1 in Figure 3.9. At a given energy there is a whole family of such
orbits that differ in the width of the elliptical annuli within which they are
confined—see Figure 3.10. The unique orbit of this family that circulates in
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Figure 3.10 A selection of loop (top row) and box (bottom row) orbits in the potential
ΦL(q = 0.9, Rc = 0.14) at the energy of Figures 3.8 and 3.9.

an anti-clockwise sense and closes on itself after one revolution is the closed
loop orbit, which is also shown at the bottom of Figure 3.8. In the surface of
section this orbit generates the single point 3. Orbits with non-zero annular
widths generate the curves that loop around the point 3. Naturally, there
are loop orbits that circulate in a clockwise sense in addition to the anti-
clockwise orbits; in the surface of section their representative curves loop
around the point 2.

The second type of closed curve in Figure 3.9 corresponds to box orbits.
The box orbit shown at the top of Figure 3.8 generates the curve marked 4.
All the curves in the surface of section that are symmetric about the origin,
rather than centered on one of the points 2 or 3, correspond to box orbits.
These orbits differ from loop orbits in two major ways: (i) in the course
of time a star on any of them passes arbitrarily close to the center of the
potential (in the surface of section their curves cross x = 0), and (ii) stars on
these orbits have no unique sense of rotation about the center (in the surface
of section their curves are symmetric about x = 0). The outermost curve
in Figure 3.9 (the zero-velocity curve) corresponds to the orbit on which
y = ẏ = 0; on this orbit the star simply oscillates back and forth along the
x axis. We call this the closed long-axis orbit. The curves interior to
this bounding curve that also center on the origin correspond to less and less
elongated box orbits. The bottom row of Figure 3.10 shows this progression
from left to right. Notice the strong resemblance of the most eccentric loop
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Figure 3.11 The appearance of the surface of section Figure 3.9 if orbits conserved (a)
angular momentum (eq. 3.107; dashed curves), or (b) Hx (eq. 3.105; inner dotted curves),
or (c) H′

x (eq. 3.108; outer dot-dashed curves).

orbit in the top right panel to the least elongated box orbit shown below
it. The big difference between these orbits is that the loop orbit has a fixed
sense of circulation about the center, while the box orbit does not.

It is instructive to compare the curves of Figure 3.9 with the curves
generated by the integrals that we encountered earlier in this chapter. For
example, if the angular momentum pφ were an integral, the curves on the
surface of section y = 0, ẏ > 0 would be given by the relation

(pφ)y=0 = xẏ = x
√

2[E − ΦL(x, 0)] − ẋ2. (3.107)

These curves are shown as dashed curves in Figure 3.11. They resemble the
curves in Figure 3.9 near the closed loop orbits 2 and 3, thus supporting our
suspicion that the integral respected by loop orbits is some generalization of
angular momentum. However, the dashed curves do not reproduce the curves
generated by box orbits. If the extra integral were the Hamiltonian Hx of
the x-component of motion in the harmonic potential (3.105), the curves in
Figure 3.9 would be the dotted ellipses near the center of Figure 3.11. They
resemble the curves in Figure 3.9 that are generated by the box orbits only in
that they are symmetrical about the x axis. Figure 3.11 shows that a better
approximation to the invariant curves of box orbits is provided by contours
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of constant
H ′
x ≡ 1

2 ẋ
2 + Φ(x, 0). (3.108)

H ′
x may be thought of as the Hamiltonian associated with motion parallel to

the potential’s long axis. In a sense the integrals respected by box and loop
orbits are analogous to H ′

x and pφ, respectively.
Figures 3.8 and 3.9 suggest an intimate connection between closed or-

bits and families of non-closed orbits. We say that the clockwise closed
loop orbit is the parent of the family of clockwise loop orbits. Similarly, the
closed long-axis orbit y = 0 is the parent of the box orbits.

The closed orbits that are the parents of orbit families are all stable,
since members of their families that are initially close to them remain close
at all times. In fact, we may think of any member of the family as engaged
in stable oscillations about the parent closed orbit. A simple example of this
state of affairs is provided by orbits in an axisymmetric potential. In a two-
dimensional axisymmetric potential there are only two stable closed orbits
at each energy—the clockwise and the anti-clockwise circular orbits.9 All
other orbits, having non-zero eccentricity, belong to families whose parents
are these two orbits. The epicycle frequency (3.80) is simply the frequency
of small oscillations around the parent closed orbit.

The relationship between stable closed orbits and families of non-closed
orbits enables us to trace the evolution of the orbital structure of a potential
as the energy of the orbits or the shape of the potential is altered, simply by
tracing the evolution of the stable closed orbits. For example, consider how
the orbital structure supported by ΦL (eq. 3.103) evolves as we pass from the
axisymmetric potential that is obtained when q = 1 to the barred potentials
that are obtained when q < 1. When q = 1, pφ is an integral, so the surface
of section is qualitatively similar to the dashed curves in Figure 3.11. The
only stable closed orbits are circular, and all orbits are loop orbits. When
we make q slightly smaller than unity, the long-axis orbit becomes stable
and parents a family of elongated box orbits that oscillate about the axial
orbit. As q is diminished more and more below unity, a larger and larger
portion of phase space comes to be occupied by box rather than loop orbits.
Comparison of Figures 3.9 and 3.12 shows that this evolution manifests itself
in the surface of section by the growth of the band of box orbits that runs
around the outside of Figure 3.12 at the expense of the two bull’s-eyes in that
figure that are associated with the loop orbits. In real space the closed loop
orbits become more and more elongated, with the result that less and less
epicyclic motion needs to be added to one of these closed orbits to fill in the
hole at its center and thus terminate the sequence of loop orbits. The erosion
of the bull’s-eyes in the surface of section is associated with this process.

The appearance of the surface of section also depends on the energy
of its orbits. Figure 3.13 shows a surface of section for motion in ΦL(q =

9 Special potentials such as the Kepler potential, in which all orbits are closed, must
be excepted from this statement.
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Figure 3.12 When the potential ΦL is made more strongly barred by diminishing q, the
proportion of orbits that are boxes grows at the expense of the loops: the figure shows the
same surface of section as Figure 3.9 but for q = 0.8 rather than q = 0.9.

0.9, Rc = 0.14) at a lower energy than that of Figure 3.9. The changes in the
surface of section are closely related to changes in the size and shape of the
box and loop orbits. Box orbits that reach radii much greater than the core
radius Rc have rather narrow waists (see Figure 3.10), and closed loop orbits
of the same energy are nearly circular. If we consider box orbits and closed
loop orbits of progressively smaller dimensions, the waists of the box orbits
become steadily less narrow, and the closed orbits become progressively more
eccentric as the dimensions of the orbits approach Rc. Eventually, at an
energy Ec, the closed loop orbit degenerates into a line parallel to the short
axis of the potential. Loop orbits do not exist at energies less than Ec. At
E < Ec, all orbits are box orbits. The absence of loop orbits at E < Ec

is not unexpected since we saw above (eq. 3.105) that when x2 + y2 � R2
c ,

the potential is essentially that of the two-dimensional harmonic oscillator,
none of whose orbits are loops. At these energies the only closed orbits are
the short- and the long-axis closed orbits, and we expect both of these orbits
to be stable. In fact, the short-axis orbit becomes unstable at the energy
Ec at which the loop orbits first appear. One says that the stable short-axis
orbit of the low-energy regime bifurcates into the stable clockwise and anti-
clockwise loop orbits at Ec. Stable closed orbits often appear in pairs like
this.
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Figure 3.13 At low energies in a barred potential a large fraction of all orbits are boxes:
the figure shows the same surface of section as Figure 3.9 but for the energy whose iso-
potential surface cuts the x axis at x = 0.35 rather than at x = 0.7 as in Figure 3.9.

Many two-dimensional barred potentials have orbital structures that
resemble that of ΦL. In particular:
(i) Most orbits in these potentials respect a second integral in addition to

energy.
(ii) The majority of orbits in these potentials can be classified as either loop

orbits or box orbits. The loop orbits have a fixed sense of rotation and
never carry the star near the center, while the box orbits have no fixed
sense of rotation and allow the star to pass arbitrarily close to the center.

(iii) When the axial ratio of the isopotential curves is close to unity, most of
the phase space is filled with loop orbits, but as the axial ratio changes
away from unity, box orbits fill a bigger fraction of phase space.

Although these properties are fairly general, in §3.7.3 we shall see that certain
barred potentials have considerably more complex orbital structures.

3.3.2 Two-dimensional rotating potential

The figures of many non-axisymmetric galaxies rotate with respect to in-
ertial space, so we now study orbits in rotating potentials. Let the frame
of reference in which the potential Φ is static rotate steadily at angular ve-
locity Ωb, often called the pattern speed. In this frame the velocity is ẋ
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and the corresponding velocity in an inertial frame is ẋ + Ωb × x. Thus the
Lagrangian is

L = 1
2

∣∣ẋ + Ωb × x
∣∣2 − Φ(x). (3.109)

Consequently, the momentum is

p =
∂L
∂ẋ

= ẋ + Ωb × x, (3.110)

which is just the momentum in the underlying inertial frame. The Hamil-
tonian is

HJ = p · ẋ −L
= p · (p −Ωb × x) − 1

2p
2 + Φ

= 1
2p

2 + Φ −Ωb · (x × p),

(3.111)

where we have used the vector identity (B.8). Since p coincides with the
momentum in an inertial frame, x × p = L is the angular momentum and
1
2p

2 + Φ is the Hamiltonian H that governs the motion in the inertial frame.
Hence, (3.111) can be written

HJ = H −Ωb · L. (3.112)

Since Φ(x) is constant in the rotating frame, HJ has no explicit time de-
pendence, and its derivative along any orbit dHJ/dt = ∂HJ/∂t vanishes
(eq. D.56). Thus HJ is an integral, called the Jacobi integral: in a ro-
tating non-axisymmetric potential, neither H nor L is conserved, but the
combination H − Ωb · L is conserved. From (3.111) it is easy to show that
the constant value of HJ may be written as

EJ = 1
2 |ẋ|

2 + Φ − 1
2 |Ωb × x|2

= 1
2 |ẋ|

2 + Φeff ,
(3.113)

where the effective potential

Φeff(x) ≡ Φ(x) − 1
2 |Ωb × x|2

= Φ(x) − 1
2

[
|Ωb|2|x|2 − (Ωb · x)2

]
.

(3.114)

In deriving the second line we have used the identity (B.10). The effective
potential is the sum of the gravitational potential and a repulsive centrifugal
potential. For Ωb = Ωbêz, this additional term is simply − 1

2Ω2R2 in
cylindrical coordinates.

With equation (3.111) Hamilton’s equations become

ṗ = −∂HJ

∂x
= −∇Φ −Ωb × p

ẋ =
∂HJ

∂p
= p−Ωb × x,

(3.115)
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Figure 3.14 Contours of constant effective potential Φeff when the potential is given by
equation (3.103) with v0 = 1, q = 0.8, Rc = 0.1, and Ωb = 1. The point marked L3 is a
minimum of Φeff , while those marked L4 and L5 are maxima. Φeff has saddle points at
L1 and L2.

where we have used the identity (B.40). Eliminating p between these equa-
tions we find

ẍ = −∇Φ − 2Ωb × ẋ −Ωb × (Ωb × x)

= −∇Φ − 2Ωb × ẋ + |Ωb|2x −Ωb(Ωb · x).
(3.116)

Here −2Ωb × ẋ is known as the Coriolis force and −Ωb × (Ωb × x) is the
centrifugal force. Taking the gradient of the last line of equation (3.114),
we see that (3.116) can be written in the simpler form

ẍ = −∇Φeff − 2Ωb × ẋ. (3.117)

The surface Φeff = EJ is often called the zero-velocity surface. All
regions in which Φeff > EJ are forbidden to the star. Thus, although the
solution of the differential equations for the orbit in a rotating potential
may be difficult, we can at least define forbidden regions into which the star
cannot penetrate.

Figure 3.14 shows contours of Φeff for the potential ΦL of equation
(3.103). Φeff is characterized by five stationary points, marked L1 to L5,
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at which ∇Φeff = 0. These points are sometimes called Lagrange points
after similar points in the restricted three-body problem (Figure 8.6). The
central stationary point L3 in Figure 3.14 is a minimum of the potential and
is surrounded by a region in which the centrifugal potential − 1

2 Ω2
bR

2 makes
only a small contribution to Φeff . At each of the four points L1, L2, L4, and
L5, it is possible for a star to travel on a circular orbit while appearing to be
stationary in the rotating frame, because the gravitational and centrifugal
forces precisely balance. Such orbits are said to corotate with the potential.
The stationary points L1 and L2 on the x axis (the long axis of the potential)
are saddle points, while the stationary points L4 and L5 along the y axis are
maxima of the effective potential. Stars with values of EJ smaller than the
value Φc taken by Φeff at L1 and L2 cannot move from the center of the
potential to infinity, or indeed anywhere outside the inner equipotential con-
tour that runs through L1 and L2. By contrast, a star for which EJ exceeds
Φc, or any star that is initially outside the contour through L1 and L2, can
in principle escape to infinity. However, it cannot be assumed that a star
of the latter class will necessarily escape, because the Coriolis force prevents
stars from accelerating steadily in the direction of −∇Φeff .

We now consider motion near each of the Lagrange points L1 to L5.
These are stationary points of Φeff , so when we expand Φeff around one of
these points xL = (xL, yL) in powers of (x− xL) and (y − yL), we have

Φeff(x, y) = Φeff(xL, yL) + 1
2

(
∂2Φeff

∂x2

)

xL

(x− xL)2

+

(
∂2Φeff

∂x∂y

)

xL

(x− xL)(y − yL) + 1
2

(
∂2Φeff

∂y2

)

xL

(y − yL)2 + · · · .

(3.118)
Furthermore, for any bar-like potential whose principal axes lie along the
coordinate axes, ∂2Φeff/∂x∂y = 0 at xL by symmetry. Hence, if we retain
only quadratic terms in equation (3.118) and define

ξ ≡ x− xL ; η ≡ y − yL, (3.119)

and

Φxx ≡
(
∂2Φeff

∂x2

)

xL

; Φyy ≡
(
∂2Φeff

∂y2

)

xL

, (3.120)

the equations of motion (3.117) become for a star near xL,

ξ̈ = 2Ωbη̇ − Φxxξ ; η̈ = −2Ωbξ̇ − Φyyη. (3.121)

This is a pair of linear differential equations with constant coefficients. The
general solution can be found by substituting ξ = X exp(λt), η = Y exp(λt),
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where X , Y , and λ are complex constants. With these substitutions, equa-
tions (3.121) become

(λ2 + Φxx)X − 2λΩbY = 0 ; 2λΩbX + (λ2 + Φyy)Y = 0. (3.122)

These simultaneous equations have a non-trivial solution for X and Y only
if the determinant ∣∣∣∣

λ2 + Φxx −2λΩb

2λΩb λ2 + Φyy

∣∣∣∣ = 0. (3.123)

Thus we require

λ4 + λ2
(
Φxx + Φyy + 4Ω2

b

)
+ ΦxxΦyy = 0. (3.124)

This is the characteristic equation for λ. It has four roots, which may be
either real or complex. If λ is a root, −λ is also a root, so if there is any
root that has non-zero real part Re(λ) = γ, the general solution to equations
(3.121) will contain terms that cause |ξ| and |η| to grow exponentially in time;
|ξ| ∝ exp(|γ|t) and |η| ∝ exp(|γ|t). Under these circumstances essentially all
orbits rapidly flee from the Lagrange point, and the approximation on which
equations (3.121) rest breaks down. In this case the Lagrange point is said
to be unstable.

When all the roots of equation (3.124) are pure imaginary, say λ = ±iα
or ±iβ, with 0 ≤ α ≤ β real, the general solution to equations (3.121) is

ξ = X1 cos(αt+ φ1) +X2 cos(βt+ φ2),

η = Y1 sin(αt+ φ1) + Y2 sin(βt+ φ2),
(3.125)

and the Lagrange point is stable, since the perturbations ξ and η oscillate
rather than growing. Substituting these equations into the differential equa-
tions (3.121), we find that X1 and Y1 and X2 and Y2 are related by

Y1 =
Φxx − α2

2Ωbα
X1 =

2Ωbα

Φyy − α2
X1, (3.126a)

and

Y2 =
Φxx − β2

2Ωbβ
X2 =

2Ωbβ

Φyy − β2
X2. (3.126b)

The following three conditions are necessary and sufficient for both roots λ2

of the quadratic equation (3.124) in λ2 to be real and negative, and hence
for the Lagrange point to be stable:

(i)

(ii)

(iii)

λ2
1λ

2
2 = ΦxxΦyy > 0,

λ2
1 + λ2

2 = −
(
Φxx + Φyy + 4Ω2

b

)
< 0,

λ2 real ⇒ (Φxx + Φyy + 4Ω2
b)2 > 4ΦxxΦyy.

(3.127)
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At saddle points of Φeff such as L1 and L2, Φxx and Φyy have opposite
signs, so these Lagrange points violate condition (i) and are always unsta-
ble. At a minimum of Φeff , such as L3, Φxx and Φyy are both positive, so
conditions (i) and (ii) are satisfied. Condition (iii) is also satisfied because
it can be rewritten in the form

(Φxx − Φyy)
2

+ 8Ω2
b (Φxx + Φyy) + 16Ω4

b > 0, (3.128)

which is satisfied whenever both Φxx and Φyy are positive. Hence L3 is
stable.

For future use we note that when Φxx and Φyy are positive, we may
assume Φxx < Φyy (since the x axis is the major axis of the potential) and
we have already assumed that α < β, so we can show from (3.124) that

α2 < Φxx < Φyy < β2. (3.129)

Also, when Ω2
b → 0, α2 tends to Φxx, and β2 tends to Φyy.

The stability of the Lagrange points at maxima of Φeff , such as L4 and
L5, depends on the details of the potential. For the potential ΦL of equation
(3.103) we have

Φeff = 1
2v

2
0 ln

(
R2

c + x2 +
y2

q2

)
− 1

2Ω2
b(x2 + y2), (3.130)

so L4 and L5 occur at (0,±yL), where

yL ≡
√
v2

0

Ω2
b

− q2R2
c , (3.131)

and we see that L4, L5 are present only if Ωb < v0/(qRc). Differentiating
the effective potential again we find

Φxx(0, yL) = −Ω2
b(1 − q2)

Φyy(0, yL) = −2Ω2
b

[
1 − q2

(
ΩbRc

v0

)2 ]
.

(3.132)

Hence ΦxxΦyy is positive if the Lagrange points exist, and stability condition
(i) of (3.127) is satisfied. Deciding whether the other stability conditions hold
is tedious in the general case, but straightforward in the limit of negligible
core radius, ΩbRc/v0 � 1 (which applies, for example, to Figure 3.14). Then
Φxx+Φyy+4Ω2

b = Ω2
b(1+q2), so condition (ii) is satisfied. A straightforward

calculation shows that condition (iii) holds—and thus that L4 and L5 are
stable—providing q2 >

√
32 − 5 ' (0.810)2. For future use we note that for

small Rc, and to leading order in the ellipticity ε = 1 − q, we have

α2 = 2εΩ2
b = −Φxx ; β2 = 2(1 − 2ε)Ω2

b = 2Ω2
b + O(ε). (3.133)
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Equations (3.125) describing the motion about a stable Lagrange point
show that each orbit is a superposition of motion at frequencies α and β
around two ellipses. The shapes of these ellipses and the sense of the star’s
motion on them are determined by equations (3.126). For example, in the
case of small Rc and ε, the α-ellipse around the point L4 is highly elongated
in the x- or ξ-direction (the tangential direction), while the β-ellipse has
Y2 = −X2/

√
2. The star therefore moves around the β-ellipse in the sense

opposite to that of the rotation of the potential. The β-ellipse is simply the
familiar epicycle from §3.2.3, while the α-ellipse represents a slow tangential
wallowing in the weak non-axisymmetric component of ΦL.

Now consider motion about the central Lagrange point L3. From equa-
tions (3.126) and the inequality (3.129), it follows that Y1/X1 > 0. Thus
the star’s motion around the α-ellipse has the same sense as the rotation
of the potential; such an orbit is said to be prograde or direct. When
Ω2

b � |Φxx|, it is straightforward to show from equations (3.124) and (3.126)
that X1 � Y1 and hence that this prograde motion runs almost parallel
to the long axis of the potential—this is the long-axis orbit familiar to us
from our study of non-rotating bars. Conversely the star moves around the
β-ellipse in the sense opposite to that of the rotation of the potential (the mo-
tion is retrograde), and |X2| < |Y2|. When Ω2

b/|Φxx| is small, the β-ellipse
goes over into the short-axis orbit of a non-rotating potential. A general
prograde orbit around L3 is made up of motion on the β-ellipse around a
guiding center that moves around the α-ellipse, and conversely for retrograde
orbits.

We now turn to a numerical study of orbits in rotating potentials that
are not confined to the vicinity of a Lagrange point. We adopt the logarith-
mic potential (3.103) with q = 0.8, Rc = 0.03, v0 = 1, and Ωb = 1. This
choice places the corotation annulus near RCR = 30Rc. The Jacobi integral
(eq. 3.112) now plays the role that energy played in our similar investigation
of orbits in non-rotating potentials, and by a slight abuse of language we
shall refer to its value EJ as the “energy.” At radii R ∼< Rc the two impor-
tant sequences of stable closed orbits in the non-rotating case are the long-
and the short-axis orbits. Figure 3.15 confirms the prediction of our analytic
treatment that in the presence of rotation these become oval in shape. Or-
bits of both sequences are stable and therefore parent families of non-closed
orbits.

Consider now the evolution of the orbital structure as we leave the core
region. At an energy E1, similar to that at which loop orbits first appeared in
the non-rotating case, pairs of prograde orbits like those shown in Figure 3.16
appear. Only one member of the pair is stable. When it first appears,
the stable orbit is highly elongated parallel to the short axis, but as the
energy is increased it becomes more round. Eventually the decrease in the
elongation of this orbit with increasing energy is reversed, the orbit again
becomes highly elongated parallel to the short axis and finally disappears
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Figure 3.15 In the near-harmonic core of a rotating potential, the closed orbits are
elongated ellipses. Stars on the orbits shown as full curves circulate about the center in
the same sense as the potential’s figure rotates. On the dashed orbits, stars circulate in
the opposite sense. The x axis is the long axis of the potential.

Figure 3.16 Closed orbits at two energies higher than those shown in Figure 3.15. Just
outside the potential’s near-harmonic core there are at each energy two prograde closed
orbits aligned parallel to the potential’s short axis. One of these orbits (the less elongated)
is stable, while the other is unstable.
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Figure 3.17 Near the energy at which the orbit pairs shown in Figure 3.16 appear, the
closed long-axis orbits develop ears. Panel (a) shows orbits at energies just below and
above this transition. Panel (b) shows the evolution of the closed long-axis orbits at
higher energies. Notice that in panel (a) the x- and y-scales are different. The smallest
orbit in panel (b) is the larger of the two orbits in panel (a).

along with its unstable companion orbit at an energy E2.10 In the notation
of Contopoulos & Papayannopoulos (1980) these stable orbits are said to
belong to the sequence x2, while their unstable companions are of the
sequence x3.

The sequence of long-axis orbits (often called the sequence x1) suffers
a significant transition near E2. On the low-energy side of the transition
the long-axis orbits are extremely elongated and lens shaped (smaller orbit
in Figure 3.17a). On the high-energy side the orbits are self-intersecting
(larger orbit in Figure 3.17a). As the energy continues to increase, the or-
bit’s ears become first more prominent and then less prominent, vanishing
to form a cusped orbit (Figure 3.17b). At still higher energies the orbits
become approximately elliptical (largest orbit in Figure 3.17b), first growing
rounder and then adopt progressively more complex shapes as they approach

10 In the theory of weak bars, the energies E1 and E2 at which these prograde or-
bits appear and disappear are associated with the first and second inner Lindblad radii,
respectively (eq. 3.150).
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Figure 3.18 A plot of the Jacobi constant EJ of closed orbits in ΦL(q = 0.8, Rc =
0.03,Ωb = 1) against the value of y at which the orbit cuts the potential’s short axis. The
dotted curve shows the relation Φeff(0, y) = EJ. The families of orbits x1–x4 are marked.

the corotation region in which the Lagrange points L1, L2, L4, and L5 are
located.

In the vicinity of the corotation annulus, there are important sequences
of closed orbits on which stars move around one of the Lagrange points L4

or L5, rather than about the center.
Essentially all closed orbits that carry stars well outside the corotation

region are nearly circular. In fact, the potential’s figure spins much more
rapidly than these stars circulate on their orbits, so the non-axisymmetric
forces on such stars tend to be averaged out. One finds that at large radii
prograde orbits tend to align with the bar, while retrograde orbits align
perpendicular to the bar.

These results are summarized in Figure 3.18. In this figure we plot
against the value of EJ for each closed orbit the distance y at which it crosses
the short axis of the potential. Each sequence of closed orbits generates a
continuous curve in this diagram known as the characteristic curve of that
sequence.

The stable closed orbits we have described are all associated with sub-
stantial families of non-closed orbits. Figure 3.19 shows two of these. As
in the non-rotating case, a star on one of these non-closed orbits may be
considered to be executing stable oscillations about one of the fundamental
closed orbits. In potentials of the form (3.103) essentially all orbits belong
to one of these families. This is not always true, however, as we explain in
§3.7.

It is important to distinguish between orbits that enhance the elongation
of the potential and those that oppose it. The overall mass distribution of a
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Figure 3.19 Two non-closed orbits of a common energy in the rotating potential ΦL.

galaxy must be elongated in the same sense as the potential, which suggests
that most stars are on orbits on which they spend the majority of their time
nearer to the potential’s long axis than to its short axis. Interior to the
corotation radius, the only orbits that satisfy this criterion are orbits of the
family parented by the long-axis orbits, which therefore must be the most
heavily populated orbits in any bar that is confined by its own gravity. The
shapes of these orbits range from butterfly-like at radii comparable to the
core radius Rc, to nearly rectangular between Rc and the inner Lindblad
radius (see below), to oval between this radius and corotation.

To an observer in an inertial frame of reference, stars on orbits belonging
to the long-axis family circulate about the center of the potential in the same
sense as the potential rotates. One part of the circulation seen by such an
observer is due to the rotation of the frame of reference in which the potential
is static. A second component of circulation is due to the mean streaming
motion of such stars when referred to the rotating frame of the potential.
Both components of circulation diminish towards zero if the angular velocity
of the potential is reduced to zero. Near corotation the dominant component
arises from the rotation of the frame of reference of the potential, while at
small radii the more important component is the mean streaming motion of
the stars through the rotating frame of reference.

3.3.3 Weak bars

Before we leave the subject of orbits in planar non-axisymmetric potentials,
we derive an analytic description of loop orbits in weak bars.

(a) Lindblad resonances We assume that the figure of the potential
rotates at some steady pattern speed Ωb, and we seek to represent a general
loop orbit as a superposition of the circular motion of a guiding center and
small oscillations around this guiding center. Hence our treatment of orbits
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in weak non-axisymmetric potentials will be closely related to the epicycle
theory of nearly circular orbits in an axisymmetric potential (§3.2.3).

Let (R,ϕ) be polar coordinates in the frame that rotates with the po-
tential, such that the line ϕ = 0 coincides with the long axis of the potential.
Then the Lagrangian is

L = 1
2 Ṙ

2 + 1
2 [R(ϕ̇+ Ωb)]2 − Φ(R,ϕ), (3.134)

so the equations of motion are

R̈ = R(ϕ̇+ Ωb)2 − ∂Φ

∂R
, (3.135a)

d

dt
[R2(ϕ̇+ Ωb)] = −∂Φ

∂ϕ
. (3.135b)

Since we assume that the bar is weak, we may write

Φ(R,ϕ) = Φ0(R) + Φ1(R,ϕ), (3.136)

where |Φ1/Φ0| � 1. We divide R and ϕ into zeroth- and first-order parts

R(t) = R0 +R1(t) ; ϕ(t) = ϕ0(t) + ϕ1(t) (3.137)

by substituting these expressions into equation (3.135) and requiring that
the zeroth-order terms should sum to zero. Thus

R0 (ϕ̇0 + Ωb)
2

=

(
dΦ0

dR

)

R0

and ϕ̇0 = constant. (3.138)

This is the usual equation for centrifugal equilibrium at R0. If we define
Ω0 ≡ Ω(R0), where

Ω(R) ≡ ±
√

1

R

dΦ0

dR
(3.139)

is the circular frequency at R in the potential Φ0, equation (3.138) for the
angular speed of the guiding center (R0, ϕ0) becomes

ϕ̇0 = Ω0 − Ωb, (3.140)

where Ω0 > 0 for prograde orbits and Ω0 < 0 for retrograde ones. We choose
the origin of time such that

ϕ0(t) = (Ω0 − Ωb)t. (3.141)

The first-order terms in the equations of motion (3.135) now yield

R̈1 +

(
d2Φ0

dR2
− Ω2

)

R0

R1 − 2R0Ω0ϕ̇1 = −
(
∂Φ1

∂R

)

R0

, (3.142a)
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ϕ̈1 + 2Ω0
Ṙ1

R0
= − 1

R2
0

(
∂Φ1

∂ϕ

)

R0

. (3.142b)

To proceed further we must choose a specific form of Φ1; we set

Φ1(R,ϕ) = Φb(R) cos(mϕ), (3.143)

where m is a positive integer, since any potential that is an even function of
ϕ can be expanded as a sum of terms of this form. In practice we are mostly
concerned with the case m = 2 since the potential is then barred. If ϕ = 0
is to coincide with the long axis of the potential, we must have Φb < 0.

So far we have assumed only that the angular velocity ϕ̇1 is small, not
that ϕ1 is itself small. Allowing for large excursions in ϕ1 will be important
when we consider what happens at resonances in part (b) of this section, but
for the moment we assume that ϕ1 � 1 and hence that ϕ(t) always remains
close to (Ω0 − Ωb)t. With this assumption we may replace ϕ by ϕ0 in the
expressions for ∂Φ1/∂R and ∂Φ1/∂ϕ to yield

R̈1 +

(
d2Φ0

dR2
− Ω2

)

R0

R1 − 2R0Ω0ϕ̇1 = −
(

dΦb

dR

)

R0

cos [m(Ω0 − Ωb)t] ,

(3.144a)

ϕ̈1 + 2Ω0
Ṙ1

R0
=
mΦb(R0)

R2
0

sin [m(Ω0 − Ωb)t] . (3.144b)

Integrating the second of these equations, we obtain

ϕ̇1 = −2Ω0
R1

R0
− Φb(R0)

R2
0(Ω0 − Ωb)

cos [m(Ω0 − Ωb)t] + constant. (3.145)

We now eliminate ϕ̇1 from equation (3.144a) to find

R̈1 + κ2
0R1 = −

[
dΦb

dR
+

2ΩΦb

R(Ω − Ωb)

]

R0

cos [m(Ω0 − Ωb)t] + constant,

(3.146a)
where

κ2
0 ≡

(
d2Φ0

dR2
+ 3Ω2

)

R0

=

(
R

dΩ2

dR
+ 4Ω2

)

R0

(3.146b)

is the usual epicycle frequency (eq. 3.80). The constant in equation (3.146a)
is unimportant since it can be absorbed by a shift R1 → R1 + constant .

Equation (3.146a) is the equation of motion of a harmonic oscillator of
natural frequency κ0 that is driven at frequency m(Ω0 − Ωb). The general
solution to this equation is

R1(t) = C1 cos(κ0t+ α) −
[

dΦb

dR
+

2ΩΦb

R(Ω − Ωb)

]

R0

cos [m(Ω0 − Ωb)t]

∆
,

(3.147a)
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where C1 and α are arbitrary constants, and

∆ ≡ κ2
0 −m2(Ω0 − Ωb)2. (3.147b)

If we use equation (3.141) to eliminate t from equation (3.147a), we find

R1(ϕ0) = C1 cos

(
κ0ϕ0

Ω0 − Ωb
+ α

)
+ C2 cos(mϕ0), (3.148a)

where

C2 ≡ − 1

∆

[
dΦb

dR
+

2ΩΦb

R(Ω − Ωb)

]

R0

. (3.148b)

If C1 = 0, R1(ϕ0) becomes periodic in ϕ0 with period 2π/m, and thus the
orbit that corresponds to C1 = 0 is a closed loop orbit. The orbits with
C1 6= 0 are the non-closed loop orbits that are parented by this closed loop
orbit. In the following we set C1 = 0 so that we may study the closed loop
orbits.

The right side of equation (3.148a) for R1 becomes singular at a number
of values of R0:
(i) Corotation resonance. When

Ω0 = Ωb, (3.149)

ϕ̇0 = 0, and the guiding center corotates with the potential.
(ii) Lindblad resonances. When

m(Ω0 − Ωb) = ±κ0, (3.150)

the star encounters successive crests of the potential at a frequency that
coincides with the frequency of its natural radial oscillations. Radii
at which such resonances occur are called Lindblad radii after the
Swedish astronomer Bertil Lindblad (1895–1965). The plus sign in equa-
tion (3.150) corresponds to the case in which the star overtakes the
potential, encountering its crests at the resonant frequency κ0; this is
called an inner Lindblad resonance. In the case of a minus sign, the
crests of the potential sweep by the more slowly rotating star, and R0

is said to be the radius of the outer Lindblad resonance.

There is a simple connection between these two types of resonance. A circular
orbit has two natural frequencies. If the star is displaced radially, it oscillates
at the epicycle frequency κ0. On the other hand, if the star is displaced
azimuthally in such a way that it is still on a circular orbit, then it will
continue on a circular orbit displaced from the original one. Thus the star
is neutrally stable to displacements of this form; in other words, its natural
azimuthal frequency is zero. The two types of resonance arise when the
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Figure 3.20 The full curves are the characteristic curves of the prograde (upper) and
retrograde (lower) circular orbits in the isochrone potential (2.47) when a rotating frame
of reference is employed. The dashed curve shows the relation Φeff(0, y) = EJ, and the dots
mark the positions of the Lindblad resonances when a small non-axisymmetric component
is added to the potential.

forcing frequency seen by the star, m(Ω0 − Ωb), equals one of the natural
frequencies ±κ0 and 0.

Figure 6.11 shows plots of Ω, Ω + 1
2κ and Ω− 1

2κ for two circular-speed
curves typical of galaxies. A galaxy may have 0, 1, 2, or more Lindblad
resonances. The Lindblad and corotation resonances play a central role in
the study of bars and spiral structure, and we shall encounter them again
Chapter 6.

From equation (3.148a) it follows that for m = 2 the closed loop orbit
is aligned with the bar whenever C2 > 0, and is aligned perpendicular to
the bar when C2 < 0. When R0 passes through a Lindblad or corotation
resonance, the sign of C2, and therefore the orientation of the closed loop
orbits, changes.

It is interesting to relate the results of this analytic treatment to the
orbital structure of a strong bar that we obtained numerically in the last
subsection. In this connection it is helpful to compare Figure 3.18, which
shows data for a barred potential, with Figure 3.20, which describes orbits
in an axisymmetric potential viewed from a rotating frame. The full curves
in Figure 3.20 show the relationship between the Jacobi constant EJ and the
radii of prograde and retrograde circular orbits in the isochrone potential
(2.47). As in Figure 3.18, the dotted curve marks the relation Φeff(0, y) =
EJ. There are no orbits in the region to the right of this curve, which
touches the curve of the prograde circular orbits at the corotation resonance,
marked CR in the figure. If in the given frame we were to add a small
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non-axisymmetric component to the potential, the orbits marked by large
dots would lie at the Lindblad resonances (from right to left, the first and
second inner Lindblad resonances and the outer Lindblad resonance marked
OL). We call the radius of the first inner Lindblad resonance11 RIL1, and
similarly RIL2, ROL, and RCR for the radii of the other Lindblad resonances
and of corotation. Equations (3.148) with C1 = 0 describe nearly circular
orbits in a weakly barred potential. Comparing Figure 3.20 with Figure 3.18,
we see that nearly circular retrograde orbits belong to the family x4. Nearly
circular prograde orbits belong to different families depending on their radius.
Orbits that lie within RIL1 belong to the family x1. In the radius range
RIL1 < R < RIL2 the families x2 and x3 exist and contain orbits that are
more circular than those of x1. We identify the orbits described by (3.148)
with orbits of the family x2 as indicated in Figure 3.20, since the family x3

is unstable. In the radius range R > RIL2, equations (3.148) with C1 = 0
describe orbits of the family x1. Thus equations (3.148) describe only the
families of orbits in a barred potential that are parented by a nearly circular
orbit. However, when the non-axisymmetric component of the potential is
very weak, most of phase space is occupied by such orbits. As the non-
axisymmetry of the potential becomes stronger, families of orbits that are
not described by equations (3.148) become more important.

(b) Orbits trapped at resonance When R0 approaches the radius of ei-
ther a Lindblad resonance or the corotation resonance, the value of R1 that
is predicted by equations (3.148) becomes large, and our linearized treat-
ment of the equations of motion breaks down. However, one can modify the
analysis to cope with these resonances. We now discuss the necessary modi-
fications for the case of the corotation resonance. The case of the Lindblad
resonances is described in Goldreich & Tremaine (1981).

The appropriate modification is suggested by our investigation of orbits
near the Lagrange points L4 and L5 in the potential ΦL (eq. 3.103), when the
radius is large compared to the core radius Rc and the ellipticity ε = 1 − q
approaches zero. In this limit the non-axisymmetric part of the potential is
proportional to ε, so we have an example of a weak bar when ε → 0. We
found in §3.3.2 that a star’s orbit was a superposition of motion at frequencies
α and β around two ellipses. In the limit ε→ 0, the β-ellipse represents the
familiar epicyclic motion and will not be considered further. The α-ellipse is
highly elongated in the azimuthal direction, with axis ratio |Y1/X1| =

√
2ε,

and its frequency is small, α =
√

2εΩb.
These results suggest we consider the approximation in which R1, Ṙ1,

and ϕ̇1 are small but ϕ1 is not. Specifically, if the bar strength Φ1 is pro-
portional to some small parameter that we may call ε, we assume that ϕ1

is of order unity, R1 is of order ε1/2, and the time derivative of any quan-
tity is smaller than that quantity by of order ε1/2. Let us place the guiding

11 Also called the inner inner Lindblad resonance.
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Box 3.3: The donkey effect

An orbiting particle that is subject to weak tangential forces can exhibit
unusual behavior. To illustrate this, suppose that the particle has mass
m and is in a circular orbit of radius r, with angular speed φ̇ = Ω(r)
given by rΩ2(r) = dΦ/dr (eq. 3.7a). Now let us imagine that the particle
experiences a small force, F , directed parallel to its velocity vector. Since
the force is small, the particle remains on a circular orbit, which slowly
changes in radius in response to the force. To determine the rate of
change of radius, we note that the angular momentum is L(r) = mr2Ω

and the torque is N = rF = L̇. Thus

ṙ =
dr

dL
L̇ =

F/m

2Ω + r dΩ/dr
= − F

2mB
; (1)

where B(r) = −Ω− 1
2r dΩ/dr is the function defined by equation (3.83).

The azimuthal angle accelerates at a rate

φ̈ =
dΩ

dr
ṙ = −2Aṙ

r
, (2)

where A(r) = − 1
2rdΩ/dr (eq. 3.83). Combining these results,

rφ̈ =
A

mB
F. (3)

This acceleration in azimuthal angle can be contrasted to the acceleration
of a free particle under the same force, ẍ = F/m. Thus the particle
behaves as if it had an inertial mass mB/A, which is negative whenever

−2 <
d ln Ω

d lnR
< 0. (4)

Almost all galactic potentials satisfy this inequality. Thus the orbiting
particle behaves as if it had negative inertial mass, accelerating in the
opposite direction to the applied force.

There are many examples of this phenomenon in galactic dynamics,
which has come to be called the donkey effect: to quote Lynden–Bell
& Kalnajs (1972), who introduced the term, “in azimuth stars behave
like donkeys, slowing down when pulled forwards and speeding up when
held back.”

The simplest example of the donkey effect is an Earth satellite sub-
jected to atmospheric drag: the satellite sinks gradually into a lower orbit
with a larger circular speed and shorter orbital period, so the drag force
speeds up the angular passage of the satellite across the sky.
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center at L5 [Ω(R0) = Ωb; ϕ0 = π/2] and use equation (3.146b) to write the
equations of motion (3.142) as

R̈1 +
(
κ2

0 − 4Ω2
0

)
R1 − 2R0Ω0ϕ̇1 = −∂Φ1

∂R
, (3.151a)

ϕ̈1 + 2Ω0
Ṙ1

R0
= − 1

R2
0

∂Φ1

∂ϕ
. (3.151b)

According to our ordering, the terms on the left side of the first line are of
order ε3/2, ε1/2, and ε1/2, respectively, while the term on the right side is
of order ε. All the terms on the second line are of order ε. Hence we may
simplify the first line by keeping only the terms of order ε1/2:

(
κ2

0 − 4Ω2
0

)
R1 − 2R0Ω0ϕ̇1 = 0. (3.152)

Substituting equation (3.152) into equation (3.151b) to eliminate R1, we find

ϕ̈1

(
κ2

0

κ2
0 − 4Ω2

0

)
= − 1

R2
0

∂Φ1

∂ϕ

∣∣∣∣
(R0,ϕ0+ϕ1)

. (3.153)

Substituting from equation (3.143) for Φ1 we obtain with m = 2

ϕ̈1 = −2Φb

R2
0

(
4Ω2

0 − κ2
0

κ2
0

)
sin [2(ϕ0 + ϕ1)] . (3.154)

By inequality (3.82) we have that 4Ω2
0 > κ2

0. Also we have Φb < 0 and
ϕ0 = π/2, and so equation (3.154) becomes

d2ψ

dt2
= −p2 sinψ, (3.155a)

where

ψ ≡ 2ϕ1 and p2 ≡ 4

R2
0

|Φb(R0)| 4Ω2
0 − κ2

0

κ2
0

. (3.155b)

Equation (3.155a) is simply the equation of a pendulum. Notice that
the singularity in R1 that appeared at corotation in equations (3.148) has
disappeared in this more careful analysis. Notice also the interesting fact that
the stable equilibrium point of the pendulum, ϕ1 = 0, is at the maximum,
not the minimum, of the potential Φ1 (Box 3.3). If the integral of motion

Ep = 1
2 ψ̇

2 − p2 cosψ (3.156)

is less than p2, the star oscillates slowly or librates about the Lagrange
point, whereas if Ep > p2, the star is not trapped by the bar but circulates
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about the center of the galaxy. For small-amplitude librations, the libration
frequency is p, consistent with our assumption that the oscillation frequency
is of order ε1/2 when Φb is of order ε. Large-amplitude librations of this kind
may account for the rings of material often seen in barred galaxies (page 538).

We may obtain the shape of the orbit from equation (3.152) by using

equation (3.156) to eliminate ϕ̇1 = 1
2 ψ̇:

R1 = −2R0Ω0ϕ̇1

4Ω2
0 − κ2

0

= ±21/2R0Ω0

4Ω2
0 − κ2

0

√
Ep + p2 cos(2ϕ1). (3.157)

We leave as an exercise the demonstration that when Ep � p2, equation
(3.157) describes the same orbits as are obtained from (3.148a) with C1 = 0
and Ω 6= Ωb.

The analysis of this subsection complements the analysis of motion near
the Lagrange points in §3.3.2. The earlier analysis is valid for small oscil-
lations around a Lagrange point of an arbitrary two-dimensional rotating
potential, while the present analysis is valid for excursions of any amplitude
in azimuth around the Lagrange points L4 and L5, but only if the potential
is nearly axisymmetric.

3.4 Numerical orbit integration

In most stellar systems, orbits cannot be computed analytically, so effective
algorithms for numerical orbit integration are among the most important
tools for stellar dynamics. The orbit-integration problems we have to address
vary in complexity from following a single particle in a given, smooth galactic
potential, to tens of thousands of interacting stars in a globular cluster, to
billions of dark-matter particles in a simulation of cosmological clustering.
In each of these cases, the dynamics is that of a Hamiltonian system: with N
particles there are 3N coordinates that form the components of a vector q(t),
and 3N components of the corresponding momentum p(t). These vectors
satisfy Hamilton’s equations,

q̇ =
∂H

∂p
; ṗ = −∂H

∂q
, (3.158)

which can be written as
dw

dt
= f(w, t), (3.159)

where w ≡ (q,p) and f ≡ (∂H/∂p,−∂H/∂q). For simplicity we shall as-
sume in this section that the Hamiltonian has the formH(q,p) = 1

2p
2+Φ(q),

although many of our results can be applied to more general Hamiltonians.
Given a phase-space position w at time t, and a timestep h, we require an
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algorithm—an integrator—that generates a new position w′ that approxi-
mates the true position at time t′ = t+h. Formally, the problem to be solved
is the same whether we are following the motion of a single star in a given
potential, or the motion of 1010 particles under their mutual gravitational
attraction.

The best integrator to use for a given problem is determined by several
factors:
• How smooth is the potential? The exploration of orbits in an analytic

model of a galaxy potential places fewer demands on the integrator than
following orbits in an open cluster, where the stars are buffeted by close
encounters with their neighbors.

• How cheaply can we evaluate the gravitational field? At one extreme,
evaluating the field by direct summation in simulations of globular clus-
ter with ∼> 105 particles requires O(N2) operations, and thus is quite
expensive compared to the O(N) cost of orbit integrations. At the
other extreme, tree codes, spherical-harmonic expansions, or particle-
mesh codes require O(N lnN) operations and thus are comparable in
cost to the integration. So the integrator used in an N-body simulation
of a star cluster should make the best possible use of each expensive but
accurate force evaluation, while in a cosmological simulation it is better
to use a simple integrator and evaluate the field more frequently.

• How much memory is available? The most accurate integrators use the
position and velocity of a particle at several previous timesteps to help
predict its future position. When simulating a star cluster, the number
of particles is small enough (N ∼< 105) that plenty of memory should be
available to store this information. In a simulation of galaxy dynamics
or a cosmological simulation, however, it is important to use as many
particles as possible, so memory is an important constraint. Thus for
such simulations the optimal integrator predicts the future phase-space
position using only the current position and gravitational field.

• How long will the integration run? The answer can range from a few
crossing times for the simulation of a galaxy merger to 105 crossing
times in the core of a globular cluster. Long integrations require that
the integrator does not introduce any systematic drift in the energy or
other integrals of motion.

Useful references include Press et al. (1986), Hairer, Lubich, & Wanner
(2002), and Aarseth (2003).

3.4.1 Symplectic integrators

(a) Modified Euler integrator Let us replace the original Hamiltonian

H(q,p) = 1
2p

2 + Φ(q) by the time-dependent Hamiltonian

Hh(q,p, t) = 1
2p

2 + Φ(q)δh(t), where δh(t) ≡ h
∞∑

j=−∞
δ(t− jh) (3.160)
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is an infinite series of delta functions (Appendix C.1). Averaged over a time
interval that is long compared to h, 〈Hh〉 ' H , so the trajectories determined
by Hh should approach those determined by H as h→ 0.

Hamilton’s equations for Hh read

q̇ =
∂Hh

∂p
= p ; ṗ = −∂Hh

∂q
= −∇Φ(q)δh(t). (3.161)

We now integrate these equations from t = −ε to t = h−ε, where 0 < ε� h.
Let the system have coordinates (q,p) at time t = −ε, and first ask for
its coordinates (q,p) at t = +ε. During this short interval q changes by a
negligible amount, and p suffers a kick governed by the second of equations
(3.161). Integrating this equation from t = −ε to ε is trivial since q is fixed,
and we find

q = q ; p = p − h∇Φ(q); (3.162a)

this is called a kick step because the momentum changes but the position
does not. Next, between t = +ε and t = h−ε, the value of the delta function
is zero, so the system has constant momentum, and Hamilton’s equations
yield for the coordinates at t = h− ε

q′ = q + hp ; p′ = p; (3.162b)

this is called a drift step because the position changes but the momentum
does not. Combining these results, we find that over a timestep h starting
at t = −ε the Hamiltonian Hh generates a map (q,p) → (q′,p′) given by

p′ = p− h∇Φ(q) ; q′ = q + hp′. (3.163a)

Similarly, starting at t = +ε yields the map

q′ = q + hp ; p′ = p− h∇Φ(q′). (3.163b)

These maps define the “kick-drift” or “drift-kick” modified Euler inte-
grator. The performance of this integrator in a simple galactic potential is
shown in Figure 3.21.

The map induced by any Hamiltonian is a canonical or symplectic map
(page 803), so it can be derived from a generating function. It is simple
to confirm using equations (D.93) that the generating function S(q,p′) =

q ·p′ + 1
2hp

′2 +hΦ(q) yields the kick-drift modified Euler integrator (3.163a).
According to the modified Euler integrator, the position after timestep

h is
q′ = q + hp′ = q + hp− h2

∇Φ(q), (3.164)

while the exact result may be written as a Taylor series,

q′ = q + hq̇(t = 0) + 1
2h

2q̈(t = 0) + O(h3) = q + hp − 1
2h

2
∇Φ(q) + O(h3).

(3.165)
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Figure 3.21 Fractional energy error as a function of time for several integrators, following
a particle orbiting in the logarithmic potential Φ(r) = ln r. The orbit is moderately ec-
centric (apocenter twice as big as pericenter). The timesteps are fixed, and chosen so that
there are 300 evaluations of the force or its derivatives per period for all of the integrators.
The integrators shown are kick-drift modified Euler (3.163a), leapfrog (3.166a), Runge–
Kutta (3.168), and Hermite (3.172a–d). Note that (i) over moderate time intervals, the
errors are smallest for the fourth-order integrators (Runge–Kutta and Hermite), interme-
diate for the second-order integrator (leapfrog), and largest for the first-order integrator
(modified Euler); (ii) the energy error of the symplectic integrators does not grow with
time.

The error after a single step of the modified Euler integrator is seen to be
O(h2), so it is said to be a first-order integrator.

Since the mappings (3.163) are derived from the Hamiltonian (3.160),
they are symplectic, so either flavor of the modified Euler integrator is a
symplectic integrator. Symplectic integrators conserve phase-space vol-
ume and Poincaré invariants (Appendix D.4.2). Consequently, if the inte-
grator is used to advance a series of particles that initially lie on a closed
curve in the (qi, pi) phase plane, the curve onto which it moves the parti-
cles has the same line integral

∮
pidqi around it as the original curve. This

conservation property turns out to constrain the allowed motions in phase
space so strongly that the usual tendency of numerical orbit integrations to
drift in energy (sometimes called numerical dissipation, even through the
energy can either decay or grow) is absent in symplectic integrators (Hairer,
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Lubich, & Wanner 2002).

Leapfrog integrator By alternating kick and drift steps in more elab-
orate sequences, we can construct higher-order integrators (Yoshida 1993);
these are automatically symplectic since they are the composition of maps
(the kick and drift steps) that are symplectic. The simplest and most widely
used of these is the leapfrog or Verlet integrator in which we drift for 1

2h,

kick for h and then drift for 1
2h:

q1/2 = q + 1
2hp ; p′ = p− h∇Φ(q1/2) ; q′ = q + 1

2hp
′. (3.166a)

This algorithm is sometimes called “drift-kick-drift” leapfrog; an equally
good form is “kick-drift-kick” leapfrog:

p1/2 = p− 1
2h∇Φ(q) ; q′ = q + hp1/2 ; p′ = p − 1

2h∇Φ(q′). (3.166b)

Drift-kick-drift leapfrog can also be derived by considering motion in the
Hamiltonian (3.160) from t = − 1

2h to t = 1
2h.

The leapfrog integrator has many appealing features: (i) In contrast
to the modified Euler integrator, it is second- rather than first-order ac-
curate, in that the error in phase-space position after a single timestep is
O(h3) (Problem 3.26). (ii) Leapfrog is time reversible in the sense that if
leapfrog advances the system from (q,p) to (q′,p′) in a given time, it will
also advance it from (q′,−p′) to (q,−p) in the same time. Time-reversibility
is a constraint on the phase-space flow that, like symplecticity, suppresses
numerical dissipation, since dissipation is not a time-reversible phenomenon
(Roberts & Quispel 1992; Hairer, Lubich, & Wanner 2002). (iii) A sequence
of n leapfrog steps can be regarded as a drift step for 1

2h, then n kick-drift

steps of the modified Euler integrator, then a drift step for − 1
2h; thus if

n � 1 the leapfrog integrator requires negligibly more work than the same
number of steps of the modified Euler integrator. (iv) Leapfrog also needs
no storage of previous timesteps, so is economical of memory.

Because of all these advantages, most codes for simulating collisionless
stellar systems use the leapfrog integrator. Time-reversible, symplectic inte-
grators of fourth and higher orders, derived by combining multiple kick and
drift steps, are described in Problem 3.27 and Yoshida (1993).

One serious limitation of symplectic integrators is that they work well
only with fixed timesteps, for the following reason. Consider an integrator
with fixed timestep h that maps phase-space coordinates w to w′ = W(w, h).
The integrator is symplectic if the function W satisfies the symplectic con-
dition (D.78), which involves the Jacobian matrix gαβ = ∂Wα/∂wβ. Now
suppose that the timestep is varied, by choosing it to be some function h(w)

of location in phase space, so w′ = W[w, h(w)] ≡ W̃(w). The Jacobian

matrix of W̃ is not equal to the Jacobian matrix of W, and in general will
not satisfy the symplectic condition; in words, a symplectic integrator with
fixed timestep is generally no longer symplectic once the timestep is varied.
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Fortunately, the geometric constraints on phase-space flow imposed by
time-reversibility are also strong, so the leapfrog integrator retains its good
behavior if the timestep is adjusted in a time-reversible manner, even though
the resulting integrator is no longer symplectic. Here is one way to do this:
suppose that the appropriate timestep h is given by some function τ(w) of
the phase-space coordinates. Then we modify equations (3.166a) to

q1/2 = q + 1
2hp ; p1/2 = p − 1

2h∇Φ(q1/2),

t′ = t+ 1
2 (h+ h′),

p′ = p1/2 − 1
2h

′
∇Φ(q1/2) ; q′ = q1/2 + 1

2h
′p′.

(3.167)

Here h′ is determined from h by solving the equation u(h, h′) = τ(q1/2,p1/2),
where τ(q,p) is the desired timestep at (q,p) and u(h, h′) is any symmetric
function of h and h′ such that u(h, h) = h; for example, u(h, h′) = 1

2 (h+ h′)
or u(h, h′) = 2hh′/(h+ h′).

3.4.2 Runge–Kutta and Bulirsch–Stoer integrators

To follow the motion of particles in a given smooth gravitational potential
Φ(q) for up to a few hundred crossing times, the fourth-order Runge–Kutta
integrator provides reliable transportation. The algorithm is

k1 = hf(w, t) ; k2 = hf(w + 1
2k1, t+ 1

2h),

k3 = hf(w + 1
2k2, t+ 1

2h) ; k4 = hf(w + k3, t+ h),

w′ = w + 1
6 (k1 + 2k2 + 2k3 + k4) ; t′ = t+ h.

(3.168)
The Runge–Kutta integrator is neither symplectic nor reversible, and it re-
quires considerably more memory than the leapfrog integrator because mem-
ory has to be allocated to k1, . . . ,k4. However, it is easy to use and provides
fourth-order accuracy.

The Bulirsch–Stoer integrator is used for the same purposes as the
Runge–Kutta integrator; although more complicated to code, it often sur-
passes the Runge–Kutta integrator in performance. The idea behind this
integrator is to estimate w(t+ h) from w(t) using first one step of length h,
then two steps of length h/2, then four steps of length h/4, etc., up to 2K

steps of length h/2K for some predetermined number K. Then one extrap-
olates this sequence of results to the coordinates that would be obtained in
the limit K → ∞. Like the Runge–Kutta integrator, this integrator achieves
speed and accuracy at the cost of the memory required to hold intermediate
results. Like all high-order integrators, the Runge–Kutta and Bulirsch–Stoer
integrators work best when following motion in smooth gravitational fields.



202 Chapter 3: The Orbits of Stars

3.4.3 Multistep predictor-corrector integrators

We now discuss more complex integrators that are widely used in simulations
of star clusters. We have a trajectory that has arrived at some phase-space
position w0 at time t0, and we wish to predict its position w1 at t1. The gen-
eral idea is to assume that the trajectory w(t) is a polynomial function of time
wpoly(t), called the interpolating polynomial. The interpolating polyno-
mial is determined by fitting to some combination of the present position
w0, the past positions, w−1,w−2, . . . at times t−1, t−2, . . ., and the present
and past phase-space velocities, which are known through ẇj = f(wj , tj).
There is no requirement that f is derived from Hamilton’s equations, so these
methods can be applied to any first-order differential equations; on the other
hand they are not symplectic.

If the interpolating polynomial has order k, then the error after a small
time interval h is given by the first term in the Taylor series for w(t) not
represented in the polynomial, which is O(hk+1). Thus the order of the
integrator is k.12

The Adams–Bashforth multistep integrator takes wpoly to be the
unique kth-order polynomial that passes through w0 at t0 and through the
k points (t−k+1, ẇ−k+1), . . . , (t0, ẇ0).

Explicit formulae for the Adams–Bashforth integrators are easy to find
by computer algebra; however, the formulae are too cumbersome to write
here except in the special case of equal timesteps, tj+1 − tj = h for all j.
Then the first few Adams–Bashforth integrators are

w1 = w0 + h





ẇ0 (k = 1)
3
2ẇ0 − 1

2ẇ−1 (k = 2)
23
12ẇ0 − 4

3ẇ−1 + 5
12 ẇ−2 (k = 3)

55
24ẇ0 − 59

24ẇ−1 + 37
24ẇ−2 − 3

8ẇ−3 (k = 4).

(3.169)

The case k = 1 is called Euler’s integrator, and usually works rather badly.
The Adams–Moulton integrator differs from Adams–Bashforth only

in that it computes the interpolating polynomial from the position w0 and
the phase-space velocities ẇ−k+2, . . . , ẇ1. For equal timesteps, the first few
Adams–Moulton integrators are

w1 = w0 + h





ẇ1 (k = 1)
1
2ẇ1 + 1

2ẇ0 (k = 2)
5
12ẇ1 + 2

3ẇ0 − 1
12ẇ−1 (k = 3)

3
8ẇ1 + 19

24ẇ0 − 5
24ẇ−1 + 1

24ẇ−2 (k = 4).

(3.170)

12 Unfortunately, the term “order” is used both for the highest power retained in the
Taylor series for w(t), tk, and the dependence of the one-step error on the timestep, hk+1;
fortunately, both orders are the same.



3.4 Numerical orbit integration 203

Since ẇ1 is determined by the unknown phase-space position w1 through
ẇ1 = f(w1, t1), equations (3.170) are nonlinear equations for w1 that must
be solved iteratively. The Adams–Moulton integrator is therefore said to be
implicit, in contrast to Adams–Bashforth, which is explicit.

The strength of the Adams–Moulton integrator is that it determines
w1 by interpolating the phase-space velocities, rather than by extrapolating
them, as with Adams–Bashforth. This feature makes it a more reliable and
stable integrator; the cost is that a nonlinear equation must be solved at
every timestep.

In practice the Adams–Bashforth and Adams–Moulton integrators are
used together as a predictor-corrector integrator. Adams–Bashforth is
used to generate a preliminary value w1 (the prediction or P step), which
is then used to generate ẇ1 = f(w1, t1) (the evaluation or E step), which is
used in the Adams–Moulton integrator (the corrector or C step). This three-
step sequence is abbreviated as PEC. In principle one can then iterate the
Adams–Moulton integrator to convergence through the sequence PECEC· · ·;
however, this is not cost-effective, since the Adams–Moulton formula, even
if solved exactly, is only an approximate representation of the differential
equation we are trying to solve. Thus one usually stops with PEC (stop
the iteration after evaluating w1 twice) or PECE (stop the iteration after
evaluating ẇ1 twice).

When these methods are used in orbit integrations, the equations of
motion usually have the form ẋ = v, v̇ = −∇Φ(x, t). In this case it is best
to apply the integrator only to the second equation, and to generate the
new position x1 by analytically integrating the interpolating polynomial for
v(t)—this gives a formula for x1 that is more accurate by one power of h.

Analytic estimates (Makino 1991) suggest that the one-step error in the
Adams–Bashforth–Moulton predictor-corrector integrator is smaller than the
error in the Adams–Bashforth integrator by a factor of 5 for k = 2, 9 for
k = 3, 13 for k = 4, etc. These analytic results, or the difference between the
predicted and corrected values of w1, can be used to determine the longest
timestep that is compatible with a prescribed target accuracy—see §3.4.5.

Because multistep integrators require information from the present time
and k − 1 past times, a separate startup integrator, such as Runge–Kutta,
must be used to generate the first k− 1 timesteps. Multistep integrators are
not economical of memory because they store the coefficients of the entire
interpolating polynomial rather than just the present phase-space position.

3.4.4 Multivalue integrators

By differentiating the equations of motion ẇ = f(w) with respect to time, we
obtain an expression for ẅ, which involves second derivatives of the poten-
tial, ∂2Φ/∂qi∂qj . If our Poisson solver delivers reliable values for these second
derivatives, it can be advantageous to use ẅ or even higher time derivatives
of w to determine the interpolating polynomial wpoly(t). Algorithms that
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employ the second and higher derivatives of w are called multivalue inte-
grators.

In the simplest case we set wpoly(t) to the kth-order polynomial that
matches w and its first k time derivatives at t0; this provides k+1 constraints
for the k + 1 polynomial coefficients and corresponds to predicting w(t) by
its Taylor series expansion around t0. A more satisfactory approach is to
determine wpoly(t) from the values taken by w, ẇ, ẅ, etc., at both t0 and
t1. Specifically, for even k only, we make wpoly(t) the kth-order polynomial
that matches w at t0 and its first 1

2k time derivatives at both t0 and t1—once

again this provides 1 + 2× 1
2k = k+ 1 constraints and hence determines the

k + 1 coefficients of the interpolating polynomial. The first few integrators
of this type are

w1 = w0 +





1
2h(ẇ0 + ẇ1) (k = 2)
1
2h(ẇ0 + ẇ1) + 1

12h
2(ẅ0 − ẅ1) (k = 4)

1
2h(ẇ0 + ẇ1) + 1

10h
2(ẅ0 − ẅ1)

+ 1
120h

3(
...
w0 +

...
w1) (k = 6).

(3.171)

Like the Adams–Moulton integrator, all of these integrators are implicit, and
in fact the first of these formulae is the same as the second-order Adams–
Moulton integrator in equation (3.170). Because these integrators employ
information from only t0 and t1, there are two significant simplifications
compared to multistep integrators: no separate startup procedure is needed,
and the formulae look the same even if the timestep is variable.

Multivalue integrators are sometimes called Obreshkov (or Obrechkoff)
or Hermite integrators, the latter name arising because they are based on
Hermite interpolation, which finds a polynomial that fits specified values of
a function and its derivatives (Butcher 1987).

Makino & Aarseth (1992) and Makino (2001) recommend a fourth-order
multivalue predictor-corrector integrator for star-cluster simulations. Their
predictor is a single-step, second-order multivalue integrator, that is, a Tay-
lor series including terms of order h2. Writing dv/dt = g, where g is the
gravitational field, their predicted velocity is

vp,1 = v0 + hg0 + 1
2h

2ġ0. (3.172a)

The predicted position is obtained by analytically integrating the interpolat-
ing polynomial for v,

xp,1 = x0 + hv0 + 1
2h

2g0 + 1
6h

3ġ0. (3.172b)

The predicted position and velocity are used to compute the gravitational
field and its time derivative at time t1, g1 and ġ1. These are used to correct
the velocity using the fourth-order formula (3.171):

v1 = v0 + 1
2h(g0 + g1) + 1

12h
2(ġ0 − ġ1); (3.172c)
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in words, v1 is determined by the fourth-order interpolating polynomial
vpoly(t) that satisfies the five constraints vpoly(t0) = v0, v̇poly(ti) = gi,
v̈poly(ti) = ġi for i = 0, 1.

To compute the corrected position, the most accurate procedure is to
integrate analytically the interpolating polynomial for v, which yields:

x1 = x0 + hv0 + 1
20h

2(7g0 + 3g1) + 1
60h

3(3ġ0 − 2ġ1). (3.172d)

The performance of this integrator, often simply called the Hermite integra-
tor, is illustrated in Figure 3.21.

3.4.5 Adaptive timesteps

Except for the simplest problems, any integrator should have an adap-
tive timestep, that is, an automatic procedure that continually adjusts
the timestep to achieve some target level of accuracy. Choosing the right
timestep is one of the most challenging tasks in designing a numerical in-
tegration scheme. Many sophisticated procedures are described in publicly
available integration packages and numerical analysis textbooks. Here we
outline a simple approach.

Let us assume that our goal is that the error in w after some short time τ
should be less than ε|w0|, where ε� 1 and w0 is some reference phase-space
position. We first move from w to w2 by taking two timesteps of length
h � τ . Then we return to w and take one step of length 2h to reach w1.
Suppose that the correct position after an interval 2h is w′, and that our
integrator has order k. Then the errors in w1 and w2 may be written

w1 −w′ ' (2h)k+1E ; w2 −w′ ' 2hk+1E, (3.173)

where E is an unknown error vector. Subtracting these equations to eliminate
w′, we find E ' (w1 − w2)/[2(2k − 1)hk+1]. Now if we advance for a time
τ , using n ≡ τ/h′ timesteps of length h′, the error will be

∆ = nh′
k+1

E = (w1 −w2)
τh′k

2(2k − 1)hk+1
. (3.174)

Our goal that |∆| ∼< ε|w0| will be satisfied if

h′ < hmax ≡
(

2(2k − 1)
h

τ

ε|w0|
|w1 −w2|

)1/k

h. (3.175)

If we are using a predictor-corrector scheme, a similar analysis can be
used to deduce hmax from the difference of the phase-space positions returned
by the predictor and the corrector, without repeating the entire predictor-
corrector sequence.
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3.4.6 Individual timesteps

The density in many stellar systems varies by several orders of magnitude
between the center and the outer parts, and as a result the crossing time of
orbits near the center is much smaller than the crossing time in the outer
envelope. For example, in a typical globular cluster the crossing time at the
center is ∼< 1 Myr, while the crossing time near the tidal radius is ∼ 100 Myr.
Consequently, the timestep that can be safely used to integrate the orbits of
stars is much smaller at the center than the edge. It is extremely inefficient
to integrate all of the cluster stars with the shortest timestep needed for any
star, so integrators must allow individual timesteps for each star.

If the integrator employs an interpolating polynomial, the introduction
of individual timesteps is in principle fairly straightforward. To advance a
given particle, one uses the most recent interpolating polynomials of all the
other particles to predict their locations at whatever times the integrator
requires, and then evaluates the forces between the given particle and the
other particles.

This procedure makes sense if the Poisson solver uses direct summation
(§2.9.1). However, with other Poisson solvers there is a much more efficient
approach. Suppose, for example, that we are using a tree code (§2.9.2).
Then before a single force can be evaluated, all particles have to be sorted
into a tree. Once that has been done, it is comparatively inexpensive to
evaluate large numbers of forces; hence to minimize the computational work
done by the Poisson solver, it is important to evaluate the forces on many
particles simultaneously. A block timestep scheme makes this possible
whilst allowing different timesteps for different particles, by quantizing the
timesteps. We now describe how one version of this scheme works with the
leapfrog integrator.

We assign each particle to one of K + 1 classes, such that particles in
class k are to be advanced with timestep hk ≡ 2kh for k = 0, 1, 2, . . . ,K.
Thus h is the shortest timestep (class 0) and 2Kh is the longest (class K).
The Poisson solver is used to evaluate the gravitational field at the initial
time t0, and each particle is kicked by the impulse − 1

2hk∇Φ, corresponding
to the first part of the kick-drift-kick leapfrog step (3.166b). In Figure 3.22
the filled semicircles on the left edge of the diagram symbolize these kicks;
they are larger at the top of the diagram to indicate that the strength of the
kicks increases as 2k. Then every particle is drifted through time h, and the
Poisson solver is used only to find the forces on the particles in class 0, so
these particles can be kicked by −h∇Φ, which is the sum of the kicks at the
end of their first leapfrog step and the start of their second.

Next we drift all particles through h a second time, and use the Poisson
solver to find the forces on the particles in both class 0 and class 1. The
particles of class 0 are kicked by −h∇Φ, and the particles of class 1 are
kicked by −h1∇Φ = −2h∇Φ. After an interval 3h the particles in class 0
are kicked, after 4h the particles in classes 0, 1 and 2 are kicked, etc. This
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Figure 3.22 Schematic of the block timestep scheme, for a system with 5 classes of
particles, having timestep h (class k = 0), 2h, . . . , 16h (class k = K = 4). The particles
are integrated for a total time of 16h. Each filled circle or half-circle marks the time
at which particles in a given class are kicked. Each vertical bar marks a time at which
particles in a class are paused in their drift step, without being kicked, in order to calculate
their contribution to the kick given to particles in lower classes. The kicks at the start
and end of the integration, t = 0 and t = 16h, are half as strong as the other kicks, and
so are denoted by half-circles.

process continues until all particles are due for a kick, after a time hK = 2Kh.
The final kick for particles in class k is − 1

2hk∇Φ, which completes 2K−k

leapfrog steps for each particle. At this point it is prudent to reconsider
how the particles are assigned to classes in case some need smaller or larger
timesteps.

A slightly different block timestep scheme works well with a particle-
mesh Poisson solver (§2.9.3) when parts of the computational domain are
covered by finer meshes than others, with each level of refinement being by
a factor of two in the number of mesh points per unit length (Knebe, Green,
& Binney 2001). Then particles are assigned timesteps according to the
fineness of the mesh they are in: particles in the finest mesh have timestep
∆t = h, while particles in the next coarser mesh have ∆t = 2h, and so on.
Particles on the finest mesh are drifted through time 1

2h before the density
is determined on this mesh, and the Poisson solver is invoked to determine
the forces on this mesh. Then the particles on this mesh are kicked through
time h and drifted through time 1

2h. Then the same drift-kick-drift sequence
is used to advance particles on the next coarser mesh through time 2h. Now
these particles are ahead in time of the particles on the finest mesh. This
situation is remedied by again advancing the particles on the finest mesh
by h with the drift-kick-drift sequence. Once the particles on the two finest
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meshes have been advanced through time 2h, we are ready to advance by
∆t = 4h the particles that are the next coarser mesh, followed by a repeat
of the operations that were used to advance the particles on the two finest
meshes by 2h. The key point about this algorithm is that at each level
k, particles are first advanced ahead of particles on the next coarser mesh,
and then the latter particles jump ahead of the particles on level k so the
next time the particles on level k are advanced, they are catching up with
the particles of the coarser mesh. Errors arising from moving particles in a
gravitational field from the surroundings that is out-of-date are substantially
canceled by errors arising from moving particles in an ambient field that has
run ahead of itself.

3.4.7 Regularization

In any simulation of a star cluster, sooner or later two particles will suffer
an encounter having a very small impact parameter. In the limiting case in
which the impact parameter is exactly zero (a collision orbit), the equation
of motion for the distance r between the two particles is (eq. D.33)

r̈ = −GM/r2, (3.176)

where M is the sum of the masses of the two particles. This equation is sin-
gular at r = 0, and a conscientious integrator will attempt to deal with the
singularity by taking smaller and smaller timesteps as r diminishes, thereby
bringing the entire N-body integration grinding to a halt. Even in a near-
collision orbit, the integration through pericenter will be painfully slow. This
problem is circumvented by transforming to a coordinate system in which
the two-body problem has no singularity—this procedure is called regular-
ization (Stiefel & Schiefele 1971; Mikkola 1997; Heggie & Hut 2003; Aarseth
2003). Standard integrators can then be used to solve the equations of mo-
tion in the regularized coordinates.

(a) Burdet–Heggie regularization The simplest approach to regular-
ization is time transformation. We write the equations of motion for the
two-body problem as

r̈ = −GM r

r3
+ g, (3.177)

where g is the gravitational field from the other N − 2 bodies in the simula-
tion, and change to a fictitious time τ that is defined by

dt = r dτ. (3.178)

Denoting derivatives with respect to τ by a prime we find

ṙ =
dτ

dt

dr

dτ
=

1

r
r′ ; r̈ =

dτ

dt

d

dτ

1

r
r′ =

1

r2
r′′ − r′

r3
r′. (3.179)
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Figure 3.23 Fractional energy error from integrating one pericenter passage of a highly
eccentric orbit in a Keplerian potential, as a function of the number of force evaluations.
The orbit has semi-major axis a = 1 and eccentricity e = 0.99, and is integrated from
r = 1, ṙ < 0 to r = 1, ṙ > 0. Curves labeled by “RK” are followed using a fourth-
order Runge–Kutta integrator (3.168) with adaptive timestep control as described by
Press et al. (1986). The curve labeled “U” for “unregularized” is integrated in Cartesian
coordinates, the curve “BH” uses Burdet–Heggie regularization, and the curve “KS” uses
Kustaanheimo–Stiefel regularization. The curve labeled “U,LF” is followed in Cartesian
coordinates using a leapfrog integrator with timestep proportional to radius (eq. 3.167).
The horizontal axis is the number of force evaluations used in the integration.

Substituting these results into the equation of motion, we obtain

r′′ =
r′

r
r′ −GM

r

r
+ r2g. (3.180)

The eccentricity vector e (eq. 4 of Box 3.2) helps us to simplify this equation.
We have

e = v × (r × v) −GM êr

= |r′|2 r

r2
− r′

r
r′ −GM

r

r
,

(3.181)

where we have used v = ṙ = r′/r and the vector identity (B.9). Thus
equation (3.180) can be written

r′′ = |r′|2 r

r2
− 2GM

r

r
− e + r2g. (3.182)
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The energy of the two-body orbit is

E2 = 1
2v

2 − GM

r
=

|r′|2
2r2

− GM

r
, (3.183)

so we arrive at the regularized equation of motion

r′′ − 2E2r = −e + r2g, (3.184)

in which the singularity at the origin has disappeared. This must be supple-
mented by equations for the rates of change of E2, e, and t with fictitious
time τ ,

E′
2 = g · r′ ; e′ = 2r(r′ · g) − r′(r · g) − g(r · r′) ; t′ = r. (3.185)

When the external field g vanishes, the energy E2 and eccentricity vector e
are constants, the equation of motion (3.184) is that of a harmonic oscillator
that is subject to a constant force −e, and the fictitious time τ is proportional
to the eccentric anomaly (Problem 3.29).

Figure 3.23 shows the fractional energy error that arises in the integra-
tion of one pericenter passage of an orbit in a Kepler potential with eccen-
tricity e = 0.99. The error is plotted as a function of the number of force
evaluations; this is the correct economic model if force evaluations dominate
the computational cost, as is true for N-body integrations with N � 1. Note
that even with ∼> 1000 force evaluations per orbit, a fourth-order Runge–
Kutta integrator with adaptive timestep is sometimes unable to follow the
orbit. Using the same integrator, Burdet–Heggie regularization reduces the
energy error by almost five orders of magnitude.

This figure also shows the energy error that arises when integrating the
same orbit using leapfrog with adaptive timestep (eq. 3.167) in unregularized
coordinates. Even though leapfrog is only second-order, it achieves an accu-
racy that substantially exceeds that of the fourth-order Runge–Kutta inte-
grator in unregularized coordinates, and approaches the accuracy of Burdet–
Heggie regularization. Thus a time-symmetric leapfrog integrator provides
much of the advantage of regularization without coordinate or time trans-
formations.

(b) Kustaanheimo–Stiefel (KS) regularization An alternative reg-
ularization procedure, which involves the transformation of the coordinates
in addition to time, can be derived using the symmetry group of the Kepler
problem, the theory of quaternions and spinors, or several other methods
(Stiefel & Schiefele 1971; Yoshida 1982; Heggie & Hut 2003). Once again
we use the fictitious time τ defined by equation (3.178). We also define a
four-vector u = (u1, u2, u3, u4) that is related to the position r = (x, y, z) by

u2
1 = 1

2 (x + r) cos2 ψ

u2
4 = 1

2 (x + r) sin2 ψ

u2 =
yu1 + zu4

x+ r

u3 =
zu1 − yu4

x+ r
,

(3.186)
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where ψ is an arbitrary parameter. The inverse relations are

x = u2
1 − u2

2 − u2
3 + u2

4 ; y = 2(u1u2 − u3u4) ; z = 2(u1u3 + u2u4). (3.187)

Note that r = u2
1 + u2

2 + u2
3 + u2

4. Let Φe be the potential that generates the
external field g = −∇Φe. Then in terms of the new variables the equation
of motion (3.177) reads

u′′ − 1
2Eu = − 1

4

∂

∂u

(
|u|2Φe

)
,

E = 1
2v

2 − GM

r
+ Φe = 2

|u′|2
|u|2 − GM

|u|2 + Φe,

E′ = |u|2 ∂Φe

∂t
; t′ = |u|2,

(3.188)

When the external force vanishes, the first of equations (3.188) is the equation
of motion for a four-dimensional harmonic oscillator.

Figure 3.23 shows the fractional energy error that arises in the integra-
tion of an orbit with eccentricity e = 0.99 using KS regularization. Using
the same integrator, the energy error is more than an order of magnitude
smaller than the error using Burdet–Heggie regularization.

3.5 Angle-action variables

In §3.1 we introduced the concept of an integral of motion and we saw that
every spherical potential admitted at least four integrals Ii, namely, the
Hamiltonian and the three components of angular momentum. Later we
found that orbits in flattened axisymmetric potentials frequently admit three
integrals, the classical integrals H and pφ, and the non-classical third inte-
gral. Finally in §3.3 we found that many orbits in planar non-axisymmetric
potentials admitted a non-classical integral in addition to the Hamiltonian.

In this section we explore the advantages of using integrals as coordi-
nates for phase space. Since elementary Newtonian or Lagrangian mechanics
restricts our choice of coordinates to ones that are rarely integrals, we work
in the more general framework of Hamiltonian mechanics (Appendix D). For
definiteness, we shall assume that there are three independent coordinates
(so phase space is six-dimensional) and that we have three analytic isolating
integrals Ii(x,v). We shall focus on a particular set of canonical coordinates,
called angle-action variables; the three momenta are integrals, called “ac-
tions,” and the conjugate coordinates are called “angles.” An orbit fortunate
enough to possess angle-action variables is called a regular orbit.

We start with a number of general results that apply to any system
of angle-action variables. Then in a series of subsections we obtain explicit
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expressions for these variables in terms of ordinary phase-space coordinates
for spherical potentials, flattened axisymmetric potentials and planar, non-
axisymmetric potentials. The section ends with a description of how ac-
tions enable us to solve problems in which the gravitational potential evolves
slowly.

Angle-action variables cannot be defined for many potentials of practical
importance for galactic dynamics. Nonetheless, the conceptual framework of
angle-action variables proves extremely useful for understanding the complex
phenomena that arise in potentials that do not admit them.

The discussion below is heuristic and non-rigorous; for a precise and
elegant account see Arnold (1989).

3.5.1 Orbital tori

Let us denote the angle-action variables by (θ,J). We assume that the
momenta J = (J1, J2, J3) are integrals of motion. Then Hamilton’s equations
(D.54) for the motion of the Ji read

0 = J̇i = −∂H
∂θi

. (3.189)

Therefore, the Hamiltonian must be independent of the coordinates θ, that
is H = H(J). Consequently, we can trivially solve Hamilton’s equations for
the θi as functions of time:

θ̇i =
∂H

∂Ji
≡ Ωi(J), a constant ⇒ θi(t) = θi(0) + Ωit. (3.190)

So everything lies at our feet if we can install three integrals of motion as
the momenta of a system of canonical coordinates.13

We restrict our attention to bound orbits. In this case, the Cartesian
coordinates xi cannot increase without limit as the θi do (eq. 3.190). From
this we infer that the xi are periodic functions of the θi. We can scale θi so
that x returns to its original value after θi has increased by 2π. Then we can
expand x in a Fourier series (Appendix B.4)

x(θ,J) =
∑

n

Xn(J)ein·θ, (3.191)

where the sum is over all vectors n with integer components. When we elim-
inate the θi using equation (3.190), we find that the spatial coordinates are

13 To be able to use the Ji as a set of momenta, they must satisfy the canonical com-
mutation relations (D.71), so we require [Ji, Jj ] = 0; functions satisfying this condition
are said to be in involution. For example, the components of angular momenta are not
in involution: [Lx, Ly] = Lz , etc.
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Figure 3.24 Two closed paths on a
torus that cannot be deformed into
one another, nor contracted to single
points.

Fourier series in time, in which every frequency is a sum of integer multiples
of the three fundamental frequencies Ωi(J) that are defined by equa-
tion (3.190). Such a time series is said to be conditionally periodic or
quasiperiodic.14 For example, in spherical potentials (§3.1) the periods Tr
and Tψ are inverses of such fundamental frequencies: Ti = 2π/Ωi. The third
fundamental frequency is zero because the orbital plane is fixed in space—see
§3.5.2.

An orbit is said to be resonant when its fundamental frequencies satisfy
a relation of the form n · Ω = 0 for some integer triple n 6= 0. Usually this
implies that two of the frequencies are commensurable, that is the ratio
Ωi/Ωj is a rational number (−nj/ni).

Consider the three-surface (i.e., volume) of fixed J and varying θ. This
is a cube of side-length 2π, and points on opposite sides must be identified
since we have seen that incrementing, say, θ1 by 2π while leaving θ2, θ3 fixed
brings one back to the same point in phase space. A cube with faces identified
in this way is called a three-torus by analogy with the connection between a
rectangle and a two-torus: if we sew together opposite edges of a rectangular
sheet of rubber, we generate the doughnut-shaped inner tube of a bicycle
tire.

We shall find that these three-tori are in many respects identical with
orbits, so it is important to have a good scheme for labeling them. The best
set of labels proves to be the Poincaré invariants (Appendix D.4.2)

J ′
i ≡

1

2π

∫ ∫
dq · dp =

1

2π

∫ ∫ ∑

j=1,3

dqjdpj , (3.192)

where the integral is over any surface that is bounded by the path γi on which
θi increases from 0 to 2π while everything else is held constant (Figure 3.24).
Since angle-action variables are canonical, dq · dp = dθ · dJ (eq. D.84), so

J ′
i =

1

2π

∫ ∫

interior of γi

dθ · dJ =
1

2π

∫ ∫

interior of γi

dθidJi. (3.193)

14 Observers of binary stars use the term quasiperiod more loosely. Our usage is equiv-
alent to what is meant by a quasicrystal: a structure whose Fourier transform is discrete,
but in which there are more fundamental frequencies than independent variables (in our
case one, t, in a quasicrystal three x, y, z).
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Box 3.4: Angle-action variables as polar coordinates

The figure shows the intersection with a coordinate plane of some of
the nested orbital tori of a two-dimensional harmonic oscillator. The
coordinates qi, pi have been scaled such that the tori appear as circles.
The values of the action Ji on successive tori are chosen to be 0, 1, 2 . . .
(in some suitable units), so, by equation (3.192), the areas inside suc-
cessive tori are 0, 2π, 4π, . . .. Hence, the radii r = (q2

i + p2
i )

1/2 of suc-
cessive circles are

√
2 × (0, 1,

√
2,
√

3, . . .). In general the radius of
the circle associated with the torus
on which Ji takes the value J ′ is
r =

√
2J ′. In this plane, the angle

variable θi is closely analogous to
the usual azimuthal angle. Hence,
angle-action variables are closely
analogous to plane polar coordi-
nates, the major difference being
that coordinate circles are labeled
not by radius but by

√
2 times the

area they enclose. The generating
function for the transformation
from (θi, Ji) to (qi, pi) is given in
Problem 3.31.

As Box 3.4 explains, angle-action variables are a kind of polar coordinates
for phase space, and have a coordinate singularity within the domain of
integration. We must exclude this from the domain of integration before
we use Green’s theorem to convert the surface integral in (3.193) into a line
integral. The value of our surface integral is unchanged by excluding this
point, but when we use Green’s theorem (eq. B.61) on the original domain
less the excluded point, we obtain two line integrals, one along the curve γi
and one along the boundary that surrounds the excluded point—along this
second boundary, Ji takes some definite value, Jci , say, and θi takes all values
in the range (0, 2π). Thus we have

J ′
i =

1

2π

(∮

γi

Jidθi −
∮

Ji=Jc
i

Jidθi

)
= Ji − Jci . (3.194)

This equation shows that the label J ′
i defined by equation (3.192) will be

identical with our original action coordinate Ji providing we set Ji = 0 at the
coordinate singularity that marks the center of the angle-action coordinate
system. We shall henceforth assume that this choice has been made.

In practical applications we often evaluate the integral of equation
(3.192) using phase-space coordinates that have no singularity within the
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domain of integration. Then we can replace the surface integral with a line
integral that is easier to evaluate:

Ji =
1

2π

∮

γi

p · dq. (3.195)

(a) Time averages theorem In Chapter 4 we shall make extensive use
a result that we can now prove.

Time averages theorem When a regular orbit is non-resonant, the average
time that the phase point of a star on that orbit spends in any region D of
its torus is proportional to the integral V (D) =

∫
D d3θ.

Proof: Let fD be the function such that fD(θ) = 1 when the point θ lies in
D, and is zero otherwise. We may expand fD in a Fourier series (cf. eq. 3.191)

fD(θ) =

∞∑

n=−∞
Fn exp(in · θ). (3.196)

Now ∫

torus

d3θ fD(θ) =

∫

D

d3θ = V (D). (3.197a)

With equation (3.196) we therefore have

V (D) =

∫

torus

d3θ fD(θ) =

∞∑

n=−∞
Fn

3∏

k=1

∫ 2π

0

dψ exp(inkψ) = (2π)3F0.

(3.197b)
On the other hand, the fraction of the interval (0, T ) during which the star’s
phase point lies in D is

τT (D) =
1

T

∫ T

0

dt fD[θ(t)], (3.198)

where θ(t) is the position of the star’s phase point at time t. With equations
(3.190) and (3.196), equation (3.198) becomes

τT (D) =
1

T

∑

n

ein·θ(0)

∫ T

0

dt Fnei(n·Ω)t

= F0 +
1

T

∑

n6=0

ein·θ(0)Fn

ei(n·Ω)T − 1

in ·Ω .

(3.199)

Thus

lim
T→∞

τT (D) = F0 =
V (D)

(2π)3
, (3.200)
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Figure 3.25 The action space of an axisymmetric potential. Two constant-energy surfaces
are shown for the spherical isochrone potential (2.47). The surfaces H = −0.5(GM/2b)

and H = −0.03(GM/2b) are shown (eq. 3.226) with the axes all scaled to length 5
√
GMb.

which completes the proof./

Note that if the orbit is resonant, n ·Ω vanishes for some n 6= 0 and the
second equality in (3.199) becomes invalid, so the theorem cannot be proved.
In fact, if Ωi : Ωj = m : n, say, then by equations (3.190) I4 ≡ nθi −mθj
becomes an isolating integral that confines the star to a spiral on the torus.
We shall see below that motion in a spherical potential provides an important
example of this phenomenon.

(b) Action space In Chapter 4 we shall develop the idea that galaxies
are made up of orbits, and we shall find it helpful to think of whole orbits
as single points in an abstract space. Any isolating integrals can serve as co-
ordinates for such a representation, but the most advantageous coordinates
are the actions. We define action space to be the imaginary space whose
Cartesian coordinates are the actions. Figure 3.25 shows the action space of
an axisymmetric potential, when the actions can be taken to be generaliza-
tions of the actions for spherical potentials listed in Table 3.1 below. Points
on the axes represent orbits for which only one of the integrals (3.192) is
non-zero. These are the closed orbits. The origin represents the orbit of a
star that just sits at the center of the potential. In each octant, surfaces of
constant energy are approximate planes; by equation (3.190) the local nor-
mal to this surface is parallel to the vector Ω. Every point in the positive
quadrant Jr, Jϑ ≥ 0, all the way to infinity, represents a bound orbit.

A region R3 in action space represents a group of orbits. Let the volume
of R3 be V3. The volume of six-dimensional phase space occupied by the
orbits is

V6 =

∫

R6

d3x d3v, (3.201)
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where R6 is the region of phase space visited by stars on the orbits of R3.
Since the coordinate set (J,θ) is canonical, d3xd3v = d3Jd3θ (see eq. D.81)
and thus

V6 =

∫

R6

d3Jd3θ. (3.202)

But for any orbit the angle variables cover the range (0, 2π), so we may
immediately integrate over the angles to find

V6 = (2π)3

∫

R3

d3J = (2π)3V3. (3.203)

Thus the volume of a region of action space is directly proportional to the
volume of phase space occupied by its orbits.

(c) Hamilton–Jacobi equation The transformation between any two
sets of canonical coordinates can be effected with a generating function (Ap-
pendix D.4.6). Let S(q,J) be the (unknown) generating function of the
transformation between angle-action variables and ordinary phase space co-
ordinates (q,p) such as q = x, p = v. Then (eq. D.93)

θ =
∂S

∂J
; p =

∂S

∂q
, (3.204)

where p and θ are now to be considered functions of q and J. We can use
S(q,J) to eliminate p from the usual Hamiltonian function H(q,p) and thus
express H as a function

H
(
q,
∂S

∂q
(q,J)

)
.

of (q,J). By moving along an orbit, we can vary the qi while holding constant
the Ji. As we vary the qi in this way, H must remain constant at the energy
E of the orbit in question. This suggests that we investigate the partial
differential equation

H
(
q,
∂S

∂q

)
= E at fixed J. (3.205)

If we can solve this Hamilton–Jacobi equation, our solution should con-
tain some arbitrary constants Ki—we shall see below that we usually solve
the equation by the method of separation of variables (e.g., §2.4) and the
constants are separation constants. We identify the Ki with functions of the
actions as follows. Eliminating p from equation (3.195) we have

Ji =
1

2π

∮

γi

∂S

∂q
· dq =

∆S(K)

2π
. (3.206)
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This equation states that Ji is proportional to the increment in the generating
function when one passes once around the torus on the ith path—S, like the
magnetic scalar potential around a current-carrying wire, is a multivalued
function. The increment in S, and therefore Ji, depends on the integration
constants that appear in S, so these are functions of the actions.

Once the Hamilton–Jacobi equation has been solved and the integrals
in (3.206) have been evaluated, S becomes a known function S(q,J) and
we can henceforth use equations (3.204) to transform between angle-action
variables and ordinary phase-space coordinates. In particular, we can inte-
grate orbits trivially by transforming the initial conditions into angle-action
variables, incrementing the angles, and transforming back to ordinary phase-
space coordinates.

Let us see how this process works in a simple example. The Hamiltonian
of a two-dimensional harmonic oscillator is

H(x,p) = 1
2 (p2

x + p2
y + ω2

xx
2 + ω2

yy
2). (3.207)

Substituting in px = ∂S/∂x, py = ∂S/∂y (eq. 3.204), the Hamilton–Jacobi
equation reads

(∂S
∂x

)2

+
(∂S
∂y

)2

+ ω2
xx

2 + ω2
yy

2 = 2E, (3.208)

where S is a function of x, y and J. We solve this partial differential equation
by the method of separation of variables.15 We write S(x, y,J) = Sx(x,J) +
Sy(y,J) and rearrange the equation to

(∂Sx
∂x

)2

+ ω2
xx

2 = 2E −
(∂Sy
∂y

)2

− ω2
yy

2. (3.209)

The left side does not depend on y and the right side does not depend on
x. Consequently, each side can only be a function of J, which we call K2(J)
because it is evidently non-negative:

K2 ≡
(∂Sx
∂x

)2

+ ω2
xx

2. (3.210)

It follows that

Sx(x,J) = K

∫ x

dx′ ε

√
1 − ω2

xx
′2

K2
,

15 When this method is applied in quantum mechanics and in potential theory (e.g.,
§2.4) one usually assumes that the dependent variable is a product of functions of one
variable, rather than a sum of such functions as here.
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where ε is chosen to be ±1 so that Sx(x,J) increases continuously along a
path over the orbital torus. Changing the variable of integration, we have

Sx(x,J) =
K2

ωx

∫
dψ′ sin2 ψ′ where x = −K

ωx
cosψ

=
K2

2ωx

(
ψ − 1

2 sin 2ψ
)
.

(3.211)

Moreover, px = ∂S/∂x = εK
√

1 − ω2
xx

2/K2 = K sinψ, so both x and px
return to their old values when ψ is incremented by 2π. We infer that
incrementing ψ by 2π carries us around the path γx that is associated with
Jx through equation (3.192). Thus equation (3.206) now yields

Jx =
∆S

2π
=

∆Sx
2π

. (3.212)

Equation (3.211) tells us that when ψ is incremented by 2π, Sx increases by
K2π/ωx. Hence,

Jx(x, px) =
K2

2ωx
=
p2
x + ω2

xx
2

2ωx
, (3.213)

where the last equality follows from (3.210) with ∂Sx/∂x replaced by px.
The solution for Jy(y, py) proceeds analogously and yields

Jy(y, py) =
2E −K2

2ωy
=
p2
y + ω2

yy
2

2ωy
. (3.214)

Comparing with equation (3.207), we find that

H(J) = ωxJx + ωyJy. (3.215)

Notice from (3.215) that Ωx ≡ ∂H/∂Jx = ωx and similarly for Ωy.
Finally we determine the angle variables from the second of equations

(3.204). The obvious procedure is to eliminate both K and ψ from equation
(3.211) in favor of Jx and x. In practice it is expedient to leave ψ in and
treat it as a function of Jx and x:

Sx(x,J) = Jx(ψ − 1
2 sin 2ψ) where cosψ = −

√
ωx
2Jx

x, (3.216)

so

θx =
∂S

∂Jx
= ψ − 1

2 sin 2ψ + Jx(1 − cos 2ψ)
∂ψ

∂Jx

= ψ − 1
2 sin 2ψ + sin2 ψ cotψ

= ψ.

(3.217)

Thus the variable ψ that we introduced for convenience in doing an integral
is, in fact, the angle variable conjugate to Jx. Problem 3.33 explains an
alternative, and sometimes simpler, route to the angle variables.
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3.5.2 Angle-action variables for spherical potentials

We now derive angle-action variables for any spherical potential. These are
useful not only for strictly spherical systems, but also for axisymmetric disks,
and serve as the starting point for perturbative analyses of mildly aspherical
potentials. To minimize confusion between ordinary spherical polar coordi-
nates and angle variables, in this section we reserve ϑ for the usual polar
angle, and continue to use θi for the variable conjugate to Ji.

The Hamilton–Jacobi equation (3.205) for the potential Φ(r) is

E = 1
2 |∇S|2 + Φ(r)

= 1
2

[(∂S
∂r

)2

+
(1

r

∂S

∂ϑ

)2

+
( 1

r sinϑ

∂S

∂φ

)2
]

+ Φ(r),
(3.218)

where we have used equation (B.38) for the gradient operator in spherical
polar coordinates. We write the generating function as S(x,J) = Sr(r,J) +
Sϑ(ϑ,J) + Sφ(φ,J) and solve (3.218) by separation of variables. With the
help of equation (3.204) we find

L2
z =

(
∂Sφ
∂φ

)2

= p2
φ, (3.219a)

L2 − L2
z

sin2 ϑ
=

(
∂Sϑ
∂ϑ

)2

= p2
ϑ, (3.219b)

2E − 2Φ(r) − L2

r2
=

(
∂Sr
∂r

)2

= p2
r. (3.219c)

Here we have introduced two separation constants, L and Lz. We assume
that L > 0 and choose the sign of Lz so that Lz = pφ; with these conven-
tions L and Lz prove to be the magnitude and z-component of the angular-
momentum vector (Problem 3.20). Taking the square root of each equation
and integrating, we obtain a formula for S:

S(x,J) =

∫ φ

0

dφLz +

∫ ϑ

π/2

dϑ εϑ

√
L2 − L2

z

sin2 ϑ

+

∫ r

rmin

dr εr

√
2E − 2Φ(r) − L2

r2
,

(3.220)

where εϑ and εr are chosen to be ±1 such that the integrals in which they
appear increase monotonically along a path over the orbital torus. The
lower limits of these integrals specify some point on the orbital torus, and
are arbitrary. It is convenient to take rmin to be the orbit’s pericenter radius.

To obtain the actions from equation (3.206) we have to evaluate the
change in S as we go round the orbital torus along curves on which only one
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of the coordinates is incremented. The case of changing φ is easy: on the
relevant curve, φ increases by 2π, so (3.220) states that ∆S = 2πLz and

Jφ = Lz. (3.221)

We call Jφ the azimuthal action. Consider next the case of changing ϑ.
Let ϑmin be the smallest value that ϑ attains on the orbit, given by

sinϑmin =
|Lz|
L

, (3.222)

ϑmin ≤ π/2. Then we start at π/2, where the integrand peaks, and integrate
to π−ϑmin, where it vanishes. We have now integrated over a quarter period
of the integrand, so the whole integral is four times the value from this leg,

Jϑ =
2

π

∫ π−ϑmin

π/2

dϑ

√
L2 − L2

z

sin2 ϑ
= L− |Lz|. (3.223)

We call Jϑ the latitudinal action. The evaluation of Jr from equations
(3.206) and (3.220) proceeds similarly and yields

Jr =
1

π

∫ rmax

rmin

dr

√
2E − 2Φ(r) − L2

r2
, (3.224)

where rmax is the radius of the apocenter—rmin and rmax are the two roots
of the radical—and Jr is the radial action.

An important example is that of the isochrone potential (2.47), which
encompasses both the Kepler and spherical harmonic potentials as limiting
cases. One finds that (Problem 3.41)

Jr =
GM√
−2E

− 1
2

(
L+ 1

2

√
L2 − 4GMb

)
. (3.225)

If we rewrite this expression as an equation for the Hamiltonian HI = E as
a function of the actions, we obtain

HI(J) = − (GM)2

2
[
Jr + 1

2

(
L+

√
L2 + 4GMb

)]2 (L = Jθ + |Jφ|). (3.226a)

Differentiating this expression with respect to the actions, we find the fre-
quencies (eq. 3.190):

Ωr =
(GM)2

[
Jr + 1

2 (L+
√
L2 + 4GMb )

]3

Ωϑ = 1
2

(
1 +

L√
L2 + 4GMb

)
Ωr ; Ωφ = sgn(Jφ)Ωϑ.

(3.226b)
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It is straightforward to check that these results are consistent with the ra-
dial and azimuthal periods determined in §3.1c.16 In the limit b → 0, the
isochrone potential becomes the Kepler potential and all three frequencies
become equal. The corresponding results for the spherical harmonic oscilla-
tor are obtained by examining the limit b→ ∞ (Problem 3.36).

Jθ and Jφ occur in equations (3.226) only in the combination L = Jθ +
|Jφ|, and in fact, the Hamiltonian for any spherical potential is a function
H(Jr, L). Therefore we elevate L to the status of an action by making the
canonical transformation that is defined by the generating function (eq. D.93)

S′ = θφJ1 + θϑ(J2 − |J1|) + θrJ3, (3.227)

where (J1, J2, J3) are new angle-action coordinates. Differentiating with re-
spect to the old angles, we discover the connection between the new and old
actions:

Jφ =
∂S′

∂θφ
= J1 ⇒ J1 = Lz,

Jϑ =
∂S′

∂θϑ
= J2 − |J1| ⇒ J2 = Jϑ + |Jφ| = L,

Jr =
∂S′

∂θr
= J3.

(3.228)

Thus the new action J2 is L as desired. Differentiating S ′ with respect to
the new actions we find that the new angles are

θ1 = θφ − sgn(J1)θϑ ; θ2 = θϑ ; θ3 = θr. (3.229)

Equation (3.224) can be regarded as an implicit equation for the Hamil-
tonian H(J) = E in terms of J3 = Jr and J2 = L. Since J1 does not appear
in this equation, the Hamiltonian of any spherical potential must be of the
form H(J2, J3). Thus Ω1 = ∂H/∂J1 = 0 for all spherical potentials, and
the corresponding angle θ1 is an integral of motion. In §3.1 we saw that any
spherical potential admits four isolating integrals. Here we have recovered
this result from a different point of view: three of the integrals are the actions
(J1, J2, J3), and the fourth is the angle θ1.

From Figure 3.26 we see that for orbits with Lz > 0 the inclination
of the orbital plane i = 1

2π − ϑmin, while when Lz < 0, i = 1
2π + ϑmin.

Combining these equations with (3.222) we find that

i = cos−1(Lz/L) = cos−1(J1/J2). (3.230)

16 A minor difference is that in the analysis of §3.1c, the angular momentum L could
have either sign. Here L = |L| is always non-negative, while Lz can have either sign.
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line of nodes

star
Figure 3.26 Angles defined by an
orbit. The orbit is confined to a
plane whose normal makes an an-
gle i, the inclination, with the z
axis. The orbital plane intersects the
xy plane along the line of nodes.
The ascending node is the node at
which ż > 0, and the angle Ω is the
longitude of the ascending node. El-
ementary trigonometry shows that
u = sin−1(cot i cot ϑ) = φ − Ω and
that cosϑ = sin i sinψ, were ψ is the
angle between the line of nodes and
the radius vector to the star.

We now obtain explicit expressions for the angle variables of any spher-
ical potential by evaluating ∂S/∂Ji = θi, where S is derived from equa-
tion (3.220) by replacing E with H(J2, J3), L with J2, and Lz with J1. We
have

S = φJ1 +

∫ ϑ

π/2

dϑ εϑ

√

J2
2 − J2

1

sin2 ϑ
+

∫ r

rmin

dr εr

√
2H(J2, J3) − 2Φ(r) − J2

2

r2
.

(3.231)
Figure 3.26 helps us to interpret our final result. It depicts the star after it
has passed the line of nodes, moving upward. At this instant, ϑ̇ < 0, and we
must choose εϑ = −1 to make the first integral of equation (3.231) increasing.
We therefore specialize to this case, and using (3.230) find

θ1 =
∂S

∂J1
= φ+ sgn(J1)

∫ ϑ

π/2

dϑ

sinϑ
√

sin2 ϑ sec2 i− 1

= φ− u,

(3.232a)

where17

sinu ≡ cot i cotϑ. (3.232b)

Figure 3.26 demonstrates that the new variable u is actually φ−Ω and thus
that θ1 = Ω, the longitude of the ascending node.18 Thus θ1 is constant
because the line of nodes is fixed. If the potential were not spherical, but

17 This follows because

d[sin−1(cot i cot ϑ)] = − csc2 ϑ cot i dϑ/
p

1 − cot2 i cot2 ϑ

= sgn(cos i)/(sin ϑ
p

sin2 ϑ sec2 i− 1).
(3.233)

18 Equation (3.232b) has two solutions in (0, 2π) and care must be taken to choose the
correct solution.
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Table 3.1 Angle-action variables in a spherical potential

actions Jφ = Lz ; Jϑ = L− |Lz| ; Jr
angles θφ = Ω + sgn(Lz)θϑ ; θϑ ; θr
Hamiltonian H(Jϑ + |Jφ|, Jr)
frequencies Ωφ = sgn(Lz)Ωϑ ; Ωϑ ; Ωr

actions J1 = Lz ; J2 = L ; J3 = Jr
angles θ1 = Ω ; θ2 = θϑ ; θ3 = θr
Hamiltonian H(J2, J3)
frequencies Ω1 = 0 ; Ω2 = Ωϑ ; Ω3 = Ωr

actions Ja = Lz ; Jb = L ; Jc = Jr + L
angles θa = Ω ; θb = θϑ − θr ; θc = θr
Hamiltonian H(Jb, Jc − Jb)
frequencies Ωa = 0 ; Ωb = Ωϑ − Ωr ; Ωc = Ωr

notes: The Delaunay variables (Ja, Jb, Jc) are defined in Appendix E.
When possible, actions and angles are expressed in terms of the total an-
gular momentum L, the z-component of angular momentum Lz , the radial
action Jr , and the longitude of the ascending node Ω (Figure 3.26). Unfor-
tunately, Ω is also used for the frequency corresponding to a given action,
but in this case it is always accompanied by a subscript. The Hamiltonian
is H(L, Jr).

merely axisymmetric, θ1 would not be constant and the orbital plane would
precess.

Next we differentiate equation (3.231) to obtain θ3. Only the third term,
which is equal to Sr, depends on J3. Thus we have

θ3 =
(∂Sr
∂J3

)
J2

=
(∂Sr
∂H

)
J2

(∂H
∂J3

)
J2

=
(∂Sr
∂H

)
J2

Ω3, (3.234)

where the last step follows from equation (3.190). Similarly,

θ2 =
( ∂S
∂J2

)
J3

=
(∂Sϑ
∂J2

)
J3

+
(∂Sr
∂H

)
J2

(∂H
∂J2

)
J3

+
(∂Sr
∂J2

)
H
. (3.235)

We eliminate ∂Sr/∂H using equation (3.234),

θ2 =
(∂Sϑ
∂J2

)
J3

+
Ω2

Ω3
θ3 +

(∂Sr
∂J2

)
H
. (3.236)

From equation (3.231) with εϑ = −1, it is straightforward to show that
(∂Sϑ
∂J2

)
J1

= sin−1

(
cosϑ

sin i

)
. (3.237)

Now let ψ be the angle measured in the orbital plane from the line of nodes
to the current position of the star. From Figure 3.26 it is easy to see that
cosϑ = sin i sinψ; thus (∂Sϑ

∂J2

)
J1

= ψ. (3.238)
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The other two partial derivatives in equations (3.234) and (3.235) can
only be evaluated once Φ(r) has been chosen. In the case of the isochrone
potential (2.47), we have

(∂Sr
∂H

)
J2

=

∫ r

rmin

dI ;
(∂Sr
∂J2

)
H

= −J2

∫ r

rmin

dI

r2
(3.239)

where dI is defined by (3.36). Hence the integrals to be performed are just
indefinite versions of the definite integrals that yielded Tr and ∆ψ in §3.1c.
The final answers are most conveniently expressed in terms of an auxiliary
variable η that is defined by (cf. eqs. 3.28, 3.32 and 3.34)

s = 2 +
c

b
(1 − e cos η) where





c ≡ GM

−2H
− b,

e2 ≡ 1 − J2
2

GMc

(
1 +

b

c

)
,

s ≡ 1 +
√

1 + r2/b2.

(3.240)

Then one has19

θ3 = η − ec

c+ b
sin η

θ2 = ψ +
Ω2

Ω3
θ3 − tan−1

(√
1 + e

1 − e
tan( 1

2η)

)

− 1√
1 + 4GMb/J2

2

tan−1

(√
1 + e+ 2b/c

1 − e+ 2b/c
tan( 1

2η)

)
.

(3.241)

Thus in the case of the isochrone potential we can analytically evaluate all
three angle variables from ordinary phase-space coordinates (x,v).

To summarize, in an arbitrary spherical potential two of the actions
can be taken to be the total angular momentum L and its z-component
Lz, and one angle can be taken to be the longitude of the ascending node
Ω. The remaining action and angles can easily be determined by numerical
evaluation of the integral (3.224) and integrals analogous to those of equa-
tion (3.239). In the isochrone potential, all angle-action variables can be
obtained analytically from the ordinary phase-space coordinates (x,v). The
analytic relations among angle-action variables in spherical potentials are
summarized in Table 3.1.

19 In numerical work, care must be taken to ensure that the branch of the inverse
trigonometric functions is chosen so that the angle variables increase continuously.
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3.5.3 Angle-action variables for flattened axisymmetric potentials

In §3.2 we used numerical integrations to show that most orbits in flattened
axisymmetric potentials admit three isolating integrals, only two of which
were identified analytically. Now we take up the challenge of identifying
the missing “third integral” analytically, and deriving angle-action variables
from it and the classical integrals. It proves possible to do this only for
special potentials, and we start by examining the potentials for which we
have obtained action integrals for clues as to what a promising potential
might be.

(a) Stäckel potentials In §3.3 we remarked that box orbits in a pla-
nar non-rotating bar potential resemble Lissajous figures generated by two-
dimensional harmonic motion, while loop orbits have many features in com-
mon with orbits in axisymmetric potentials. Let us examine these parallels
more closely. The orbits of a two-dimensional harmonic oscillator admit two
independent isolating integrals, Hx = 1

2 (p2
x + ω2

xx
2) and Hy = 1

2 (p2
y + ω2

yy
2)

(eq. 3.207). At each point in the portion of the (x, y) plane visited by the
orbit, the particle can have one of four momentum vectors. These mo-
menta arise from the ambiguity in the signs of px and py when we are

given only Ex and Ey , the values of Hx and Hy: px(x) = ±
√

2Ex − ω2
xx

2;

py(y) = ±
√

2Ey − ω2
yy

2. The boundaries of the orbit are the lines on which

px = 0 or py = 0.

Consider now planar orbits in a axisymmetric potential Φ(r). These
orbits fill annuli. At each point in the allowed annulus two momenta are
possible: pr(r) = ±

√
2(E − Φ) − L2

z/r
2, pφ = Lz. The boundaries of the

orbit are the curves on which pr = 0.

These examples have a number of important points in common:

(i) The boundaries of orbits are found by equating to zero one canonical
momentum in a coordinate system that reflects the symmetry of the
potential.

(ii) The momenta in this privileged coordinate system can be written as
functions of only one variable: px(x) and py(y) in the case of the har-
monic oscillator; and pr(r) and pφ = Lz (which depends on neither
coordinate) in the case of motion in a axisymmetric potential.

(iii) These expressions for the momenta are found by splitting the Hamilton–
Jacobi equation H−E = 0 (eq. 3.205) into two parts, each of which is a
function of only one coordinate and its conjugate momentum. In the case
of the harmonic oscillator, 0 = H −E = 1

2 |p|2 + 1
2 (ω2

xx
2 + ω2

yy
2) −E =

Hx(px, x) + Hy(py, y) − E. In the case of motion in an axisymmetric
potential, 0 = r2(H −E) = r2

[
1
2p

2
r + Φ(r)

]
− r2E + 1

2p
2
φ.

The first of these observations suggests that we look for a curvilinear coordi-
nate system whose coordinate curves run parallel to the edges of numerically
integrated orbits, such as those plotted in Figure 3.4. Figure 3.27 shows that
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Figure 3.27 The boundaries of orbits in the meridional plane approximately coincide
with the coordinate curves of a system of spheroidal coordinates. The dotted lines are
the coordinate curves of the system defined by (3.242) and the full curves show the same
orbits as Figure 3.4.

the (u, v) coordinate system defined by

R = ∆ sinhu sin v ; z = ∆ coshu cos v (3.242)

achieves this goal to high accuracy: the orbits of Figure 3.4 can be approxi-
mately bounded top and bottom by curves of constant v and right and left
by curves of constant u.20

Now that we have chosen a coordinate system, item (iii) above suggests
that we next write the Hamiltonian function in terms of u, v, and their
conjugate momenta. The first step is to write the Lagrangian as a function
of the new coordinates and their time derivatives. By an analysis that closely
parallels the derivation of equations (2.99) we may show that

|ẋ|2 = ∆2
(
sinh2 u+ sin2 v

) (
u̇2 + v̇2

)
+ ∆2 sinh2 u sin2 v φ̇2, (3.243)

and the Lagrangian is

L = 1
2∆2

[(
sinh2 u+ sin2 v

) (
u̇2 + v̇2

)
+ sinh2 u sin2 v φ̇2

]
−Φ(u, v). (3.244)

The momenta are (eq. D.49)

pu = ∆2
(
sinh2 u+ sin2 v

)
u̇ ; pv = ∆2

(
sinh2 u+ sin2 v

)
v̇

pφ = ∆2 sinh2u sin2 v φ̇,
(3.245)

20 Note that prolate spheroidal coordinates are used to fit the boundaries of orbits in
oblate potentials.
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so the Hamiltonian is

H(u, v, pu, pv, pφ) =
p2
u + p2

v

2∆2(sinh2 u+ sin2 v)
+

p2
φ

2∆2 sinh2 u sin2 v
+ Φ(u, v).

(3.246)
Since H has no explicit dependence on time, it is equal to some constant
E. Likewise, since H is independent of φ, the azimuthal momentum pφ is
constant at some value Lz.

The examples of motion in harmonic and circular potentials suggest that
we seek a form of Φ(u, v) that will enable us to split a multiple of the equation
H(u, v, pu, pv, Lz) = E into a part involving only u and pu and a part that
involves only v and pv . Evidently we require that (sinh2 u + sin2 v)Φ be of
the form U(u) − V (v), i.e., that21

Φ(u, v) =
U(u) − V (v)

sinh2 u+ sin2 v
, (3.247)

for then we may rewrite H = E as

2∆2
[
E sinh2 u− U(u)

]
−p2

u−
L2
z

sinh2 u
=

L2
z

sin2 v
+p2

v−2∆2
[
E sin2 v + V (v)

]
.

(3.248)
It can be shown that potentials of the form (3.247) are generated by bodies
resembling real galaxies (see Problems 2.6 and 2.14), so there are interesting
physical systems for which (3.248) is approximately valid. Potentials of this
form are called Stäckel potentials after the German mathematician P.
Stäckel.22 Our treatment of these potentials will be restricted; much more
detail, including the generalization to triaxial potentials, can be found in de
Zeeuw (1985).

If the analogy with the harmonic oscillator holds, pu will be a function
only of u, and similarly for pv . Under these circumstances, the left side of
equation (3.248) does not depend on v, and the right side does not depend
on u, so both sides must equal some constant, say 2∆2I3. Hence we would
then have

pu = ±
√

2∆2
[
E sinh2 u− I3 − U(u)

]
− L2

z

sinh2 u
, (3.249a)

pv = ±
√

2∆2
[
E sin2 v + I3 + V (v)

]
− L2

z

sin2 v
. (3.249b)

21 The denominator of equation (3.247) vanishes when u = 0, v = 0. However, we
may avoid an unphysical singularity in Φ at this point by choosing U and V such that
U(0) = V (0).

22 Stäckel showed that the only coordinate system in which the Hamilton–Jacobi equa-
tion for H = 1

2
p2+Φ(x) separates is confocal ellipsoidal coordinates. The usual Cartesian,

spherical and cylindrical coordinate systems are limiting cases of these coordinates, as is
the (u, v, φ) system.
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It is a straightforward exercise to show that the analogy with the harmonic
oscillator does hold, by direct time differentiation of both sides of equa-
tions (3.249), followed by elimination of u̇ and ṗu with Hamilton’s equations
(Problem 3.37). Thus the quantity I3 defined by equations (3.249) is an in-
tegral. Moreover, we can display I3 as an explicit function of the phase-space
coordinates by eliminating E between equations (3.249) (Problem 3.39).

Equations (3.249) enable us to obtain expressions for the actions Ju and
Jv in terms of the integrals E, I3 and Lz, the last of which is equal to Jφ as
in the spherical case. Specifically

Ju =
1

π

∫ umax

umin

du

√
2∆2

[
E sinh2 u− I3 − U(u)

]
− L2

z

sinh2 u
,

Jv =
1

π

∫ vmax

vmin

dv

√
2∆2

[
E sin2 v + I3 + V (v)

]
− L2

z

sin2 v
,

Jφ = Lz,

(3.250)

where umin and umax are the smallest and largest values of u at which the
integrand vanishes, and similarly for vmin and vmax.

As in the spherical case, we obtain expressions for the angle variables by
differentiating the generating function S(u, v, φ, Ju, Jv, Jφ) of the canonical
transformation between angle-action variables and the (u, v, φ) system. We
take S to be the sum of three parts Su, Sv and Sφ, each of which depends on
only one of the three coordinate variables. The gradient of Su with respect to
u is just pu, so Su is just the indefinite integral with respect to u of (3.249a).
After evaluating Sv and Sφ analogously, we use the chain rule to differentiate
S =

∑
i Si with respect to the actions (cf. the derivation of eq. 3.234):

θu =
∂S

∂Ju
=
∑

i=u,v

(
∂Si
∂H

Ωu +
∂Si
∂I3

∂I3
∂Ju

)
,

θv =
∑

i=u,v

(
∂Si
∂H

Ωv +
∂Si
∂I3

∂I3
∂Jv

)
,

θφ =
∑

i=u,v

(
∂Si
∂H

Ωφ +
∂Si
∂I3

∂I3
∂Lz

)
+ φ.

(3.251)

The partial derivatives in these expressions are all one-dimensional integrals
that must in general be done numerically.

The condition (3.247) that must be satisfied by an axisymmetric Stäckel
potential is very restrictive because it requires that a function of two variables
can be written in terms of two functions of one variable. Most potentials that
admit a third integral do not satisfy this condition. In particular the logarith-
mic potential ΦL (2.71a) that motivated our discussion is not of Stäckel form:
we can find a system of spheroidal coordinates that approximately bounds



230 Chapter 3: The Orbits of Stars

Figure 3.28 Plots of the effective potentials Ueff (left) and Veff (right) that are defined
by equations (3.252) and (3.253) for ∆ = 0.6a3 and Lz = 0.05a3

√
W . Curves are shown

for I3 = −0.1W (full) and I3 = 0.1W (dotted).

any given orbit, but in general different orbits require different coordinate
systems.

As an example of the use of equations (3.249) we investigate the shapes
they predict for orbits in the potential obtained by choosing in (3.247)

U(u) = −W sinhu tan−1

(
∆ sinhu

a3

)

V (v) = W sin v tanh−1

(
∆ sin v

a3

)
,

(3.252)

where W , ∆, and a3 are constants.23 An orbit of specified E and I3 can
explore all values of u and v for which equations (3.249) predict positive
p2
u and p2

v. This they will do providing E is larger than the largest of the
“effective potentials”

Ueff(u) ≡ L2
z

2∆2 sinh4 u
+
I3 + U(u)

sinh2 u
, (3.253a)

Veff(v) ≡ L2
z

2∆2 sin4 v
− I3 + V (v)

sin2 v
. (3.253b)

Figure 3.28 shows these potentials for two values of I3 and all other param-
eters fixed. Consider the case in which the energy takes the value −0.453W

23 With these choices for U and V , the potential (3.247) becomes the potential of the
perfect prolate spheroid introduced in Problem 2.14.
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Figure 3.29 Surface of section at
E = −0.5W and Lz = 0.05a3

√
W

constructed from equations (3.249)
and (3.252) with ∆ = 0.6a3 .

(dashed horizontal line). Then for I3 = 0.1W (dotted curves), only a single
value of u (u = 1) is permitted, so the orbit is confined to a segment of an
ellipse in the meridional plane—this is a shell orbit. By contrast all values of
|v| larger than the intersection of the dashed and dotted curves in the right
panel are permitted: these start at |v| = 0.059π. Consequently, the orbit
covers much of the ellipse u = 1 (which in three dimensions is a spheroid).

Consider now the case in which I3 = −0.1W (full curves in Figure 3.28).
Now a wide range is permitted in u (0.17 < u < 1.48) and a smaller range in
v (|v| > 0.27π). Physically, lowering I3 transfers some of the available energy
from motion perpendicular to the potential’s equatorial plane into the star’s
radial oscillation.

In §3.2.2 we detected the existence of non-classical integrals by plotting
surfaces of section. It is interesting to see how I3 structures surfaces of
section. If we were to plot the (u, pu) surface of section, the consequents of a
given orbit (definite values of E,Lz, I3) would lie on the curve in the (u, pu)
plane whose equation is (3.249a). This equation is manifestly independent
of v, so the surface of section would look the same regardless of whether it
was for v = 0, v = 0.1, or whatever. To get the structure of the (R, pR)
surfaces of section that we plotted in §3.2.2, for each allowed value of u we
get p(u) from (3.249a) and p(v) from (3.249b) with v = π/2, and then obtain
(R, pR) from the (u, v, pu, pv) coordinates by inverting the transformations
(2.96) and (3.245). Figure 3.29 shows a surface of section generated in this
way.

In §3.2.1 we saw that motion in the meridional plane is governed by
a Hamiltonian H(R, z, pR, pz) in which Lz occurs as a parameter and the
phase space is four-dimensional. In this space the orbital tori are ordinary
two-dimensional doughnuts, and a surface of section is simply a cross-section
through a nested sequence of such tori: each invariant curve marks the in-
tersection of a two-dimensional doughnut with the two-dimensional surface
of section.

(b) Epicycle approximation In §3.2.3 we used the epicycle approxima-
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tion to obtain solutions to the equations of motion that are approximately
valid for nearly circular orbits in an axisymmetric potential. Here we ob-
tain the corresponding approximate angle-action variables. In cylindrical
coordinates the Hamilton–Jacobi equation (3.205) is

1
2

( ∂S
∂R

)2

+
1

2R2

(∂S
∂φ

)2

+ 1
2

(∂S
∂z

)2

+ Φ(R, z) = E. (3.254)

As in equation (2.75a) we assume that Φ is of the form ΦR(R) + Φz(z); the
radial dependence of Φz(z) is suppressed because the radial motion is small
in the epicycle approximation. We further assume that S is of the form
S(J, R, φ, z) = SR(J, R) + Sφ(J, φ) + Sz(J, z). Now we use the method of
separation of variables to split equation (3.254) up into three parts:

Ez = 1
2

(∂Sz
∂z

)2

+ Φz(z) ; L2
z =

(∂Sφ
∂φ

)2

E −Ez = 1
2

(∂SR
∂R

)2

+ ΦR(R) +
L2
z

2R2
,

(3.255)

where Ez and Lz are the two constants of separation. The first equation of
this set leads immediately to an integral for Sz(z)

Sz(z) =

∫ z

0

dz′ εz
√

2[Ez − Φz(z′)], (3.256)

where εz is chosen to be ±1 such that the integral increases monotonically
along the path. If, as in §3.2.3, we assume that Φz = 1

2ν
2z2, where ν is a

constant, then our equation for Sz becomes essentially the same as the first
of equations (3.211), and by analogy with equations (3.213) and (3.216), we
have

Jz =
Ez
ν

; z = −
√

2Jz
ν

cos θz. (3.257)

The second of equations (3.255) trivially yields

Sφ(J, φ) = Lzφ, (3.258)

and it immediately follows that Jφ = Lz. The last of equations (3.255) yields

2(E −Ez) =
(∂SR
∂R

)2

+ 2Φeff(R), (3.259a)

where (cf. eq. 3.68b)

Φeff(R) ≡ ΦR(R) +
J2
φ

2R2
. (3.259b)
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The epicycle approximation involves expanding Φeff about its minimum,
which occurs at the radius Rg(Jφ) of the circular orbit of angular momentum
Jφ; with x defined by R = Rg +x, the expansion is Φ(R) = Ec(Jφ) + 1

2κ
2x2,

where Ec(Jφ) is the energy of the circular orbit of angular momentum Jφ
and κ is the epicycle frequency defined in equation (3.77). Inserting this
expansion into (3.259a) and defining ER ≡ E −Ez −Ec, we have

2ER =
(∂SR
∂R

)2

+ κ2x2, (3.260)

which is the same as equation (3.210) with K2 replaced by 2ER, x by R, and
ωx by κ. It follows from equations (3.213), (3.216) and (3.217) that

JR =
ER
κ

; SR(J, R) = JR(θR − 1
2 sin 2θR) ; R = Rg −

√
2JR
κ

cos θR.

(3.261)
The last of these equations is equivalent to equation (3.91) if we set θR =
κt+ α and X = −(2JR/κ)1/2.

Finally, we find an expression for θφ. With equations (3.258) and (3.261)
we have

θφ =
∂S

∂Jφ
=
∂Sφ
∂Jφ

+
∂SR
∂Jφ

= φ+ JR(1 − cos 2θR)
∂θR
∂Jφ

= φ+ 2JR sin2 θR
∂θR
∂Jφ

.

(3.262)

The derivative of θR has to be taken at constant JR, Jz, R, φ, and z. We
differentiate the last of equations (3.261) bearing in mind that both Rg and
κ are functions of Jφ:

0 =
dRg

dJφ
+

1

2κ

dκ

dJφ

√
2JR
κ

cos θR +

√
2JR
κ

sin θR
∂θR
∂Jφ

. (3.263)

By differentiating R2
gΩg = Jφ with respect to Rg we may show with equation

(3.80) that
dRg

dJφ
=

γ

κRg
, (3.264)

where γ = 2Ωg/κ is defined by equation (3.93b). Inserting this relation into
(3.263) and using the result to eliminate ∂θR/∂Jφ from (3.262), we have
finally

θφ = φ− γ

Rg

√
2JR
κ

sin θR − JR
2

d lnκ

dJφ
sin 2θR. (3.265)

This expression should be compared with equation (3.93a). If we set θφ =

Ωgt+φ0, θR = κt+α+π, and X = (2JR/κ)1/2 as before, the only difference
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Figure 3.30 The boundaries of
loop and box orbits in barred po-
tentials approximately coincide with
the curves of a system of spheroidal
coordinates. The figure shows two
orbits in the potential ΦL of equa-
tion (3.103), and a number of curves
on which the coordinates u and v
defined by equations (3.267) are con-
stant.

between the two equations is the presence of a term proportional to sin 2θR in
equation (3.265). For nearly circular orbits, this term is smaller than the term

proportional to sin θR by
√
JR/Jφ and represents a correction to equation

(3.92) that makes the (θR, θφ, JR, Jφ) coordinates canonical (Dehnen 1999a).
It is worth noting that when JR 6= 0, the frequency associated with φ

is not the circular frequency, Ωg. To see this, recall that the Hamiltonian
H = ER +Ec +Ez , and ER = κJR, while dEc/dJφ = Ωg, so

Ωφ =
∂H

∂Jφ
=

dκ

dJφ
JR + Ωg. (3.266)

3.5.4 Angle-action variables for a non-rotating bar

The (u, v) coordinate system that allowed us to recover angle-action variables
for flattened axisymmetric potentials enables us to do the same for a planar,
non-rotating bar. This fact is remarkable, because we saw in §3.3 that these
systems support two completely different types of orbit, loops and boxes.
Figure 3.30 makes it plausible that the (u, v) system can provide analytic
solutions for both loops and boxes, by showing that the orbits plotted in
Figure 3.8 have boundaries that may be approximated by curves of constant u
and v (cf. the discussion on page 226). We can explore this idea quantitatively
by defining

x = ∆ sinhu sin v ; y = ∆ coshu cos v (3.267)

and then replacing R by x and z by y in the formulae of the previous subsec-
tion. Further setting φ̇ = Lz = 0 we find by analogy with equations (3.249)
that

pu = ±∆ sinhu
√

2[E − Ueff(u)] ; pv = ±∆ sin v
√

2[E − Veff(v)]
(3.268a)
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Figure 3.31 The effective potentials defined by equations (3.268b) when U and V are
given by equations (3.252). The curves are for I2 = 1, 0.25, 0.01, 0,−0.01,−0.25 and −1,
with the largest values coming on top in the left panel and on the bottom in the right
panel. The thick curves are for I2 = 0.

where

Ueff(u) =
I2 + U(u)

sinh2 u
; Veff(v) = −I2 + V (v)

sin2 v
. (3.268b)

Here U and V are connected to the gravitational potential by equation
(3.247) as before and I2 is the constant of separation analogous to I3.

An orbit of specified E and I2 is confined to values of u and v at which
both E ≥ Ueff and E ≥ Veff . Figure 3.31 shows the effective potentials as
functions of their coordinates for several values of I2 when U and V are
chosen to be the functions specified by equations (3.252). In each panel the
thick curve is for I2 = 0, with curves for I2 > 0 lying above this in the left
panel, and below it on the right. Since the curves of Ueff have minima only
when I2 > 0, there is a lower limit on the star’s u coordinate only in this
case. Consequently, stars with I2 ≤ 0 can reach the center, while stars with
I2 > 0 cannot reach the center. This suggests that when I2 ≤ 0 the orbit is
a box orbit, while when I2 > 0 it is a loop orbit. Comparison of the right
and left panels confirms this conjecture by showing that when I2 > 0 (upper
curves on left and lower curves on right), the minimum value of Ueff is greater
than the maximum of Veff . Hence when I2 > 0 the condition E > Veff(v)
imposes no constraint on v and the boundaries of the orbit are the ellipses
u = umin and u = umax on which E = Ueff . When I2 ≤ 0, by contrast, the
curves on the right tend to ∞ as v → 0, so sufficiently small values of v are
excluded and the boundaries of the orbit are the ellipse u = umax on which
E = Ueff(u) and the hyperbola |v| = vmin on which E = Veff(v).
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Figure 3.32 The (u, pu), v = 0 surface of section for motion at E = −0.25 in the
Stäckel potential defined by equations (3.247) and (3.252) with ∆ = 0.6 and a3 = 1.
Each curve is a contour of constant I2 (eqs. 3.268). The invariant curves of box orbits
(I2 = −0.6,−0.4, . . .) run round the outside of the figure, while the bull’s-eyes at right are
the invariant curves of anti-clockwise loop orbits. Temporarily suspending the convention
that loops always have u > 0, we show the invariant curves of clockwise loops as the
bull’s-eyes at left.

Figure 3.32 shows the (u, pu) surface of section, which is in practice
nothing more than a contour plot of the integral I2(E, u, pu) with E fixed
(eq. 3.268a). Each contour shows the curve in which an orbital torus is sliced
by the surface of section. As in Figure 3.9, for example, there are two different
types of contour, namely those generated by the tori of loop orbits (which
come in pairs, because there are both clockwise and anti-clockwise circulating
loops), and those generated by the tori of box orbits, which envelop all the
tori of the loop orbits.

3.5.5 Summary

We have made a considerable investment in the theory of angle-action vari-
ables, which is repaid by the power of these variables in investigations of a
wide variety of dynamical problems. This power arises from the following
features:
(i) Angle-action variables are canonical. In particular, the phase-space vol-

ume d3θd3J is the same as the phase-space volume d3qd3p for any other
set of canonical variables (q,p), including the usual Cartesian coordi-
nates (x,v).

(ii) Every set of angle-action variables (θ,J) is associated with a Hamil-
tonian24 H(J), and orbits in this Hamiltonian have the simple form

24 If a given set of angle-action variables is associated with H(J), then it is also as-
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J = constant , θ = Ωt + constant . A Hamiltonian that admits angle-
action variables is said to be integrable. The simplicity of angle-action
variables makes them indispensable for investigating motion in non-
integrable Hamiltonians by using perturbation theory. This technique
will be used to explore chaotic orbits in §3.7, and the stability of stellar
systems in Chapter 5.

(iii) In the next section we shall see that actions are usually invariant during
slow changes in the Hamiltonian.

3.6 Slowly varying potentials

So far we have been concerned with motion in potentials that are time-
independent in either an inertial or a rotating frame. It is sometimes nec-
essary to consider how stars move in potentials that are time-dependent.
The nature of the problem posed by a time-varying potential depends on
the speed with which the potential evolves. In this section we shall confine
ourselves to potentials that evolve slowly, in which case angle-action vari-
ables enable us to predict how a stellar system will respond to changes in
the gravitational field that confines it. Such changes occur when:
(i) Encounters between the individual stars at the core of a dense stellar

system (such as a globular cluster or galaxy center) cause the core to
evolve on a timescale of order the relaxation time (1.38), which is much
longer than the orbital times of individual stars (§7.5).

(ii) Stars of galaxies and globular clusters lose substantial quantities of mass
as they gradually evolve and shed their envelopes into interstellar or
intergalactic space (Box 7.2).

(iii) Gas settles into the equatorial plane of a pre-existing dark halo to form
a spiral galaxy. In this case the orbits of the halo’s dark-matter particles
will undergo a slow evolution as the gravitational potential of the disk
gains in strength.

Potential variations that are slow compared to a typical orbital frequency
are called adiabatic. We now show that the actions of stars are constant
during such adiabatic changes of the potential. For this reason actions are
often called adiabatic invariants.

3.6.1 Adiabatic invariance of actions

Suppose we have a sequence of potentials Φλ(x) that depend continuously
on the parameter λ. For each fixed λ we assume that angle-action variables
could be constructed for Φλ. That is, we assume that at all times phase space
is filled by arrays of nested tori on which the phase points of individual stars

sociated with H̃(J) ≡ f [H(J)], where f is any differentiable function. Thus, a set of
angle-action variables is associated with infinitely many Hamiltonians.
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travel. We consider what happens when λ is changed from its initial value,
say λ = λ0, to a new value λ1. After this change has occurred, each star’s
phase point will start to move on a torus of the set that belongs to Φλ1

. In
general, two stellar phase points that started out on the same torus of Φλ0

will
end up on two different tori of Φλ1

. But if λ is changed very slowly compared
to all the characteristic times 2π/Ωk associated with motion on each torus,
all phase points that are initially on a given torus of Φλ0

will be equally
affected by the variation of λ. This statement follows from the time averages
theorem of §3.5.1a, which shows that all stars spend the same fraction of
their time in each portion of the torus; hence, all stars are affected by slow
changes in Φλ in the same way. Thus all phase points that start on the same
torus of Φλ0

will end on a single torus of Φλ1
. Said in other language, any

two stars that are initially on a common orbit (but at different phases) will
still be on a common orbit after the slow variation of λ is complete.

Suppose the variation of λ starts at time t = 0 and is complete by time
τ , and let Ht be the time-evolution operator defined in equation (D.55).
Then we have just seen that Hτ , which is a canonical map (see Appendix
D.4.4), maps tori of Φλ0

onto tori of Φλ1
. These facts guarantee that actions

are adiabatically invariant, for the following reason. Choose three closed
curves γi, on any torus M of Φλ0

that through the integrals (3.195) generate
the actions Ji of this torus. Then, since Hτ is the endpoint of a continuous
deformation of phase space into itself, the images Hτ (γi) of these curves are
suitable curves along which to evaluate the actions J ′

i of Hτ (M), the torus
to which M is mapped by Hτ . But by a corollary to the Poincaré invariant
theorem (Appendix D.4.2), we have that if γ is any closed curve and Hτ (γ)
is its image under the canonical map Hτ , then

∮

Hτ (γ)

p · dq =

∮

γ

p · dq. (3.269)

Hence J ′
i = Ji, and the actions of stars do not change if the potential evolves

sufficiently slowly.
It should be stressed that any action Ji with fundamental frequency

Ωi = 0 is not an adiabatic invariant. For example, in a spherical potential,
J2 and J3 are normally adiabatic invariants, but J1 is not (Table 3.1).

3.6.2 Applications

We illustrate these ideas with a number of simple examples. Other ap-
plications of adiabatic invariants will be found in Binney & May (1986),
Lichtenberg & Lieberman (1992), and §4.6.1.

(a) Harmonic oscillator We first consider the one-dimensional harmonic
oscillator whose potential is

Φ = 1
2ω

2x2. (3.270)
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Figure 3.33 Checking the invari-
ance of the action (3.271) when the
natural frequency of a harmonic os-
cillator is varied according to equa-
tion (3.277). ∆J is the rms change
in the action on integrating the os-
cillator’s equation of motion from
t = −20T to t = 20T , using eight
equally spaced phases. The rms

change in J declines approximately
as ∆J ∝ exp(−2.8ω0T ).

By equation (3.213) the action is

J =
1

2ω

[
p2 + (ωx)2

]
=
H

ω
, (3.271)

where H(x, p) = 1
2p

2 + 1
2ω

2x2. The general solution of the equations of
motion is x(t) = X cos(ωt + φ). In terms of the amplitude of oscillation X
we have

J = 1
2ωX

2. (3.272)

Now suppose that the oscillator’s spring is slowly stiffened by a factor s2 > 1,
so the natural frequency increases to

ω′ = sω. (3.273)

By the adiabatic invariance of J , the new amplitude X ′ satisfies

1
2ω

′X ′2 = J = 1
2ωX

2. (3.274)

Thus the amplitude is diminished to

X ′ =
X√
s
, (3.275)

while the energy, E = ωJ , has increased to25

E′ = ω′J = sωJ = sE. (3.276)

25 The simplest proof of this result uses quantum mechanics. The energy of a harmonic
oscillator is E = (n + 1

2
)h̄ω where n is an integer. When ω is slowly varied, n cannot

change discontinuously and hence must remain constant. Therefore E/ω = E ′/ω′. Of
course, for galaxies n is rather large.
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Figure 3.34 The envelope of an orbit in the effective potential (3.70) with q = 0.5 (light
curve) is well modeled by equation (3.279) (heavy curves).

We now ask how rapidly we can change the frequency ω without de-
stroying the invariance of J . Let ω vary with time according to

ω(t) = π
√

3 + erf(t/T ) . (3.277)

Thus the frequency changes from ω = ω0 ≡
√

2π at t � −T to ω = 2π =√
2ω0 at t� T . In Figure 3.33 we show the results of numerically integrating

the oscillator’s equation of motion with ω(t) given by equation (3.277). We
plot the rms difference ∆J between the initial and final values of J for eight
different phases of the oscillator at t = −20T . For ω0T ∼> 2, J changes by
less than half a percent, and for ω0T ∼> 4, J changes by less than 3 × 10−5.
We conclude that the potential does not have to change very slowly for J to
be well conserved. In fact, one can show that the fractional change in J is in
general less than exp(−ωT ) for ωT � 1 (Lichtenberg & Lieberman 1992).

(b) Eccentric orbits in a disk Consider the shapes shown in Figure 3.4
of the orbits in the meridional plane of an axisymmetric galaxy. On page 167
we remarked that disk stars in the solar neighborhood oscillate perpendicular
to the galactic plane considerably more rapidly than they oscillate in the
radial direction. Therefore, if we take the radial coordinate R(t) of a disk
star to be a known function of time, we may consider the equation of motion
(3.67c) of the z-coordinate to describe motion in a slowly varying potential.
If the amplitude of the z-oscillations is small, we may expand ∂Φ/∂z about
z = 0 to find

z̈ ' −ω2z where ω(t) ≡
(
∂2Φ

∂z2

)1/2

[R(t),0]

≡
√

Φzz[R(t), 0]. (3.278)

If the action integral of this harmonic oscillator is conserved, we expect the
amplitude Z(R) to satisfy (see eqs. 3.273 and 3.275)

Z(R) = Z(R0)

(
Φzz(R0, 0)

Φzz(R, 0)

)1/4

. (3.279)

Figure 3.34 compares the prediction of (3.279) with the true shape of an
orbit in the effective potential (3.70). Evidently the behavior of such orbits
can be accurately understood in terms of adiabatic invariants.

(c) Transient perturbations Consider the motion of a star on a loop
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orbit in a slowly varying planar potential Φ(R, φ). The relevant action is

Jφ =
1

2π

∫ 2π

0

dφ pφ. (3.280)

We now conduct the following thought experiment. Initially the potential Φ
is axisymmetric. Then pφ = Lz is an integral, and we can trivially evaluate
the integral in (3.280) to obtain Jφ = Lz. We now slowly distort the potential
in some arbitrary fashion into a new axisymmetric configuration. At the
end of this operation, the azimuthal action, being adiabatically invariant,
still has value Jφ and is again equal to the angular momentum Lz. Thus
the star finishes the experiment with the same angular momentum with
which it started,26 even though its instantaneous angular momentum, pφ,
was changing during most of the experiment. Of course, if the potential
remains axisymmetric throughout, pφ remains an integral at all times and is
exactly conserved no matter how rapidly the potential is varied.

A closely related example is a slowly varying external perturbation of
a stellar system, perhaps from the gravitational field of an object passing
at a low angular velocity. If the passage is slow enough, the actions are
adiabatically invariant, so the distribution of actions in the perturbed system
will be unchanged by the encounter. In other words, adiabatic encounters,
even strong ones, have no lasting effect on a stellar system (§8.2c).

(d) Slow growth of a central black hole As our final application of
the adiabatic invariance of actions, we consider the evolution of the orbit of
a star near the center of a spherical galaxy, as a massive black hole grows
by slowly accreting matter (Goodman & Binney 1984). A more complete
treatment of the problem is given in §4.6.1d. We assume that prior to the
formation of the hole, the density of material interior to the orbit can be
taken to be a constant, so the potential is that of the spherical harmonic
oscillator. It is then easy to show that the star’s Hamiltonian can be written
(Problem 3.36)

H = ΩrJr + ΩφJφ = 2ΩJr + ΩJφ, (3.281)

where Ω = Ωφ = 1
2Ωr is the circular frequency, and Jφ = L is the magnitude

of the angular-momentum vector. The radii rmin and rmax of peri- and
apocenter are the roots of

0 =
J2
φ

2r2
+ 1

2Ω2r2 −H ⇒ 0 = r4 − 2H

Ω2
r2 +

J2
φ

Ω2
. (3.282)

26 This statement does not apply for stars that switch from loop to box orbits and back
again as the potential is varied (Binney & Spergel 1983; Evans & Collett 1994). These
stars will generally be on highly eccentric orbits initially.
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Hence, the axis ratio of the orbit is

qH =
rmin

rmax
=

(
H/Ω2 −

[
(H/Ω2)2 − (Jφ/Ω)2

]1/2

H/Ω2 +
[
(H/Ω2)2 − (Jφ/Ω)2

]1/2
)1/2

=

(
2Jr + Jφ − 2[Jr(Jr + Jφ)]1/2

2Jr + Jφ + 2[Jr(Jr + Jφ)]1/2

)1/2

.

(3.283)

Multiplying top and bottom of the fraction by the top, this last expression
reduces to

qH =
1

Jφ

[
2Jr + Jφ − 2

√
Jr(Jr + Jφ)

]
. (3.284)

When the hole has become sufficiently massive, the Hamiltonian may be
taken to be that for Kepler motion (eq. E.6) and the orbit becomes an ellipse
with the black hole at the focus rather than the center of the ellipse. A similar
calculation yields for the axis ratio of this ellipse

qK =

[
1 −

(
rmax − rmin

rmax + rmin

)2]1/2

=
Jφ

Jr + Jφ
. (3.285)

When Jr/Jφ is eliminated between equations (3.284) and (3.285), we find

qK =
4qH

(1 + qH)2
. (3.286)

For example, if qH = 0.5 is the original axis ratio, the final one is qK = 0.889,
and if initially qH = 0.75, then finally qK = 0.980. Physically, an elongated
ellipse that is centered on the black hole distorts into a much rounder orbit
with the black hole at one focus.

For any orbit in a spherical potential the mean-square radial speed is

v2
r =

Ωr
π

∫ π/Ωr

0

dt v2
r =

Ωr
π

∫ rmax

rmin

dr vr = ΩrJr. (3.287a)

Similarly, the mean-square tangential speed is

v2
t =

Ωφ
2π

∫ 2π/Ωφ

0

dt (Rφ̇)2 =
Ωφ
2π

∫ 2π

0

dφ pφ = ΩφJφ. (3.287b)

Since the actions do not change as the hole grows, the change in the ratio of
the mean-square speeds is given by

(
v2
r/v

2
t

)
K(

v2
r/v

2
t

)
H

=
(Ωr/Ωφ)K

(Ωr/Ωφ)H
=

1

2
. (3.288)

Consequently, the growth of the black hole increases the star’s tangential
velocity much more than it does the radial velocity, irrespective of the original
eccentricity of the orbit. In §4.6.1a we shall investigate the implications of
this result for measurements of the stellar velocity dispersion near a black
hole, and show how the growth of the black hole enhances the density of
stars in its vicinity.
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3.7 Perturbations and chaos

Analytic solutions to a star’s equations of motion exist for only a few simple
potentials Φ(x). If we want to know how stars will move in a more complex
potential, for example one estimated from observational data, two strategies
are open to us: either solve the equations of motion numerically, or obtain
an approximate analytic solution by invoking perturbation theory, which
involves expressing the given potential as a sum of a potential for which
we can solve the equations of motion analytically and a (one hopes) small
additional term.

Even in the age of fast, cheap and convenient numerical computation,
perturbative solutions to the equations of motion are useful in two ways.
First, they can be used to investigate the stability of stellar systems (§5.3).
Second, they give physical insight into the dynamics of orbits. We start
this section by developing perturbation theory and sketching some of its
astronomical applications; then we describe the phenomenon of orbital chaos,
and show that Hamiltonian perturbation theory helps us to understand the
physics of this phenomenon.

3.7.1 Hamiltonian perturbation theory

In §3.3.3 we derived approximate orbits in the potential of a weak bar, by
treating the potential as a superposition of a small non-axisymmetric poten-
tial and a much larger axisymmetric one. Our approach involved writing the
orbit x(t) as a sum of two parts, one of which described the circular orbit
of a guiding center, while the other described epicyclic motion. We worked
directly with the equations of motion. Angle-action variables enable us to
develop a more powerful perturbative scheme, in which we work with scalar
functions rather than coordinates, and think of the orbit as a torus in phase
space rather than a time-ordered series of points along a trajectory. For more
detail see Lichtenberg & Lieberman (1992).

Let H0 be an integrable Hamiltonian, and consider the one-parameter
family of Hamiltonians

Hβ ≡ H0 + βh, (3.289)

where β � 1 and h is a Hamiltonian with gradients that are comparable
in magnitude to those of H0. Let (θβ ,Jβ) be angle-action variables for
Hβ. These coordinates are related to the angle-action variables of H0 by a
canonical transformation. As β → 0 the generating function S (Appendix
D.4.6) of this transformation will tend to the generating function of the
identity transformation, so we may write

S(θβ ,J0) = θ
β · J0 + sβ(θβ ,J0), (3.290)

where sβ is O(β), and (eq. D.94)

Jβ =
∂S

∂θβ
= J0 +

∂sβ

∂θβ
; θ

0 = θ
β +

∂sβ

∂J0
. (3.291)
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Substituting these equations into (3.289), we have

Hβ(Jβ) = H0(J0) + βh(θ0,J0)

= H0
(
Jβ − ∂sβ

∂θβ

)
+ βh

(
θ
β +

∂sβ

∂J0
,Jβ − ∂sβ

∂θβ

)

= H0(Jβ) −Ω0(Jβ) · ∂s
β

∂θβ
+ βh(θβ,Jβ) + O(β2),

(3.292)

where Ω0 is the derivative of H0 with respect to its argument. We next
expand h and sβ as Fourier series in the periodic angle variables (Appendix
B.4):

h(θβ ,Jβ) =
∑

n

hn(Jβ) ein·θβ

; sβ(θβ ,J0) = i
∑

n

sβn(J0) ein·θβ

, (3.293)

where n = (n1, n2, n3) is a triple of integers. Substituting these expressions
into (3.292) we find

Hβ(Jβ) = H0(Jβ) + βh0 +
∑

n6=0

(
βhn + n ·Ω0sβn

)
ein·θβ

+ O(β2). (3.294)

In this equation Ω0 and hn are functions of Jβ , while sn is a function of J0,
but to the required order in β, J0 can be replaced by Jβ .

Since the left side of equation (3.294) does not depend on θβ , on the

right the coefficient of exp(in · θβ) must vanish for all n 6= 0. Hence the
Fourier coefficients of S are given by

sβn(J) = − βhn(J)

n · Ω0(J)
+ O(β2) (n 6= 0). (3.295)

The O(β) part of equation (3.295) defines the generating function of a
canonical transformation. Let (θ′,J′) be the images of (θ0,J0) under this
transformation. Then we have shown that

Hβ(Jβ) = H ′(J′) + β2h′(θ′,J′), (3.296a)

where
H ′(J′) ≡ H0(J′) + βh0(J′) (3.296b)

and h′ is a function involving second derivatives of H0 and first derivatives
of h.

The analysis we have developed can be used to approximate orbits in
a given potential. As we saw in §3.2.2, if we know an integral other than
the Hamiltonian of a system with two degrees of freedom, we can calculate
the curve in a surface of section on which the consequents of a numerically
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Figure 3.35 A surface of section for orbits in a flattened isochrone potential. The density
distribution generating the potential has axis ratio q = 0.7. The points are the consequents
of numerically calculated orbits. The dotted curves show the orbital tori for the spherical
isochrone potential that have the same actions as the numerically integrated orbits. The
full curves show the result of using first-order Hamiltonian perturbation theory to deform
these tori.

integrated orbit should lie. Since J′ differs from the true action by only
O(β2) it should provide an approximate integral of motion, and it is inter-
esting to compare the invariant curve that it yields with the consequents of
a numerically integrated orbit. Figure 3.35 is a surface of section for orbits
in a flattened isochrone potential. The density distribution that generates
this potential is obtained by replacing r by

√
R2 + z2/q2 and M by M/q

in equations (2.48b) and (2.49). The axis ratio q has been set equal to 0.7.
The dots show the consequents of numerically integrated orbits. The dotted
curves show the corresponding invariant curves for the spherical isochrone.
The full curves show the results of applying first-order perturbation theory to
the spherical isochrone to obtain better approximations to invariant curves.

The full curves in Figure 3.35 fit the numerical consequents much better
than the dotted curves, but the fit is not perfect. An obvious strategy for sys-
tematically improving our approximation to the true angle-action variables
is to use our existing machinery to derive from (3.296a) a second canonical
transformation that would enable us to write H as a sum of a Hamiltonian
H ′′(J′′) that is a function of new actions J′′ and a yet smaller perturbation
β4h′′. After we have performed k transformations, the angle-dependent part

of Hβ will be of order β2k

. In practice this procedure is unlikely to work
because after each application the “unperturbed” frequencies of the orbit
change from Ω′ = ∂H ′/∂J′ to Ω′′ = ∂H ′′/∂J′′, and sooner or later we will
find that n · Ω′′ is very close to zero for some n, with the consequence that
the corresponding term in the generating function (3.295) becomes large.
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This is the problem of small divisors. Fortunately, in many applications
the coefficients hn in the numerators of (3.295) decline sufficiently quickly as

|n| increases that for most orbits |β2k

hn/n ·Ω| is small for all n.
Box 3.5 outlines how the so-called KAM theory enables one to over-

come the problem of small divisors for most tori, and for them construct
a convergent series of canonical transformations that yield the angle-action
variables of Hβ to arbitrarily high accuracy for sufficiently small β.

3.7.2 Trapping by resonances

Figure 3.36, like Figure 3.35, is a surface of section for motion in a flattened
isochrone potential, but the axis ratio of the mass distribution that gener-
ates the potential is now q = 0.4 rather than q = 0.7. The consequents
of two orbits are shown together with the approximations to the invariant
curves of these orbits that one obtains from the angle-action variables of the
spherical isochrone potential with (full curves) and without (dotted curves)
first-order perturbation theory. The inner full invariant curve is not very far
removed from the inner loop of orbital consequents, but the outer full invari-
ant curve does not even have the same shape as the crescent of consequents
that is generated by the second orbit. The deviation between the outer full
invariant curve and the consequents is an example of resonant trapping,
a phenomenon intimately connected with the problem of small divisors that
was described above.

To understand this connection, consider how the frequencies of orbits
in the flattened isochrone potential are changed by first-order perturbation
theory. We obtain the new frequencies by differentiating equation (3.296b)
with respect to the actions. Figure 3.37 shows the resulting ratio Ωr/Ωϑ as a
function of Jϑ at the energy of Figure 3.36. Whereas Ωr > Ωϑ for all unper-
turbed orbits, for some perturbed orbit the resonant condition Ωr − Ωϑ = 0
is satisfied. Consequently, if we attempt to use equation (3.295) to refine the
tori that generate the full curves in Figure 3.36, small divisors will lead to
large distortions in the neighborhood of the resonant torus. These distortions
will be unphysical, but they are symptomatic of a real physical effect, namely
a complete change in the way in which orbital tori are embedded in phase
space. The numerical consequents in Figure 3.36, which mark cross-sections
through two tori, one before and one after the change in the embedding,
make the change apparent: one torus encloses the shell orbit whose single
consequent lies along pR = 0, while the other torus encloses the resonant
orbit whose single consequent lies near (R, pR) = (2.2, 0.38).

Small divisors are important physically because they indicate that a
perturbation is acting with one sign for a long time. If the effects of a
perturbation can accumulate for long enough, they can become important,
even if the perturbation is weak. So if N · Ω is small for some N, then the
term hN in the Hamiltonian can have big effects even if it is very small.
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Box 3.5: KAM theory

Over the period 1954–1967 Kolmogorov, Arnold and Moser demonstrated
that, notwithstanding the problem of small divisors, convergent pertur-
bation series can be constructed for Hamiltonians of the form (3.289).
The key ideas are (i) to focus on a single invariant torus rather than a
complete foliation of phase space by invariant tori, and (ii) to determine
at the outset the frequencies Ω of the torus to be constructed (Lichten-
berg & Lieberman 1992). In particular, we specify that the frequency
ratios are far from resonances in the sense that |n · Ω| > α|n|−γ for all
n and some fixed, non-negative numbers α and γ. We map an invariant
torus of H0 with frequencies Ω into an invariant torus of Hβ by means
of the generating function

S(θβ ,J0) = θβ · (J0 + j) + sβ(θβ,J0). (1)

This differs from (3.290) by the addition of a term θ
β · j, where j is a

constant of order β. Proceeding in strict analogy with the derivation of
equations (3.295) and (3.296b), we find that if the Fourier coefficients of
sβ are chosen to be

sβn = − βhn

n ·Ω (n 6= 0), (2)

then we obtain a canonical transformation to new coordinates (θ′,J′) in
terms of which Hβ takes the form (3.296a) with

H ′(J′) = H0(J′) + βh0(J′) − j ·Ω. (3)

We now choose the parameter j such that the frequencies of H ′ are still
the old frequencies Ω, which were far from any resonance. That is, we
choose j to be the solution of

β
∂h0

∂Jj
= j · ∂Ω

∂Jj
=
∑

i

ji ·
∂2H0

∂Ji∂Jj
. (4)

This linear algebraic equation will be soluble provided the matrix of
second derivatives of H0 is non-degenerate. With j the solution to this
equation, the problem posed byHβ in the (θ′,J′) coordinates differs from
our original problem only in that the perturbation is now O(β2). Conse-
quently, a further canonical transformation will reduce the perturbation
to O(β4) and so on indefinitely. From the condition |n ·Ω| > α|n|−γ one
may show that the series of transformations converges.

We now use this idea to obtain an analytic model of orbits near res-
onances. Our working will be a generalization of the discussion of orbital
trapping at Lindblad resonances in §3.3.3b. For definiteness we shall assume
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Figure 3.36 The same as Figure 3.35 except that the density distribution generating the
potential now has axis ratio q = 0.4.

Figure 3.37 The ratio of the fre-
quencies in first-order perturbation
theory for a star that moves in a
flattened isochrone potential.

that there are three actions and three angles. The resonance of H0 is char-
acterized by the equation N · Ω = 0, and (θ,J) are angle-action variables
for the unperturbed Hamiltonian. Then in the neighborhood of the resonant
orbit the linear combination of angle variables φs ≡ N · θ will evolve slowly,
and we start by transforming to a set of angle-action variables that includes
the slow angle φs. To do so, we introduce new action variables Is, If1, and
If2 through the generating function

S = (N · θ)Is + θ1If1 + θ2If2. (3.297)

Then (eq. D.93)

φs =
∂S

∂Is
= N · θ

φf1 = θ1

φf2 = θ2

J1 =
∂S

∂θ1
= N1Is + If1

J2 = N2Is + If2

J3 = N3Is.

(3.298)
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Since the old actions are functions only of the new ones, H0 does not acquire
any angle dependence when we make the canonical transformation, and the
Hamiltonian is of the form

H(φ, I) = H0(I) + β
∑

n

hn(I)ein·φ, (3.299)

where it is to be understood that H0 is a different function of I than it was
of J and similarly for the dependence on I of hn. We now argue that any
term in the sum that contains either of the fast angles φf1 and φf2 has a
negligible effect on the dynamics—these terms give rise to forces that rapidly
average to zero. We therefore drop all terms except those with indices that
are multiples of n = ±(1, 0, 0), including n = 0. Then our approximate
Hamiltonian reduces to

H(φ, I) = H0(I) + β
∑

k

hk(I) eikφs . (3.300)

Hamilton’s equations now read

İs = −iβ
∑

k

khk(I) eikφs ; φ̇s = Ωs + β
∑

k

∂hk
∂Is

eikφs

İf1 = 0 ; İf2 = 0,

(3.301)

where Ωs ≡ ∂H0/∂Is. So If1 and If2 are two constants of motion and we
have reduced our problem to one of motion in the (φs, Is) plane. Eliminating
I between equations (3.298) and (3.301) we find that although all the old
actions vary, two linear combinations of them are constant:

N2J1 −N1J2 = constant ; N3J2 −N2J3 = constant. (3.302)

We next take the time derivative of the equation of motion (3.301) for φs.
We note that Ωs, but not its derivative with respect to Is, is small because
it vanishes on the resonant torus. Dropping all terms smaller than O(β),

φ̈s '
∂Ωs

∂Is
İs = −iβ

∂Ωs

∂Is

∑

k

khkeikφs . (3.303)

If we define

V (φs) ≡ β
∂Ωs

∂Is

∑

k

hk(I) eikφs , (3.304)

where I is evaluated on the resonant torus, then we can rewrite (3.303) as

φ̈s = − dV

dφs
. (3.305)
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This is the equation of motion of an oscillator. If V were proportional to φ2
s ,

the oscillator would be harmonic. In general it is an anharmonic oscillator,
such as a pendulum, for which V ∝ cosφs. The oscillator’s energy invariant
is

Ep ≡ 1
2 φ̇

2
s + V (φs). (3.306)

V is a periodic function of φs, so it will have some maximum value Vmax,
and if Ep > Vmax, φs circulates because equation (3.306) does not permit φ̇s

to vanish. In this case the orbit is not resonantly trapped and the torus is
like the ones shown in Figure 3.36 from first-order perturbation theory. If
Ep < Vmax, the angle variable is confined to the range in which V ≤ Ep;
the orbit has been trapped by the resonance. On trapped orbits φs librates
with an amplitude that can be of order unity, and at a frequency of order√
β, while Is oscillates with an amplitude that cannot be bigger than order√
β. Such orbits generate the kind of torus that is delineated by the crescent

of numerical consequents in Figure 3.36. We obtain an explicit expression
for the resonantly induced change ∆Is by integrating the equation of motion
(3.301) for Is:

∆Is = −
(∂Ωs

∂Is

)−1
∫

dφs
∂V/∂φs

φ̇s

= ±
(∂Ωs

∂Is

)−1√
2[Ep − V (φs)] ,

(3.307)

where (3.306) has been used to eliminate φ̇s.
The full curve in Figure 3.38 shows the result of applying this model

of a resonantly trapped orbit to the data depicted in Figure 3.36. Since the
model successfully reproduces the gross form of the invariant curve on which
the consequents of the trapped orbit lie, we infer that the model has captured
the essential physics of resonant trapping. The discrepancies between the full
curve and the numerical consequents are attributable to the approximations
inherent in the model.

Levitation We now describe one example of an astronomical phenomena
that may be caused by resonant trapping of stellar orbits. Other examples
are discussed by Tremaine & Yu (2000). In our discussion we shall employ
Jr, Jϑ and Jφ to denote the actions of a mildly non-spherical potential that
are the natural extensions of the corresponding actions for spherical systems
that were introduced in §3.5.2.

The disk of the Milky Way seems to be a composite of two chemically
distinct disks, namely the thin disk, to which the Sun belongs, and a thicker,
more metal-poor disk (page 13). Sridhar & Touma (1996) have suggested
that resonant trapping of the orbits of disk stars may have converted the
Galaxy’s original thin disk into the thick disk. The theory of hierarchi-
cal galaxy formation described in Chapter 9 predicts that the Galaxy was
originally dominated by collisionless dark matter, which is not highly con-
centrated towards the plane. Consequently, the frequency Ωϑ at which a
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Figure 3.38 Perturbation theory applied to resonant trapping in the flattened isochrone
potential. The points are the consequents shown in Figure 3.36, while the full curves in
that figure are shown dotted here. The full curve shows the result of using (3.307) to
model the resonantly trapped orbit.

star oscillated perpendicular to the plane was originally smaller than the
frequency Ωr of radial oscillations—see equation (3.82). As more and more
baryonic material accumulated near the Galaxy’s equatorial plane, the ratio
Ωϑ/Ωr rose slowly from a value less than unity to its present value. For stars
such as the Sun that are on nearly circular orbits within the plane, Ωr and
Ωϑ are equal to the current epicycle and vertical frequencies κ and ν, respec-
tively, so now Ωϑ/Ωr ' 2 (page 167). It follows that the resonant condition
Ωr = Ωϑ has at some stage been satisfied for many stars that formed when
the inner Galaxy was dark-matter dominated.

Let us ask what happens to a star in the disk as the disk slowly grows
and Ωϑ/Ωr slowly increases. At any energy, the first stars to satisfy the
resonant condition Ωr = Ωϑ will have been those with the largest values of
Ωϑ, that is, stars that orbit close to the plane, and have Jϑ ' 0. In an
(R, pR) surface of section, such orbits lie near the zero-velocity curve that
bounds the figure (§3.2.2) because Jϑ increases as one moves in towards the
central fixed point on pR = 0. Hence, the resonant condition will first have
been satisfied on the zero-velocity curve, and it is here that the resonant
island seen in Figure 3.38 first emerged as the potential flattened. As mass
accumulated in the disk, the island moved inwards, and, depending on the
values of E and Lz, finally disappeared near the central fixed point.
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Figure 3.39 A surface of section for motion in ΦL (eq. 3.103) with q = 0.6.

When the advancing edge of a resonant island reaches the star’s phase-
space location, there are two possibilities: either (a) the star is trapped by the
resonance and its phase-space point subsequently moves within the island,
or (b) its phase-space point suddenly jumps to the other side of the island.
Which of (a) or (b) occurs in a particular case depends on the precise phase
of the star’s orbit at which the edge reaches it. In practice it is most useful to
discard phase information and to consider that either (a) or (b) occurs with
appropriate probabilities Pa and Pb = 1 − Pa. The value of Pa depends on
the speed with which the island is growing relative to the speed with which
its center is moving (Problem 3.43); it is zero if the island is shrinking.

We have seen that the resonant island associated with Ωr = Ωϑ first
emerged on the zero-velocity curve, which in a thin disk is highly populated
by stars. Most of these stars were trapped as the island grew. They then
moved with the island as the latter moved in towards the central fixed point.
The stars were finally released as the island shrank somewhere near that
point. The net effect of the island’s transitory existence is to convert radial
action to latitudinal action, thereby shifting stars from eccentric, planar
orbits to rather circular but highly inclined ones. Hence, a hot thin disk
could have been transformed into a thick disk.
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Figure 3.40 The appearance in real
space of a banana orbit (top) and
a fish orbit (bottom). In the upper
panel the cross marks the center of
the potential. Resonant box orbits
of these types are responsible for
the chains of islands in Figure 3.39.
The banana orbits generate the outer
chain of four islands, and the fish
orbits the chain of six islands further
in.

3.7.3 From order to chaos

Figure 3.39 is a surface of section for motion in the planar barred potential
ΦL that is defined by equation (3.103) with q = 0.6 and Rc = 0.14. It
should be compared with Figures 3.9 and 3.12, which are surfaces of section
for motion in ΦL for more nearly spherical cases, with q = 0.9 and 0.8. In
Figure 3.39 one sees not only the invariant curves of loop and box orbits that
fill the other two figures, but also a number of “islands”: a set of four large
islands occupies much of the outer region, while a set of six islands of varying
sizes is seen further in. In the light of our discussion of resonant trapping,
it is natural to refer to the orbits that generate these islands as resonantly
trapped box orbits. Figure 3.40 shows what these orbits look like in real
space. We see that the outer islands are generated by “banana” orbits in
which the x- and y-oscillations are trapped in a Ωx:Ωy = 1:2 resonance (the
star oscillates through one cycle left to right while oscillating through two
cycles up and down). Similarly, the inner chain of six islands is associated
with a “fish” orbit that satisfies the resonance condition Ωx:Ωy = 2:3.

The islands in Figure 3.39 can be thought of as orbits in some underlying
integrable Hamiltonian H0 that are trapped by a resonance arising from a
perturbation. This concept lacks precision because we do not know what H0

actually is. In particular, Hamiltonians of the form Hq(x,v) = 1
2v

2 + ΦL(x)
are probably not integrable for any value of the axis ratio q other than
unity. Therefore, we cannot simply assume that H0 = H0.8, say. On the
other hand, Figure 3.12, which shows the surface of section for q = 0.8,
contains no resonant islands—all orbits are either boxes or loops—which we
know from our study of Stäckel potentials in §3.5.4 is compatible with an
integrable potential. So we can define an integrable Hamiltonian H0 that
differs very little from H0.8 as follows. On each of the invariant tori that
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appears in Figure 3.12 we set H0 = H0.8, and at a general phase-space point
we obtain the value of H0 by a suitable interpolation scheme from nearby
points at which H0 = H0.8.

The procedure we have just described for defining H0 (and thus the per-
turbation h = H−H0) suffers from the defect that it is arbitrary: why start
from the invariant tori of H0.8 rather than H0.81 or some other Hamiltonian?
A numerical procedure that might be considered less arbitrary has been de-
scribed by Kaasalainen & Binney (1994). In any event, it is worth bearing in
mind in the discussion that follows that H0 and h are not uniquely defined,
and one really ought to demonstrate that for a given H the islands that are
predicted by perturbation theory are reasonably independent of H0. As far
as we know, no such demonstration is available.

If we accept that the island chains in Figure 3.39 arise from box or-
bits that are resonantly trapped by some perturbation h on a Stäckel-like
Hamiltonian H0, two questions arise. First, “are box orbits trapped around
resonances other than the 1:2 and 2:3 resonances that generate the banana
and fish orbits of Figure 3.40?” Certainly infinitely many resonances are
available to trap orbits because as one moves along the sequence of box
orbits from thin ones to fat ones, the period of the y-oscillations is steadily
growing in parallel with their amplitude, while the period of the x-oscillations
is diminishing for the same reason.27 In fact, the transition to loop orbits
can be associated with resonant trapping by the 1:1 resonance, so between
the banana orbits and the loop orbits there is not only the 2:3 resonance that
generates the fishes, but also the 4:5, 5:6, . . . , resonances. In the potential
ΦL on which our example is based, the width of the region in phase space
in which orbits are trapped by the m:n resonance diminishes rapidly with
|m + n| and the higher-order resonances are hard to trace in the surface of
section—but the 4:5 resonance can be seen in Figure 3.39.

The second question is “do resonances occur within resonant islands?”
Consider the case of the banana orbits shown in Figure 3.40 as an example.
Motion along this orbit is quasiperiodic with two independent frequencies.
One independent frequency Ωb is associated with motion along the bow-
shaped closed orbit that runs through the heart of the banana, while the
other is the frequency of libration Ωl about this closed orbit. The libration
frequency decreases as one proceeds along the sequence of banana orbits from
thin ones to fat ones, so infinitely many resonant conditions Ωb:Ωl = m:n
will be satisfied within an island of banana orbits. In the case of ΦL there
is no evidence that any of these resonances traps orbits, but in another case
we might expect trapping to occur also within families of resonantly trapped
orbits.

This discussion is rather disquieting because it implies that the degree to
which resonant trapping causes the regular structure of phase space inherited
from the underlying integral potential H0 to break up into islands depends

27 The period of a nonlinear oscillator almost always increases with amplitude.
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Figure 3.41 Surface of section for motion in the potential ΦN of equation (3.309) with
Re = 3. The inner region has been blanked out and is shown in expanded form in
Figure 3.42.

on the detailed structure of the perturbation h. Since we have no unique way
of defining h we cannot compute its Fourier coefficients and cannot predict
how important islands will be.

We illustrate this point by examining motion in a potential that is closely
related to ΦL in which resonant trapping is much more important (Binney
1982). In polar coordinates equation (3.103) for ΦL reads

ΦL(R, φ) = 1
2v

2
0 ln

[
R2

c + 1
2R

2(q−2 + 1) − 1
2R

2(q−2 − 1) cos 2φ
]
. (3.308)

The potential

ΦN(R, φ) = 1
2v

2
0 ln

[
R2

c + 1
2R

2(q−2 + 1)−1
2R

2(q−2 − 1) cos 2φ

− R3

Re
cos 2φ

]
,

(3.309)

where Re is a constant, differs from ΦL only by the addition of (R3/Re) cos 2φ
to the logarithm’s argument. For R � Re this term is unimportant, but as
R grows it makes the isopotential curves more elongated. Let us set Re = 3,
Rc = 0.14, and q = 0.9, and study the surface of section generated by orbits
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Figure 3.42 The inner part of the surface of section shown in Figure 3.41—the chain of
eight islands around the edge is the innermost chain in Figure 3.41. In the gap between
this chain and the bull’s-eyes are the consequents of two irregular orbits.

in ΦN that is most nearly equivalent to the surface of section for ΦL with
the same values of Rc and q that is shown in Figure 3.9. Figure 3.41 shows
the outer part of this surface of section. Unlike Figure 3.9 it shows several
chains of islands generated by resonantly trapped box orbits. The individual
islands are smaller than those in Figure 3.39, and the regions of untrapped
orbits between chains of islands are very thin. Figure 3.42 shows the inner
part of the same surface of section. In the gap between the region of regular
box orbits that is shown in Figure 3.41 and the two bull’s-eyes associated
with loop orbits, there is an irregular fuzz of consequents. These consequents
belong to just two orbits but they do not lie on smooth curves; they appear to
be randomly scattered over a two-dimensional region. Since the gap within
which these consequents fall lies just on the boundary of the loop-dominated
region, we know that it contains infinitely many resonant box orbits. Hence,
it is natural to conclude that the breakdown of orbital regularity, which the
random scattering of consequents betrays, is somehow caused by more than
one resonance simultaneously trying to trap an individual orbit. One says
that the orbits have been made irregular by resonance overlap.

(a) Irregular orbits We now consider in more detail orbits whose con-
sequents in a surface of section do not lie on a smooth curve, but appear
to be irregularly sprinkled through a two-dimensional region. If we take the
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Figure 3.43 Two orbits from the surface of section of Figure 3.42. The left orbit is not
quasiperiodic, while the right one is.

Figure 3.44 Trapped and circulating orbits in a phase plane. The homoclinic orbit,
shown by the heavy curve, divides the trapped orbits, which form a chain of islands, from
the circulating orbits, whose consequents lie on the wavy lines at top and bottom.

Fourier transform of the time dependence of some coordinate, for example
x(t), along such an orbit, we will find that the orbit is not quasiperiodic; the
Fourier transform X(ω) (eq. B.69) has contributions from frequencies that
are not integer linear combinations of two or three fundamental frequen-
cies. Figure 3.43 shows the appearance in real space of an orbit that is not
quasiperiodic (left) and one that is (right). The lack of quasiperiodicity gives
the orbit a scruffy, irregular appearance, so orbits that are not quasiperiodic
are called chaotic or irregular orbits.

There are generally some irregular orbits at the edge of a family of
resonantly trapped orbits. Figure 3.44 is a sketch of a surface of section
through such a region of phase-space when all orbits are quasiperiodic. The
islands formed by the trapped orbits touch at their pointed ends and there are
invariant curves of orbits that circulate rather than librate coming right up to
these points. The points at which the islands touch are called hyperbolic
fixed points and the invariant curves that pass through these points are
generated by homoclinic orbits. In the presence of irregular orbits, the
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islands of trapped orbits do not quite touch and the invariant curves of
the circulating orbits do not reach right into the hyperbolic fixed point.
Consequently there is space between the resonant islands and the region of
the circulating orbits. Irregular orbits fill this space.

A typical irregular orbit alternates periods when it is resonantly trapped
with periods of circulation. Consequently, if one Fourier transforms x(t) over
an appropriate time interval, the orbit may appear quasiperiodic, but the
fundamental frequencies that would be obtained from the transform by the
method of Box 3.6 would depend on the time interval chosen for Fourier
transformation.

If the islands in a chain are individually small, it can be very hard
to decide whether an orbit is librating or circulating, or doing both on an
irregular pattern.

When it is available, a surface of section is the most effective way of
diagnosing the presence of resonantly trapped and irregular orbits. Unfor-
tunately, surfaces of section can be used to study three-dimensional orbits
only when an analytic integral other than the Hamiltonian is known, as in
the case of orbits in an axisymmetric potential (§3.2). Two other methods
are available to detect irregular orbits when a surface of section cannot be
used.

(b) Frequency analysis By numerically integrating the equations of
motion from some initial conditions, we obtain time series x(t), y(t), etc.,
for each of the phase-space coordinates. If the orbit is regular, these time
series are equivalent to those obtained by substituting θ = θ0 + Ωt in the
Fourier expansions (3.191) of the coordinates. Hence, the frequencies Ωi

may be obtained by Fourier transforming the time series and identifying the
various linear combinations n·Ω of the fundamental frequencies that occur in
the Fourier transform (Box 3.6; Binney & Spergel 1982). If a single system
of angle-action variables covers the entire phase space (as in the case of
Stäckel potentials), the actions Ji of the orbit that one obtains from a given
initial condition w are continuous functions J(w) of w, so the frequencies
Ωi = ∂H/∂Ji are also continuous functions of w. Consequently, if we choose
initial conditions wα at the nodes of some regular two-dimensional grid in
phase space, the frequencies will vary smoothly from point to point on the
grid. If, by contrast, resonant trapping is important, the actions of orbits will
sometimes change discontinuously between adjacent grid points, because one
orbit will be trapped, while the next is not. Discontinuities in J give rise to
discontinuities in Ω. Moreover, the resonance that is entrapping orbits will
be apparent from the ratios ra ≡ Ω2/Ω1 and rb ≡ Ω3/Ω1. Hence a valuable
way of probing the structure of phase space is to plot a dot at (ra, rb) for
each orbit obtained by integrating from a regular grid of initial conditions
wα (Laskar 1990; Dumas & Laskar 1993).

Figure 3.45 shows an example of such a plot of frequency ratios. The
orbits plotted were integrated in the potential

Φ(x) = 1
2 ln[x2 + (y/0.9)2 + (z/0.7)2 + 0.1]. (3.310)
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Box 3.6: Numerical determination
of orbital frequencies

The determination of orbital frequencies Ωi from a numerically integrated
orbit is not entirely straightforward because (i) the orbit is integrated
for only a finite time interval (0, T ), and (ii) the function x(t) is sampled
only at discrete times t0 = 0, . . . , tK−1 = T , which we shall assume to be
equally spaced. Let ∆ = ti+1−ti. Then a “line”Xeiωt in x(t) contributes
to the discrete Fourier transform (Appendix G) an amount

x̂p = X

K−1∑

k=0

eik∆(ω−ωp)

= Xeiαu sinπu

sin(πu/K)
,

where





ωp ≡
2πp

K∆
,

u ≡ K∆(ω − ωp)/(2π),

α ≡ π(K − 1)/K.

(1)

|x̂p| is large whenever the sine in the denominator vanishes, which occurs
when ωp ' ω + 2πm/∆, where m is any integer. Thus peaks can arise
at frequencies far from ω; a peak in |x̂p| that is due to a spectral line
far removed from ω is called an alias of the line. Near to a peak we
can make the approximation sin(πu/K) ' πu/K, so |x̂p| declines with
distance u from the peak only as u−1.

Orbital frequencies can be estimated by fitting equation (1) to the
data and thus determining ω. The main difficulty with this procedure
is confusion between spectral lines—this confusion can arise either be-
cause two lines are nearby, or because a line has a nearby alias. One
way to reduce this confusion is to ensure a steeper falloff than u−1 by
multiplying the original time sequence by a “window” function w(t) that
goes smoothly to zero at the beginning and end of the integration period
(Press et al. 1986; Laskar 1990). Alternatively, one can identify peaks in
the second difference of the spectrum, defined by x̂′′p = x̂p+1 +x̂p−1−2x̂p.
One can show that for u/K � 1 the contribution to x̂′′p of a line is

x̂′′p =
2XK

π

eiαu sinπu

u(u2 − 1)
, (2)

which falls off as u−3. The frequency, etc., of the line can be estimated
from the ratio of the x̂′′p on either side of the line’s frequency.

Ωi was defined to be the non-zero frequency with the largest amplitude in the
spectrum of the ith coordinate, and 10 000 orbits were obtained by dropping
particles from a grid of points on the surface Φ(x) = 0.5. Above and to
the right of the center of the figure, the points are organized into regular
ranks that reproduce the grid of initial conditions in slightly distorted form.
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Figure 3.45 The ratios of orbital frequencies for orbits integrated in a three-dimensional
non-rotating bar potential.

We infer that resonant trapping is unimportant in the phase-space region
sampled by these initial conditions. Running through the ranks we see several
depopulated lines, while both within the ranks and beyond other lines are
conspicuously heavily populated: orbits that have been resonantly trapped
produce points that lie along these lines. The integers ni in the relevant
resonant condition n ·Ω = 0 are indicated for some of the lines.

In some parts of Figure 3.45, for example the lower left region, the grid of
initial conditions has become essentially untraceable. The disappearance of
the grid indicates that irregular motion is important. In fact, the frequencies
Ωi are not well defined for an irregular orbit, because its time series, x(t),
y(t), etc., are not quasiperiodic. When software designed to extract the
frequencies of regular orbits is used on a time series that is not quasiperiodic,
the frequencies returned vary erratically from one initial condition to the next
and the resulting points in the plane of frequency ratios scatter irregularly.

(c) Liapunov exponents If we integrate Hamilton’s equations for some
time t, we obtain a mapping Ht of phase space onto itself. Let Ht map the
phase space point w0 into the point wt. Points near w0 will be mapped
to points that lie near wt, and if we confine our attention to a sufficiently
small region around w0, we may approximate Ht by a linear map of the
neighborhood of w0 into a neighborhood of wt. We now determine this map.
Let w′

0 be a point near w0, and δw(t) = Htw
′
0 − Htw0 be the difference
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between the phase-space coordinates of the points reached by integrating
Hamilton’s equations for time t from the initial conditions w′

0 and w0. Then
the equations of motion of the components of δw are

˙δx =
(∂H
∂v

)
w′

t

−
(∂H
∂v

)
wt

'
( ∂2H

∂w∂v

)
wt

· δw

˙δv = −
(∂H
∂x

)
w′

t

+
(∂H
∂x

)
wt

' −
( ∂2H

∂w∂x

)
wt

· δw,
(3.311)

where the approximate equality in each line involves approximating the first
derivatives of H by the leading terms in their Taylor series expansions. Equa-
tions (3.311) are of the form

dδw

dt
= Mt · δw where Mt ≡




∂2H

∂x∂v

∂2H

∂v∂v

− ∂2H

∂x∂x
− ∂2H

∂v∂x


 . (3.312)

For any initial vector δw0 these equations are solved by δwt = Ut · δw0,
where Ut is the matrix that solves

dUt

dt
= Mt · Ut. (3.313)

We integrate this set of ordinary coupled linear differential equations from
U0 = I in parallel with Hamilton’s equations of motion for the orbit. Then
we are in possession of the matrix Ut that describes the desired linear map
of a neighborhood of w0 into a neighborhood of wt. We perform a “singular-
value decomposition” of Ut (Press et al. 1986), that is we write it as a product
Ut = R2 · S · R1 of two orthogonal matrices Ri and a diagonal matrix S.28

Ut conserves phase-space volume (page 803), so it never maps any vector
to zero and the diagonal elements of S are all non-zero. In fact they are all
positive because Ut evolves continuously from the identity, and their product
is unity. A useful measure of the amount by which Ut shears phase space is
the magnitude s of the largest element of S. The Liapunov exponent of
the orbit along which (3.313) has been integrated is defined to be

λ = lim
t→∞

ln s

t
. (3.314)

28 Any linear transformation of an N-dimensional vector space can be decomposed into
a rotation, a rescaling in N perpendicular directions, and another rotation. R1 rotates
axes to the frame in which the coordinate directions coincide with the scaling directions.
S effects the rescaling. R2 first rotates the coordinate directions back to their old values
and then effects whatever overall rotation is required.
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Since the scaling s is dimensionless, the Liapunov exponent λ has dimensions
of a frequency. In practice one avoids integrating (3.313) for long times
because numerical difficulties would be encountered once the ratio of the
largest and smallest numbers on the diagonal of S became large. Instead one
integrates along the orbit for some time t1 to obtain a value s1, and then
sets Ut back to the identity and continues integrating for a further time t2 to
obtain s2, after which Ut is again set to the identity before the integration
is continued. After N such steps one estimates λ from

λ '
∑N

i ln si∑N
i ti

. (3.315)

Using this procedure one finds that along a regular orbit λ → 0, while along
an irregular orbit λ is non-zero.

Angle-action variables enable us to understand why λ is zero for a regular
orbit. A point near w0 will have angles and actions that differ from those
of w0 by small amounts δθi, δJi. The action differences are invariant as we
move along the orbit, while the angle differences increase linearly in time due
to differences in the frequencies Ωi of the orbits on which our initial point
and w0 lie. Consequently, the scalings si associated with angle differences
increase linearly in time, and, by (3.314), the Liapunov exponent is λ =
limt→∞ t−1 ln t = 0.

If the Liapunov exponent of an orbit is non-zero, the largest scaling fac-
tor s must increase exponentially in time. Thus in this case initially neigh-
boring orbits diverge exponentially in time. It should be noted, however,
that this exponential divergence holds only so long as the orbits remain close
in phase space: the definition of the Liapunov exponent is in terms of the
linearized equations for orbital perturbations. The approximations involved
in deriving these equations will soon be violated if the solutions to the equa-
tions are exponentially growing. Hence, we cannot conclude from the fact
that an orbit’s Liapunov exponent is non-zero that an initially neighboring
orbit will necessarily stray far from the original orbit.

3.8 Orbits in elliptical galaxies

Elliptical galaxies nearly always have cusps in their central density profiles
in which ρ ∼ r−α with 0.3 ∼< α ∼< 2 (BM §4.3.1). Black holes with masses
∼ 0.2% of the mass of the visible galaxy are believed to reside at the centers
of these cusps (§1.1.6 and BM §11.2.2). Further out the mass distributions
of many elliptical galaxies are thought to be triaxial (BM §4.3.3). These
features make the orbital dynamics of elliptical dynamics especially rich,
and illustrate aspects of galaxy dynamics that we have already discussed in
this chapter (Merritt & Fridman 1996; Merritt & Valluri 1999).
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3.8.1 The perfect ellipsoid

A useful basic model of the orbital dynamics of a triaxial elliptical galaxy is
provided by extensions to three dimensions of the two-dimensional Stäckel
potentials of §3.5.4 (de Zeeuw 1985). The simplest three-dimensional system
that generates a Stäckel potential through Poisson’s equation is the perfect
ellipsoid, in which the density is given by

ρ(x) =
ρ0

(1 +m2)2
where m2 ≡ x2 + (y/q1)2 + (z/q2)2

a2
0

. (3.316)

In this formula q1 and q2 are the axis ratios of the ellipsoidal surfaces of
constant density, and a0 is a scale length. At radii significantly smaller than
a0, the density is approximately constant, while at r � a0 the density falls
off ∝ r−4. Since these asymptotic forms differ from those characteristic of
elliptical galaxies, we have to expect the orbital structures of real galaxies to
differ in detail from that of the perfect ellipsoid, but nevertheless the model
exhibits much of the orbital structure seen in real elliptical galaxies.

By an analysis similar to that used in §3.5.4 to explore the potential of
a planar bar, one can show that the perfect ellipsoid supports four types of
orbit. Figure 3.46 depicts an orbit of each type. At top left we have a box
orbit. The key feature of a box orbit is that it touches the isopotential surface
for its energy at its eight corners. Consequently, the star comes to rest for
an instant at these points; a box orbit is conveniently generated numerically
by releasing a star from rest on the equipotential surface. The potential’s
longest axis emerges from the orbit’s convex face. The other three orbits are
all tube orbits: stars on these orbits circulate in a fixed sense around the
hole through the orbit’s center, and are never at rest. The most important
tube orbits are the short-axis loops shown at top right, which circulate around
the potential’s shortest axis. These orbits are mildly distorted versions of the
orbits that dominate the phase space of a flattened axisymmetric potential.
The tube orbits at the bottom of Figure 3.46 are called outer (left) and inner
long-axis tube orbits, and circulate around the longest axis of the potential.
Tube orbits around the intermediate axis are unstable. All these orbits can
be quantified by a single system of angle-action coordinates (Jλ, Jµ, Jν) that
are generalizations of the angle-action coordinates for spherical potentials
(Jr, Jϑ, Jφ) of Table 3.1 (de Zeeuw 1985).

3.8.2 Dynamical effects of cusps

The most important differences between a real galactic potential and the
best-fitting Stäckel potential are at small radii. Box orbits, which alone pen-
etrate to arbitrarily small radii, are be most affected by these differences. The
box orbits of a given energy form a two-parameter family: the parameters
can be taken to be an orbit’s axis ratios. Resonant relations n · Ω = 0 be-
tween the fundamental frequencies of an orbit are satisfied at various points
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Figure 3.46 Orbits in a non-rotating triaxial potential. Clockwise from top left: (a) box
orbit; (b) short-axis tube orbit; (c) inner long-axis tube orbit; (d) outer long-axis tube
orbit. From Statler (1987), by permission of the AAS.

in parameter space, but in a Stäckel potential none of these resonances traps
other orbits. We expect perturbations to cause some resonances to become
trapping. Hence it is no surprise to find that in potentials generated by
slightly cusped mass distributions, significant numbers of orbits are trapped
by resonances. (In Figure 3.45 we have already encountered extensive reso-
nant trapping of box orbits in a triaxial potential that differs from a Stäckel
potential.)
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A regular orbit on which the three angle variables satisfy the condition
n · Ω = 0 is a two-dimensional object since its three actions are fixed, and
one of its angles is determined by the other two. Consequently, the orbit
occupies a surface in real space. A generic resonantly trapped orbit is a three-
dimensional structure because it has a finite libration amplitude around the
resonant orbit. In practice the amplitude of the libration is usually small,
with the result that the orbit forms a sheet of small but finite thickness
around the resonant orbit. It is found that stable resonant box orbits are
centrophobic, that is, they avoid the galactic center (Merritt & Valluri
1999).

Steepening the cusp in the galaxy’s central density profile enhances the
difference between the galactic potential and the best-fitting Stäckel model
and thus the importance of resonances. More and more resonances overlap
(§3.7.3) and the fraction of irregular orbits increases.

The existence of large numbers of irregular orbits in elliptical galaxies
is likely to have important but imperfectly understood astronomical impli-
cations because irregular orbits display a kind of creep or diffusion. To un-
derstand this phenomenon, imagine that there is a clean distinction between
regular and irregular regions of 2N -dimensional phase space. The regular
region is occupied by regular orbits and is strictly off-limits to any irregu-
lar orbit, while the irregular region is off-limits to regular orbits. However,
while each regular orbit is strictly confined to its N -dimensional torus and
never trespasses on the territory of a different regular orbit, over time an
irregular orbit explores at least some of the irregular region of phase space.
In fact, the principal barrier to an irregular orbit’s ability to wander is walls
formed by regular orbits. In the case N = 2 of two-dimensional motion, the
energetically accessible part of phase space is three-dimensional, while the
walls formed by regular orbits are two-dimensional. Hence such a wall can
completely bound some portion of irregular phase space, and forever exclude
an irregular orbit from part of irregular phase space. In the case N = 3
that is relevant for elliptical galaxies, the energetically accessible region of
phase space is five-dimensional while the wall formed by a regular orbit is
three-dimensional. Since the boundary of a five-dimensional volume is a four-
dimensional region, it is clear that no regular orbit can divide the irregular
region of phase space into two. Hence, it is believed that given enough time
an irregular orbit with N ≥ 3 degrees of freedom will eventually visit every
part of the irregular region of phase space.

The process by which irregular orbits wander through phase space is
called Arnold diffusion and is inadequately understood. Physically, it
probably involves repeated trapping by a multitude of high-order resonances.
In elliptical galaxies and the bars of barred disk galaxies, the rate of Arnold
diffusion may be comparable to the Hubble time and could be a major factor
in determining the rate of galactic evolution.

If the timescale associated with Arnold diffusion were short enough,
galaxy models would need to include only one irregular orbit. The phase-



266 Chapter 3: The Orbits of Stars

space density firr contributed by this orbit would be the same at all points on
the energy hypersurface H(x,v) = E except in the regular region of phase
space, where firr would vanish.29 It is not yet clear how galaxy modeling
is best done when the timescale for Arnold diffusion is comparable to the
Hubble time.

3.8.3 Dynamical effects of black holes

Introducing even a small black hole at the center of a triaxial galaxy that
has a largely regular phase space destroys much of that regularity. There is
a simple physical explanation of this phenomenon (Gerhard & Binney 1985;
Merritt & Quinlan 1998).

Consider a star on the box orbit shown at top left in Figure 3.46. Each
crossing time the star passes through the orbit’s waist on an approximately
rectilinear trajectory, and is deflected through some angle θdefl by the black
hole’s gravitational field. If M is the mass of the hole, and v and b are,
respectively, the speed and the distance from the galactic center at which
the star would have passed the waist had the hole not deflected it, then from
equation (3.52) we have that

θdefl = 2 tan−1

(
GM

bv2

)
. (3.317)

The speed v will be similar for all passages, but the impact parameter b will
span a wide range of values over a series of passages. For any value of M ,
no matter how small, there is a chance that b will be small enough for the
star to be scattered onto a significantly different box orbit.

The tensor virial theorem (§4.8.3) requires that the velocity dispersion
be larger parallel to the longest axis of a triaxial system than in the per-
pendicular directions. Repeated scattering of stars by a nuclear black hole
will tend to make the velocity dispersion isotropic, and thus undermine the
orbital support for the triaxiality of the potential. If the potential loses its
triaxiality, angular momentum will become a conserved quantity, and every
star will have a non-zero pericentric distance. Hence stars will no longer be
exposed to the risk of coming arbitrarily close to the black hole, and stars
will disappear from the black hole’s menu.

Let us assume that the distribution of a star’s crossing points is uniform
within the waist and calculate the expectation value of the smallest value
taken by r in N passages. Let the area of the waist be πR2. Then the
probability of there being n crossing points in a circle of radius r is given by
the Poisson distribution (Appendix B.8) as

P (n|r) =
(Nr2/R2)n

n!
e−Nr

2/R2

. (3.318)

29 See Häfner et al. (2000) for a method of exploiting the uniformity of firr in galaxy
modeling.
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The probability that the closest passage lies in (r, r + dr) is the probability
that there are zero passages inside r and a non-zero number of passages in
the surrounding annulus, has area 2πrdr. Thus this probability is

dP =
(
1 − e−2Nrdr/R2)

e−Nr
2/R2 ' 2Nrdr

R2
e−Nr

2/R2

. (3.319)

The required expectation value of r1 is now easily calculated:

〈r1〉 =

∫
dr

2Nr2

R2
e−Nr

2/R2

=

√
π

N

R

2
. (3.320)

From equation (3.317) the deflection that corresponds to 〈r1〉 is

θdefl,max = 2 tan−1

(
2
√
NGM√
πv2R

)
. (3.321)

Two empirical correlations between galactic parameters enable us to
estimate θdefl,max for a star that reaches maximum radius Rmax in an el-
liptical galaxy with measured line-of-sight velocity dispersion σ‖. First we
take the black hole’s mass M from the empirical relation (1.27). In the
galaxy’s lifetime τ we have N ' σ‖τ/2Rmax, and we relate Rmax to Dn, the
diameter within which the mean surface brightness of an elliptical galaxy is
20.75 mag arcsec−2 in the B band: Dn is correlated with σ‖ such that (BM
eq. 4.43)

Dn = 5.2
( σ‖

200 km s−1

)1.33

kpc. (3.322)

With these relations, (3.321) becomes

θdefl,max ' 2 tan−1

[
0.08

D
3/2
n

R
3/2
max

Rmax

R

σ2
‖
v2

( σ‖
200 km s−1

)0.5( τ

10 Gyr

)1/2
]
.

(3.323)
For the moderately luminous elliptical galaxies that are of interest here, Dn

is comparable to, or slightly larger than, the effective radius (Dressler et
al. 1987), and thus similar to the half-mass radius rh = 1.3Re for the R1/4

profile. Thus for the majority of stars Dn/Rmax ' 1. From Figure 3.46
we estimate Rmax/R ' 10. To estimate the ratio σ‖/v we deduce from
equations (2.66) and (2.67) that for a Hernquist model with scale radius a
the potential drop ∆Φ = Φ(a) − Φ(0) between rh = 2.41a and the center is
0.71GMgal/a, so v2 = 2∆Φ = 1.4GMgal/a. From Figure 4.4 we see that σ‖ '
0.2
√
GMgal/a, so (σ‖/v)2 ' 35. Inserting these values into equation (3.323)

we find θdefl,max ' 2.6◦. Scattering by such a small angle will probably not
undermine a galaxy’s triaxiality, but stars with smaller apocenter distances
Rmax will be deflected through significant angles, so it is likely that the black
hole will erode triaxiality in the galaxy’s inner parts (Norman, May, & van
Albada 1985; Merritt & Quinlan 1998).
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Problems

3.1 [1] Show that the radial velocity along a Kepler orbit is

ṙ =
GMe

L
sin(ψ − ψ0), (3.324)

where L is the angular momentum. By considering this expression in the limit r → ∞
show that the eccentricity e of an unbound Kepler orbit is related to its speed at infinity
by

e2 = 1 +

„
Lv∞
GM

«2

. (3.325)

3.2 [1] Show that for a Kepler orbit the eccentric anomaly η and the true anomaly ψ−ψ0

are related by

cos(ψ − ψ0) =
cos η − e

1 − e cos η
; sin(ψ − ψ0) =

p
1 − e2

sin η

1 − e cos η
. (3.326)

3.3 [1] Show that the energy of a circular orbit in the isochrone potential (2.47) is E =
−GM/(2a), where a =

√
b2 + r2. Let the angular momentum of this orbit be Lc(E).

Show that

Lc =
√
GMb

“
x−1/2 − x1/2

”
, where x ≡ − 2Eb

GM
. (3.327)

3.4 [1] Prove that if a homogeneous sphere of a pressureless fluid with density ρ is released

from rest, it will collapse to a point in time tff = 1
4

p
3π/(2Gρ). The time tff is called the

free-fall time of a system of density ρ.

3.5 [3] Generalize the timing argument in Box 3.1 to a universe with non-zero vacuum-
energy density. Evaluate the required mass of the Local Group for a universe of age
t0 = 13.7 Gyr with (a) ΩΛ0 = 0; (b) ΩΛ0 = 0.76, h7 = 1.05. Hints: the energy density
in radiation can be neglected. The solution requires evaluation of an integral similar to
(1.62).

3.6 [1] A star orbiting in a spherical potential suffers an arbitrary instantaneous velocity
change while it is at pericenter. Show that the pericenter distance of the ensuing orbit
cannot be larger than the initial pericenter distance.

3.7 [2] In a spherically symmetric system, the apocenter and pericenter distances are given
by the roots of equation (3.14). Show that if E < 0 and the potential Φ(r) is generated
by a non-negative density distribution, this equation has either no root, a repeated root,
or two roots (Contopoulos 1954). Thus there is at most one apocenter and pericenter for
a given energy and angular momentum. Hint: take the second derivative of E − Φ with
respect to u = 1/r and use Poisson’s equation.

3.8 [1] Prove that circular orbits in a given potential are unstable if the angular momentum
per unit mass on a circular orbit decreases outward. Hint: evaluate the epicycle frequency.

3.9 [2] Compute the time-averaged moments of the radius, 〈rn〉, in a Kepler orbit of
semi-major axis a and eccentricity e, for n = 1, 2 and n = −1,−2,−3.

3.10 [2] ∆ψ denotes the increment in azimuthal angle during one complete radial cycle
of an orbit.

(a) Show that in the potential (3.57)

∆ψ =
2πLp

−2Erarp
, (3.328)

where ra and rp are the apo- and pericentric radii of an orbit of energy E and angular

momentum L. Hint: by contour integration one can show that for A > 1,
R π/2
−π/2 dθ/(A+

sin θ) = π/
√
A2 − 1.
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(b) Prove in the epicycle approximation that along orbits in a potential with circular
frequency Ω(R),

∆ψ = 2π

„
4 +

d lnΩ2

d lnR

«−1/2

. (3.329)

(c) Show that the exact expression (3.328) reduces for orbits of small eccentricity to (3.329).

3.11 [1] For what spherically symmetric potential is a possible trajectory r = aebψ?

3.12 [2] Prove that the mean-square velocity is on a bound orbit in a spherical potential
Φ(r) is

〈v2〉 =

fi
r
dΦ

dr

fl
, (3.330)

where 〈·〉 denotes a time average.

3.13 [2] Let r(s) be a plane curve depending on the parameter s. Then the curvature is

K =
|r′ × r′′|
|r′|3

, (3.331)

where r′ ≡ dr/ds. The local radius of curvature is K−1. Prove that the curvature of an
orbit with energy E and angular momentum L in the spherical potential Φ(r) is

K =
L dΦ/dr

23/2r[E − Φ(r)]3/2
. (3.332)

Hence prove that no orbit in any spherical mass distribution can have an inflection point
(in contrast to the cover illustration of Goldstein, Safko, & Poole 2002).

3.14 [1] Show that in a spherical potential the vertical and circular frequencies ν and Ω
(eqs. 3.79) are equal.

3.15 [1] Prove that at any point in an axisymmetric system at which the local density
is negligible, the epicycle, vertical, and circular frequencies κ, ν, and Ω (eqs. 3.79) are
related by κ2 + ν2 = 2Ω2.

3.16 [1] Using the epicycle approximation, prove that the azimuthal angle ∆ψ between
successive pericenters lies in the range π ≤ ∆ψ ≤ 2π in the gravitational field arising from
any spherical mass distribution in which the density decreases outwards.

3.17 [3] The goal of this problem is to prove the results of Problem 3.16 without using
the epicycle approximation (Contopoulos 1954).

(a) Using the notation of §3.1, show that

E − Φ − L2

2r2
= (u1 − u)(u − u2)

˘
1
2
L2 + Φ[u, u1, u2]

¯
, (3.333)

where u1 = 1/r1 and u2 = 1/r2 are the reciprocals of the pericenter and apocenter
distances of the orbit respectively, u = 1/r, and

Φ[u, u1, u2] =
1

u1 − u2

»
Φ(u1) − Φ(u)

u1 − u
− Φ(u) − Φ(u2)

u− u2

–
. (3.334)

This expression is a second-order divided difference of the potential Φ regarded as a func-
tion of u, and a variant of the mean-value theorem of calculus shows that Φ[u, u1, u2] =
1
2
Φ′′(ū) where ū is some value of u in the interval (u1, u2). Then use the hint in Prob-

lem 3.7 and equation (3.18b) to deduce that ∆ψ ≤ 2π when the potential Φ is generated
by a non-negative, spherically symmetric density distribution.
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(b) A lower bound on ∆ψ can be obtained from working in a similar manner with the
function

χ(ω) =
2ωΦ

L
, where ω ≡ L

r2
. (3.335)

Show that
2ωE

L
− χ(ω) − ω2 = (ω1 − ω)(ω − ω2) {1 + χ[ω,ω1, ω2]} , (3.336)

where ω1 = L/r21 , ω2 = L/r22 and χ[ω,ω1, ω2] is a second-order divided difference of χ(ω).
Now deduce that ∆ψ ≥ π for any potential in which the circular frequency Ω(r) decreases
outwards.

3.18 [1] Let Φ(R, z) be the Galactic potential. At the solar location, (R, z) = (R0, 0),
prove that

∂2Φ

∂z2
= 4πGρ0 + 2(A2 −B2), (3.337)

where ρ0 is the density in the solar neighborhood and A and B are the Oort constants.
Hint: use equation (2.73).

3.19 [3] Consider an attractive power-law potential, Φ(r) = Crα, where −1 ≤ α ≤ 2 and
C > 0 for α > 0, C < 0 for α < 0. Prove that the ratio of radial and azimuthal periods is

Tr

Tψ
=

8
<
:

1/
√

2 + α for nearly circular orbits
1/2, for α > 0

1/(2 + α), for α < 0
for nearly radial orbits.

(3.338)

What do these results imply for harmonic and Kepler potentials?
Hint: depending on the sign of α use a different approximation in the radical for vr . For

b > 0,
R∞
1

dx/(x
p
xb − 1) = π/b (see Touma & Tremaine 1997).

3.20 [1] Show that in spherical polar coordinates the Lagrangian for motion in the poten-
tial Φ(x) is

L = 1
2
[ṙ2 + (rθ̇)2 + (r sin θφ̇)2] − Φ(x). (3.339)

Hence show that the momenta pθ and pφ are related to the the magnitude and z-component
of the angular-momentum vector L by

pφ = Lz ; p2θ = L2 − L2
z

sin2 θ
. (3.340)

3.21 [3] Plot a (y, ẏ), (x = 0, ẋ > 0) surface of section for motion in the potential ΦL of
equation (3.103) when q = 0.9 and E = −0.337. Qualitatively relate the structure of this
surface of section to the structure of the (x, ẋ) surface of section shown in Figure 3.9.

3.22 [3] Sketch the structure of the (x, ẋ), (y = 0, ẏ > 0) surface of section for motion
at energy E in a Kepler potential when (a) the (x, y) coordinates are inertial, and (b)
the coordinates rotate at 0.75 times the circular frequency Ω at the energy E. Hint: see
Binney, Gerhard, & Hut (1985).

3.23 [3] The Earth is flattened at the poles by its spin. Consequently orbits in its potential
do not conserve total angular momentum. Many satellites are launched in inclined, nearly
circular orbits only a few hundred kilometers above the Earth’s surface, and their orbits
must remain nearly circular, or they will enter the atmosphere and be destroyed. Why do
the orbits remain nearly circular?

3.24 [2] Let ê1 and ê2 be unit vectors in an inertial coordinate system centered on the
Sun, with ê1 pointing away from the Galactic center (towards ` = 180◦, b = 0) and ê2

pointing towards ` = 270◦, b = 90◦. The mean velocity field v(x) relative to the Local
Standard of Rest can be expanded in a Taylor series,

vi =
2X

j=1

Hijxj + O(x2). (3.341)
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(a) Assuming that the Galaxy is stationary and axisymmetric, evaluate the matrix H in
terms of the Oort constants A and B.

(b) What is the matrix H in a rotating frame, that is, if ê1 continues to point to the center
of the Galaxy as the Sun orbits around it?

(c) In a homogeneous, isotropic universe, there is an analogous 3 × 3 matrix H that de-
scribes the relative velocity v between two fundamental observers separated by x. Evaluate
this matrix in terms of the Hubble constant.

3.25 [3] Consider two point masses m1 and m2 > m1 that travel in a circular orbit about
their center of mass under their mutual attraction. (a) Show that the Lagrange point L4

of this system forms an equilateral triangle with the two masses. (b) Show that motion
near L4 is stable if m1/(m1 + m2) < 0.03852. (c) Are the Lagrange points L1, L2, L3

stable? See Valtonen & Karttunen (2006).

3.26 [2] Show that the leapfrog integrator (3.166a) is second-order accurate, in the sense
that the errors in q and p after a timestep h are O(h3).

3.27 [2] Forest & Ruth (1990) have devised a symplectic, time-reversible, fourth-order
integrator of timestep h by taking three successive drift-kick-drift leapfrog steps of length
ah, bh, and ah where 2a+ b = 1. Find a and b. Hint: a and b need not both be positive.

3.28 [2] Confirm the formulae for the Adams–Bashforth, Adams–Moulton, and Hermite
integrators in equations (3.169), (3.170), and (3.171), and derive the next higher order
integrator of each type. You may find it helpful to use computer algebra.

3.29 [1] Prove that the fictitious time τ in Burdet–Heggie regularization is related to the
eccentric anomaly η by τ = (Tr/2πa)η + constant , if the motion is bound (E2 < 0) and
the external field g = 0.

3.30 [1] We wish to integrate numerically the motions of N particles with positions xi,
velocities vi, and masses mi. The particles interact only by gravitational forces (the gravi-
tational N-body problem). We are considering using several possible integrators: modified
Euler, leapfrog, or fourth-order Runge–Kutta. Which of these will conserve the total mo-
mentum

PN
i=1 mivi? Which will conserve the total angular momentum

PN
i=1mixi×vi?

Assume that all particles are advanced with the same timestep, and that forces are calcu-
lated exactly. You may solve the problem either analytically or numerically.

3.31 [2] Show that the generating function of the canonical transformation from angle-
action variables (θi, Ji) to the variables (qi, pi) discussed in Box 3.4 is

S(q, J) = ∓ 1
2
q
p

2J − q2 ± J cos−1

„
q√
2J

«
. (3.342)

3.32 [1] Let ε(R) and `(R) be the specific energy and angular momentum of a circular
orbit of radius R in the equatorial plane of an axisymmetric potential.

(a) Prove that

d`

dR
=
Rκ2

2Ω
;

dε

dR
= 1

2
Rκ2, (3.343)

where Ω and κ are the circular and epicycle frequencies.

(b) The energy of a circular orbit as a function of angular momentum is ε(`). Show that
dε/d` = Ω in two ways, first from the results of part (a) and then using angle-action
variables.

3.33 [2] The angle variables θi conjugate to the actions Ji can be implicitly defined by the
coupled differential equations dwα/dθi = [wα, Ji], where wα is any ordinary phase-space
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coordinate. Using this result, show that the angle variable for the harmonic oscillator,
H = 1

2
(p2 + ω2q2), may be written

θ(x, p) = − tan−1

„
p

ωq

«
. (3.344)

Hint: the action is J = H/ω.

3.34 [2] Consider motion for Lz = 0 in the Stäckel potential (3.247).

(a) Express I3 as a function of u, v, pu, and pv.

(b) Show that H cos2 v + I3 = 1
2
(p2v/∆

2) − V .

(c) Show that [H, I3] = 0.

(d) Hence show that Ju and Jv are in involution, that is [Ju, Jv] = 0. Hint: if f(a, b)
is any differentiable function of two variables, and A is any differentiable function of the
phase-space variables, then [A, f ] = [A,a](∂f/∂a) + [A, b](∂f/∂b).

3.35 [2] A particle moves in a one-dimensional potential well Φ(x). In angle-action vari-
ables, the Hamiltonian has the form H(J) = cJ4/3 where c is a constant. Find Φ(x).

3.36 [2] Obtain the Hamiltonian and fundamental frequencies as functions of the actions
for the three-dimensional harmonic oscillator by examining the limit b → ∞ of equations
(3.226).

3.37 [2] For motion in a potential of the form (3.247), obtain

ṗu =
2E sinhu coshu− dU/du

sinh2 u+ sin2 v
+

L2
z coshu

∆2 sinh3 u(sinh2 u+ sin2 v)
, (3.345)

where (u, v) are the prolate spheroidal coordinates defined by equations (3.242), by (a)
differentiating equation (3.249a) with respect to t and then using u̇ = ∂H/∂pu, and (b)
from ṗu = −∂H/∂u.

3.38 [2] For the coordinates defined by equation (3.267), show that the integral defined
by equations (3.268) can be written

I2 =
sinh2 u[ 1

2
(p2v/∆

2) − V ] − sin2 v[ 1
2
(p2u/∆

2) + U ]

sinh2 u+ sin2 v
. (3.346)

Show that in the limit ∆ → 0, u → ∞ we have ∆sinhu→ ∆cosh u→ R and v → π/2−φ,
where R and φ are the usual polar coordinates. Hence show that in this limit 2∆2I2 → L2

z.

3.39 [2] Show that the third integral of an axisymmetric Stäckel potential can be taken
to be

I3(u, v, pu, pv, pφ) =
1

sinh2 u+ sin2 v
×

»
sinh2 u

„
p2v

2∆2
− V

«
− sin2 v

„
p2u

2∆2
+ U

«–
+

p2φ

2∆2

„
1

sin2 v
− 1

sinh2 u

«
.

(3.347)

Hint: generalize the work of Problem 3.38.

3.40 [1] Show that when orbital frequencies are incommensurable, adiabatic invariance
of actions implies that closed orbits remain closed when the potential is adiabatically
deformed. An initially circular orbit in a spherical potential Φ does not remain closed
when Φ is squashed along any line that is not parallel to the orbit’s original angular-
momentum vector. Why does this statement remain true no matter how slowly Φ is
squashed?
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3.41 [2] From equations (3.39b) and (3.190), show that the radial action Jr of an orbit
in the isochrone potential (2.47) is related to the energy E and angular momentum L of
this orbit by

Jr =
√
GMb

h
x−

1
2 − f(L)

i
, (3.348)

where x ≡ −2Eb/(GM) and f is some function. Use equation (3.327) to show that

f(L) = (
√
l2 + 1 − l)−1 =

√
l2 + 1 + l, where l ≡ |L|/(2

√
GMb), and hence show that the

isochrone Hamiltonian can be written in the form (3.226a).

3.42 [2] Angle-action variables are also useful in general relativity. For example, the
relativistic analog to the Hamilton–Jacobi equation (3.218) for motion in the point-mass
potential Φ(r) = −GM/r is

E2

 
1 + 1

4
rS/r

1 − 1
4
rS/r

!2

= c4 +
c2

(1 + 1
4
rS/r)4

»“∂S
∂r

”2
+
“1

r

∂S

∂ϑ

”2
+
“ 1

r sinϑ

∂S

∂φ

”2
–
, (3.349)

where rS ≡ 2GM/c2 is the Schwarzschild radius, the energy per unit mass E includes
the rest-mass energy c2, and the equations are written in the isotropic metric, i.e., ds2 at
any point is proportional to its Euclidean form (Landau & Lifshitz 1999).

(a) Show that the Hamiltonian can be written in the form

H(pr , pϑ, pφ) =
1 − 1

4
rS/r

1 + 1
4
rS/r

s
c4 +

c2p2

(1 + 1
4
rS/r)4

, (3.350)

where p2 = p2r + p2ϑ/r
2 + p2φ/(r sinϑ)2.

(b) For systems in which relativistic effects are weak, show that the Hamiltonian can be
written in the form

H = c2 +HKep +Hgr + O(c−4), (3.351)

where HKep = 1
2
p2 −GM/r is the usual Kepler Hamiltonian and

Hgr =
1

c2

„
G2M2

2r2
− p4

8
− 3GMp2

2r

«
. (3.352)

(c) To investigate the long-term effects of relativistic corrections on a Kepler orbit, we may
average Hgr over an unperturbed Kepler orbit. Show that this average may be written

〈Hgr〉 =
G2M2

c2a2

„
15
8

− 3√
1 − e2

«
, (3.353)

where a and e are the semi-major axis and eccentricity. Hint: use the results of Prob-
lem 3.9.

(d) Show that relativistic corrections cause the argument of pericenter ω to precess by an
amount

∆ω =
6πGM

c2a(1 − e2)
(3.354)

per orbit. Hint: convert 〈Hgr〉 to angle-action variables using Table E.1 and use Hamilton’s
equations.

3.43 [2] The HamiltonianH(x,p;λ), where λ is a parameter, supports a family of resonant
orbits. In the (x1, p1) surface of section, the family’s chain of islands is bounded by
orbits with actions J1 ≡ (2π)−1

H
dx1 p1 = J±(λ), where J+ > J−. Let λ increase

sufficiently slowly for the actions of non-resonant orbits to be conserved, and assume that
J ′
+ > J ′

− > 0, where a prime denotes differentiation with respect to λ. Show that, as λ
grows, an orbit of unknown phase and action slightly larger than J+ will be captured by
the resonance with probability Pc = 1−J ′

−/J
′
+. Hint: exploit conservation of phase-space

volume as expressed by equation (4.10).
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Equilibria of Collisionless Systems

In §1.2 we introduced the idea that stellar systems may be considered to be
collisionless: we obtain a good approximation to the orbit of any star by
calculating the orbit that it would have if the system’s mass were smoothly
distributed in space rather than concentrated into nearly point-like stars.
Eventually, the true orbit deviates significantly from this model orbit, but
in systems with more than a few thousand stars, the deviation is small for a
time ∼< trelax that is much larger than the crossing time tcross. In fact, for a
galaxy trelax is usually much larger even than the age of the universe, so the
approximation that the potential is smooth provides a complete description
of the dynamics.

In this chapter we consider model stellar systems that would be perfect
equilibria if trelax were arbitrarily large. Such models are the primary tool for
comparisons of observations and theory of galaxy dynamics. In Chapter 7
we shall see that they are also applicable to globular clusters, even though
trelax is significantly smaller than the cluster’s age, so long as it is recognized
that the equilibrium evolves slowly, on a timescale of order trelax.

We assume throughout that the stellar systems we examine consist of
N identical point masses, which might be stars or dark-matter particles.
Although unrealistic, this assumption greatly facilitates our work and has
no impact on the validity of our results.

In §4.1 we derive the equation that allows us to find equilibria, and dis-
cuss its connection to observational data. In §4.2 we show that solutions of
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the equation can be readily found if integrals of motion in the galactic po-
tential are known, and in §§4.3 to 4.5 we use such solutions to study models
with a variety of symmetries. In §4.6 we show that it is advantageous to
express solutions in terms of action integrals. Unfortunately, in many prac-
tical cases insufficient integrals are known to obtain relevant solutions, so in
§§4.7 and 4.8 we discuss alternative strategies, starting with heavily numer-
ical approaches and moving on to approximate techniques that are based on
moments of the fundamental equation. In §4.9 we draw on techniques devel-
oped throughout the chapter to hunt for massive black holes and dark halos
in galaxies using observations of the kinematics of their stars. In §4.10 we
address the question “what determines the distribution of stars in a galaxy?”
This is a difficult question to which we shall have to return in Chapter 9.

4.1 The collisionless Boltzmann equation

When modeling a collisionless system such as an elliptical galaxy, it is neither
practical nor worthwhile to follow the orbits of each of the galaxy’s billions
of stars. Most testable predictions depend on the probability of finding a
star in the six-dimensional phase-space volume d3xd3v around the position
x and velocity v. Therefore we define the distribution function (or df

for short) f such that f(x,v, t) d3xd3v is the probability that at time t a
randomly chosen star, say star 1, has phase-space coordinates in the given
range. Since by assumption all stars are identical, this probability is the
same for stars 2, 3, . . . , N . By virtue of its definition f is normalized such
that ∫

d3xd3v f(x,v, t) = 1, (4.1)

where the integral is over all phase space.
Let w = (x,v) be the usual Cartesian coordinates, and consider an

arbitrary region V of phase space. The probability of finding star 1 in V
is P =

∫
V d6w f(w). Let W represent some arbitrary set of phase-space

coordinates, and let F (W) be the corresponding df; that is the probability
of finding star 1 in V is P =

∫
V d6WF (W). If V is small enough, f and F

will be approximately constant throughout it, and we can take them outside
the integrals for P . Thus

P = f(w)

∫

V
d6w = F (W)

∫

V
d6W. (4.2)

If the coordinates W are canonical, equation (D.81) implies that
∫
V d6w =∫

V d6W. Substituting this relation into (4.2), we conclude that F (W) =
f(w). Therefore, the df has the same numerical value at a given phase-
space point in any canonical coordinate system. This invariance enables us
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henceforth to treat w = (q,p) as an arbitrary system of canonical coordi-
nates.

Any given star moves through phase space, so the probability of finding
it at any given phase-space location evolves with time. We now derive the
differential equation that is satisfied by f as a consequence of this evolution.
As f evolves, probability must be conserved, in the same way that mass is
conserved in a fluid flow. The conservation of fluid mass is described by the
continuity equation (F.3)

∂ρ

∂t
+

∂

∂x
· (ρẋ) = 0, (4.3)

where ρ and ẋ = v are the density and velocity of the fluid. The analogous
equation for the conservation of probability in phase space is

∂f

∂t
+

∂

∂w
· (fẇ) = 0. (4.4)

We now use Hamilton’s equations (D.54) to eliminate ẇ = (q̇, ṗ). The
second term in equation (4.4) becomes

∂

∂q
· (f q̇) +

∂

∂p
· (f ṗ) =

∂

∂q
·
(
f
∂H

∂p

)
− ∂

∂p
·
(
f
∂H

∂q

)

=
∂f

∂q
· ∂H
∂p

− ∂f

∂p
· ∂H
∂q

= q̇ · ∂f
∂q

+ ṗ · ∂f
∂p

,

(4.5)

where we have used the fact that ∂2H/∂q∂p = ∂2H/∂p∂q. Substituting this
result into equation (4.4) we obtain the collisionless Boltzmann equa-
tion1

∂f

∂t
+ q̇ · ∂f

∂q
+ ṗ · ∂f

∂p
= 0, (4.6)

which is a partial differential equation for f as a function of six phase-space
coordinates and time.

Equation (4.6) can be rewritten in a number of forms, each of which is
useful in different contexts. Equation (4.5) enables us to write

0 =
∂f

∂t
+
∂f

∂q
· ∂H
∂p

− ∂f

∂p
· ∂H
∂q

=
∂f

∂t
+ [f,H ],

(4.7)

1 Often also called the Vlasov equation, although it is a simplified version of an equa-
tion derived by L. Boltzmann in 1872. See Hénon (1982).
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where the square bracket is a Poisson bracket (eq. D.65).
An alternative form of the collisionless Boltzmann equation can be de-

rived by extending to six dimensions the concept of the convective or La-
grangian derivative (see eq. F.8). We define

df

dt
≡ ∂f

∂t
+ ẇ · ∂f

∂w
; (4.8)

df/dt represents the rate of change of the local probability density as seen
by an observer who moves through phase space with a star. Comparison of
equations (4.6) and (4.7) shows that ẇ · (∂f/∂w) = [f,H ], so the convective
derivative can also be written

df

dt
=
∂f

∂t
+ [f,H ], (4.9)

and the collisionless Boltzmann equation (4.6) is simply

df

dt
= 0. (4.10)

In words, the flow through phase space of the probability fluid is incompress-
ible; the phase-space density f of the fluid around a given star always remains
the same.2 In contrast to flows of incompressible fluids such as water, the
density will generally vary greatly from point to point in phase space; the
density is constant as one follows the flow around a particular star but the
density around different stars can be quite different.

In terms of inertial Cartesian coordinates, in which H = 1
2v

2 + Φ(x, t)
with Φ the gravitational potential, the collisionless Boltzmann equation
reads

∂f

∂t
+ v · ∂f

∂x
− ∂Φ

∂x
· ∂f
∂v

= 0. (4.11)

In cylindrical coordinates we have (eq. 3.66) H = 1
2 (p2

R + p2
φ/R

2 + p2
z) + Φ

so with (4.7) the collisionless Boltzmann equation becomes3

∂f

∂t
+ pR

∂f

∂R
+
pφ
R2

∂f

∂φ
+ pz

∂f

∂z
−
(
∂Φ

∂R
−
p2
φ

R3

)
∂f

∂pR

− ∂Φ

∂φ

∂f

∂pφ
− ∂Φ

∂z

∂f

∂pz
= 0.

(4.12)

2 A simple example of an incompressible flow in phase space is provided by an idealized
marathon race in which all runners travel at constant speeds: at the start of the course,
the spatial density of runners is large but they travel at a wide variety of speeds; at the
finish, the density is low, but at any given time all runners passing the finish line have
nearly the same speed.

3 A reader unconvinced of the usefulness of the Hamiltonian formalism should try
deriving either (4.12) or (4.14) directly from (4.11).
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To obtain the Hamiltonian for motion in spherical polar coordinates we
replace in (3.218) ∂S/∂r by pr, ∂S/∂θ by pθ and ∂S/∂φ by pφ and find

H = 1
2

(
p2
r +

p2
θ

r2
+

p2
φ

r2 sin2 θ

)
+ Φ. (4.13)

Using this expression in (4.7) we find

∂f

∂t
+ pr

∂f

∂r
+
pθ
r2

∂f

∂θ
+

pφ

r2 sin2 θ

∂f

∂φ
−
(∂Φ

∂r
− p2

θ

r3
−

p2
φ

r3 sin2 θ

) ∂f
∂pr

−
(∂Φ

∂θ
−
p2
φ cos θ

r2 sin3 θ

) ∂f
∂pθ

− ∂Φ

∂φ

∂f

∂pφ
= 0.

(4.14)

Conversion to rotating coordinates is discussed in Problem 4.1.

4.1.1 Limitations of the collisionless Boltzmann equation

(a) Finite stellar lifetimes The physical basis of the collisionless Boltz-
mann equation is conservation of the objects that are described by the df.
Stars are not really conserved because they are born and die, so their flow
through phase space would be more accurately described by an equation of
the type

df

dt
=
∂f

∂t
+ v · ∂f

∂x
− ∂Φ

∂x
· ∂f
∂v

= B −D, (4.15)

where B(x,v, t) and D(x,v, t) are the rates per unit phase-space volume at
which stars are born and die. In the collisionless Boltzmann equation, B−D
is set to zero. This is a useful approximation to the truth if and only if B−D
is smaller in magnitude than terms on the left of equation (4.15). The term
v · ∂f/∂x is of order vf/R, where v and R are the characteristic speed and
radius in the galaxy. The ratio R/v is simply the crossing time tcross (§1.2).
Similarly, ∂Φ/∂x is of order the characteristic acceleration a, so the term
(∂Φ/∂x) · (∂f/∂v) is of order af/v. Since a ≈ v/tcross, the two last terms
in the middle section of equation (4.15) are of order f/tcross. Thus consider
the ratio

γ =

∣∣∣∣
B −D

f/tcross

∣∣∣∣ . (4.16)

The collisionless Boltzmann equation is valid if γ � 1, which requires that
the fractional change in the number of stars per crossing time is small.

The significance of this criterion can be clarified by some concrete exam-
ples. We consider two contrasting stellar types: M dwarfs, which have masses

∼< 0.5M� and live longer than the age of the universe; and O stars, which
have masses ∼> 20M� and lifetimes ∼< 10 Myr (BM Tables 3.13 and 5.3).
In an elliptical galaxy the rate of formation of M dwarfs is negligible, and
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even the oldest M dwarfs have not had time to evolve significantly. Hence,
the collisionless Boltzmann equation will apply accurately to the df of M
dwarfs (γ ≤ 0.01). Now consider the contrasting case of O stars in the Milky
Way. These stars have lifetimes significantly shorter than a crossing time
∼ 100 Myr. In fact, an O star will scarcely move from its birthplace before it
dies, and the phase-space distribution of such stars will depend entirely on
the processes that govern star formation, and not at all on the collisionless
Boltzmann equation (γ ' 10). In between these extremes, the collisionless
Boltzmann equation will apply quite accurately to main-sequence popula-
tions in the Milky Way less massive than ∼ 1.5M�, since these stars live
for ∼> 1 Gyr, which will generally be some tens of crossing times. In certain
circumstances the collisionless Boltzmann equation may even be applied to
a population of short-lived objects, for example planetary nebulae in an el-
liptical galaxy, because the phase-space distributions of the objects’ births
and deaths are to a good approximation identical, so B −D ' 0.

(b) Correlations between stars The average number density of stars
in an infinitesimal volume of phase space is Nf . However, in practice all we
can hope to measure is the number density in some volume of phase space
large enough to contain many stars. The natural assumption to make is that
the density in such a volume is simply Nf , where f is the average of f within
this volume.4 However, this assumption will only be correct if the positions
of stars in phase space are uncorrelated: that is, knowing that star 1 is at
w makes it neither more nor less likely that another star, say star 2, is at
an adjacent phase-space location w′. Mathematically, we assume that the
probability of finding star 1 in the volume d6w at w and star 2 in d6w′ at w′

is simply the product f(w)d6w f(w′)d6w′ of the probabilities of finding star
1 at w and star 2 at w′—in §7.2.4 we shall call such distributions “separable”.
When the assumption of separability holds, the probability PV(k) that we
will find k stars in a given volume V of phase space is given by the Poisson
distribution (Appendix B.8)

PV(k) =
µk

k!
e−µ where µ ≡ NfV . (4.17)

It is easy to show that the mean number of stars predicted by this probability
distribution is 〈k〉 = NfV . Thus Nf is indeed the expectation value of the
stellar number density, if the df is separable. Two obvious corollaries are
that the mean mass within V is

〈m〉 = Mf(w)V , (4.18)

where M is the total mass of the stellar system, and the mean luminosity
emitted within V is

〈l〉 = Lf(w)V , (4.19)

4 This function is sometimes called the coarse-grained df. The standard df is then
called the fine-grained df to eliminate any danger of confusion with f .



280 Chapter 4: Equilibria of Collisionless Systems

where L is the system’s luminosity.
In reality, the presence of star 1 at x always increases the probability

that star 2 will be found at some nearby position x′ because stars attract
one another. Hence, the assumption that the probability distribution of
individual stars is separable is never strictly valid. In Chapter 7 we shall
explore the effect of such correlations on the evolution of stellar systems.
However, in this chapter we assume that separability holds, as it very nearly
does for many stellar systems, because the force on a star from its neighbors
is very much smaller than the force from the rest of the system.

4.1.2 Relation between the df and observables

At any fixed position x, the integral

ν(x) ≡
∫

d3v f(x,v) (4.20)

gives the probability per unit volume of finding a particular star at x, re-
gardless of its velocity. Multiplying by the total number N of stars in the
population, we obtain the real-space number density of stars

n(x) ≡ Nν(x). (4.21)

In the Galaxy n(x) can in principle be determined from star counts, and thus
ν(x) can be derived from n(x). In other galaxies it is not usually possible to
count stars, but we can derive ν(x) from the luminosity density j(x) = Lν(x),
where L is the luminosity of the stellar population (BM §4.2.3).

It is often convenient to modify the definition of the df so that fd6w
represents not the probability of finding a given star in the phase-space vol-
ume d6w, but rather the expected number, total mass, or total luminosity
of the stars in d6w. These modifications correspond to multiplying f by N ,
M , or L, respectively. Ideally these different definitions would be reflected in
different notations for the df. In practice the definition is usually clear from
the context, and f is conventionally used to denote all of these quantities.

Dividing f by ν we obtain the probability distribution of stellar velocities
at x

Px(v) =
f(x,v)

ν(x)
, (4.22)

which can be directly measured near the Sun (BM §10.3). In external galaxies
Px can be probed through the line-of-sight velocity distribution (losvd;
BM §11.1), which gives for a particular line of sight through the galaxy the
fraction F (v‖)dv‖ of the stars that have line-of-sight velocity within dv‖ of
v‖. Almost all galaxies are sufficiently far away that all vectors from the
observer to a point x in the galaxy are very nearly parallel to the fixed unit
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vector ŝ from the observer to the center of the galaxy. Then x‖ ≡ ŝ · x and
v‖ ≡ ŝ · v are the components of x and v parallel to the line of sight. We
also define x⊥ ≡ x − x‖ŝ and v⊥ ≡ v − v‖ŝ to be the components of x and
v in the plane of the sky. The relation between Px(v) and F (x⊥, v‖) is

F (x⊥, v‖) =

∫
dx‖ ν(x)

∫
d2v⊥ Px(v‖ŝ + v⊥)∫
dx‖ ν(x)

=

∫
dx‖d2v⊥ f(x,v)∫
dx‖d3v f(x,v)

.

(4.23)

The losvd is frequently quantified by two numbers, the mean line-of-
sight velocity v‖ and the dispersion σ‖ about this mean. We have

v‖(x⊥) ≡
∫

dv‖ v‖F (x⊥, v‖) =

∫
dx‖d3v v‖f(x,v)∫
dx‖d3v f(x,v)

=

∫
dx‖ ν(x) ŝ · v∫

dx‖ ν(x)
,

(4.24a)

where we have defined the mean velocity at location x

v(x) ≡
∫

d3v vPx(v) =
1

ν(x)

∫
d3v vf(x,v). (4.24b)

The line-of-sight velocity dispersion is defined to be

σ2
‖(x⊥) ≡

∫
dv‖ (v‖ − v‖)2F (x⊥, v‖)

=

∫
dx‖d3v (ŝ · v − v‖)2f(x,v)∫

dx‖d3v f(x,v)
.

(4.25)

The line-of-sight velocity dispersion is determined both by the varia-
tion in the mean velocity v‖(x) along the line of sight, and the spread in
stellar velocities at each point in the galaxy around v(x). This spread is
characterized by the velocity-dispersion tensor

σ2
ij(x) ≡ 1

ν(x)

∫
d3v (vi − vi)(vj − vj)f(x,v)

= vivj − vivj .

(4.26)

The velocity-dispersion tensor is manifestly symmetric, so we know from
matrix algebra that at any point x we may choose a set of orthogonal axes
êi(x) in which σ2 is diagonal, that is, σ2

ij = σ2
iiδij (no summation over

i, and δij = 1 for i = j and zero otherwise). The ellipsoid that has the
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Figure 4.1 The full curves show the
velocity distributions Px(v) at the
center of a Plummer model (lower
curve) and at r = 2b (upper curve).
The dashed curves show the losvd

F (v‖) along two lines of sight, R =
0, 2b. The df of the Plummer model
is given by equation (4.91b).

diagonalizing coordinate axes êi(x) for its principal axes and σ11, σ22 and
σ33 for its semi-axis lengths is called the velocity ellipsoid at x.

To determine the relation between the velocity-dispersion tensor and the
line-of-sight velocity dispersion, we let u(x) ≡ ŝ · v(x) − v‖ be the difference
between the mean velocity parallel to the line of sight at x and the mean
velocity for the entire line of sight. Then we can rewrite (4.25) as follows:

σ2
‖(x⊥) =

∫
dx‖d3v [ŝ · (v − v) + u]2f(x,v)∫

dx‖d3v f(x,v)

=

∫
dx‖ ν(x)

(
ŝ · σ2 · ŝ + u2

)
∫

dx‖ ν(x)
,

(4.27)

where we introduce the notation ŝ · σ2 · ŝ ≡
∑
ij ŝiσ

2
ij ŝj .

These results show that once ν, v and σ2 are known at each point in
a model, the observable quantities v‖ and σ2

‖ can be determined for that

model. This fact makes ν, v and σ2
ij , all functions of x, vital links between

observations and theoretical models. Moreover, we shall see in §4.8 that in
equilibrium stellar systems there are simple relations between these quanti-
ties and the gravitational field (the Jeans equations).

Notice that while v‖ depends only on the mean velocity field v(x), there

are contributions to σ2
‖ from both σ2 and v. Moreover, both contributions

are inherently positive, so σ2
‖ is in general larger than the average of the

intrinsic squared velocity dispersion ŝ · σ2 · ŝ along the line of sight.
One shortcoming of v‖ and σ2

‖ as probes of the dynamics of a galaxy is

that they are hard to measure accurately because they are sensitive to the
contributions of the small number of high-velocity stars.

An example In §4.3.3a we shall encounter an exceptionally simple model
system called the Plummer model. This is a non-rotating spherical system
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in which the velocity distribution Px depends only on v ≡ |v|, and the grav-
itational potential is given by equation (2.44a). The full curves in Figure 4.1
show Px(v) at the center of the system and at r = 2b, where b is the Plummer
scale length. Notice that Px vanishes for speeds larger than the escape speed√

2|Φ(x)| (eq. 2.31). At small radii, where |Φ| is relatively large, a graph
of Px versus v is wide and gently peaked, while at large radii, where |Φ| is
much smaller, a plot of Px(v) shows a high, narrow peak.

The losvd F (v‖) along a line of sight through a Plummer model de-
pends on the projected distance R = |x⊥| between the line of sight and
the center of the model because it is a weighted mean of the velocity dis-
tributions Px(v) for different points along the line of sight (eq. 4.23). The
dashed curves in Figure 4.1 show the losvd for the line of sight through the
center, and one further out. Notice that the losvd at each radius is more
centrally peaked than the velocity distribution at that radius. There are two
reasons for this phenomenon. First, F (v‖) is depressed at large values of v‖
by the integral over v⊥ in (4.23) because the range of allowed values of v⊥
diminishes rapidly as v‖ approaches the escape speed. A subsidiary effect is
that the line of sight through the center samples points that are physically
far from the cluster center, where the velocity distribution Px is narrowly
peaked around v = 0.

4.2 Jeans theorems

In §3.1.1 we introduced the concept of an integral of motion in a given sta-
tionary potential Φ(x). According to equation (3.56), a function of the phase-
space coordinates I(x,v) is an integral if and only if

d

dt
I [x(t),v(t)] = 0 (4.28)

along any orbit. With the equations of motion this becomes

dI

dt
=
∂I

∂x
· dx

dt
+
∂I

∂v
· dv

dt
= 0, or v · ∂I

∂x
− ∂Φ

∂x
· ∂I
∂v

= 0. (4.29)

Comparing this with equation (4.11), we see that the condition for I to be
an integral is identical with the condition for I to be a steady-state solution
of the collisionless Boltzmann equation. This leads to the following theorem,
first stated by Jeans (1915).

Jeans theorem Any steady-state solution of the collisionless Boltzmann
equation depends on the phase-space coordinates only through integrals of
motion in the given potential, and any function of the integrals yields a
steady-state solution of the collisionless Boltzmann equation.
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Proof: Suppose f is a steady-state solution of the collisionless Boltzmann
equation. Then, as we have just seen, f is an integral, and the first part of
the theorem is proved. Conversely, if I1 to In are n integrals, and if f is any
function of n variables, then

d

dt
f [I1(x,v), . . . , In(x,v)] =

n∑

m=1

∂f

∂Im

dIm
dt

= 0 (4.30)

and f is seen to satisfy the collisionless Boltzmann equation./

Many of the results of this chapter will be based on the second propo-
sition stated by the Jeans theorem, namely, that any function of integrals
solves the collisionless Boltzmann equation. However, the first of Jeans’s
propositions, the assurance that the df of any steady-state galaxy must be
a function of integrals, is only of limited use since the examples discussed
in §§3.2 and 3.3 show that orbits often respect integrals for which we lack
analytic expressions. In such cases the first part of the Jeans theorem sim-
ply tells us, unhelpfully, that the df is a function of integrals whose form is
unknown.

Fortunately the time averages theorem (page 215) enables us to show
that if all orbits in a galaxy are regular, then we can forget about any non-
isolating integrals:

Strong Jeans theorem The df of a steady-state stellar system in which
almost all orbits are regular with non-resonant frequencies may be presumed
to be a function only of three independent isolating integrals, which may be
taken to be the actions.
Proof: Any observable property involves averaging the df over some non-zero
region of phase space; we may formalize this by stating that all observations
are based on moments of the form 〈Q〉 =

∫
d3xd3vQf , where Q(x,v) is

some smooth function on phase space and f is the df. Since almost all
orbits are regular, we can assume that phase space is covered by angle-action
coordinates (θ,J) and we can also write

〈Q〉 =

∫
d3θ d3JQ(x,v)f(x,v, t), (4.31)

where (x,v) are to be interpreted as functions of (θ,J). Since the stellar
system is in a steady state, 〈Q〉 is time-independent, so

〈Q〉 = 〈Q〉 =

∫
d3θ d3JQ(θ,J)f (θ,J), (4.32a)

where

f(θ,J) ≡ lim
T→∞

1

T

∫ T

0

dt f(x,v, t) (4.32b)
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is the time average of the df at the given point in phase space. If δ3J and
δ3θ are small coordinate ranges, f δ3θδ3J is the probability that at a given
instant a randomly chosen star has actions in δ3J and angles in δ3θ. By
the time averages theorem this is δ3θ/(2π)3 times the probability that the
star has actions in δ3J, which we denote (2π)3fJ(J)δ3J. Eliminating f from
equation (4.32a) we may therefore write

〈Q〉 =

∫
d3θ d3JQ(θ,J)fJ(J), (4.33)

which shows that any observable can be evaluated using only the time-
independent df fJ(J)./

In summary, the Jeans theorem tells us that if I1, . . . , In are n indepen-
dent integrals in a given potential, then any df of the form f(I1), f(I1, I2),
. . . , f(I1, . . . , In) is a solution of the collisionless Boltzmann equation. The
strong Jeans theorem tells us that if the potential of a steady-state galaxy
is such that almost all orbits are regular, then for all practical purposes the
galaxy may be represented by a df of the form f(I1, I2, I3), where I1, I2, I3
are three independent isolating integrals.

4.2.1 Choice of f and relations between moments

(a) DF depending only on H In any steady-state potential Φ(x), the
Hamiltonian H is an integral of motion. Consequently, an equilibrium stellar
system is obtained by taking f to be any non-negative function of H—dfs
of this type are called ergodic.5 If the potential is constant in an inertial
frame, H will be of the form H = 1

2v
2 + Φ(x) and it follows that the mean

velocity vanishes everywhere:

v(x) =
1

ν(x)

∫
d3v vf( 1

2v
2 + Φ) = 0, (4.34)

where the second equality follows because the integrand is an odd function
of v and the integral is over all velocity space. A similar line of reasoning
shows that the velocity-dispersion tensor is isotropic:

σ2
ij = vivj = σ2δij , (4.35a)

where

σ2(x) =
1

ν(x)

∫
dvz v

2
z

∫
dvxdvy f [ 1

2 (v2
x + v2

y + v2
z) + Φ(x)]

=
4π

3ν(x)

∫ ∞

0

dv v4f( 1
2v

2 + Φ).

(4.35b)

5 In statistical mechanics and chaos theory the term “ergodic” denotes a system that
uniformly explores its energy surface in phase space, which implies that the df is uniform
on the energy surface. In our usage the df is ergodic but the motion of individual stars
generally is not.
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An equivalent statement is that the velocity ellipsoid is a sphere of radius
σ. An isotropic system has a velocity-dispersion tensor that is everywhere
isotropic. Thus every system with an ergodic df is isotropic.

(b) DF depending on H and L If the potential Φ(x) is spherically
symmetric, the three components of the angular-momentum vector L are
isolating integrals that can be included in the arguments of f in addition to
the Hamiltonian. Since the potential is spherical, we shall confine ourselves to
dfs that produce systems that have complete spherical symmetry; that is, in
which the three components of L can occur only through their contributions
to L = |L|.6 Thus we consider the case in which the df is some non-negative
function f(H,L). Let vr and vt (for tangential) be the components of v
parallel and perpendicular to the radial direction, so v2

t = v2
θ+v2

φ in spherical

coordinates (r, θ, φ). Then L = rvt and H = 1
2 (v2

r +v2
t )+Φ(r), and the mean

velocity is

vr =
1

ν

∫
dvr vr

∫
d2vt f [ 1

2 (v2
r + v2

t ) + Φ(r), rvt ] = 0,

vt =
1

ν

∫
d2vt vt

∫
dvr f [ 1

2 (v2
r + v2

t ) + Φ(r), rvt] = 0.

(4.36)

In both cases the integrals vanish because the integrand is an odd function
of either vr or vt. Similar considerations show that the velocity-dispersion
tensor is diagonal in the (vr, vθ, vφ) frame, with diagonal components

σ2
r ≡ v2

r =
1

ν

∫
dvr v

2
r

∫
d2vt f [ 1

2 (v2
r + v2

θ + v2
φ) + Φ, rvt],

=
2π

ν

∫ ∞

−∞
dvr v

2
r

∫ ∞

0

dvt vtf [ 1
2 (v2

r + v2
t ) + Φ, rvt],

σ2
θ ≡ v2

θ =
1

ν

∫
dvθ v

2
θ

∫
dvφ

∫
dvr f [ 1

2 (v2
r + v2

θ + v2
φ) + Φ, rvt],

=
π

ν

∫ ∞

0

dvt v
3
t

∫ ∞

−∞
dvr f [ 1

2 (v2
r + v2

t ) + Φ, rvt],

σ2
φ = σ2

θ .

(4.37)

In general σ2
θ(r) 6= σ2

r (r) because the dependence of f on vt differs from its
dependence on vr.

We shall see in §4.8 that in a stellar system νσ2 plays a role analogous
to that of pressure in a fluid. The inequality of σ2

r and σ2
θ implies that in

general different pressures act radially and tangentially in a spherical stellar
system; in other words pressure is a tensor rather than a scalar.

(c) DF depending on H and Lz If the potential Φ(x) is axisymmetric,
Lz = Rvφ is an isolating integral that can be included in f alongside H .

6 Lynden–Bell (1960) discusses spherical systems that rotate.
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Then, in cylindrical coordinates the mean velocity has components

vR =
1

ν

∫
dvR vR

∫
dvz

∫
dvφ f [ 1

2 (v2
R + v2

z + v2
φ) + Φ, Rvφ] = 0,

vz =
1

ν

∫
dvz vz

∫
dvR

∫
dvφ f [ 1

2 (v2
R + v2

z + v2
φ) + Φ, Rvφ] = 0,

vφ =
1

ν

∫
dvφ vφ

∫
dvR

∫
dvz f [ 1

2 (v2
R + v2

z + v2
φ) + Φ, Rvφ].

(4.38)

The integrals for vR and vz vanish because the integrands are odd functions
of vR and vz, respectively. The integral for vφ will also vanish if f is an even
function of Lz. In general f(H,Lz) can be decomposed into a part that is
even in Lz and a part that is odd:

f(H,Lz) = f+(H,Lz) + f−(H,Lz) (4.39a)

where
f±(H,Lz) ≡ 1

2 [f(H,Lz) ± f(H,−Lz)]. (4.39b)

The even part of f will not contribute to νvφ, while f− will not contribute
to the corresponding integral (4.20) for ν. The velocity-dispersion tensor is
diagonal in the (vR, vz, vφ) frame, with non-zero components

v2
R = σ2

R =
1

ν

∫
dvR v

2
R

∫
dvz

∫
dvφ f [ 1

2 (v2
R + v2

z + v2
φ) + Φ, Rvφ],

σ2
z = σ2

R,

σ2
φ =

1

ν

∫
dvφ (vφ − vφ)2

∫
dvR

∫
dvz f [ 1

2 (v2
R + v2

z + v2
φ) + Φ, Rvφ].

(4.40)
The pressure that acts in the azimuthal direction is in general different from
that which acts in any direction within the meridional plane.

4.3 DFs for spherical systems

The simplest stellar systems are spherical. A study of spherical models not
only provides a good introduction to the structure of more general systems,
but is also of considerable practical interest because some elliptical galaxies
and clusters of galaxies, and most globular clusters, are very nearly spheri-
cal. For simplicity we shall consider the case in which the system has only
one stellar population, so all stars are identical and there is a single df f .
We shall also generally assume that the mass density that generates the sys-
tem’s gravitational potential is proportional to

∫
d3v f—such systems are
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called self-consistent because the density distribution determines the po-
tential through Poisson’s equation, and the potential must also determine
the density consistently through the collisionless Boltzmann equation. Many
of the models we study are readily generalized to the more realistic case of
multiple stellar populations, each of which will have its own df and its own
contribution to the total mass density.

We shall find it convenient to define a new gravitational potential and a
new energy. If Φ0 is some constant, then let the relative potential Ψ and
the relative energy E of a star be defined by

Ψ ≡ −Φ + Φ0 and E ≡ −H + Φ0 = Ψ − 1
2v

2. (4.41)

In practice, we generally choose Φ0 to be such that f > 0 for E > 0 and
f = 0 for E ≤ 0. If an isolated system extends to infinity, Φ0 = 0 and the
relative energy is equal to the binding energy. The relative potential of an
isolated system satisfies Poisson’s equation in the form

∇2Ψ = −4πGρ, (4.42)

subject to the boundary condition Ψ → Φ0 as |x| → ∞.

4.3.1 Ergodic DFs for systems

Suppose we observe a spherical stellar system that is confined by a known
spherical potential Φ(r). Then it is possible to derive for the system a unique
ergodic df that depends on the phase-space coordinates only through the
Hamiltonian H(x,v). In this section we shall express this df as a function
of the relative energy f(E). To derive this df we note that the probability
density ν(r) can be written as the integral of f over all velocities. Since f
depends on the magnitude v of v and not its direction, we can immediately
integrate over angular coordinates in velocity space to produce 4π. We then
have

ν(r) = 4π

∫
dv v2f(Ψ − 1

2v
2) = 4π

∫ Ψ

0

dE f(E)
√

2(Ψ − E), (4.43)

where we have used equation (4.41) and assumed that the constant Φ0 in
the definition of E has been chosen such that f = 0 for E ≤ 0. Since Ψ is
a monotonic function of r in any spherical system (Problem 2.16), we can
regard ν as a function of Ψ instead of r. Thus

1√
8π
ν(Ψ) = 2

∫ Ψ

0

dE f(E)
√

Ψ − E . (4.44)
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Box 4.1: An isolated system
with an ergodic DF is spherical

An obvious question is whether there is any self-consistent non-spherical
stellar system with an ergodic df—in mathematical terms, are there
finite, non-spherical solutions of the equations ρ(x) = M

∫
d3v f [ 1

2v
2 +

Φ(x)] and ∇2Φ = 4πGρ, in which Φ → 0 as |x| → ∞?
The first of these equations shows that the density depends on posi-

tion only through the potential Φ; thus the surfaces of constant density
and potential coincide, so within the system the potential is a function
Φ(ρ) of the density. Now define

p(ρ) = −
∫ ρ

0

dρ′ ρ′
dΦ

dρ
(ρ′).

Using Problem 4.4, it is easy to see that dΦ/dρ < 0, so p(ρ) > 0. Taking
the gradient of this equation yields ∇p = −ρ∇Φ, which is the equation
of hydrostatic equilibrium (F.12) for a barotropic fluid with equation of
state p(ρ) (cf. eq. F.27).

We may now employ Lichtenstein’s theorem on the symmetries
of self-gravitating fluids, which states (Lindblom 1992): Consider an
isolated, self-gravitating, barotropic fluid of finite extent that is in a steady
state, so the velocity v and density ρ at every point are independent
of time. If there is an axis êz such that v · êz = 0, then the density
distribution has a symmetry plane perpendicular to êz.

For a static fluid (v = 0), there must be a symmetry plane per-
pendicular to every axis, so the fluid must be spherically symmetric.
Thus all isolated, finite, static, self-gravitating, barotropic fluids must be
spherical. Since we have shown that a stellar system with an ergodic df

satisfies the same equations—Poisson’s equation, the equation of hydro-
static equilibrium, and the equation of state p(ρ)—we conclude that any
isolated, finite, stellar system with an ergodic df must be spherical.

Differentiating both sides with respect to Ψ, we obtain

1√
8π

dν

dΨ
=

∫ Ψ

0

dE f(E)√
Ψ − E

. (4.45)

Equation (4.45) is an Abel integral equation having solution (B.74)

f(E) =
1√
8π2

d

dE

∫ E

0

dΨ√
E − Ψ

dν

dΨ
. (4.46a)

An equivalent formula is

f(E) =
1√
8π2

[∫ E

0

dΨ√
E − Ψ

d2ν

dΨ2
+

1√E

(
dν

dΨ

)

Ψ=0

]
. (4.46b)
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This result is due to Eddington (1916b), and we shall call it Eddington’s
formula. It implies that, given a spherical density distribution, we can re-
cover an ergodic df that generates a model with the given density. However,
we have no guarantee that the solution f(E) to equations (4.46) will satisfy
the physical requirement that it be nowhere negative. Indeed, we may con-
clude from equation (4.46a) that a spherical density distribution ν(r) in the
potential Φ(r) can arise from an ergodic df if and only if

∫ E

0

dΨ√
E − Ψ

dν

dΨ

is an increasing function of E . Note that this result holds regardless of
whether the potential is self-consistently generated by the df.

(a) Ergodic Hernquist, Jaffe and isochrone models In §2.2.2g we
introduced the Jaffe and Hernquist models, which are members of the family
of two-power density models. We now use Eddington’s formula to recover
the ergodic dfs of these models, as well as the df of the isochrone model
that was introduced in §2.2.2d.

From the second of equations (2.66) we have that the mass of a Hernquist
model is related to the scale density ρ0 and radius a by M = 2πρ0a

3. The
density of the Hernquist model is non-zero at all finite radii, so we choose
Φ0 = Φ(r → ∞) = 0. Then from equation (2.67) radius is related to potential
by

r

a
=

1

Ψ̃
− 1 where Ψ̃ ≡ Ψa

GM
= − Φa

GM
. (4.47)

Using this result to eliminate r/a from equation (2.64) with α = 1 and β = 4
we obtain

ν(Ψ) =
ρ

M
=

1

2πa3

Ψ̃4

1 − Ψ̃
. (4.48)

Differentiating with respect to Ψ we have

dν

dΨ
=

1

2πa2GM

Ψ̃3(4 − 3Ψ̃)

(1 − Ψ̃)2
. (4.49)

Equation (4.46b) gives the df to be

fH(E) =

√
2

(2π)3(GM)2a

∫ E

0

dΨ√
E − Ψ

2Ψ̃2(6 − 8Ψ̃ + 3Ψ̃2)

(1 − Ψ̃)3
. (4.50)

The evaluation of this integral is straightforward but tedious. The final result
is (Hernquist 1990)

fH(E) =
1√

2(2π)3(GMa)3/2

√Ẽ
(1 − Ẽ)2

×


(1 − 2Ẽ)(8Ẽ2 − 8Ẽ − 3) +

3 sin−1 √Ẽ√
Ẽ(1 − Ẽ)


 ,

(4.51)
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Figure 4.2 The ergodic dfs that generate stellar systems with the Hernquist (full curve)
and Jaffe (dashed curve) density profiles. M is the model’s mass and a is its scale length.
The dotted curve shows the ergodic df for the isochrone model, with a now denoting
the scale length labeled b in equation (2.47). The long-dashed curve shows the df of the
Plummer model (eq. 4.83) with a the structure radius labeled b in equation (4.91.)

where Ẽ ≡ −Ea/GM . The full curve in Figure 4.2 shows this df.
An analogous calculation yields the df of the Jaffe model. We now have

r

a
=

1

eΨ̃ − 1
so ν =

1

4πa3
e−2Ψ̃(eΨ̃ − 1)4. (4.52)

Differentiating this expression and then evaluating the integral of equation
(4.46b) we find that the ergodic df of the Jaffe model is (Jaffe 1983)

fJ(E) =
1

2π3(GMa)3/2

[
F−
(√

2Ẽ
)
−
√

2F−
(√Ẽ

)

−
√

2F+

(√Ẽ
)

+ F+

(√
2Ẽ
)]
,

(4.53)

where F±(z) is Dawson’s integral (Appendix C.3).
The Jaffe df is shown by the dashed curve in Figure 4.2. At the smallest

values of E , fJ → 1
2fH because at large radii each model potential tends to

−GM/r and for given model mass M , the density in the Jaffe model is
half that in the Hernquist model. The dfs differ profoundly at large values
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of E because the Jaffe model has a divergent central potential, while the
central potential of the Hernquist model is −GM/a. On account of the
deeper potential well of the Jaffe model, stars are distributed through a
larger volume of phase space than they are in the Hernquist model, so the
df is smaller at all energies.

From Eddington’s formula one can determine the ergodic df of the
isochrone model (§2.2.2d and Hénon 1960b)

fI(E) =
1√

2(2π)3(GMb)3/2

√Ẽ
[2(1 − Ẽ)]4

[
27 − 66Ẽ + 320Ẽ2 − 240Ẽ3

+ 64Ẽ4 + 3(16Ẽ2 + 28Ẽ − 9)
sin−1 √Ẽ√
Ẽ(1 − Ẽ)

]
.

(4.54)

The dotted curve in Figure 4.2 shows this df. At small binding energies
fI → fH because both models have ν ∝ r−4 at large r (cf. eqs. 2.51 and 2.64).
At the largest binding energy attainable in the isochrone model, 1

2GM/b, the
phase-space density is finite, while to generate the model’s central cusp the
Hernquist df has to diverge as E tends to the central potential.

(b) Differential energy distribution In statistical physics an important
role is played by the density of states g. In the limit of classical physics
g(E) is the volume of phase space per unit energy. We now evaluate g under
the assumption that the system is spherical, so the potential is a function
Φ(r) of r only. We have (eq. C.7)

g(E) =

∫
d3x d3v δ(H −E)

= (4π)2

∫ rm(E)

0

dr r2

∫
dv v2δ( 1

2v
2 + Φ −E),

(4.55)

where rm(E) is the radius at which Φ = E. To evaluate the inner integral,
we change the integration variable to ξ ≡ 1

2v
2. Then

g(E) = (4π)2

∫ rm(E)

0

dr r2

∫
dξ
√

2ξ δ(ξ + Φ −E)

= (4π)2

∫ rm(E)

0

dr r2
√

2(E − Φ).

(4.56)

Applying this formula to the Hernquist model, we find that

gH(E) = (4π)2a3
√

2|E|
∫ A

1

dX (X − 1)2

(
A

X
− 1

)1/2

= (4π)2a3
√

2|E|
[√

A− 1
(

1
8A

2 − 5
12A− 1

3

)

+ 1
8A(A2 − 4A+ 8) cos−1(A−1/2)

]
,

(4.57a)
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Figure 4.3 Left panel: the density of states gH(E) of the Hernquist model. Right panel:
the differential energy distributions of the isotropic Hernquist model (full curve) and the
R1/4 model (dashed curve).

where

A ≡ GM

a|E| . (4.57b)

The left panel in Figure 4.3 shows that gH(E) increases rapidly with E.
The differential energy distribution

N(E) ≡ g(E)f(E) (4.58)

is such that the fraction of the system’s stars that have energies in the range
(E + dE,E) is N(E) dE. For most realistic stellar systems the increase
with E in g overwhelms the decrease of f , with the result that N(E) is
an increasing function of E. The right panel of Figure 4.3 illustrates this
by showing the differential energy distributions of the Hernquist and R1/4

models (eq. 1.17 with m = 4). In the case of the R1/4 model7 N(E) ∝ eβE is
approximately valid for E/|Φ(0)| ∼> −0.8. The rise in N(E) with E reflects
the fact that there are a large number of stars in the low-density envelope of
a galaxy, and these stars are crowded into a relatively small range in binding
energy.

4.3.2 DFs for anisotropic spherical systems

From Eddington’s formula we can find an ergodic df f(H) that generates any
given spherical density distribution ν(r) in a given potential Φ(r). However,
there is no guarantee that this df will satisfy the physical requirement f ≥
0. We now show that it is always possible find a non-negative df if we
consider dfs of the form f(H,L), by building the system using only circular

7 In fact N(E) ∝ eβE for all Sérsic models (Ciotti 1991).
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orbits. By combining circular orbits of a given relative energy E ′ with their
angular-momentum vectors uniformly distributed over a sphere, we generate
a spherical shell with the radius of circular orbits of energy E ′. Any density
profile ν(r) can then be formed by adding such shells with a suitable radial
weighting. We can express this idea mathematically by noting that the df

of the spherical shell is proportional to the product of two delta functions,
fs(E , L) = δ(E − E ′)δ[L − Lc(E ′)], where Lc(E ′) is the angular momentum
of a circular orbit of relative energy E ′. For a suitably chosen non-negative
function F (E ′) the integral

fc(E , L) ≡
∫ Emax

0

dE ′fs(E ′, L)F (E ′) = F (E)δ[L− Lc(E)] (4.59)

is a df that generates the required density distribution ν(r).
The circular-orbit df fc is associated with vanishing radial dispersion

σr. If a non-negative ergodic df fi(E) also exists, then these two dfs will be
joined by a continuum of dfs of the form

fα ≡ αfi + (1 − α)fc (0 ≤ α ≤ 1). (4.60)

As α increases the orbits become steadily more eccentric and σr increases to
equality with σθ. This sequence may even continue to dfs with α > 1 for
which σr > σθ, but such a continuation is not guaranteed: the more heavily
we weight highly eccentric orbits, the more strongly ν(r) is constrained by
the requirement that fα be non-negative. Conversely, the circular-orbit df

will still be non-negative even when ν(r) is such that fi(E) is somewhere
negative, and it is likely that we can construct some non-negative dfs that
have σr 6= 0, even though an ergodic df is not allowed.

We define the anisotropy parameter to be

β ≡ 1 −
σ2
θ + σ2

φ

2σ2
r

= 1 −
v2
θ + v2

φ

2v2
r

. (4.61)

This parameter quantifies the system’s degree of radial anisotropy: if all
orbits are circular, σr = 0 and β = −∞; if the df is ergodic, β = 0; if all
orbits are perfectly radial, σθ = σφ = 0 and β = 1. dfs with β > 0 are said
to be radially biased, while those with β < 0 are tangentially biased.
The value of β is determined by the way in which f depends on total angular
momentum L.

To explore the effect of anisotropy on the structure of a stellar system,
we shall find it useful to have available explicit expressions for dfs that all
generate the same radial profile, but have different degrees of radial anisot-
ropy.

(a) Models with constant anisotropy Models in which the anisotropy
parameter takes some fixed non-zero value β at all radii can be generated by
taking the df to be of the form (Problem 4.6)

f(E , L) = L−2βf1(E), (4.62)



4.3 Spherical systems 295

where f1 is an arbitrary non-negative function. In terms of the polar coor-
dinates for velocity space,

vr = v cos η ; vθ = v sin η cosψ ; vφ = v sin η sinψ, (4.63)

we may write

ν(r) =

∫
d3v f(E , L) = 2π

∫ π

0

dη sin η

∫ √
2Ψ

0

dv v2f
(
Ψ − 1

2v
2, rv sin η

)
.

(4.64)
For a df of the form (4.62) this expression may be rewritten

ν(r) =
2πIβ
r2β

∫ ∞

0

dv v2−2βf1[Ψ(r) − 1
2v

2], (4.65a)

where

Iβ ≡
∫ π

0

dη sin1−2β η =
√
π

(−β)!

( 1
2 − β)!

(β < 1). (4.65b)

The integral in (4.65a) is similar to that occurring in equation (4.43), so after
multiplying through by r2β we obtain an equation that is closely analogous
to equation (4.44):

2β−1/2

2πIβ
r2βν =

∫ Ψ

0

dE f1(E)

(Ψ − E)β−1/2
(β < 1). (4.66)

When the left side is considered to be a function of Ψ rather than r, this
becomes an Abel integral equation (B.74a) so long as 1

2 < β < 3
2 . More-

over, when β ≤ 1
2 , the equation can be reduced to an Abel equation by

differentiating both sides one or more times with respect to Ψ. For example,

2β−1/2

2πIβ

d

dΨ
(r2βν) = ( 1

2 − β)

∫ Ψ

0

dE f1(E)

(Ψ − E)β+1/2
, (4.67)

which is an Abel equation for − 1
2 < β < 1

2 . Hence we can analytically solve

for f1(E) whenever we can express r2βν as a function of Ψ.
Equation (4.66) is exceptionally simple when β = 1

2 , corresponding to

σ2
θ = σ2

φ = 1
2σ

2
r . In this case the denominator of the integrand becomes a

constant. Differentiating both sides with respect to Ψ we find

f1(Ψ) =
1

2π2

d

dΨ
(rν) (β = 1

2 ). (4.68)

In the case of the Hernquist model, from equations (4.47) and (4.48) we find
that

f1(E) =
3Ẽ2

4π3GMa
, Ẽ =

Ea
GM

. (4.69)
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Figure 4.4 Line-of-sight velocity dispersion as a function of projected radius, from spa-
tially identical systems that have different dfs. In each system the density and potential
are those of the Hernquist model and the anisotropy parameter β of equation (4.61) is
independent of radius. The curves are labeled by the relevant value of β. In the isotropic
system, the velocity dispersion falls as one approaches the center (cf. Problem 4.14).

A contrasting case of almost equal simplicity is β = − 1
2 , corresponding to

σ2
θ = σ2

φ = 3
2σ

2
r . Then equation (4.66) becomes

1

2π2

ν

r
=

∫ Ψ

0

dE f1(E)(Ψ − E). (4.70)

Differentiating through twice with respect to Ψ we have

f1(Ψ) =
1

2π2

d2(ν/r)

dΨ2
(β = − 1

2 ). (4.71)

In the case of the Hernquist model, this yields

f1(E) =
1

4π3(GMa)2

d2

dẼ2

(
Ẽ5

(1 − Ẽ)2

)
, (4.72)

which one may easily show is non-negative for Ẽ ≤ 1.
Figure 4.4 shows the line-of-sight velocity dispersion σ‖ of a Hernquist

model as a function of projected radius when the df is (i) ergodic (eq. 4.50)
labeled “0”; (ii) radially biased (eqs. 4.62 and 4.69) labeled 1

2 , and (iii)

tangentially biased (eqs. 4.62 and 4.72) labeled − 1
2 . In the radially biased

system, the central value of σ‖ is nearly twice that in the isotropic system,
and more than twice that in the tangentially biased system. Conversely, at
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large radii the tangentially biased system has the largest value of σ‖, and the
radially biased system the smallest.

It is easy to understand why radial bias increases line-of-sight velocity
dispersion at small radii while tangential bias increases it at large: along
the line of sight through the center, only vr contributes to σ‖; conversely, in
the outer envelope, where the galaxy’s density profile is steeply falling, the
dominant contribution to the dispersion comes from where the line of sight
makes its closest approach to the center of the galaxy. At this point of closest
approach, only the tangential velocity contributes to σ‖, so a bias towards
tangential velocities increases σ‖. The tendency of radial bias to make σ‖ a
steeper function of radius is general, and constitutes one of the most vexing
sources of uncertainty in attempts to measure the mass distributions of stellar
systems (§4.9).

(b) Osipkov–Merritt models Models of galaxy formation generally im-
ply that β increases with radius, corresponding to a nearly ergodic df near
the center and a radially biased df in the outer envelope (§4.10.3). Sim-
ple models in which β increases with radius can be constructed as follows
(Osipkov 1979; Merritt 1985). We assume that f depends on E and L only
through the variable

Q ≡ E − L2

2r2
a

, (4.73)

where ra is a constant, called the anisotropy radius. In terms of the polar
coordinates defined by equations (4.63), the definition of Q becomes

Q = Ψ − 1
2v

2

(
1 +

r2

r2
a

sin2 η

)
. (4.74)

We substitute the df f(E , L) = f(Q) into equation (4.64) and re-
place the integration variable v with Q. At constant r and η, dQ =
−
[
1 + (r/ra)2 sin2 η

]
v dv, and thus

ν(r) = 2π

∫ π

0

dη sin η

∫ Ψ

0

dQf(Q)

√
2(Ψ −Q)

[
1 + (r/ra)2 sin2 η

]3/2 , (4.75)

where we have imposed the condition f(Q) = 0 for Q ≤ 0. We interchange
the order of integrations in equation (4.75), and the inner integral becomes

∫ π

0

dη
sin η

[
1 + (r/ra)2 sin2 η

]3/2 =
2

1 + (r/ra)2
. (4.76)

Hence (
1 +

r2

r2
a

)
ν(r) = 4π

∫ Ψ

0

dQf(Q)
√

2(Ψ −Q). (4.77)
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Figure 4.5 The differential energy
distributions of the Hernquist models
with constant anisotropy β = − 1

2
(dashed curve), β = 0 (full curve)
and β = 1

2
(dotted curve).

But the right side of this equation is identical with the right side of equation
(4.43), with E replaced by Q. Hence by equation (4.46b) we have

f(Q) =
1√
8π2

[ ∫ Q

0

dΨ√
Q− Ψ

d2νQ
dΨ2

+
1√
Q

(
dνQ
dΨ

)

Ψ=0

]
, (4.78a)

where

νQ(r) ≡
(

1 +
r2

r2
a

)
ν(r). (4.78b)

A model for which the df has the form f(Q), where Q is given by equation
(4.73), is called an Osipkov–Merritt model.

The anisotropy parameter of any model with a df of the form f(Q) is
(Problem 4.13)

β(r) =
1

1 + r2
a/r

2
. (4.79)

This function rises from zero at r � ra (ergodic df) to unity at r � ra

(radial df), and already exceeds 0.9 for r > 3ra.

(c) Other anisotropic models The degree of anisotropy in the models
described above is controlled by a single parameter, either β or ra. We can
obtain more flexible models by considering a df of the form

f(E , L) = G(E)h(x), where x ≡ L

L0 + Lc(E)
(4.80)

with L0 a free parameter and Lc(E) is the angular momentum of the circular
orbit with energy E . The variable x increases from zero for radial orbits to
Lc/(L0 + Lc) for circular orbits, and the model will be tangentially biased
if h is an increasing function of x, and radially biased if h is a decreasing
function of x. For any chosen function h(x), one can numerically determine
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G(E) such that the model has a given radial density profile (Gerhard 1991).
Hence this approach makes it possible to construct models that have the
same density profile but a wide variety of functional forms of β(r).

(d) Differential-energy distribution for anisotropic systems It
proves useful to calculate the differential energy distribution of a model with
df f(H,L). With vt = L/r the tangential speed, we have (cf. eq. 4.55)

N(E) =

∫
d3xd3v δ(E −H)f(H,L)

= 8π2

∫
dr r2

∫
dvrdvt vt δ(E −H)f(H,L)

= 8π2

∫
dr

∫
dvrdLLδ(E −H)f(H,L)

= (4π)2

∫
dr

∫
dL

Lf(E,L)√
2(E − Φ) − L2/r2

,

(4.81)

where the last equality uses v2
r = 2(E − Φ) − L2/r2 to eliminate vr in favor of

E; a factor of two arises because vr can be positive or negative. The integral
is taken over the region in (r, L) space in which the argument of the square
root is non-negative. Figure 4.5 shows N(E) for the Hernquist models with
constant anisotropy parameters β = − 1

2 (dashed curve), β = 0 (full curve)

and β = 1
2 (dotted curve). Even though the dfs of these models are very

different, they yield extremely similar differential energy distributions. The
only significant difference is at large binding energy, and in the sense that
the radially biased model (β = 1

2 ) has fewer very tightly bound stars than
does the tangentially biased model. This result arises because stars that are
on eccentric orbits contribute to the density at radii that are much smaller
than the radius of the circular orbit that has the same energy. This difference
may significantly affect the vulnerability of the central regions to disruption
by external perturbers. Thus we expect that galaxies with radially biased
dfs are more fragile than galaxies with ergodic dfs.

4.3.3 Spherical systems defined by the DF

In the previous subsection we found dfs that generated a given density pro-
file. Not surprisingly, the resulting system had a simple functional form for
the density in real space, and usually a much more complex expression for
the density in phase space (cf. eq. 4.54). In this section we proceed in the
reverse order: we choose the functional form of the density in phase space
and then investigate what the system looks like in real space.

The Jeans theorem and the system’s spherical symmetry allow us to
assume that f is a function of the relative energy E = Ψ − 1

2v
2 and the
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magnitude of the angular momentum, and to write Poisson’s equation in the
form

1

r2

d

dr

(
r2 dΨ

dr

)
= −4πGρ = −4πGM

∫
d3v f

(
Ψ − 1

2v
2, |r × v|

)
, (4.82)

where M is the system’s total mass. For any given function f(E , L), this is an
integro-differential equation for Ψ(r). Since we have to solve for the potential
after we have chosen f , we cannot normalize f to have unit integral over all
phase space as we have done hitherto, until after we have solved equation
(4.82) for Ψ(r). For this reason it is convenient to redefine our normalization
so that the integral of f over phase space is the total mass; thus, in this
section we shall assume that the mass density ρ is given by ρ =

∫
d3v f .

(a) Polytropes and the Plummer model A simple form for the df is

f(E) =

{
FEn−3/2 (E > 0)
0 (E ≤ 0).

(4.83)

With this form of f we have for the density ρ at radii where Ψ > 0

ρ = 4π

∫ ∞

0

dv v2f(Ψ − 1
2v

2) = 4πF

∫ √
2Ψ

0

dv v2
(
Ψ − 1

2v
2
)n−3/2

. (4.84)

If we make the substitution v2 = 2Ψ cos2 θ, this becomes

ρ = cnΨn (Ψ > 0), (4.85a)

where

cn ≡ 27/2πF

[ ∫ π/2

0

dθ sin2n−2 θ −
∫ π/2

0

dθ sin2n θ

]
=

(2π)3/2(n− 3
2 )!F

n!
.

(4.85b)
If cn is to be finite, we must have n > 1

2 .
In these models the density rises as the nth power of the relative po-

tential when Ψ > 0 and is, of course, zero when Ψ ≤ 0. No finite ergodic
stellar system is homogeneous, for this would correspond to ρ ∝ Ψ0 or n = 0,
which would violate the constraint n > 1

2—in other words there is no stellar-
dynamical analog of a self-gravitating sphere of incompressible liquid.

When we use equation (4.85a) to eliminate ρ from Poisson’s equation,
we find

1

r2

d

dr

(
r2 dΨ

dr

)
+ 4πGcnΨn = 0. (4.86)

Polytropic gases have an equation of state p = Kργ , where K is a constant
and γ is the ratio of principal specific heats (cf. eq. F.46). Thus the equa-
tion of hydrostatic equilibrium for a self-gravitating sphere of polytropic gas
(eq. F.12),

dp

dr
= −ρdΦ

dr
, (4.87a)
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becomes

Kγργ−2 dρ

dr
=

dΨ

dr
. (4.87b)

If we set the constant involved in the definition of Ψ such that Ψ = 0 on the
edge of the system, equation (4.87b) yields on integration

ργ−1 =
γ − 1

Kγ
Ψ. (4.88)

Equation (4.88) is the same as equation (4.85a) with

cn =

(
γ − 1

Kγ

)1/(γ−1)

and γ = 1 +
1

n
. (4.89)

Hence the density distribution of an ergodic stellar system with df (4.83) is
the same as that of a polytropic gas sphere with γ = 1 + 1/n. For this reason
stellar systems with dfs given by (4.83) are known as polytropes. Note that
polytropic gas spheres with γ > 3 require n < 1

2 , so these spheres have no
stellar-dynamical analogs. A full account of gaseous polytropes can be found
in Chandrasekhar (1939) and Horedt (2004).

The simplest solutions of equation (4.86) are obtained by assuming that
the density varies as a power of radius, ρ ∝ r−α. Since ρ ∝ Ψn in a polytrope,
we have Ψ ∝ r−α/n. Inserting this ansatz into both sides of equation (4.86),
and requiring the same power of r to occur on each side, we find that α =
2n/(n − 1). Since the potential cannot decrease with radius faster than in
the Keplerian case Ψ ∝ r−1, we have α/n ≤ 1, so solutions of this type are
feasible only for n ≥ 3. The mass contained within radius r is

M(r) = −r
2

G

dΨ

dr
∝ r1−α/n = r(n−3)/(n−1), (4.90)

which is independent of radius in the case n = 3 but otherwise tends to
zero as r → 0. Hence in the case n = 3 our power-law solution represents
a massless halo orbiting in the potential of a point mass, but for n > 3
our solution is a self-gravitating system. In the limit n → ∞ the potential
becomes proportional to ln r; we shall encounter this model below as the
“singular isothermal sphere.” Problem 4.14 gives the velocity dispersion in
power-law models.

To obtain models in which the central potential and density are finite,
we eliminate r and Ψ from equation (4.86) in favor of the rescaled radial
variables,

s ≡ r

b
and ψ ≡ Ψ

Ψ0
, where b ≡ ( 4

3πGΨn−1
0 cn)−1/2 (4.91a)
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is the scale radius and Ψ0 = Ψ(0). Now equation (4.86) takes the simple
form

1

s2

d

ds

(
s2 dψ

ds

)
=

{
−3ψn ψ > 0;
0 ψ ≤ 0.

(4.91b)

This equation is known as the Lane–Emden equation after H. Lane and
R. Emden who studied it in connection with polytropic gas spheres. The
natural boundary conditions to impose on it are: (i) ψ(0) = 1 by definition;
(ii) dψ/ds

∣∣
0

= 0, since in the absence of a central singularity in the density,
the gravitational force must vanish at the center.

For general n, (4.91b) cannot be solved in terms of elementary func-
tions. However, there are two special cases for which simple analytical so-
lutions are available. (i) When n = 1, equation (4.91b) becomes the linear
Helmholtz equation familiar from the theory of spherical waves (see Prob-
lems 4.15 and 4.16); and (ii) when n = 5, we obtain a model discovered by
Schuster (1883) that is worth describing in some detail because it provides
the simplest plausible model of a self-consistent stellar system.

Consider the function

ψ =
1√

1 + s2
. (4.92)

Differentiating with respect to s we find that

1

s2

d

ds

(
s2 dψ

ds

)
= − 1

s2

d

ds

(
s3

(1 + s2)3/2

)
= − 3

(1 + s2)5/2
= −3ψ5. (4.93)

Therefore ψ is a solution of equation (4.91b) with n = 5. Since ψ also
satisfies the central boundary conditions, it represents a physically acceptable
potential. In fact, it is a dimensionless form of equation (2.44a), the potential
of the Plummer model introduced in §2.2.2c. That is, the n = 5 polytrope
is a Plummer model. The density of this model, given by equation (2.44b),
is everywhere non-zero, declining as r−5 for r � b. The total mass is finite,
however, with value

M =
1

G

(
r2 dΦ

dr

)

r→∞
= − b

G

(
s2 dΨ

ds

)

s→∞
=
bΨ0

G
. (4.94)

In general, the extent of the outer parts of a polytropic model increases
with n; for n < 5 the density goes to zero at a finite radius, for n = 5 the
density is non-zero everywhere but the total mass is finite, and for n > 5 the
density falls off so slowly at large r that the mass is infinite.

(b) The isothermal sphere We have just seen that to every polytropic
gas sphere with γ < 3, there corresponds a stellar-dynamical polytrope with
index n = 1/(γ − 1) > 1

2 . Thus stellar polytropes with large n correspond
to gaseous polytropes for which γ ' 1. Hence in the limit n → ∞, the
corresponding gaseous system has γ = 1, which implies that p = Kρ. This
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is the equation of state of an isothermal gas. The equation governing the
structure of a self-gravitating isothermal sphere of ideal gas can be derived by
taking a suitable limit of the Lane–Emden equation as n→ ∞ (Hunter 2001),
but a more illuminating derivation starts with the equation of hydrostatic
equilibrium, which reads

dp

dr
=
kBT

m

dρ

dr
= −ρdΦ

dr
= −ρGM(r)

r2
, (4.95a)

where kB is Boltzmann’s constant, p and T are the pressure and temperature
of the gas, m is the mass per particle, and M(r) is the total mass interior
to radius r (eqs. F.12 and F.31). Multiplying equation (4.95a) through by
(r2m/ρkBT ) and then differentiating with respect to r, we obtain

d

dr

(
r2 d ln ρ

dr

)
= −4πGm

kBT
r2ρ, (4.95b)

where we have used the relationship dM/dr = 4πr2ρ.
Now suppose we have a stellar-dynamical system whose df is

f(E) =
ρ1

(2πσ2)3/2
eE/σ

2

=
ρ1

(2πσ2)3/2
exp

(
Ψ − 1

2v
2

σ2

)
. (4.96)

Then, integrating over all velocities, we find

ρ = ρ1eΨ/σ2

. (4.97)

Poisson’s equation for this system reads

1

r2

d

dr

(
r2 dΨ

dr

)
= −4πGρ, (4.98)

or, with equation (4.97)

d

dr

(
r2 d ln ρ

dr

)
= −4πG

σ2
r2ρ. (4.99a)

For future reference, note that if we eliminate ρ rather than Ψ between
equations (4.97) and (4.98), we obtain

d

dr

(
r2 dΨ

dr

)
+ 4πGρ1r

2eΨ/σ2

= 0, (4.99b)

which is the analog of the governing equation of polytropes, (4.86).
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Equations (4.95b) and (4.99a) are identical if we set

σ2 =
kBT

m
. (4.100)

Therefore the structure of an isothermal self-gravitating sphere of gas is iden-
tical with the structure of a collisionless system of stars whose df is given
by equation (4.96).

A little thought shows why there is this correspondence between the
gaseous and stellar-dynamical isothermal spheres. The distribution of ve-
locities at each point in the stellar isothermal sphere is the Maxwellian or
Maxwell–Boltzmann distribution

dn ∝ exp
(
− |v|2

2σ2

)
d3v. (4.101)

However, kinetic theory (e.g., Pathria 1972) tells us that this is also the
equilibrium Maxwell–Boltzmann distribution which would obtain if the stars
were allowed to bounce elastically off each other like the molecules of a gas.
Therefore, if the df of a system is given by equation (4.96), it is a matter of
indifference whether the particles of the system collide with one another or
not.

Notice that the correspondence between a gaseous polytrope with γ > 1
and the corresponding stellar-dynamical model is not as close as that between
the two isothermal systems; the gas molecules always have a Maxwellian dis-
tribution (with temperature depending on radius), while the stellar velocity
distribution is given by (4.83). Thus a stellar polytrope would be drastically
altered if elastic collisions were allowed to occur between its stars.

The mean-square speed of the stars at a point in the isothermal sphere
is

v2 =

∫ ∞

0

dv v4 exp

(
Ψ − 1

2v
2

σ2

)

∫ ∞

0

dv v2 exp

(
Ψ − 1

2v
2

σ2

) = 2σ2

∫ ∞

0

dxx4e−x
2

∫ ∞

0

dxx2e−x
2

= 3σ2. (4.102)

Thus v2 is independent of position. The dispersion in any one component of
velocity, for example (v2

r )1/2, is equal to σ.
It is easy to find one solution of equation (4.99a). If we set ρ = Cr−b,

the left side of the equation is found to equal −b, while the right side equals
−(4πG/σ2)Cr2−b. Therefore, we must set b = 2 and C = σ2/(2πG), which
yields

ρ(r) =
σ2

2πGr2
. (4.103)
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This solution describes the singular isothermal sphere. The mass interior
to radius r, the circular speed and the gravitational potential are (eqs. 2.60,
2.61, and 2.62)

M(r) =
2σ2r

G
; vc(r) =

√
2σ ; Φ(r) = 2σ2 ln(r) + constant, (4.104)

and the surface density is (eq. 2.59)

Σ(R) =
σ2

2GR
. (4.105)

The singular isothermal sphere has infinite density at r = 0. To obtain a
solution of equations (4.99) that is well behaved at the origin, it is convenient
to define new dimensionless variables ρ̃ and r̃ to replace ρ and r; we define
these in terms of the central density ρ0 and the King radius r0 by

ρ̃ ≡ ρ

ρ0
and r̃ ≡ r

r0
, where r0 ≡

√
9σ2

4πGρ0
. (4.106)

We shall find that r0 is the radius at which the projected density of the
isothermal sphere falls to roughly half (in fact, 0.5013) of its central value,
and because of this some authors call r0 the core radius in analogy with the
usual observational definition (page 30 and BM p. 366). In terms of our new
variables, equations (4.99) become

d

dr̃

(
r̃2 d ln ρ̃

dr̃

)
= −9r̃2ρ̃ (4.107a)

or
d

dr̃

[
r̃2 d(Ψ/σ2)

dr̃

]
+ 9r̃2 exp

[
Ψ(r) − Ψ(0)

σ2

]
= 0. (4.107b)

In Figure 4.6 we show the function ρ̃(r̃) obtained by numerically integrating
equation (4.107a) from r̃ = 0 outward, starting from the boundary conditions
ρ̃(0) = 1 and dρ̃/dr̃ = 0. Notice that by about r̃ = 15, ρ̃(r̃) is declining
as a straight line in the log-log plot of Figure 4.6; in fact, the solution is
approaching8 the singular isothermal sphere of equation (4.104), which in
these variables has the form ρ̃ = 2

9 r̃
−2. This is shown as a dotted line in the

figure.
In Figure 4.6 we also plot the surface density Σ(R) of the isothermal

sphere in units of ρ0r0. For R � r0 the surface density asymptotes to that
of the singular isothermal sphere (eq. 4.105).

8 The asymptotic behavior of the isothermal sphere as r → ∞ is described more
accurately in Problem 7.6.
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Figure 4.6 Volume (ρ/ρ0) and projected (Σ/ρ0r0) mass densities of the isothermal sphere.
The dotted lines show the volume- and surface-density profiles of the singular isothermal
sphere. The dashed curve shows the surface density of the modified Hubble model (4.109a).

If M(r) is the mass interior to r, the circular speed at r is given by

v2
c (r) =

GM(r)

r
. (4.108a)

On integrating equation (4.99a), we find that

v2
c = −σ2 d ln ρ

d ln r
. (4.108b)

In Figure 4.7 we plot d ln ρ/d ln r for the isothermal sphere, which for r � r0

tends to −2. Thus the circular speed at large r is constant at vc =
√

2σ, the
value for the singular isothermal sphere (eq. 4.104).

At r̃ ∼< 2 (r ∼< 2r0) a useful approximation to ρ̃(r̃) is the modified Hubble
model introduced in §2.2.2e,

ρ̃(r̃) ≈ ρ̃h(r̃) ≡ 1

(1 + r̃2)3/2
. (4.109a)

The error in using this equation as an approximation to the isothermal sphere
is less than 7% for r̃ < 4. The surface density to which ρ̃h gives rise is
(eq. 2.55)

Σh(R̃) =
2

1 + R̃2
, (4.109b)
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Figure 4.7 The logarithmic
density gradient of the isother-
mal sphere. Note that the den-
sity gradient oscillates at large
radii, a phenomenon that is
explored in Problem 7.6.

where R̃ ≡ R/r0.

The density distribution ρ̃h does not fit the isothermal profile well at
r̃ ∼> 3 because it settles asymptotically to a logarithmic slope of −3 rather
than −2 as is required by the isothermal profile. On the other hand, at
large radii, ρ̃h has another use: when r̃ � 1 the projected density (4.109b)
to which it gives rise is very similar to the Hubble–Reynolds law (eq. 2.52),
which fits the surface-brightness profiles of many elliptical galaxies rather
well. Thus ρ̃h provides a simple analytical approximation to the inner parts
of an isothermal sphere, or to the outer parts of a galaxy that obeys the
Hubble–Reynolds law. It does not fit the outer parts of an isothermal sphere
or the inner parts of the Hubble–Reynolds law. This dual application of ρ̃h

has produced a certain amount of confusion in the literature.

From the astrophysical point of view, the isothermal sphere has a serious
defect: its mass is infinite. Thus from equation (4.104), we have that M ∝ r
at large r. No real astrophysical system can be modeled over more than a
limited range of radii with a divergent mass distribution. On the other hand,
the circular-speed curves of spiral galaxies (BM §8.2.4) are often remarkably
flat out to great radii, and the divergent mass of the isothermal sphere is a
useful reminder that we have little direct knowledge of the mass distribution
in the outer parts of galaxies.

(c) Lowered isothermal models We seek a model that resembles the
isothermal sphere at small radii, where the majority of stars have large values
of the relative energy E , but is less dense than the isothermal sphere at large
radii, so its total mass is finite. We may obtain the df fK of such a model
by simply diminishing the df of the isothermal sphere at small values of
E . Thus we modify the df (4.96) of the isothermal sphere in such a way
that fK = 0 for E ≤ E0. We may exploit the arbitrary constant Φ0 in the
definition (4.41) of E to set the critical relative energy E0 = 0. Therefore
fK(E) should be of the same form as equation (4.96) for E � 0 and zero for
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Figure 4.8 (a) Density profiles of four King models: from top to bottom the central
potentials of these models satisfy Ψ(0)/σ2 = 12, 9, 6, 3. (b) The projected mass densities
of these models (full curves), and the projected modified Hubble model of equation (4.109b)
(dashed curve). The squares show the surface brightness of the elliptical galaxy NGC 283
(Lauer et al. 1995).

E < 0. A suitable function is

fK(E) =

{
ρ1(2πσ2)−3/2

(
eE/σ

2 − 1
)

E > 0;
0 E ≤ 0.

(4.110)

This df defines the family of King models.9 We now derive the density
profiles and other properties of these models.

We proceed much as in the case of the isothermal sphere. Substituting
into equation (4.110) for E from equation (4.41) and integrating over all
velocities, we obtain the density at any radius as

ρK(Ψ) =
4πρ1

(2πσ2)3/2

∫ √
2Ψ

0

dv v2

[
exp

(
Ψ − 1

2v
2

σ2

)
− 1

]

= ρ1

[
eΨ/σ2

erf

(√
Ψ

σ

)
−
√

4Ψ

πσ2

(
1 +

2Ψ

3σ2

)]
,

(4.111)

9
dfs of the form (4.110) were actually introduced by Michie (1963) and studied in

detail by Michie & Bodenheimer (1963), but King (1966) made them well known—see
King (1981) for a discussion of their history.
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where erf(x) is the error function (Appendix C.3). Poisson’s equation for Ψ
may therefore be written

d

dr

(
r2 dΨ

dr

)
= −4πGρ1r

2

[
eΨ/σ2

erf

(√
Ψ

σ

)
−
√

4Ψ

πσ2

(
1 +

2Ψ

3σ2

)]
. (4.112)

We integrate this ordinary differential equation for Ψ(r) outwards from r = 0,
where we set dΨ/dr = 0 and choose a value for Ψ. This value determines
the central potential Φ(0) and total mass in the following implicit way. As
we integrate equation (4.112) outward, dΨ/dr decreases, because initially
dΨ/dr = 0 and d2Ψ/dr2 < 0. As Ψ decreases towards zero, the range

(0,
√

2Ψ) of speeds of stars at a given radius narrows, and the density of
stars drops. Eventually at some radius rt, when Ψ becomes equal to zero, the
density vanishes. We call rt the “tidal radius,” following the term observers
use to denote the outermost limit of a cluster (page 30). The mass M(rt) =
4π
∫ rt

0 dr r2ρK is the system’s total mass, and the potential at the tidal radius
is

Φ(rt) = −GM(rt)

rt
. (4.113)

The central potential is then Φ(0) = Φ(rt)−Ψ(0). The bigger the value Ψ(0)
from which we start our integration of equation (4.112), the greater will be
the tidal radius, the total mass, and |Φ(0)|.

Figure 4.8a shows the density profiles of King models obtained by inte-
grating equation (4.112) from several values of Ψ(0). The radial coordinate
is marked in units of the King radius r0 that is defined by equations (4.106).
Figure 4.8b shows the projected density profiles ΣK(R) of the King mod-
els of Figure 4.8a. Notice that for some of these models r0 is appreciably
larger than the half-brightness, or core radius rc, which is defined by the
condition ΣK(rc)/ΣK(0) = 1

2—see the discussion following equation (4.106).
The dashed curve in Figure 4.8b shows the modified Hubble model (4.109b),
which provides a moderately good fit to the projected surface density of the
King model with central potential Ψ(0) ' 8σ2. The squares in Figure 4.8b
show the surface-brightness profile of the giant elliptical galaxy NGC 283.
The King model with Ψ(0) ' 10σ2 fits this profile fairly well.

The ratio of the tidal radius rt to the King radius r0 defines the con-
centration c through

c ≡ log10(rt/r0). (4.114)

King models form a sequence that may be parameterized in terms of either
c or Ψ(0)/σ2. Figure 4.9 gives the relationship between c and Ψ(0)/σ2. In
the limit c→ ∞, Ψ(0)/σ2 → ∞, the sequence of King models goes over into
the isothermal sphere.

Figure 4.10 shows the dependence on the concentration of the half-mass
radius rh (left panel) and the ratio rh/rg of the half-mass and gravitational
radii (right panel). We see that although rh/r0 ranges over two orders of
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Figure 4.9 The relationship between
the concentration c of a King model
(eq. 4.114) and the central potential
Ψ(0) from which equation (4.112) is
integrated.

Figure 4.10 The half-mass radius rh (left) and the ratio rh/rg of the half-mass radius to
the gravitational radius (2.42) as a function of the concentration of a King model.

magnitude along the sequence of King models, rh/rg is confined to the in-
terval (0.4, 0.51).

At each point on the sequence of King models, there is a two-parameter
family of systems that are related to each other by changes of scale. Thus
for any value of c there are models having any given values of two of the
parameters r0, ρ0 and σ, with the third then being determined by equation
(4.106).

The parameter σ that occurs in the relations we have given for King
models must not be confused with the actual velocity dispersion σr = σθ =
σφ of the stars of the system, or with the line-of-sight dispersion σ‖. Fig-
ure 4.11 is a plot of σr/σ and σ‖/σ for several King models. One sees that
in all these models the velocity dispersion falls monotonically from the cen-
ter outward, reaching zero at rt. The velocity dispersion of the stars at rt

is zero because the potential energy of these stars is already equal to the
largest energy allowed to any star.

The King df (4.110) is only one of several possible modified isothermal
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Figure 4.11 The one-dimensional velocity dispersion σr = σθ = σφ at a given spatial
radius r (full curves) and the rms line-of-sight velocity σ‖ at projected radius R (dashed

curves) for the King models shown in Figure 4.8. The curves are labeled by Ψ(0)/σ2 .

dfs. Woolley & Dickens (1961) discussed models for which f is given by
(4.96) for E > 0 and is zero otherwise, while Wilson (1975) (see also Hunter
1977) considered models generated by dfs of the form

fW = constant ×
{[

eE/σ
2 − 1 − (E/σ2)

]
for E > 0;

0 otherwise.
(4.115)

We now examine some spherical systems generated by dfs that depend
on both E and L, with the result that their velocity-dispersion tensors are
anisotropic.

(d) Double-power models In Problem 4.6 it is shown that a df of
the form Lγf1(E) generates a model in which the anisotropy parameter β
(eq. 4.61) is at all radii equal to − 1

2γ. By adding two dfs of this type, say
Lγ1f1(E) and Lγ2f2(E), we can generate a model in which β is a function
of radius. Generalizing this idea, we are led to consider dfs of the form
f(E , L) =

∑
γ L

γfγ(E). We can take the idea of power-series expansion one
step further by supposing that the functions fγ can also be expanded as
power series. The df is then of the form

f(E , L) =
∑

γδ

αγδL
γEδ, (4.116)

where the αγδ are arbitrary constants. The indices γ and δ are not necessarily
integers. The density will be real and finite only if γ > −2, and a lower limit
on δ will be required to ensure that the density diminishes sufficiently fast



312 Chapter 4: Equilibria of Collisionless Systems

as r → ∞. Kent & Gunn (1982) investigated self-gravitating models with
dfs that consist of a single term in the series of (4.116).

(e) Michie models A natural extension of King models to include veloc-
ity anisotropy is the family of Michie models defined by the df

fM(E , L) =

{
ρ1(2πσ2)−3/2e−L

2/(2r2aσ
2)
(
eE/σ

2 − 1
)

(E > 0)
0 (E ≤ 0).

(4.117)

In the limit ra → ∞ this df reduces to the df (4.110) of the King models, and
for E � σ2 the variables E and L occur only through the variable Q that we
defined in connection with Osipkov–Merritt models (eq. 4.73). Consequently,
in a Michie model the velocity distribution is isotropic at the center, nearly
radial in the outer parts, and the transition occurs near the anisotropy radius
ra. These models are fully described in Michie & Bodenheimer (1963).

4.4 DFs for axisymmetric density distributions

In §3.2 we saw that most orbits in an axisymmetric potential admit three
isolating integrals, H , Lz and some third integral I3, for which we have an
analytic expression only if the potential has the Stäckel form (§3.5.3). Since
I3, when known, has a complicated functional form, models in which the
df is a function f(H,Lz) of the two “classical” integrals are the only ones
susceptible to analytic treatment.

4.4.1 DF for a given axisymmetric system

Equations (4.39) express a df of the form f(E , Lz) as the sum of parts
f±(E , Lz) that are even and odd in Lz. We have seen that the probabil-
ity density ν(R, z) is independent of f−, while the azimuthal flux νvφ is
independent of f+. Lynden–Bell (1962a) extended Eddington’s work on
spherical systems to show that f+(E , Lz) can be deduced if we are given
the density ν(R, z) and its confining potential Φ(R, z), and that f−(E , Lz)
can be recovered if vφ(R, z) is also known. To prove these results, we use
cylindrical coordinates (vm, ψ, vφ) for velocity space, with the polar axis in
the azimuthal direction, so vR = vm cosψ, vz = vm sinψ. We have d3v =
vmdvmdψdvφ and the Jacobian determinant ∂(E , Lz)/∂(vφ, vm) = Rvm, so
d3v = R−1dEdLzdψ. Hence

ν(R, z) =
4π

R

∫ Ψ

0

dE
∫ R

√
2(Ψ−E)

0

dLz f+(E , L2
z), (4.118)

where we have taken f+ to be a function of L2
z rather than of Lz. We assume

that ν is symmetrical about the equatorial plane, and is therefore a function
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of |z|. At fixed R, |z| is a monotone function of Ψ, so we can consider ν to
be a function of (R,Ψ) rather than (R, z). On this understanding we now
differentiate (4.118) with respect to Ψ:

∂

∂Ψ
ν(R,Ψ) = 4π

∫ Ψ

0

dE f+[E , 2(Ψ − E)R2]√
2(Ψ − E)

. (4.119)

This integral equation for f+ can be solved by taking Laplace transforms, so
we multiply each side by exp(−sΨ) and integrate over Ψ. After interchanging
the order of the integrals over Ψ and E we have

∫ ∞

0

dΨ e−sΨ
∂ν

∂Ψ
= 4π

∫ ∞

0

dE e−sE
∫ ∞

E
dΨ e−s(Ψ−E) f+[E , 2(Ψ − E)R2]√

2(Ψ − E)

=
2π

R

∫ ∞

0

dE e−sE
∫ ∞

0

du e−su/(2R
2)g(E , u),

(4.120a)
where

g(E , u) ≡ f+(E , u)√
u

. (4.120b)

The integrals on the right side of (4.120a) effect Laplace transforms of g with
respect to each of its arguments. Let a hat denote Laplace transformation,
so

ĝ(s, t) ≡
∫ ∞

0

dE e−sE
∫ ∞

0

du e−tug(E , u);

ν̂(R, s) ≡
∫ ∞

0

dΨ e−sΨν(R,Ψ).

(4.121)

Then comparing the first of equations (4.121) with (4.120a) we see that
t = s/(2R2). Integrating the left side of (4.120a) by parts and setting R =√
s/2t, we have finally

ĝ(s, t) =
s3/2

π(8t)1/2
ν̂

(√
s

2t
, s

)
. (4.122)

Since a function is uniquely defined by its Laplace transform, this result
establishes that f+ is determined by ν(R, z). The demonstration that f− is
determined by νvφ is similar. As in the case of Eddington’s inversion, there
is no guarantee that the recovered df will be non-negative.

Two practical difficulties arise when attempting to use Lynden–Bell’s
result (4.122). First, only a very few models permit one analytically to
replace z by Ψ in ν(R, z). Second, inverting the Laplace transforms in (4.122)
usually requires analytic continuation of the function ν(R,Ψ) to the complex
plane, which is problematic if ν(R,Ψ) is derived from observational data. On
account of these difficulties, equation (4.122) has yielded disappointingly few
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dfs in practice, although Lynden–Bell (1962a) was able to recover the df of
a rotating Plummer model. This situation improved when Hunter & Qian
(1993) and Qian et al. (1995) showed that the df could be obtained from
a contour integral, without explicitly eliminating z between ν and Ψ, and
without extensive analytic continuation.

4.4.2 Axisymmetric systems specified by f(H,Lz)

In §4.3.3 we investigated some spherical systems that were defined by their
dfs. We now extend this approach to the axisymmetric case: we start with
a simple functional form for f , and then use Poisson’s equation to recover
the observable properties of the model. As in the spherical case, for most
choices of the df Poisson’s equation has to be solved numerically. We start
by describing some exceptions to this rule. We adopt the convention that f
is the phase-space density of mass.

(a) Fully analytic models Fricke (1951) expanded the df of an axisym-
metric galaxy in powers of E and Lz. Since Lz can be positive or negative,
it can occur only in integral powers, but we are free to include non-integral
powers of E . We use the term Fricke component to denote a df of the
form EγL2n

z , where the 2 in the exponent of Lz ensures that the component
is even in Lz and thus has non-vanishing density. With equation (4.118) the
density is

ρ(R, z) =
4π

R

∫ Ψ

0

dE Eγ
∫ R

√
2(Ψ−E)

0

dLz L
2n
z . (4.123)

When we do the integral over Lz and change the second variable of integra-
tion to x ≡ E/Ψ, we obtain

ρ(R, z) =
2n+5/2

2n+ 1
πR2nΨγ+n+3/2

∫ 1

0

dxxγ(1 − x)n+1/2

= 2n+3/2 γ!(n− 1
2 )!

(γ + n+ 3
2 )!

π R2nΨγ+n+3/2.

(4.124)

Thus the density of a Fricke component is a power of R multiplied by a power
of Ψ. Below we shall use (4.124) in the form

ρ = R2nΨγ ⇔ f =
2−(n+3/2)γ!

π(n− 1
2 )!(γ − n− 3

2 )!
L2n
z Eγ−n−3/2. (4.125)

Toomre (1982) discovered a closely related one-parameter sequence of
models with remarkably simple analytic properties. The dfs of Toomre’s

models are proportional to L2n
z eE/σ

2

and their density profiles have the scale-
free form ρ(r, θ) ∝ r−2S(θ), where the function S depends on the parameter
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n in the df. In limiting cases these systems go over into (i) the isothermal
sphere, (ii) Spitzer’s isothermal sheet (Problem 4.21), and (iii) cold Mestel
disks (see §4.5.1 below). Like Fricke components, for n > 0 Toomre’s models
have zero density on the z axis.

Fully analytical models that have finite central densities were discovered
by Evans (1993, 1994) by assuming that the relative potential is a function
Ψ(m2) of the spheroidal variable

m2 = R2
c +R2 +

z2

q2
Φ

. (4.126)

Inserting this form of Ψ into Poisson’s equation, we find after some algebra
that the density is given by

−4πGρ =
(

4 +
2

q2
Φ

)
Ψ′ +

4(m2 −R2
c)

q2
Φ

Ψ′′ + 4
(

1 − 1

q2
Φ

)
Ψ′′R2, (4.127)

where primes denote differentiation with respect to the argument of the func-
tion. Since Ψ′, Ψ′′, and Ψ are all functions only of m2, we may straightfor-
wardly express Ψ′ and Ψ′′ as functions of Ψ. Once this has been done,
equation (4.127) gives ρ as a function ρ(R,Ψ), and the model’s df can be re-
covered from the formulae of Lynden–Bell (1962a) or Hunter & Qian (1993)
as described in §4.4.1.

If Φ is either a power or the logarithm of m2, we can recover the df

more economically using Fricke’s formula (4.125): if Ψ = Ψa(R
2
c/m

2)y, where
y > 0 and Ψa is a constant, then

m2 = R2
c(Ψ/Ψa)

−1/y,

Ψ′ = −yΨaR
2y
c (m2)−(y+1) = −yΨa

R2
c

(Ψ/Ψa)
1+1/y,

Ψ′′ = y(y + 1)ΨaR
2y
c (m2)−(y+2) = y(y + 1)

Ψa

R4
c

(Ψ/Ψa)
1+2/y ,

(4.128)

and our expression (4.127) for ρ(R,Ψ) becomes

ρ(R,Ψ) =
y[2 − (2y + 1)q−2

Φ ]Ψa

2πGR2
c

( Ψ

Ψa

)1+1/y

+
y(y + 1)Ψa

πq2
ΦGR

2
c

( Ψ

Ψa

)1+2/y
(

1 + (1 − q2
Φ)
R2

R2
c

)
.

(4.129)

This is just a sum of three Fricke components, so equation (4.125) enables
us to say that the df is

fpow(E , Lz) = AE1/y−1/2 +B(1 + CL2
z/E)E2/y−1/2, (4.130a)
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where

A ≡ y[2 − (2y + 1)q−2
Φ ](1 + 1/y)!

(2π)5/2(1/y − 1/2)!GR2
cΨ

1/y
a

B ≡ 2y(y + 1)(1 + 2/y)!

(2π)5/2(2/y − 1/2)! q2
ΦGR

2
cΨ

2/y
a

; C ≡ 1 − q2
Φ

R2
c

(2

y
− 1

2

)
. (4.130b)

We shall call a model with this df an Evans model. The model is unphysical
if the phase-space density is ever negative. Negative densities do not arise so
long as 1 ≥ q2

Φ ≥ y + 1
2 . For y = 1

2 the only physical model is spherical—in
fact it is the Plummer model. As y decreases, ever flatter models become
possible.

In the limit y → 0, the potential of an Evans model tends10 to the
logarithmic potential ΦL(R, z) of equation (2.71a), and the self-consistent
df becomes (Evans 1993)

flog(E , Lz) = AeE/σ
2

+B
(
1 + CL2

z)e
2E/σ2

, (4.131a)

where σ2 ≡ 1
2v

2
0 and

A ≡ 2q2
Φ − 1

(2π)5/2Gq2
Φσ

; B ≡ R2
c

π5/2Gq2
Φσ

; C ≡ 2(1 − q2
Φ)

R2
cσ

2
. (4.131b)

Evans’s df (4.131a) has an obvious application as the df of a population
of dark-matter particles, since circular-speed curves tend to become flat at
large radii, which implies that the potential is proportional to lnR (§1.1.3).
The density of any luminous population falls off faster at large r. Evans
observed that if the df of luminous matter is

flum = ρ0R
p
c

( p

2πσ2

)3/2

epE/σ
2

, (4.132a)

where p ≥ 1 is a constant, then the density of luminous matter confined by
ΦL is

ρlum(R, z) =
ρ0R

p
c

(R2
c +R2 + z2/q2

Φ)p/2
, (4.132b)

which is proportional to R−p at large R. The combined density of luminous
and dark matter will generate ΦL if the df of the dark matter is fdark =
flog − flum. Evans shows that fdark is non-negative provided the fraction of
the central mass density that is luminous is smaller than a specified function
of qΦ and p.

10 This is something of an oversimplification. We have lnx = limα→0
R x
1

dy/y1+α =

limα→0 α−1(1 − 1/xα), so x−α tends to one minus a (small) multiple of lnx.
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Figure 4.12 Projected quanti-
ties along the major axis of an
Evans model that is an approxi-
mate isotropic rotator, seen edge-on
(eq. 4.134). The shape of the iso-
photes is shown by ε = 1 − b/a,
where a and b are the isophote’s in-
tersections with the principal axes.
The parameters of the model are
y = 0.09, qΦ = 0.85 and α = 0.813,
and the velocities are in units of√

Ψa.

The df (4.132a) of luminous matter depends on E only, with the conse-
quence that the surfaces of constant luminosity density coincide with equipo-
tentials. It is straightforward to write down dfs for luminous matter that
depend on Lz as well as E in such a way that the luminosity distribution is
more flattened than the potential—see Evans (1993) for examples.

The dfs given by both (4.130a) and (4.131a) are even functions of Lz,
so they produce non-rotating models. Rotating models can be produced
by adding any df f− that is odd in Lz and small enough in magnitude to
ensure that the composite df is non-negative. For example, if α(x) is an odd
function with absolute value less than unity, then we can choose f− to be

f−(E , Lz) = α(Lz)f+(E , Lz). (4.133)

With this choice of f− the df is equal to (1 + α)f+.
A model in which σφ = σR = σz everywhere is called an isotropic

rotator and can be said to be flattened by rotation alone. For any df of the
form f(E , Lz) we have σR = σz , and by choosing α such that σφ = σR at
some particular point, we can generate a good approximation to an isotropic
rotator.

If we apply to an Evans model the prescription of equation (4.133) with
α(Lz) = sgn(Lz)α0, where α0 is a constant, the mean velocity becomes

vφ =
4πα0

ρR2

∫ Ψ

0

dE
∫ R

√
2(Ψ−E)

0

dLz Lzfpow(E , Lz)

=
16πα0y

2

ρ
Ψ1/y+3/2

{
A

(2 + y)(2 + 3y)
+
BΨ1/y(4 − y + 4yCR2)

(4 + 3y)(16 − y2)

}
.

(4.134)
Figure 4.12 shows v‖, σ‖ and the isophote ellipticity ε along the major axis
of an edge-on Evans model that is an approximate isotropic rotator. Both ε
and v‖/σ‖ increase with distance from the center. This model is somewhat
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unrealistic because our choice of α(x) has introduced a discontinuity in f at
Lz = 0, which in turn causes a vortex along the symmetry axis of the model.
Nevertheless, the projected velocities shown in Figure 4.12 reflect those of
more realistic Evans models.

(b) Rowley models In general, when a df is chosen for an axisymmetric
system, we have to solve for the associated density and potential distributions
numerically. We now describe an effective technique for this job, which differs
significantly from the method we used to solve the corresponding problem in
the spherical case. Prendergast & Tomer (1970), Jarvis & Freeman (1985)
and Rowley (1988) discuss this problem.

As in the spherical case, the df cannot be correctly normalized at the
outset. So we write

f ∝ F(E , Lz), (4.135)

where F is our chosen functional form. The model is specified by this form
and the values Ψc and Ψt taken by the relative potential at the center and
at an outer point, for example the point (Rt, 0) in the equatorial plane at
which the density first vanishes. We proceed iteratively. We guess what
potential Φ0(R, z) our df will generate at a grid of points. We take the
relative potential that appears in E to be

Ψ0(R, z) = ψ − λΦ0(R, z), (4.136)

where ψ and λ are constants that we choose such that Ψ0(0, 0) = Ψc and
Ψ0(Rt, 0) = Ψt. Then at each grid point we evaluate the density

ρ1(R, z) ≡
∫

d3vF [Ψ0(R, z) − 1
2v

2, Rvφ]. (4.137)

and from these values solve for the corresponding potential Φ1(R, z). At the
next iteration we use the relative potential Ψ1 = ψ−λΦ1, where ψ and λ are
chosen afresh to ensure that Ψ1 satisfies the same conditions at the origin
and (Rt, 0) as Ψ0 did. We repeat this process until Ψn and ρn change very
little between iterations. The final model has df λF and density λρn.

Proceeding in this way, Rowley (1988) constructed models using the
functional form

F(E , Lz) =

{
eχ/σ

2

for χ > 0,
0 otherwise,

(4.138a)

where
χ ≡ E + ωLz − 1

2L
2
z/r

2
a . (4.138b)

Here σ, ω and ra are parameters. Let vm ≡
√
v2
R + v2

z . Then χ can be
written

χ = Ψ − 1
2v

2
m − 1

2

(
1 +

R2

r2
a

)
v2
φ + ωRvφ

= Ψ − 1
2v

2
m − 1

2

(
1 +

R2

r2
a

)(
vφ − ωR

1 +R2/r2
a

)2

+
ω2R2

2(1 +R2/r2
a)
.

(4.139)
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Figure 4.13 Density in the meridional plane of Rowley models that have ωRt/σ = 2
(left) and 4 (right). Both models have Ψ(0, 0) − Ψ(Rt, 0) = 4σ2 and ra = 0.45Rt.

Thus the df (4.138) is a truncated Gaussian in vR, vz , and v′φ ≡ vφ − vφ,
where the mean speed is

vφ(R) =
ωR

1 +R2/r2
a

. (4.140)

Since vφ depends only on R, the streaming velocity is independent of distance
|z| from the equatorial plane: the system is said to rotate “on cylinders”.
Equation (4.140) shows that we have solid-body rotation vφ ' ωR for R �
ra. At R� ra the mean streaming speed decays to zero as 1/R.

Integrating over the truncated Gaussians we find that

ρ(R, z) =
4πσ3

√
1 +R2/r2

a

(√
π/2 eΨ̃ erf(

√
Ψ̃) −

√
2Ψ̃
)

v2
R

σ2
=
v2
z

σ2
=

(
1 +

R2

r2
a

)
ṽ2
φ

σ2
= 1 − (2Ψ̃)3/2

3
(√

π/2 eΨ̃ erf(
√

Ψ̃) −
√

2Ψ̃
) ,

(4.141a)

where ṽφ ≡ vφ − vφ and

Ψ̃ ≡ 1

σ2

(
Ψ +

ω2R2

2(1 +R2/r2
a)

)
. (4.141b)

For large values of Ψ̃ the density grows exponentially with Ψ as in the isother-
mal sphere, and the velocity dispersion in the meridional plane tends to the
parameter σ. At r � ra, the model is isotropic, but beyond the anisotropy
radius ra, the dispersion in the azimuthal direction falls below that in the
meridional plane in close analogy with the behavior of an Osipkov–Merritt
model. The mean-square velocity in the azimuthal direction is

v2
φ = v2

φ + ṽ2
φ =

v2
R + ω2R2

1 +R2/r2
a

' v2
R

1 +R2ω2/σ2

1 +R2/r2
a

. (4.142)
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Figure 4.14 Circles show measured ratios of peak rotation speed to average velocity
dispersion within half the effective radius Re (page 21) for spheroidal systems (elliptical
galaxies and the bulges of disk galaxies) from Davies et al. (1983). Filled circles are for
systems less luminous than MR = −21.34 + 5 log10 h7. The squares show this ratio for
Evans models with y = 0.09 and qΦ = 0.85 and 0.9; the value of ε is for the isophote
with semi-major axis length 15Rc and σ‖ is the mean value of the velocity dispersion on
the major axis out to 15Rc. The full squares are for edge-on models, and the inclination
decreases by 10◦ between successive squares. The triangles show similar data for five
Rowley models. The dotted curve shows the relation v/σ = 1.2

√
ε that is suggested by

the Jeans equations in §4.8.2b, while the dashed curve shows π/23/2 times the relation
(4.266a) (with α = δ = 0) that we derive in §4.8.3 from the tensor virial theorem. The
observational values of v/σ for the less luminous galaxies are approximately consistent
with the model predictions, while most luminous galaxies rotate much less rapidly for a
given flattening.

In §4.8.3 we shall see that galaxies are flattened by an excess of kinetic energy
in the equatorial plane relative to the meridional plane. When ωra/σ = 1,
the fraction on the right of (4.142) is unity, and there would be no excess,
but when this dimensionless parameter exceeds unity, there is an excess.
Hence we expect the flattening to be an increasing function of ωra/σ. The

other important dimensionless parameter of Rowley models is Ψ̃(0, 0), which
is analogous to the quantity that determines the concentration of a King
model.

Figure 4.13 shows the density in the meridional plane of Rowley models
that differ in their values of ωra/σ. As this parameter increases the mod-
els rotate more rapidly and become more strongly flattened; the isodensity
surfaces are not nearly ellipses and in projection these models have peanut
shapes.

(c) Rotation and flattening in spheroids We have seen that mathe-
matically the connection between the flattening of a spheroidal stellar system
and its rotation rate is weak because the rotation rate is determined by f−,
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while the density distribution is determined by f+. However, one might still
anticipate a physical connection between flattening and rotation that arises
from some aspect of the formation process. To establish a connection be-
tween the theoretical models and observational data, we must compute the
properties of these models when viewed in projection with a given inclination
angle i between the line of sight and the system’s symmetry axis (i = 90◦ is
edge-on, i = 0 is face-on). We assume that the mass-to-light ratio is inde-
pendent of position, as is approximately true in the inner parts of elliptical
galaxies (§4.9.2). The comparison is usually made in terms of two quantities:
(i) the ellipticity ε = 1 − b/a of the isophotes at a given semi-major axis a,
and (ii) the ratio v/σ of the peak value of the mean line-of-sight velocity v‖
to the average of the line-of-sight dispersion σ‖ within some specified radius.
The circles in Figure 4.14 show this measure for a number of elliptical galax-
ies and bulges of early-type disk galaxies. The circles are open if the spheroid
is more luminous than MR = −21.34 + 5 log10 h7 and otherwise filled. Al-
though there is little or no correlation between v/σ and ε for the luminous
systems, these variables are strongly correlated for the less luminous ones.

In Figure 4.14, each set of squares joined by lines shows v/σ for an Evans
model (eq. 4.134) that is an approximate isotropic rotator, while the triangles
show the analogous quantity for Rowley models. The filled symbols are for
inclination 90◦, the open symbols are for i = 80◦, 70◦, . . . We see that when
these models are viewed edge-on, the representative points of Evans models
lie within the band that is populated by the less luminous spheroids, while
the Rowley models lie at its upper edge. At smaller inclinations the Evans
models lie along the edge of the band, while the Rowley models lie above it.
We conclude that, for reasons that are not yet fully understood, on average
low-luminosity spheroids are rotating slightly less rapidly than an isotropic
rotator, whilst rotation plays almost no role in determining the shapes of
luminous elliptical galaxies. In other words low-luminosity ellipticals are
flattened by rotation but luminous ellipticals are not.

The dashed curve in Figure 4.14 shows11 π/23/2 ' 1.1 times a ratio
of rms rotation rate and velocity dispersion that we shall derive in §4.8.3c
below. It provides a good fit to the data for low-luminosity spheroids and has
historically been used to define the normalized rotation rate (v/σ)∗, which
is the measured value of v/σ divided by the value predicted for the galaxy’s
ellipticity by this curve (BM §11.2.1).

4.4.3 The Schwarzschild DF

The stars in a galactic disk such as that of the Milky Way travel on nearly
circular and coplanar orbits. Consequently, dfs that generate cool disks in
which random velocities are much smaller than the circular speed are central
to understanding disk galaxies. The mean radius of a star that is on a nearly

11 The numerical factor is a relic of model-dependent assumptions in Binney (1978).
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circular orbit near the equatorial plane is largely determined by its angular
momentum Lz, or equivalently by its guiding-center radius Rg(Lz) (eq. 3.72).
In fact, in the epicycle approximation of §3.2.3 the mean radius is equal to
the guiding-center radius. Thus the radial density profile of a cool disk is
largely determined by the dependence of the df upon Lz.

The difference
∆ ≡ H −Ec(Lz) (4.143)

between a star’s energy and the energy Ec(Lz) of the circular orbit with
the same angular momentum is the energy associated with the star’s gyra-
tions around the guiding center. In a disk composed of many stars these
oscillations—all with random phases—lead to a dispersion in velocities at
each location in the disk, superimposed on the overall rotation. The dis-
tribution of stars with respect to ∆ is what governs the velocity dispersion
or temperature of the disk—in a cool disk all stars have small values of
∆/Ec(Lz). These considerations suggest that we examine dfs of the form

f(H,Lz) = S(Lz)T [∆/σ2(Lz)], (4.144)

where the function S is predominantly determined by the surface density
Σ(R), and the function T is chosen to fit the shape of the velocity distribu-
tion; σ(Lz) determines the radial dependence of the velocity dispersion.

Unfortunately the df (4.144) cannot reproduce all the properties of

the solar neighborhood because observations show that v2
z/v

2
R ' 0.3 6= 1

(Table 1.2), while equation (4.40) shows that any df that depends only on
H and Lz requires these two dispersions to be equal. This situation motivates
us to consider a more complex df that also depends on the third integral I3

that we studied in §3.2. We do not have an analytic expression for I3 in a
general axisymmetric potential, so we use the approximation (3.74)

I3 ' Hz(z, ż, Lz) ≡ 1
2 ż

2 + Φz(z, Lz), (4.145)

where we have made the dependence of Φz on Lz explicit. We take advantage
of equation (4.145) to generalize (4.144) to the form

f(H,Lz, I3) ' S(Lz)T

(
∆

σ2
R

,
Hz

σ2
3

)
, (4.146)

where σ2
R and σ2

3 are functions of Lz. An exponential function is an obvious
choice for T , so we arrive at dfs of the form (Shu 1969)

f(H,Lz, Hz) = S(Lz) exp

(
− ∆

σ2
R

− Hz

σ2
3

)
. (4.147)

If we introduce the epicycle approximation for motions parallel to the plane,
then ∆ ' HR +Hz, where HR is given by equation (3.86) as

HR ≡ 1
2 (ẋ2 + κ2x2) (4.148)



4.4 Axisymmetric density distributions 323

with x ≡ R − Rg and κ the epicycle frequency. Thus so long as σR and σ3

are much smaller than the circular speed, we can write

f(H,Lz, I3) ' S(Lz) exp

(
−HR

σ2
R

− Hz

σ2
z

)
, (4.149a)

where

σ2
z ≡ σ2

Rσ
2
3

σ2
R + σ2

3

. (4.149b)

When we apply (4.149a) to the solar neighborhood, we encounter the
problem that we do not directly measure the value of Rg for stars, so it is
not straightforward to determine their x values. However, an observationally
accessible quantity is the difference

ṽ ≡ v − vc(R)êφ (4.150)

between the velocity of a star and the velocity of the circular orbit at the
star’s current location—in the solar neighborhood this is the Local Standard
of Rest (lsr) (§1.1.2). We have from equation (3.97)

ṽφ =
κ

γ
x, (4.151)

where γ ≡ 2Ωg/κ (eq. 3.93b) and Ωg is the circular frequency at Rg. Sub-
stituting equation (4.151) into (4.148), we have

HR ' 1
2 (v2

R + γ2ṽ2
φ). (4.152)

Substituting this expression and equation (4.145) into equation (4.149a) we
have finally

f ' fSch ≡ S(Lz) exp

(
−
v2
R + γ2ṽ2

φ

2σ2
R(Lz)

− v2
z + 2Φz(z, Lz)

2σ2
z(Lz)

)
. (4.153)

The distribution fSch is called the Schwarzschild df.12

We must now choose plausible forms for the three free functions S(Lz),
σR(Lz) and σz(Lx) that define the Schwarzschild df. Equation (4.153) pre-
dicts that the distributions of vR and vz are superpositions of Gaussians,
one for each value of Lz. If S, σR and σz vary sufficiently slowly with
Lz = R(vc + ṽφ) that they change negligibly so long as |ṽφ| is less than a

12 Karl Schwarzschild (1873–1916) pioneered photographic photometry. In 1900 he
published a lower limit on the radius of curvature of space. While serving in the German
army from August 1914, he gave a quantum-mechanical explanation of the anomalous
Stark effect in hydrogen and obtained the first and most important exact solution of
Einstein’s field equations.
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few times σR, we may treat them as constants at a given position. Then
σR(Rvc) and σz(Rvc) are simply the radial and vertical velocity dispersions
at R. The oldest disk stars of the solar neighborhood have the largest ran-
dom velocities, σR ' 40 km s−1, and even this value is much smaller than
vc ' 220 km s−1 (Table 1.2). Hence the approximation of constant σR and
σz is a reasonable one, at least for cooler stellar populations.

We still have to choose S(Lz), which we do by computing the surface
density Σ(R). Integrating over velocities in the approximation of constant
σi, we find that the density of the disk is

ρ(R, z) =

∫
d3v f ' (2π)3/2S(Rvc)

(
σ2
Rσz
γ

)

Lz=Rvc

exp

(
−Φz(z,Rvc)

σ2
z(Rvc)

)
.

(4.154)
At any given radius, we therefore have ρ(z) = ρ0 exp(−Φz/σ

2), where ρ0(R)
is the density in the midplane. In Problem 4.21 it is shown that when ρ(z)
takes this form and Φz(z) is determined self-consistently by the density in
the disk, the surface density is Σ = 4z0ρ0, where z0 = σz(8πGρ0)−1/2 is the
scale height of the disk. Thus

Σ(Lz/vc) ' Σ(R) ' 4(2π)3/2S(Lz)

(
σ2
Rσzz0

γ

)

Lz

. (4.155)

This approximate result relating S(Lz) and Σ(R) holds only when the dis-
persions σR, σz � v0. Nevertheless it is useful to use this result to eliminate
S(Lz) from equation (4.153), recognizing that the surface density derived
from the resulting df will not be exactly equal to Σ(R). Thus we write

fSchw(w) ' γΣ(Lz/vc)

4(2π)3/2σ2
Rσzz0

exp

(
−
v2
R + γ2ṽ2

φ

2σ2
R(Lz)

− v2
z + 2Φz(z, Lz)

2σ2
z(Lz)

)
.

(4.156)
An important application of equation (4.156) is to the case of an ex-

ponential disk, Σ(R) = Σ0 exp(−R/Rd), that rotates in a potential with
a constant circular speed, so we can replace vc(R) with v0 and set γ =√

2. Observations of edge-on disks show that z0 is approximately indepen-
dent of radius, so from equation (4.302c) of Problem 4.21 it follows that
σz ∝ exp(−R/2Rd) ' exp(−Lz/2Rdv0). Let us assume that the ratio of
dispersions σz/σR is independent of radius. Then the right side of equa-
tion (4.156) is completely determined and we can examine the predictions
it makes. Figure 4.15 shows for the solar neighborhood the predicted dis-
tributions of azimuthal velocities ṽφ for three populations of stars. The
sharply peaked distribution is for an extremely cold population, which has

v2
R

1/2
= 5 km s−1, while the broadest distribution is for a population that

has v2
R

1/2
= 30 km s−1. The narrow distribution is almost Gaussian, and in
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Figure 4.15 Three distributions of azimuthal velocities evφ predicted for stellar popula-
tions in the solar neighborhood by the df (4.156). The circular speed has been assumed
to be v0 = 220 km s−1 at all radii, σR(Lz) and σz(Lz) are taken to be proportional to
exp[−Lz/(2v0Rd)], while Σ = Σ0 exp(−R/Rd), with R0/Rd = 3.2 (Table 1.2). The values

of v2R
1/2

for the three populations are 5, 15 and 30 km s−1, the largest value producing
the widest spread in evφ.

fact the three-dimensional velocity distribution of such a population would
conform to the triaxial Gaussian model that Schwarzschild (1907) derived
from observations of solar-neighborhood stars.

dn ∝ exp

(
−
v2
R + γ2ṽ2

φ

2σ2
R

− v2
z

2σ2
z

)
d3v, (4.157)

where now σR and σz are constants.
The broadest distribution of azimuthal velocities in Figure 4.15 is ex-

tremely skew, with a long tail to highly negative values of ṽφ and a sharp
cutoff for ṽφ > 0. This asymmetry arises from two effects, both related to
the exponential density profiles of stellar disks. Stars near the Sun that have
ṽφ > 0 have more angular momentum than the lsr and thus have guid-
ing centers at Rg > R0, while stars with ṽφ < 0 have guiding centers at
Rg < R0. Since the surface density of stars declines exponentially with R,
there are more stars in the latter class than in the former, and the distribu-
tion in velocity space therefore extends further towards negative ṽφ than in
the opposite direction. The second effect is that the velocity dispersion σR
declines with R, so the fraction of the stars that are based at Rg = R0 − δR
on eccentric orbits that bring them to the Sun with ṽφ < 0 is larger than the
fraction of the stars based at R0 + δR that can reach the Sun with ṽφ > 0.
Similarly, there are more Japanese than Nepalese in Oxford in the summer,
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Figure 4.16 Upper panel: the mean value of evφ as a function of v2R
1/2

for azimuthal
velocity distributions like those plotted in Figure 4.15. The dashed line shows a parabolic

fit to the curve. Lower panel: for the same distributions the ratios ev2
φ/v

2
R (full) and

(vφ − vφ)2/v2R (dashed).

both because the population of the Japan exceeds that of Nepal, and because
Japanese have larger travel budgets than Nepalese.

Figure 4.16 shows the prediction of equation (4.156) for the dependence

of various averages on the temperature v2
R of the stellar population. The

full curve in the upper panel shows that as v2
R increases, the mean rota-

tion rate of the population falls more and more below the circular speed.
This phenomenon is called asymmetric drift (BM §10.3.1). In §4.8.2a we
shall show that for any cool-disk df we have to a good approximation that

vφ − vc ∝ v2
R. The dashed curve shows such a parabolic fit to the full curve.

In the lower panel the full curve shows the ratio (vφ − vc)2/v2
R, which is pre-

dicted by epicycle theory to be γ−2 = 0.5 (eq. 3.100). This ratio does start
at 0.5, but by a radial dispersion of 10 km s−1 has risen by 10% and by a
dispersion of 20 km s−1, less than 10% of the circular speed, it has risen by
nearly 80%. Thus the range of validity of equation (3.100) is surprisingly
narrow. Problems 4.43 and 4.44 help to explain why.

Figure 4.17 compares the distribution of observed azimuthal velocities
for F and G stars near the Sun from Nordström et al. (2004) with the pre-
diction of the Schwarzschild df for a population with the same value of

v2
R

1/2
= 34 km s−1. The model distribution exaggerates the skewness of the

observed distribution and seriously overestimates the number of stars with
ṽφ ∼< −60 km s−1. These shortcomings reflect the breakdown of the epicycle
approximation for stars on highly eccentric orbits. We can estimate the char-
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Figure 4.17 The distribution
of vφ components of 4787 F
and G stars that have space
velocities in Nordström et al.
(2004). Stars with a high prob-
ability of having variable ra-
dial velocities are excluded.
The smooth curve shows the
distribution predicted by the
Schwarzschild df for a popu-
lation with the same value of

v2R
1/2

= 34 km s−1.

acteristic epicycle amplitude x of the stars in the Nordström et al. sample by
equating the sample’s radial velocity dispersion to the rms radial velocity,
averaged over time, of an individual star with epicycle amplitude x. Thus x
follows from κ0x/

√
2 = 34 km s−1, where κ0 = 37 km s−1 kpc−1 is the local

epicycle frequency (Table 1.2), and we deduce x ' 1.3 kpc. Thus sample stars
typically cover a radial range of 2.6 kpc, which is as large as the disk’s scale
length Rd, and stars observed at ṽφ < −60 km s−1 have even larger epicycle
diameters. For such large excursions the effective potential is not accurately
harmonic, as the epicycle approximation requires. Much more satisfactory
fits to the data can be obtained if one uses Shu’s df (4.147) upon which the
Schwarzschild df is based (Binney 1987; Kuijken & Tremaine 1991; Dehnen
1999b).

Figure 4.18 shows the density of F and G stars on four slices through
velocity space, corresponding to vz = −30, −15, −5 and 15 km s−1. At
vz = −30 km s−1 the equi-density contours are reasonably elliptical, and
qualitatively in agreement with the predictions of the Schwarzschild df. At
vz = −15 km s−1 the third highest contour has a pronounced bulge around
a local maximum at (17,−43) km s−1. This concentration, which cannot be
due to noise because it involves a significant number of stars and is also
visible in adjacent slices through velocity space, is qualitatively in conflict
with the Schwarzschild df. It is called the Hercules star stream (Famaey
et al. 2005). A second local maximum is visible at (30,−12) km s−1; this is
due to the Hyades star stream or moving group. The panel for vz =
−5 km s−1 shows a neighboring local maximum at (6,−20) km s−1 caused by
the Pleiades star stream.

The differences between the structure of Figure 4.18 and that predicted
by the Schwarzschild df could have two explanations. The first possibility is
that the stars are still dispersing from the associations in which they formed,
with the result that the df is still evolving towards a steady state, and does



328 Chapter 4: Equilibria of Collisionless Systems

Figure 4.18 The density of solar-neighborhood stars in velocity space. Each panel is a
slice through velocity space at the value of vz given in the top left corner. The component
evφ is plotted vertically. The stellar density has been determined from the velocities of
Nordström et al. (2004) for 4787 F and G stars using the FiEstAS algorithm of Ascasibar
& Binney (2005). The velocities are relative to the lsr (page 12), so the Sun lies at
(vR,evφ, vz) = (−10, 5.2, 7.2).

not yet satisfy the Jeans theorem. However, from comparison of the spec-
tra of stars to stellar models one can show that individual concentrations in
Figure 4.18 contain stars of very different ages (Famaey et al. 2005), so the
clumping cannot be due irregular star formation. The second possibility is
that the structure of Figure 4.18 is due to stellar-dynamical processes. That
is, the structure of Figure 4.18 implies that either (i) the Galactic potential
is not axisymmetric, or (ii) it is not time-independent. In fact it is neither
axisymmetric nor time-independent, because it has contributions from both
the Galactic bar and spiral structure. Dehnen (2000a) and Fux (2001) have
shown that the stars near (vR, ṽφ) ' (17,−43) km s−1 are probably in reso-
nance with the Galactic bar (BM §10.2). De Simone, Wu, & Tremaine (2004)
show that transient spiral structure should generate horizontal striations in
the panels of Figure 4.18, and at least in the bottom panels it is possible to
imagine that such striations are present.



4.5 Razor-thin disks 329

4.5 DFs for razor-thin disks

The majority of stars in a spiral galaxy lie in a thin disk. Thus models
of disks of negligible thickness are both conceptually simple and directly
applicable to real galaxies. These systems are in a sense the simplest ones
in which the df depends on the third integral I3 in addition to H and L.
Specifically, in a thin disk all stars have I3 = 0 with the consequence that
motion perpendicular to the galactic plane is prohibited and the system is
perfectly planar. By reducing the model to a two-dimensional one, we can
forget about the dependence of the df on I3 and write simply f = f(H,Lz).

The problem of finding a df that generates a disk with a given surface-
density profile has much in common with the analogous problem for spherical
systems because the surface-density distribution Σ(R), like the density ν(r),
is a function of only one variable, whereas the generic df is a function of two
integrals, f(H,Lz) for a disk and f(H,L) for a sphere. In particular, (i) there
is a unique df of the form f(H) that generates a given surface-density profile
Σ(R); however, the associated model is of little physical interest because it
does not rotate, whereas disk galaxies rotate rapidly. (ii) By analogy with
the constant-anisotropy models described in §4.3.2b, we can posit that the
df is of the form f = Lαz f1(H) and obtain an integral equation for f1 in
terms of the given surface-density profile. (iii) By analogy with the approach
of §4.3.2c we can assume that the df depends on H and Lz only in some
particular combination, such as H − ΩLz, where Ω is a parameter. Kalnajs
(1976) discusses these approaches to the choice of df. Here we simply present
two of the most useful dfs that can be obtained in this way.

4.5.1 Mestel disk

In §2.6.1a we found that a disk with surface density

Σ(R) = Σ0
R0

R
(4.158)

has a circular speed vc that is independent of radius and given by

v2
c = −R∂Ψ

∂R
= 2πGΣ0R0. (4.159)

We set the arbitrary constant involved in the definition of the relative po-
tential such that Ψ(R0) = 0, and integrate equation (4.159) with respect to
R, to find

Ψ(R) = −v2
c ln(R/R0). (4.160)

Now following Toomre (1977a) consider the df

f(E , Lz) =

{
F (Lz/R0vc)q eE/σ

2

(Lz > 0)
0 (Lz ≤ 0),

(4.161)
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where F , q, and σ are all constants. Inserting equation (4.160) into equation
(4.161) and integrating over all velocities in the plane, we find that the surface
density produced by this df in the potential (4.160) disk is

Σ′(R) = F

(
R

R0vc

)q ∫ ∞

0

dvφ v
q
φ

∫ ∞

−∞
dvR exp

[
− v2

c

σ2
ln

(
R

R0

)
−
v2
R + v2

φ

2σ2

]

= F

(
R

R0vc

)q (
R

R0

)−v2c/σ2 ∫ ∞

0

dvφ v
q
φe−v

2
φ/2σ

2

∫ ∞

−∞
dvR e−v

2
R/2σ

2

= 2q/2
√
π( 1

2q − 1
2 )!

(
Rσ

R0vc

)q (
R

R0

)−v2c/σ2

Fσ2.

(4.162)
Comparing equations (4.158) and (4.162), we see that the df of equation
(4.161) will self-consistently generate the Mestel disk if we set

q =
v2

c

σ2
− 1 and F =

Σ0v
q
c

2q/2
√
π( 1

2q − 1
2 )!σq+2

. (4.163)

The parameter q that appears in the df (4.161) of the Mestel disk is
a measure of the degree to which the disk is centrifugally supported: from

equation (4.161) one may show that σ is the velocity dispersion v2
R

1/2
in the

radial direction. The mean azimuthal velocity is

vφ =

∫
d2v vφf(E , Lz)∫
d2v f(E , Lz)

=

∫
dvφ v

q+1
φ e−v

2
φ/2σ

2

∫
dvφ v

q
φe−v

2
φ
/2σ2

=

√
2( 1

2q)!

( 1
2q − 1

2 )!
σ. (4.164)

For large q, vφ/σ =
√
q[1 + O(q−1)], all stars are on circular orbits, and

vφ = vc.

4.5.2 Kalnajs disks

From equation (2.128) and Table 2.1 we have that the potential Φ(R) at
radius R in the equatorial plane of a homogeneous oblate spheroid with
eccentricity e, density ρ, and semi-axes of length a and a3 = a

√
1 − e2 is

Φ(R) =
πGρa3

ae2

( sin−1 e

e
−
√

1 − e2
)
R2 + constant. (4.165)

If we now flatten this spheroid down to a disk by letting e→ 1, while holding
the central surface density Σc ≡ 2ρa3 constant, we obtain that

Φ(R) =
π2GΣc

4a
R2 + constant = 1

2Ω2
0R

2 + constant, (4.166)
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where Ω0 ≡
√

1
2π

2GΣc/a is the angular speed of a circular orbit. By equation

(2.145) the surface density of our disk is

Σ(R) = Σc

√
1 − R2

a2
. (4.167)

Now consider the density distribution that arises from the df
13

f(E , Lz) =

{
F
[
(Ω2

0 − Ω2)a2 + 2(E + ΩLz)
]−1/2

for [. . .] > 0,
0 for [. . .] ≤ 0.

(4.168)

Since E = Ψ− 1
2 (v2

φ + v2
R) and Lz = Rvφ, we can also write the argument of

the radical in equation (4.168) as

(Ω2
0 − Ω2)a2 − (vφ − ΩR)2 − v2

R + 2Ψ + Ω2R2.

Hence at any radius R the df (4.168) depends on the velocities only in the
combination v2

R + (vφ − ΩR)2. Consequently, the distribution of azimuthal
velocities in a model generated by this df is symmetrical about vφ = ΩR,
which is therefore the mean azimuthal velocity at R. We choose the arbitrary
constant involved in the definition of the relative potential such that

Ψ(R) = −Φ(R) + constant = − 1
2Ω2

0R
2. (4.169)

Substituting this form of Ψ into equation (4.168) and integrating over all
velocities, we find the surface density Σ′(R) generated by this df in the
potential of our disk to be

Σ′(R) = F

∫ vφ2

vφ1

dvφ

∫ vR2

vR1

dvR√
(Ω2

0 − Ω2)(a2 −R2) − (vφ − ΩR)2 − v2
R

.

(4.170)
The limits vR1, vR2 of the inner integral in equation (4.170) are just the
values of vR for which the integrand’s denominator vanishes. Hence equation
(4.170) is of the form

Σ′(R) = F

∫ vφ2

vφ1

dvφ

∫ b

−b

dvR√
b2 − v2

R

= πF

∫ vφ2

vφ1

dvφ = πF (vφ1 − vφ2) .

(4.171)
But vφ1 and vφ2 are just the roots of the quadratic equation

b2 = (Ω2
0 − Ω2)(a2 −R2) − (vφ − ΩR)2 = 0, (4.172)

13 Note that −(E + ΩLz) is the Hamiltonian in the frame that rotates at frequency Ω
(eq. 3.112).
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Box 4.2: Freeman’s analytic bars

The Freeman bars are razor-thin elliptical disks that are stationary in
a frame that rotates at angular speed Ωb (Freeman 1966). In this frame,
the outer boundary of the disk is elliptical, x2/a2 + y2/b2 = 1, and the
surface density and potential are given by

Φ(x, y) = 1
2

(
Ω2
xx

2 + Ω2
yy

2
)

; Σ(x, y) = Σc

√
1 − x2/a2 − y2/b2.

The family of Freeman bars is very rich, including bars with all possible
axis ratios b/a and all pattern speeds such that |Ωb| < min (Ωx,Ωy). In
the limit b/a→ 1 the Freeman bars reduce to the Kalnajs disks.

The Freeman bars provide the only known analytic models of bars.
Regrettably, they have several unrealistic features. In particular, because
the potential is quadratic in the coordinates, the equations of motion
are linear, and every trajectory can be regarded as the superposition of
motion in two ellipses. In fact these ellipses are simply the prograde and
retrograde ellipses that surround the central Lagrange point, as described
in equation (3.125) and Figure 3.15. These orbits can have quite different
properties from the orbits in more realistic rotating potentials.

so

Σ′(R) = 2πFa
√

Ω2
0 − Ω2

√
1 − R2

a2
. (4.173)

Comparing equations (4.167) and (4.173) we see that if we set

F =
Σc

2πa
√

Ω2
0 − Ω2

, (4.174)

then Σ′(R) = Σ(R), so we have derived a self-consistent—though rather
artificial—stellar-dynamical model of a flat disk galaxy, called a Kalnajs
disk.

It is straightforward to verify that the mean angular speed Ω of the stars
in a Kalnajs disk is independent of position, and relative to this mean speed
the stars have isotropic velocity dispersion in the disk plane,

v2
x = v2

y = 1
3a

2(Ω2
0 − Ω2)(1 −R2/a2). (4.175)

Thus Kalnajs disks range from hot systems with Ω � Ω0, in which the
support against self-gravity comes from random motions, to cold systems
with Ω ≈ Ω0, in which all stars move on nearly circular orbits and the
random velocities are small.
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4.6 Using actions as arguments of the DF

Hitherto we have focused on the use of the Hamiltonian H and various com-
ponents of the angular momentum L as the arguments of the df. In §3.5 we
saw that actions are constants of motion that describe orbits in integrable
potentials with remarkable simplicity, and in this section we consider the
advantages of using actions as arguments of the df.

Several features make the actions the most convenient arguments for the
df:
(i) By the Jeans theorem, the arguments of the df for a steady-state galaxy

should be isolating integrals. The space spanned by the integrals is called
integral space. In a spherical potential H , L and Lz are isolating in-
tegrals and can serve as coordinates of integral space. However, in these
coordinates the boundary of integral space does not have an analytic
form. For example, the allowed values of L lie in the interval [0, Lc(H)],
where Lc(H) is the angular momentum of a circular orbit of energy H .
In contrast, the boundaries of action space are simple. For example if
the actions are chosen to be (Jφ, Jϑ, Jr) (Table 3.1), then the allowed
region is the quadrant Jϑ, Jr ≥ 0.

(ii) The volume of space that is occupied by orbits with actions in d3J
is (2π)3d3J, whereas the phase-space volume associated with orbits in
some range of H and L depends on the potential (eq. 4.288). Con-
sequently, when we use actions as Cartesian coordinates for integral
space, the density of stars in integral space is simply (2π)3N times the
df, where N is the number of stars in the system.

(iii) When the coordinates are actions, the df is invariant under slow changes
in the potential—see §4.6.1.

Let us examine more closely an action space for a spherical potential using
the coordinates (Jφ, Jϑ, Jr) (Figure 3.25). In galactic potentials the surfaces
of constant H are each made up of two approximately planar triangles—in
Kepler and harmonic potentials they are exactly so. At the point J, the
normal to the local surface of constant H is the vector Ω whose components
are the three characteristic frequencies of the orbit J (eq. 3.190). In the
simplest equilibrium models, which have ergodic dfs of the form f(H), the
density of stars in integral space is constant on these triangular surfaces.

These relations suggest a procedure for constructing the action-space
df for a galaxy with any desired triaxial density distribution (Binney 1987).
We start by imagining a spherical galaxy that has the same “average” radial
density profile as the galaxy in question, for example by computing the den-
sity along a line that makes equal angles with its three principal axes. We
find the potential Φ(r) of this spherical galaxy, and then use Eddington’s
formulae (4.46) to find the df f0(H) of this system.

Now consider the df

f(J) = s(J)f0(H), (4.176)
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where J is the action vector in the potential Φ(r), and the shift function
s(J) shifts stars in action space but leaves their energy E unchanged. We now
choose the shift function, following the precepts outlined above, to generate
a df that reproduces the axis ratios of the desired galaxy when confined by
the spherical potential Φ(r).

Shifts at constant energy have relatively little effect on the radial density
profile, so this process will also produce a galaxy with a radial distribution
of stars that resembles the desired galaxy. Finally, we slowly change the
gravitational potential from Φ(r) to the triaxial potential that is required for
self-consistency, as determined by solving Poisson’s equation. Since actions
are invariant under slow changes in the potential, the df will not be affected
by this process. It is straightforward in principle to iterate this process by
adjusting the shift function s and the ergodic df f0(H) to bring the product
of this process closer and closer to the desired set of properties.

The property required for a shift function—that it leave the energy
distribution invariant—is simple to describe. The number of stars per unit
energy is (cf. eq. 4.81)

N(E) = (2π)3

∫
d3J δ[E −H(J)]f(J). (4.177)

The shift function in equation (4.176) will leave this distribution unchanged
if ∫

d3J δ[E −H(J)]s(J) =

∫
d3J δ[E −H(J)]. (4.178)

This can be rewritten in a more transparent form by assuming that the shift
function depends on two of the actions—say, Jϑ and Jφ—and the Hamilton-
ian H , thus eliminating the radial action. Since ∂Jr/∂H = Ω−1

r , we have

∫
dJϑdJφ

Ωr
s(Jϑ, Jφ, H) =

∫
dJϑdJφ

Ωr
. (4.179)

If we shift stars over each energy surface towards the Jr axis, we obtain
a radially biased model, while pushing them away from this axis generates a
tangentially biased model. If we push stars towards the Jφ axis, we flatten
the system; in the extreme case in which all stars have been pushed onto
the Jϕ axis, the df is f(J) = f0(Jϕ)δ(Jr)δ(Jϑ) and the system has become
a razor-thin disk whose surface density Σ(R) is determined by the function
f0(Jϕ). If f0 is an even function, at each radius there will be equal numbers
of stars orbiting in each sense around the z axis. If f0(Jϕ) = 0 for Jϕ < 0,
all stars will orbit in the same sense and the disk will be cold. We can heat
this disk up while leaving it razor-thin by replacing δ(Jr) with a function
such as a steep exponential. Similarly, we can give the disk finite thickness
by replacing δ(Jϑ).
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These examples show that in a spherical potential there is a transpar-
ent connection between the distribution of stars in action space and the
shape and kinematics of the stellar distribution. Even in the case of a tri-
axial integrable potential, actions can be defined that are closely related to
(Jφ, Jϑ, Jr)—see §3.8.1—and the relations we have described between the
shape of the stellar system and the distribution of stars in action space con-
tinue to hold.

4.6.1 Adiabatic compression

In §3.6 we saw that actions are constant during slow changes in the confining
potential Φ. At that stage we were only equipped to study the evolution
of individual orbits as Φ evolved. Now we can discuss the corresponding
evolution of entire stellar systems.

The key idea is that constancy of individual actions implies constancy
of the system’s df f(J). This invariance by no means implies that the
system’s density and velocity distributions are invariant, but it enables us
to calculate their evolution relatively simply. We describe the procedure in
the case that the system is at all times spherically symmetric, and assume
that the slow evolution is driven by an external potential Φext(r, t) (say, due
to a growing black hole or infalling gas). However, the scheme applies with
minor modifications to any system that always has an integrable potential.

We assume that at time t = 0, Φext(r, 0) = 0, and that we know the
initial df f0(H,L) and the corresponding self-consistent potential Φ0(r).
Given the final external potential Φext(r, t), we determine the density and
velocity distributions of the system when the potential is Φtot = Φext + Φf ,
where Φf(r) is the final contribution of our stellar system to the potential.

We make a first guess Φ1 at the form of Φtot. To improve this guess we
need to evaluate the integral

ρ1(r) ≡M

∫
d3v f(J), (4.180)

where M is the system’s stellar mass. So we need to determine f at a grid of
values (r,v). To do so we first determine the actions of the orbit in Φ1 that
has these initial conditions. Since the potential is spherical, we can take one
action to be the total angular momentum L, which is trivially determined
from r and v, and then the radial action is given by equation (3.224) with Φ1

substituted for Φ. The third action is Lz although this is not needed since
the df of a spherical system is independent of Lz. Next we use equation
(3.224) again to find the energy E ′ of an orbit in the original potential Φ0

that has these same actions. Then by the invariance of f(J) we must have
that f(J) = f0(E′, L). Having determined f(J) we can carry out the integral
in (4.180).
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Once we have determined ρ1(r), we solve Poisson’s equation for the
corresponding potential Φ′

1(r), and thus obtain a revised estimate Φ2 =
Φext + Φ′

1 of the final overall potential. Then we repeat the procedure just
described to determine the density distribution ρ2(r) that f(J) generates
in Φ2, and we iterate until the difference between Φn and Φn+1 becomes
negligible.

(a) Cusp around a black hole In §1.1.6 we saw that most luminous
galaxies have a massive black hole at their centers, and in §3.6.2d we in-
vestigated how individual stellar orbits evolve as the mass M of the black
hole slowly increases. We can now investigate how the growth of the black
hole modifies the density and velocity dispersions within the system. We
present only approximate formulae in order to obtain analytic results. More
detailed treatments that use the technique just described can be found in
Young (1980), Quinlan, Hernquist, & Sigurdsson (1995) and van der Marel
(1999).

As in §3.6.2d we assume that the black hole forms in the core of an
approximately isothermal system, so for the tightly bound stars of interest
the initial Hamiltonian can be approximated by equation (3.281), and the
df is initially

f =
ρ0

(2πσ2)3/2
e−H/σ

2

=
ρ0

(2πσ2)3/2
e−Ω(2Jr+L)/σ2

, (4.181)

where Ω and σ are the circular frequency and velocity dispersion within the
core and we have set Ψ(r) = − 1

2Ω2r2. Sufficiently close to the final black
hole, the potential will be Keplerian, so from equation (E.6) we have

1
2v

2 − GM

r
= HK = − 1

2

(
GM

Jr + L

)2

. (4.182)

Using this equation and L = rvt to eliminate Jr and L from equation (4.181)
in favor of the total and tangential speeds v and vt, we find that f can be
written

f =
ρ0

(2πσ2)3/2
exp

(
− x2

m√
x2

m − x2

)
ex sinψ, (4.183a)

where

x ≡ Ωr

σ2
v ; xm ≡ Ωr

σ

√
2GM

rσ2
; vt = v sinψ, (4.183b)

and ψ is the angle between the radius and velocity vectors. Multiplying
through by d3v = 2πv2dv sinψ dψ and integrating we find that

ρ(r) =
2ρ0√
π

(
GM

σ2r

)3/2∫ 1

0

dy y2 exp

(
− xm√

1 − y2

)∫ π

0

dψ sinψ exmy sinψ,

(4.184)
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where y ≡ x/xm = v
√
r/2GM . As we approach the center, xm → 0 and the

inner and outer integrals in equation (4.184) tend to 2 and 1
3 , respectively, so

the black hole distorts the original homogeneous stellar density into a cusp
in which ρ ∝ r−3/2.

Multiplying f by v2
r or v2

t before integrating over all velocities, we obtain
the ratio of velocity dispersions

v2
r

v2
t

=

∫ 1

0
dy y4 exp

(
−xm/

√
1 − y2

) ∫ π
0

dψ sinψ cos2 ψ e−xmy sinψ

∫ 1

0 dy y4 exp
(
−xm/

√
1 − y2

) ∫ π
0 dψ sin3 ψ e−xmy sinψ

. (4.185)

In the limit xm → 0, the integral over ψ on top tends to 2
3 , while that on the

bottom tends to 4
3 , so v2

r/v
2
t tends to 1

2 , which implies an isotropic velocity
distribution at small radii. This result is surprising, given that in §3.6.2d
we showed that the mean value of v2

t grows more than does the mean value
of v2

r for individual stars. The resolution of this apparent inconsistency is
that eccentric orbits are pulled in towards the black hole more than circu-
lar orbits, thereby boosting the radial velocity dispersion at a given radius.
Correspondingly, at larger radii the velocity distribution becomes strongly
tangentially biased (Goodman & Binney 1984). The distribution must return
to isotropy far from the black hole, but at such radii we cannot approximate
the Hamiltonian with the Kepler Hamiltonian, and equation (4.185) is no
longer valid.

(b) Adiabatic deformation of dark matter Simulations of the cos-
mological clustering of collisionless matter (§9.3) indicate that the radial
density profiles of the structures that form in this way can be approximated
by the NFW model (§2.2.2g). It is plausible that after these structures have
formed, dissipation of energy caused many of their baryons to move inwards
on a timescale that was long compared to the system’s crossing time. The
procedure we have described can be used to find how this infall modified the
initial NFW halo.

Combining the photometry of the galaxy with a population-synthesis
model, we can determine the mass density ρext(r) of the baryons in the
present galaxy, and thus evaluate the potential Φext(r) that drives the adia-
batic deformation of the dark-matter halo. Hence, we can predict the current
distribution of dark matter in luminous galaxies given the properties of halos
in simulations that do not contain baryons (Sellwood & McGaugh 2005).

We take f0 to be a df that self-consistently generates the NFW profile of
scale length 20 kpc, which is the estimated scale length of the Milky Way’s
dark-matter halo (Klypin, Zhao, & Somerville 2002). We consider three
models: isotropic (β = 0), radially biased (β = 0.5) and tangentially biased
(β = −2). Within these halos we slowly grow a spherical object that has
the same radial density profile as the bulge and disk of the Galaxy—we
approximate the disk as spherical for the sake of simplicity, recognizing that
the growth of a flat disk will flatten the halo. We take the final mass of
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Figure 4.19 The full curve shows the original density profile of an NFW model with
scale radius a = 20 kpc. The broken curves show the density profile of this system after
a spherical representation of the Milky Way has grown slowly within it. The mass of this
object is equal to the mass of the original NFW halo within 10 kpc. From data supplied
by J. Magorrian.

the bulge and disk interior to 10 kpc to be equal to the original halo mass
within this radius. Figure 4.19 shows the effect of this added mass on the
dark halo. The full curve shows the halo’s original density profile, while the
short-dashed and dotted curves show the final density profile in the case of
initially isotropic or tangentially biased halos. At 100 pc from the center,
the introduction of the galaxy has increased the densities of these halos by
a factor 4.25. The long-dashed curve, which is for the radially biased halo,
shows that the density of this halo increases less; by a factor 2.6. In §9.4c we
will discuss the relevance of these results for the theory of galaxy formation.

4.7 Particle-based and orbit-based models

So far we have built models of stellar systems by the explicit construction
of a df that depends on the integrals of motion. Such methods are mostly
applicable when the system has a high degree of symmetry. Systems of
lower symmetry—triaxial or time-dependent systems, or axisymmetric sys-
tems that depend on the third integral—are harder to model in this way
because their dfs have no analytic expression. In this section we discuss
techniques that can be used to obtain models of such systems. These tech-
niques are powerful in that the class of systems to which they can be applied
is very wide. Unfortunately, they rely on discrete samples of a probability
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distribution with the result that dynamically interesting quantities can be
obscured by discreteness noise.

4.7.1 N-body modeling

N-body modeling is one of the most flexible and widely used techniques for
exploring the behavior of collisionless stellar systems. In §2.9 we discussed
methods used to determine the forces on particles in such simulations, while
in §3.4 we discussed algorithms for following the particle orbits under the
influence of these forces. Here we explore the foundations of the N-body
approach, which are not as simple as they may seem at first sight. We shall
again denote by w the location (x,v) of a general phase-space point.

The collisionless Boltzmann equation (4.10) is the governing equation of
a collisionless system, and an N-body calculation is a device for numerically
solving this partial differential equation in seven independent variables for
f(w, t) given the initial df f(w, 0). The equation states that the df is
constant along the single-particle trajectories of the Hamiltonian H = 1

2v
2 +

Φ(x, t), so
f(w, t) = f(w0, 0), (4.186)

where w0 ≡ w(t = 0). Hence the value of f at any point w can be determined
from the initial values of f once trajectories are known.

To determine the trajectories we need the potential

Φ(x, t) = −GM
∫

d6w′ f(w′, t)

|x − x′| , (4.187)

where M is the mass of the system and we have used equation (4.18).
The central feature of N-body modeling of collisionless systems is that

we evaluate the six-dimensional integral in (4.187) by Monte-Carlo sampling
(e.g., Press et al. 1986). For any reasonable function g(w) we have

∫
d6w g(w) = lim

N→∞

1

N

N∑

i=1

g(wi)/fs(wi), (4.188)

where the points wi are randomly chosen by sampling the probability density
fs(w), which can be any function that satisfies

fs(w) ≥ 0 ;

∫
d6w fs(w) = 1. (4.189)

Applying (4.188) to (4.187) we have for sufficiently large N

Φ(x, t) ' −GM
N

N∑

i=1

f(wi, t)/fs(wi, t)

|x − xi|
, (4.190)
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where now we have allowed the sampling density to be time-dependent. The
expression on the right of this equation is the gravitational potential gener-
ated by particles that have masses

mi(t) =
M

N

f(wi, t)

fs(wi, t)
(i = 1, . . . , N). (4.191)

Thus the potential becomes

Φ(x, t) ' −G
N∑

i=1

mi(t)

|x − xi(t)|
. (4.192)

We can choose fs(w, 0) to be any convenient function and draw a set of
sampling points wi from this distribution. The corresponding initial masses
mi(0) can be evaluated from equation (4.191) because we are given the func-
tional form of the df f(w, 0) as an initial condition.

We have attached a mass mi(0) to each sampling point. Now suppose we
treat these masses as real particles, and advance them along the trajectories
that are determined by H . Then by the collisionless Boltzmann equation,
the df at the locations of these masses will be time-independent (eq. 4.10)
and we will have solved for the evolved df f(w, t) at the location of each
mass.

To continue advancing the particles, we need repeatedly to solve Pois-
son’s equation, which we do by Monte-Carlo sampling. We can use equation
(4.191) to evaluate the relevant masses only where we know the value of
f(w, t), that is at the locations of the masses. Thus the scheme will be fea-
sible only if the sampling points follow the same trajectories as the masses.
We need to know what density fs(w, t) these points are sampling. One
such distribution is simple to obtain: we evolve the initial sampling density
fs(w, 0) with the collisionless Boltzmann equation for the same Hamiltonian
that we used for the mass particles. If we do this, the sampling density as-
sociated with each sampling point will be independent of time because the
Hamiltonian flow preserves phase-space volume. Since both f [wi(t), t] and
fs[wi(t), t] are time-independent, by equation (4.191) the masses mi are also
time-independent. The simplest procedure is to choose fs(w, 0) = f(w, 0) so
that all particles have equal masses, but this is neither necessary nor always
desirable.

Since with this procedure all particles have constant masses, and follow
the same trajectories that real stars would, it is tempting to imagine that the
sampling points are real stars, or at least groups of stars. But a more general
interpretation is that one is integrating the partial differential equation (4.6)
by the method of characteristics (e.g., Whitham 1974) and evaluating the
integral in equation (2.3) by Monte-Carlo sampling. Variants of this basic



4.7 Particle-based and orbit-based models 341

N-body technique exist in which fs 6= f and the masses of particles vary in
time (Leeuwin, Combes, & Binney 1993; Syer & Tremaine 1996).

(a) Softening Actually Monte-Carlo sampling is not well adapted to the
integrand of equation (4.187), because the singularity in the integrand at
x = x′ causes estimates of the force to have an inconveniently large scatter—
occasionally a sampling point x′ will fall close to x. For this reason N-body
Poisson solvers generally eliminate the singularity by replacing |x− x′| by a
softening kernel S(|x−x′|) (§2.9.1). Fundamentally, softening is a stratagem
designed to increase the statistical accuracy of our numerical estimate of the
potential Φ(x) at the cost of some systematic error. It has a convenient
side-effect, however: it reduces the magnitude of the largest accelerations
experienced by particles, which makes it possible to use longer timesteps
when integrating the particles’ equations of motion, and thus to reduce the
computational cost.

(b) Instability and chaos In §3.7.3 we showed that orbits in some po-
tentials are regular, while others are chaotic, in the sense that any small
initial change δw in the phase-space coordinates eventually grows exponen-
tially fast, |δw(t)| ≈ |δw(0)| exp(t/tL), where tL is the Liapunov time. With
a given particle number N , an N-body simulation becomes a Hamiltonian
system with 3N degrees of freedom, and it is natural to ask whether solutions
to the equations of motion of this complex system are also chaotic.

Following Goodman, Heggie & Hut (1993) we make a crude estimate of
the Liapunov time in the absence of softening, under the assumption that all
the simulation’s particles have the same mass m. Suppose that soon after the
simulation commences, particles 1 and 2 encounter one another at relative
velocity v and impact parameter b. The resulting velocity impulse is given
by equation (1.30) as ∆v ≈ Gm/(bv). We now make an infinitesimal change
in the initial position of star 1 that causes the impact parameter to change
by δb. The resulting change in the velocity impulse is δ(∆v) ≈ Gmδb/(b2v).
Star 1 has a second encounter, this time with star 3, a time τ after its first
encounter. If τ is short enough, the change in impact parameter b′ in the
second encounter will still be of order δb, but for large τ the change will be
dominated by the drift in position caused by the velocity change from the
first encounter. This drift is roughly δ(∆v)τ , so we may write

δb′ ≈
(

1 +
Gmτ

b2v

)
δb; (4.193)

the exact relation between δb′ and δb depends on the three-dimensional ge-
ometry of the encounters in a complex way, but this schematic expression is
good enough for our purposes.

The magnification δb′/δb is related to the Liapunov time by

δb′

δb
≈ eτ/tL ; (4.194)
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thus
τ

tL
≈ ln

(
1 +

Gmτ

b2v

)
. (4.195a)

For a given star, the time between encounters with impact parameter b is
τ ≈ 1/(nb2v), where n is the number density of stars. Using this result to
eliminate b2v, we find that

tL ≈ τ

ln(1 +Gmnτ2)
≈ τ

ln(1 + τ2/t2cross)
, (4.195b)

where we have used the definition (2.40) of the crossing time and the relation
ρ = nm.

Equation (4.195) gives the Liapunov time for encounters with impact
parameter ∼ b. If all encounters had this impact parameter, this would be
the Liapunov time of the orbit. In practice, the exponential divergence is
dominated by those impact parameters that cause the most rapid exponential
divergence, so the Liapunov time of the orbit is given by the minimum of
equation (4.195) as a function of b, and therefore of τ . We have shown that
tL/tcross ' x/ ln(1 + x2), where x = τ/tcross. The function x/ ln(1 + x2) has
a broad minimum centered on x = 2.0, where it equals 1.2. Thus our crude
calculation predicts that

tL ≈ tcross. (4.196)

The dominant encounters are those for which R/v ≈ tcross ≈ τ ≈ (nb2v)−1.
Hence the impact parameters of these dominant encounters satisfy b ≈
(nR)−1/2 ≈ R/N1/2, which is much smaller than the typical interparticle
separation R/N1/3 for N � 1.

This calculation suggests that in the absence of softening the Liapunov
time in a stellar system is of the order of the crossing time, regardless of the
total particle number N . This phenomenon was discovered by Miller (1964)
and is known as Miller’s instability. Miller’s instability is surprising, be-
cause in the limit N → ∞, an N-body system should become collisionless,
and its particles should orbit in a smooth potential: thus, if for example the
smooth potential were spherical, all orbits would be regular and therefore
have infinite Liapunov time, in conflict with our finding. More accurate ana-
lytic results (Goodman, Heggie & Hut 1993), verified by N-body simulations
(Hemsendorf & Merritt 2002), yield an even more surprising result: tL/tcross

actually declines slowly as N increases, so we must somehow reconcile the
short Liapunov times of N-body simulations with our understanding of the
nature of a collisionless system.

The resolution of this apparent paradox is that the Liapunov time de-
scribes the growth of infinitesimal perturbations to an orbit; it applies only
so long as the perturbation is much smaller than the distance between stars
(Valluri & Merritt 2000; Hut & Heggie 2002). Thus if we follow the motion
of two particles separated by some small amount ∆x0, their separation will
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initially grow exponentially, |∆x| ≈ |∆x0| exp(t/tL). However, this conclu-
sion is valid only until |∆x| becomes comparable to the impact parameters
of the dominant encounters, b ∼ R/N 1/2. Beyond this point |∆x| will con-
tinue to grow, but only at a slower rate. In particular, it is reasonable to
expect that only encounters with impact parameter b ∼> |∆x| will continue to
contribute to the exponential growth of ∆x, while encounters with b ∼< |∆x|
will perturb the two stars independently. Encounters with b ∼> R/N1/2 have
τ/tcross ≈ (v/R)/(nb2v) ≈ (R/b)2/N ∼< 1, so equation (4.195b) becomes
tL ≈ t2cross/τ and the rate of divergence becomes

d|∆x|
dt

≈ |∆x|
tL

≈ |∆x|τ
t2cross

≈ |∆x|
tcross

R2

b2N
. (4.197)

The divergence is dominated by the encounters with the smallest impact
parameters larger than the separation, so we set b ≈ |∆x| to obtain

d|∆x|
dt

≈ R2

Ntcross|∆x| . (4.198)

Integrating, we find

|∆x|2 ≈ R2t

Ntcross
≈ R2t

trelax
, (4.199)

where we have written the relaxation time as trelax ≈ Ntcross by dropping
the Coulomb logarithm from equation (1.38). Thus the exponential growth
of |∆x| that occurs when |∆x| is infinitesimal has been replaced by a much
slower growth ∝ t1/2, such that ∆x grows to of order the system size R in
a relaxation time—a result we could have anticipated from the definition of
the relaxation time.

Miller’s instability is significantly weakened by softening, so long as the
softening length is larger than the impact parameter of the dominant en-
counters, b ' R/N1/2. For large N this is much smaller than the mean
interparticle separation R/N 1/3. There is little to be gained by using a soft-
ening length ε that is much smaller than the interparticle separation, so for
large N we can weaken the instability without compromising the resolution
of the simulation by setting R/N 1/3 > ε > R/N1/2.

Miller’s instability raises a fundamental question about N-body simu-
lations. The short Liapunov time implies that small errors in an N-body
simulation are rapidly amplified. For example, consider a simulation of a
stellar system with N = 103, for which the dominant encounters have im-
pact parameters of order three percent of the system size R. If roundoff
leads to a positional error of one bit in a numerical calculation with 16 dec-
imal digits, this error will grow exponentially, until it is of order 0.03R in
a time ln(0.03 × 1016)tL ≈ ln(0.03 × 1016)tcross ' 33tcross. In practice, the
error growth is even more rapid, since the errors arising from the non-zero
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timestep of the integration algorithm (§3.4) are usually much larger than
roundoff error. Given this, why should we believe in the results of N-body
simulations at all? We usually test a numerical algorithm by repeating it
with a smaller timestep or other accuracy parameter until its results con-
verge. On account of Miller’s instability, the positions and velocities at the
end of an integration will not converge for any practical timestep. So what
does it mean for an N-body integration to be “accurate”?

While no significance can be attached to the locations of individual
particles in an N-body simulation, the statistical properties of the particle
distribution are reproducible. This fact emerges most clearly from cosmo-
logical simulations of the clustering of dark matter (Chapter 9). In these
simulations an initially nearly smooth particle distribution develops a com-
plex hierarchical structure with a wide range of densities. The densest knots
are equilibrium gravitationally bound structures, which we identify with the
dark halos of galaxies. Experiments have shown that when completely dif-
ferent computer codes are used to evolve the particles from the same initial
conditions, the masses, locations, and other properties of the halos that form
in different simulations are very nearly the same (Frenk et al. 1999). This co-
incidence of results holds even when fundamentally different Poisson solvers
are employed (for example a tree code and a particle-mesh code; §§2.9.2
and 2.9.3), when different integration algorithms are used, or when different
sets of particle coordinates wi are used to sample the initial cosmic density
field. Thus we are confident that the statistical properties of the endpoint of
a well-designed N-body simulation are meaningful, even though the locations
of individual particles have no physical significance.

4.7.2 Schwarzschild models

We now describe a powerful technique introduced by Martin Schwarzschild14

for constructing an equilibrium model of a stellar system. Schwarzschild’s
method is intermediate between N-body models, which follow individual
particles (particle-based methods) and analytic techniques based on the
df. Schwarzschild’s method combines orbits to create a stellar system and
hence is called an orbit-based method.

We describe how to construct a steady-state galaxy that has a given
three-dimensional density distribution ρ(x). We divide the space occupied
by the galaxy into K cells, such that the mass in the jth cell of volume Vj is
mj = ρ(xj)Vj . Next, we calculate the galaxy’s gravitational potential, and
integrate a large number N of orbits in this potential for a time t that is
much longer than the crossing time. These orbits should have a wide variety

14 Martin Schwarzschild (1912–1997) was the elder son of Karl Schwarzschild, the fore-
most German astronomer of his age. Educated in Göttingen, in 1936 he fled the Nazis,
going first to Oslo and then Harvard and finally to Princeton, where he used electronic
computers to establish the theory of stellar structure. He used high-altitude balloons to
obtain high-resolution images and infrared spectra of the Sun, planets and M31. Most of
his work in galactic dynamics was done after he had retired.
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of initial conditions so that they sample all the phase space that is likely to
be occupied in the galaxy. This set of orbits is called the orbit library.
We note the fraction pij of the time t that the ith orbit spends in the jth
cell. Suppose there were a large number of stars on each orbit, uniformly
distributed in orbital phase, and that the total mass of stars on orbit i was
wiM , where wi is a weight to be determined and M is the total galactic
mass. Then the mass in the jth cell would be M

∑
i wipij . Consequently,

this arrangement would constitute a valid steady-state dynamical model of
the given galaxy providing we chose the weights such that

0 = ∆j ≡ mj −M

N∑

i=1

wipij . (4.200)

This is a set of K linear equations for the N unknown weights wi. The
condition

∑
j mj = M implies that

∑
i wi = 1.

We have to insist on a solution in which all the weights are non-negative.
In view of this restriction, it is not profitable to put N equal to K and solve
these equations by the standard methods of linear algebra, since the resulting
solution vector w will almost certainly contain negative components. The
way forward is to take N � K—many more orbits than spatial cells—
in which case points that satisfy the equations form a N − K dimensional
subspace of the N dimensional space of weight vectors w. A non-negative
solution wi ≥ 0 will exist if this sub-space passes through the region in which
all coordinates are positive. If the subspace does reach this region, infinitely
many non-negative solution vectors exist, and every one corresponds to a
physically acceptable galaxy model. Thus either we find no solution, or we
have an embarrassment of riches, and we must find a rationale for choosing
one of the infinite set of possible solutions. This is normally done by choosing
the solution that maximizes some objective function φ(w).

The simplest possibility is that the objective function is linear, φ(w) =∑
i φiwi. Many commercial problems can be reduced to the problem of

maximizing a linear objective function φ(w) of N variables wi ≥ 0, subject
to K constraints of the form (4.200). A problem of this type is said to be
an exercise in linear programming and sophisticated software exists to
solve such problems with large numbers of variables. Schwarzschild (1979)
constructed stellar models of triaxial galaxies by choosing a linear objective
function, pretty much at random, and then using standard software to solve
the resulting linear programming problem.15 Any linear objective function
selects models that lie on the boundary of the allowed subspace, and therefore
tends to concentrate most of the mass in a small fraction of the library’s
orbits, thereby producing a galaxy model with a very irregular df.

15 The choice of objective function was unimportant to Schwarzschild because his goal
was only to prove that some self-consistent triaxial galaxy models were possible.
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The density distributions of individual orbits have square-root singular-
ities at their edges. Consequently, the contribution pij of an orbit to a given
cell depends strongly on whether the cell lies just inside or just outside the
orbit. As a result the models are noisy, and sensitive to the choice of grid and
orbit library. It is important that the orbit library combines a sufficiently
wide variety of orbits with a reasonably dense sampling of phase space, for
two reasons. First, if the orbit library is inadequate, there will be no solution
to the constraint equations (4.200) that has non-negative weights. Second,
we often wish to explore the whole range of galaxy models that are consis-
tent with the observations, since this enables us to assign confidence intervals
to derived quantities such the mass-to-light ratio. In practice intuition and
experience must be used to put together a high-quality library.

Many extensions of Schwarzschild’s method are possible. To obtain a
smoother distribution of orbit weights, we may use a nonlinear objective
function. One such function is the entropy S = −

∑
i wi lnwi. A simpler

alternative is a quadratic objective function of the form φ(w) = −∑i w
2
i /Wi,

where Wi > 0. The physical meaning of the Wi is seen by maximizing φ
subject only to the constraint

∑
i wi = 1; this yields wi ∝ Wi. Hence φ

finds the solution that is in some sense closest to the weights {Wi}, which
we choose to reflect our prejudices about the structure of the galaxy. One
advantage of‘a quadratic objective function is that maximizing φ subject to
the constraint equations is then an exercise in quadratic programming,
and standard packages exist for such work.

Another useful extension of Schwarzschild’s method is to model kine-
matic data. These will consist of measurements of the losvd at various
points on the sky. The losvd at a given point is a linear function of the
orbit weights wi, so the χ2 that describes the difference between the observed
and model losvds is a quadratic function of the wi. Hence we can minimize
χ2 by maximizing the objective function φ(w) = −χ2 using quadratic pro-
gramming. A major application is the search for black holes at the centers
of galaxies (§4.9.1).

Although Schwarzschild’s method was devised to model galaxies in
which some of the isolating integrals are not analytic, it can also be useful
when modeling simpler systems. Consider, for example, a spherical system.
By defining a sufficiently dense grid (Ei, Li) in energy–angular-momentum
space, it should be possible to get a good fit to any given body of obser-
vational data under the assumption that the galaxy’s df is a sum of delta
functions that are centered on the grid points:

f(E,L) =

N∑

i=1

wifi where fi(E,L) ≡ δ(E −Ei)δ(L− Li), (4.201)

and the wi are weights to be determined. We then approximate the physical
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density ρ(r) as

ρ(rj) =
N∑

i=1

wiρi(rj) where ρi(r) ≡
∫

d3v fi(E,L) (4.202)

is the density produced by the family of orbits that have the given energy
and total angular momentum, but all possible orientations of the orbital
plane. For given values of ρ(rj) these equations define a linear programming
problem for the weights in the same way that equation (4.200) does. In fact,
the only difference between these equations is that in one case the galaxy is
decomposed into individual orbits, and in the other a symmetry principle is
used to group orbits into families within which all orbits must have the same
weight, and then the galactic density is written as a sum of the densities
contributed by each family.

Schwarzschild modeling has been extensively used to search for massive
black holes at the centers of luminous spheroids (e.g. Richstone & Tremaine
1985; van der Marel et al. 1998; Gebhardt et al. 2003), the results of which are
summarized by the correlation (1.27) between black-hole mass and spheroid
velocity dispersion. In §4.9.1 we shall see why reliable black-hole masses
can be obtained only with sophisticated dynamical modeling of the obser-
vational data. Schwarzschild modeling has also been used to model the
large-scale dynamics of early-type galaxies, thus constraining the mass den-
sities and orbital distributions in these systems (Cappellari et al. 2006 and
§4.9.2). Unfortunately, the inference of confidence intervals on the values of
model parameters, such as black-hole masses and mass-to-light ratios, when
Schwarzschild’s method is used to fit a model to observational data, proves to
be a subtle matter (Magorrian 2006), and published values should be treated
with some caution.

4.8 The Jeans and virial equations

In §4.1.2 we saw that comparisons between theoretical models and observa-
tional data often center on velocity moments of the df, such as v and vivj .
Calculating moments is easy if one knows the df, but finding a df that is
compatible with a given probability density distribution ν(x) is not straight-
forward, and even if a df can be found, it is often not unique. Therefore in
this section we discuss techniques for inferring moments from stellar densi-
ties without actually recovering the df. Dejonghe (1986) gives an extensive
discussion of this problem.

Integrating equation (4.11) over all velocities, we obtain

∫
d3v

∂f

∂t
+

∫
d3v vi

∂f

∂xi
− ∂Φ

∂xi

∫
d3v

∂f

∂vi
= 0, (4.203)



348 Chapter 4: Equilibria of Collisionless Systems

where we have employed the summation convention (page 772). The range
of velocities over which we are integrating does not depend on time, so the
partial derivative ∂/∂t in the first term of this equation may be taken outside
the integral. Similarly, since vi does not depend on xi, the partial derivative
∂/∂xi in the second term of the equation may be taken outside the integral
sign. Furthermore, the last term on the left side of the equation vanishes on
application of the divergence theorem (eq. B.46), given that f(x,v, t) = 0
for sufficiently large |v|, i.e., there are no stars that move infinitely fast.
Recalling the definitions of the density ν (eq. 4.20) and the mean velocity v
(eq. 4.24b), we have that

∂ν

∂t
+
∂(νvi)

∂xi
= 0. (4.204)

Equation (4.204) differs from the continuity equation (F.3) only in that it
describes conservation of probability rather than that of mass, and replaces
the fluid velocity by the mean stellar velocity.

We now multiply equation (4.11) by vj and integrate over all velocities,
and obtain

∂

∂t

∫
d3v fvj +

∫
d3v vivj

∂f

∂xi
− ∂Φ

∂xi

∫
d3v vj

∂f

∂vi
= 0. (4.205)

The last term on the left side can be transformed by applying the divergence
theorem, using the fact that f vanishes for large |v|:

∫
d3v vj

∂f

∂vi
= −

∫
d3v

∂vj
∂vi

f = −
∫

d3v δijf = −δijν. (4.206)

Thus equation (4.205) may be rewritten

∂(νvj)

∂t
+
∂(νvivj)

∂xi
+ ν

∂Φ

∂xj
= 0. (4.207)

This can be put into a more familiar form by subtracting from it vj times
the equation of continuity (4.204) to yield

ν
∂vj
∂t

− vj
∂(νvi)

∂xi
+
∂(νvivj)

∂xi
= −ν ∂Φ

∂xj
, (4.208)

and then using the definition (4.26) of the velocity-dispersion tensor to elim-
inate vivj . The result is an analog of Euler’s equation (F.7) of fluid flow;

ν
∂vj
∂t

+ νvi
∂vj
∂xi

= −ν ∂Φ

∂xj
−
∂(νσ2

ij)

∂xi
. (4.209)
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The left side and the first term on the right side of equation (4.209) differ
from terms in the ordinary Euler equation only by the replacement of the
mass density by the probability density, and by the replacement of the fluid
velocity by the mean stellar velocity. The last term on the right side of
equation (4.209) represents something akin to the pressure force −∇p. More
exactly, −νσ2

ij is a stress tensor that describes an anisotropic pressure.
Since equations (4.204) and (4.209) were first applied to stellar dynamics by
Jeans (1919), we call them the Jeans equations.16

Equations (4.204) and (4.209) are valuable because they relate obser-
vationally accessible quantities, such as the streaming velocity, velocity dis-
persion, and so forth. However, this is an incomplete set of equations in the
following sense. If we know the potential Φ(x, t) and the density ν(x, t), we
have nine unknown functions—the three components of v and the six inde-
pendent components of the symmetric tensor σ2—but only four equations—
the scalar continuity equation and the three components of Euler’s equation.
Thus we cannot solve for v and σ2 without additional information. The
reader may argue that if we multiply the collisionless Boltzmann equation
(4.11) through by vivk and integrate over all velocities, we obtain a new set
of differential equations for σ2 which might supply the missing information.
Unfortunately, these equations involve quantities like vivjvk for which we
would require still further equations. Thus these additional equations are
of no use unless we can in some way truncate or close this regression to
ever higher moments of the velocity distribution. We shall find that closure
is possible only in special circumstances, for example when the system is
spherical and we know that its df is ergodic, f(H) (Box 4.3), or when the
system is axisymmetric and its df is of the form f(H,Lz). The equations
can also be closed for any Stäckel potential (van de Ven et al. 2003).

4.8.1 Jeans equations for spherical systems

To obtain the Jeans equations in spherical coordinates, we start from the col-
lisionless Boltzmann equation in the form (4.14), which involves the canonical
momenta

pr = ṙ = vr ; pθ = r2θ̇ = rvθ ; pφ = r2 sin2 θφ̇ = r sin θ vφ. (4.210)

We have

∫
dprdpθdpφ f = r2 sin θ

∫
dvrdvθdvφ f = r2 sin θ ν. (4.211)

We assume that the system is spherical and time-independent, so we can drop
∂Φ/∂θ, ∂Φ/∂φ, ∂f/∂t and ∂f/∂φ from (4.14); we retain ∂f/∂θ because any

16 They were originally derived by Maxwell, but he already has a set of equations named
after him.
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dependence of f on vφ is likely to introduce θ-dependence through the last of
equations (4.210) when vφ is expressed in terms of pφ. After simplification,
equation (4.14) becomes

pr
∂f

∂r
+
pθ
r2

∂f

∂θ
−
(dΦ

dr
− p2

θ

r3
−

p2
φ

r3 sin2 θ

) ∂f
∂pr

+
p2
φ cos θ

r2 sin3 θ

∂f

∂pθ
= 0. (4.212)

We now multiply by pr dprdpθdpφ and integrate over all momenta. With
equation (4.211) and similar results, and using the divergence theorem to
eliminate derivatives with respect to the momenta, we find

∂

∂r

(
r2 sin θ νp2

r

)
+

∂

∂θ
(sin θ νprpθ) + r2 sin θ ν

(
dΦ

dr
− p2

θ

r3
−

p2
φ

r3 sin2 θ

)
= 0.

(4.213)
In any static spherical system, prpθ = rvrvθ must vanish because the df is of
the form f(H,L), and is therefore an even function of vr. Finally, dividing
through by r2 sin θ and using equations (4.210) we obtain

d(νv2
r )

dr
+ ν

(
dΦ

dr
+

2v2
r − v2

θ − v2
φ

r

)
= 0. (4.214)

In terms of the anisotropy parameter of equation (4.61), equation (4.214)
reads

d(νv2
r )

dr
+ 2

β

r
νv2
r = −ν dΦ

dr
. (4.215)

Additional Jeans equations can be obtained by multiplying (4.212) by pθ or
pφ, but these are not useful.

If the line-of-sight velocity dispersion has been measured as a function
of radius, equation (4.215) can be used to constrain the radial dependence
of β. The most direct approach is to assume a functional form for β(r)

and treat (4.215) as a first-order linear differential equation for νv2
r . The

integrating factor is exp(2
∫

dr β/r), so the solution can be written in closed
form. Different choices of β(r) yield different predictions for the line-of-sight
velocity dispersion as a function of radius (see Problem 4.28), so β can be
constrained by optimizing the fit between predictions obtained from (4.215)
and the observed velocity-dispersion profile.

The case of constant non-zero β is particularly simple. Then the solution
of (4.215) that satisfies the boundary condition limr→∞ v2

r = 0 is

v2
r(r) =

1

r2βν(r)

∫ ∞

r

dr′ r′2βν(r′)
dΦ

dr′
. (4.216)

Effect of a central black hole on the observed velocity dispersion
We can use this equation to assess the impact of a central massive black hole
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Box 4.3: Closure of the Jeans
equations when the DF is ergodic

We have shown that the Jeans equations are not closed, in the sense that
v2
r and β cannot both be determined from ν and Φ. However, if the

df is known to be ergodic, f(H), then β = 0 and v2
r is determined by

equation (4.216). Moreover, all of the nth-order velocity moments can
be determined from vnr (Problem 4.29). A differential equation for vnr
is obtained when we multiply (4.212) by pn−1

r dprdpθdpφ and integrate
over all momenta. For example, with n = 4 we find

d(νv4
r )

dr
= −3ν

(
v2
r

dΦ

dr
+

2
3v

4
r − v2

rv
2
θ − v2

rv
2
φ

r

)
β=0
= −3νv2

r

dΦ

dr
, (1)

where the first equality is valid for any spherical system and the second is

obtained by assuming that f = f(H) and using the relation v2
rv

2
θ = 1

3v
4
r

from (4.308). Once v2
r(r) is known, we can solve (1) for v4

r (r) and from
that derive the other fourth-order moments. Then we can solve a similar
equation for v6

r (r) and so on up to whatever moment we desire. When
moments up to order n ∼ 10 have been determined, accurate predictions
of losvds can be made (Magorrian & Binney 1994). These predictions
will be identical to those one could have obtained from Eddington’s for-
mula (4.46b) for f but will not enable us to check that f is non-negative.

on the host galaxy’s velocity-dispersion profile. We assume that the galaxy
has a constant mass-to-light ratio and is a Hernquist model of scale-length
a—from equations (2.64) and (2.67), the density and potential are

ν(r) =
1

2πa2

1

r(1 + r/a)3
; Φ(r) = −GMg

r + a
− GµMg

r
, (4.217)

where µ = M•/Mg is the ratio of the black-hole mass M• to the galaxy mass
Mg. Hence

v2
r(ax) =

GMg

a

(1 + x)3

x2β−1

∫ ∞

x

dx′
(

x′2β−1

(1 + x′)5
+
µx′2β−3

(1 + x′)3

)
. (4.218)

For integer values of 4β the integrals are elementary. For example with
y ≡ 1 + x we have

av2
r(ax)

GMg
=





5(1 + 2µ)x2y3 ln(x/y) + µy3( 1
3 − 3

2x+ 6x2)/x

+x2[ 1
4 + 2

3y + 3+µ
2 y2 + 4(1 + µ)y3]/y + xy3 (β = − 1

2 ),
(1 + 6µ)xy3 ln(y/x) − µy3(3x− 1

2 )/x

−x[ 1
4 + 1

3y + 1+µ
2 y2 + (1 + 3µ)y3]/y (β = 0),

3µy3 ln(x/y) + 1/4y + µy( 1
2 + 2y + y2/x) (β = 1

2 ).
(4.219)
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Figure 4.20 Velocity dispersion as a function of radius for three Hernquist models with a
central black hole of mass 0, 0.002Mg , or 0.004Mg . The bottom panel shows line-of-sight
dispersions, the top panel shows the rms speed as a function of radius. The full curves
are for tangential bias (β = −0.5), the dotted curves are for the isotropic model and
the dashed curves are for radial bias (β = 0.5). The beads mark the radius of influence
(eq. 4.220) of the black hole in each model, while the arrows mark the dynamical radius
of the black hole, at which the interior mass of the galaxy equals the mass of the black
hole.

The top panel of Figure 4.20 shows the rms speed vrms = (v2
r + v2

θ + v2
φ)1/2

that follows from these formulae for µ = 0, µ = 0.002, and µ = 0.004 (bottom
to top). The full curves are for tangentially biased models, the dotted curves
for isotropic models, and the dashed curves are for radially biased models. In
each case the black hole causes the rms speed to rise at small radii where its
deep potential well speeds up the stars. The lower panel shows the associated
line-of-sight dispersions. At small radii the upturn in σ‖ is much less sharp
than that in vrms, because the signal from stars near the black hole is diluted
by the light from foreground and background stars. Note also that the rise
in dispersion associated with the black hole is difficult to distinguish from
the rise in dispersion associated with radial anisotropy.

The black hole’s radius of influence Rinfl is defined to be the radius
at which the Kepler speed due to the hole is equal to σ‖. Quantitatively,

Rinfl =
GM•

σ2
‖(Rinfl)

= 11
M•

108 M�

( σ‖
200 km s−1

)−2

pc. (4.220)

In Figure 4.20 Rinfl is marked by a black dot on each relevant curve of σ‖(R).
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It can be seen that at Rinfl the black hole has increased σ‖ by a few percent,
and that the contribution to σ‖ from the black hole increases fairly rapidly
interior to Rinfl.

Another measure of the radial extent of the black hole’s influence is the
dynamical radius rg of the black hole, at which the gravitational forces
from the black hole and the galaxy are equal, or, equivalently, the radius
within which the galactic mass is equal to the black-hole mass. The dynami-
cal radius rg, unlike the radius of influence Rinfl, depends only on the galaxy’s
mass distribution and not its kinematics. Orbits with apocenters inside rg

will be nearly Keplerian. The vertical arrows in Figure 4.20 mark rg for
the two black-hole masses considered. For the tangential models, rg is only
slightly larger than Rinfl, while in the radially biased models, rg ∼ 7Rinfl.

This discussion demonstrates that a major obstacle to detecting a central
black hole using stellar kinematics is the degeneracy between the mass of
the black hole and velocity anisotropy. This degeneracy can be lifted by
obtaining data with higher spatial resolution than assumed in Figure 4.20.
Alternatively, we can exploit the information contained in the entire losvd

rather than just its second moment (§4.9.1).

4.8.2 Jeans equations for axisymmetric systems

For simplicity we assume that the system under study is in a steady state
and axisymmetric so all derivatives with respect to t and φ vanish. With
these assumptions (4.12) becomes

pR
∂f

∂R
+ pz

∂f

∂z
−
(
∂Φ

∂R
−
p2
φ

R3

)
∂f

∂pR
− ∂Φ

∂z

∂f

∂pz
= 0. (4.221)

We multiply this equation by pR, integrate over the momenta pR = vR,
pφ = Rvφ, pz = vz , and then express the momenta in terms of velocities. In
close analogy with our derivation of equation (4.215) we obtain

∂(νv2
R)

∂R
+
∂(νvRvz)

∂z
+ ν

(
v2
R − v2

φ

R
+
∂Φ

∂R

)
= 0. (4.222a)

When we multiply (4.221) by pz or pφ rather than pR, we obtain

1

R

∂(RνvRvz)

∂R
+
∂(νv2

z)

∂z
+ ν

∂Φ

∂z
= 0, (4.222b)

1

R2

∂(R2νvRvφ)

∂R
+
∂(νvzvφ)

∂z
= 0. (4.222c)

If we assume that the density ν(R, z) and the confining potential Φ(R, z) are
known, equations (4.222) constitute three constraints on the six second-order



354 Chapter 4: Equilibria of Collisionless Systems

Box 4.4: Two useful formulae

If we obtain ν by integrating f(H,Lz) over all velocities, the resulting
expression will depend on z only through Φ(R, z). In these circumstances
it is advantageous to consider ν to be a function of (R,Φ) and equation
(4.223) yields

νv2
R(R, z) =

∫ 0

Φ(R,z)

dΦ′ ν(R,Φ′) (1)

Multiplying equation (4.224) by ν and using (1) we obtain

νv2
φ =

∂

∂R

(
R

∫ 0

Φ

dΦ′ ν(R,Φ′)

)
+ νR

∂Φ

∂R
.

In the first term on the right we carry the factor R inside the integral
and then use the standard formula

d

dx

∫ 0

f(x)

dy g(x, y) =

∫ 0

f(x)

dy
∂g

∂x
− g(x, f)

df

dx

to establish that

νv2
φ =

∫ 0

Φ

dΦ′ ∂

∂R
[Rν(R,Φ′)] . (2)

velocity moments. Thus, just as in the spherical case, the Jeans equations
are not closed. However, if the df is known to be of the form f(H,Lz),

the mixed moments in these equations will vanish, v2
R = v2

z , and the third
equation becomes trivial. So we have two equations for two unknowns, and
the system is closed. Specifically, (4.222b) can be integrated to yield (Nagai
& Miyamoto 1976)

v2
R(R, z) = v2

z(R, z) =
1

ν(R, z)

∫ ∞

z

dz′ ν(R, z′)
∂Φ

∂z′
. (4.223)

Now that v2
R is known, we can obtain v2

φ from (4.222a):

v2
φ(R, z) = v2

R +
R

ν

∂(νv2
R)

∂R
+R

∂Φ

∂R
. (4.224)

Proceeding similarly with higher-order Jeans equations obtained by multi-
plying (4.221) by pk+1

z pn−k−2
φ for k = 0, 1, . . . , n− 2 and by pRp

n−2
φ , we can

relate all the n-order moments to either ν(R, z) or νvφ(R, z), depending on
whether n is even or odd (Magorrian & Binney 1994). These moments will
be identical to those one would have obtained by using the Hunter–Qian
algorithm to calculate f(E , Lz) from the same data (§4.4.1).

(a) Asymmetric drift Figure 4.17 shows that in the solar neighborhood
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the distribution of high-velocity stars is strongly asymmetric, in the sense
that there are more stars lagging the lsr than leading it. We saw on page 325
that this phenomenon is nicely explained by the surface-density and velocity-
dispersion gradients in the disk, and more quantitatively by Figure 4.16, but
from equation (4.222a) we can easily recover its most important aspect, which
is the asymmetric drift (page 326)

va ≡ vc − vφ, (4.225)

where vc is the circular speed in the solar neighborhood. We consider the
values of va of a sequence of stellar populations, each with its own value of

v2
R.

We assume that the disk is in a steady state and is symmetric about
its equator. Then, since the Sun lies close to the galactic equator, we may
evaluate equation (4.222a) at z = 0. Since ∂ν/∂z = 0 by symmetry, we find

R

ν

∂(νv2
R)

∂R
+R

∂(vRvz)

∂z
+ v2

R − v2
φ +R

∂Φ

∂R
= 0 (z = 0). (4.226)

Using equation (4.26) to replace v2
φ by the azimuthal velocity dispersion σ2

φ

and using R(∂Φ/∂R) = v2
c , we obtain

σ2
φ − v2

R − R

ν

∂(νv2
R)

∂R
−R

∂(vRvz)

∂z
= v2

c − v2
φ

= (vc − vφ) (vc + vφ) = va(2vc − va).

(4.227)

If we neglect va compared to 2vc, we obtain Stromberg’s asymmetric drift
equation

va ' v2
R

2vc

[
σ2
φ

v2
R

− 1 − ∂ ln(νv2
R)

∂ lnR
− R

v2
R

∂(vRvz)

∂z

]
. (4.228)

The value of the square bracket does not depend on the scale of the velocity-
dispersion tensor vivj , but only on the ratios of its components. So if two
populations have similar density distributions ν(R, z) and velocity ellipsoids
of the same shape and orientation, the square bracket will take the same

value for both populations. Hence in this case va ∝ v2
R. Figure 4.21 shows

that a relationship of this type holds for main-sequence stars near the Sun.
The horizontal axis shows the dispersions in the velocities normal to the line
of sight for stars in each population. The vertical axis shows the average
amount by which the stars lag the azimuthal motion of the Sun. Each data
point is for one bin in stellar color B − V . The redder bins contain older
stars, which have larger dispersions S because stars are gradually accelerated
by fluctuations in the gravitational potential (§8.4). The intersection of the
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Figure 4.21 The asymmetric drift va for different stellar types is a linear function of the
random velocity S2 of each type. The vertical coordinate is actually va +evφ,� where evφ,�
is the azimuthal velocity of the Sun relative to the lsr (after Dehnen & Binney 1998b).

best-fit line with S = 0, at v� = 5 km s−1, represents the velocity of the Sun
relative to the lsr.

It is interesting to compare the numerical value of the square bracket
in equation (4.228) with the slope of the straight-line fit to the data in Fig-

ure 4.21. From BM Table 10.2 we adopt σ2
φ/v

2
R = 0.35 and we assume that

ν and v2
R are both proportional to e−R/Rd with R0/Rd = 3.2 (Table 1.2)—

this assumption regarding the radial dependence of the velocity dispersion
is justified following equation (4.156). Then the bracket’s first three terms
sum to 5.8. The last term is problematic because its value depends on the
orientation of the velocity ellipsoid at points just above the plane of our
Galaxy, which is difficult to measure. Two extreme possibilities are that (i)
the ellipsoid’s principal axes are aligned with the coordinate directions of
the (R, φ, z) system, and (ii) the principal axes are aligned with the coordi-
nate directions of the (r, θ, φ) system centered on the galactic center. Orbit
integrations (Binney & Spergel 1983) suggest that the truth lies nearly mid-
way between these two possibilities. In the first case vRvz is independent

of z and the term vanishes, and in the second vRvz ' (v2
R − v2

z)(z/R) (see

Problem 4.34) and the term contributes −(1 − v2
z/v

2
R) ' −0.8. Averaging

these values we estimate the value of the square bracket at 5.4 ± 0.4, so

va ' v2
R/(82 ± 6 km s−1). From the data shown in Figure 4.21 one infers

va = v2
R/(80 ± 5 km s−1) in beautiful agreement with theory.

(b) Spheroidal components with isotropic velocity dispersion We
know that if an axisymmetric system has a df of the form f(H,Lz) then two
eigenvalues of the velocity-dispersion tensor σ2 are equal (eq. 4.40). We now
use the Jeans equations to predict the rotation rate of a spheroidal system
in which all three eigenvalues of σ2 are equal, that is, an isotropic rotator.
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From the definition (4.26) of σ2 and this assumption we have

v2
φ = v2

φ + σ2
φ = v2

φ + v2
R, (4.229)

so equation (4.224) yields

v2
φ(R, z) = R

∂Φ

∂R
+
R

ν

∂(νv2
R)

∂R
. (4.230)

When we use equation (4.223) to eliminate νv2
R we have

v2
φ(R, z) = R

∂Φ

∂R
+
R

ν

∂

∂R

∫ ∞

z

dz′ ν(R, z′)
∂Φ

∂z′
. (4.231)

Suppose both ν(R, z) and Φ(R, z) are constant on spheroids, which will be
nearly true in many realistic cases. Then we can write ν(q2

νR
2 + ζ) and

Φ(q2
ΦR

2 + ζ) where qν < 1 is the axis ratio of the isodensity surfaces, qΦ is
the axis ratio of the equipotentials, and ζ ≡ z2. Consequently, ∂ν/∂R2 =
q2
ν(∂ν/∂ζ) and ∂Φ/∂R2 = q2

Φ(∂Φ/∂ζ). We convert the derivative in equation
(4.231) into one with respect to R2, carry it under the integral sign, and use
these relations to obtain

v2
φ(R, z) = R

∂Φ

∂R
+

2R2

ν

∫ ∞

z2
dζ

(
q2
ν

∂ν

∂ζ

∂Φ

∂ζ
+ q2

Φν
∂2Φ

∂ζ2

)

= R
∂Φ

∂R
+ (q2

ν − q2
Φ)

2R2

ν

∫ ∞

z2
dζ

∂ν

∂ζ

∂Φ

∂ζ
− 2R2q2

Φ

∂Φ

∂ζ

∣∣∣∣
z2
,

(4.232)

where the second equality is obtained by integrating by parts the term with
the second derivative of Φ. We now observe that

2R2q2
Φ

∂Φ

∂ζ
= 2R2 ∂Φ

∂R2
= R

∂Φ

∂R
. (4.233)

Hence the last term on the right of (4.232) cancels the first term, and we
have finally

v2
φ(R, z) = (q2

ν − q2
Φ)

2R2

ν

∫ ∞

z2
dζ

∂ν

∂ζ

∂Φ

∂ζ
. (4.234)

Since ∂Φ/∂z > 0 and ∂ν/∂z < 0, the integral is negative and vφ ∝
√
q2
Φ − q2

ν .
If the isodensity surfaces coincide with the equipotentials, qΦ = qν and vφ =
0, but normally the equipotentials are less flattened than the equidensity
surfaces, and even a small excess in the flattening of the density distribution
gives rise to appreciable rotation.

As an illustration of the use of equation (4.234), suppose Φ and ν are
given by

Φ = 1
2v

2
0 ln

(
R2

c + q2
ΦR

2 + z2
)

; ν = K
(
R2

c + q2
νR

2 + z2
)−3/2

, (4.235)
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where v0, Rc and K are constants. These functional forms are appropriate
to the case of a galaxy that has a distribution of luminous matter consistent
with a modified Hubble model (eq. 2.53) and an asymptotically flat circular-
speed curve. Then the integral in equation (4.234) evaluates to

∫ ∞

z2
dζ

∂ν

∂ζ

∂Φ

∂ζ
= − 3

4Kv
2
0

∫ ∞

z2

dζ

(R2
c + q2

ΦR
2 + ζ)(R2

c + q2
νR

2 + ζ)5/2

= −
3
2Kv

2
0

(R2
c + q2

ΦR
2 + z2)5/2

1

δ4

(
sin−1δ

δ
+

4
3δ

2 − 1

(1 − δ2)3/2

)
.

(4.236a)
where

δ2 ≡ (q2
Φ − q2

ν)R2

R2
c + q2

ΦR
2 + z2

. (4.236b)

To understand how this rather cumbersome formula works, we expand in
powers of δ before substituting into equation (4.234) to obtain

v2
φ(R, z) = 3

5v
2
0

(
R2

c + q2
νR

2 + z2

R2
c + q2

ΦR
2 + z2

)3/2[
δ2 + 25

14 δ
4 + O(δ6)

]
. (4.237)

At R, z � Rc, δ ∝ R so vφ ∝ R and there is solid-body rotation. Beyond Rc

in the equatorial plane δ becomes independent of R and

vφ/v0 →
√

3
5 (1 − q2

ν/q
2
Φ) (qν/qΦ)3/2. (4.238)

Observations indicate that within the effective radius of a typical luminous
galaxy, the mass distribution is dominated by stars (Gerhard et al. 2001;
Cappellari et al. 2006). From §2.3.2 we know that the ellipticity εν ≡ 1− qν
of the density distribution that generates the logarithmic potential (4.235)
is ' 3εΦ = 3(1 − qΦ). When we use this relation in equation (4.238), we

find that vφ/v0 =
√

4
5 εν + O(ε2ν). In Figure 4.14 the dotted curve shows

the relationship v/σ ∝ √
ε, and one sees that this proportionality provides

a reasonable fit to the data for Evans models. It lies below the data for
Rowley models, because these are not isotropic rotators. The filled circles,
which show the data for low-luminosity spheroids, scatter around the dotted
curve, although there is a tendency for the points to lie below the curve for
ε ∼< 0.5 and above the curve at higher ellipticities. Thus these data suggest
that low-luminosity spheroids are nearly isotropic rotators.

4.8.3 Virial equations

We obtained the Jeans equation (4.207) by multiplying the collisionless Boltz-
mann equation by vj and integrating over all velocities. In this process an
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equation in the six phase-space coordinates for a single scalar quantity f was
reduced to partial differential equations for ν and the velocity moments in
the three spatial coordinates. We now multiply equation (4.207) by xk and
integrate over all positions, thus converting these differential equations into a
simple tensor equation relating global properties of the galaxy, such as total
kinetic energy and mean-square streaming velocity.

We multiply equation (4.207) by Mxk, where M is the total mass of the
system. Then since the mass density is ρ(x) = Mν(x), integrating over the
spatial variables we find

∫
d3xxk

∂(ρvj)

∂t
= −

∫
d3xxk

∂(ρvivj)

∂xi
−
∫

d3x ρxk
∂Φ

∂xj
. (4.239)

The second term on the right side is the potential-energy tensor W (eq. 2.19).
The first term on the right side of equation (4.239) can be rewritten with
the aid of the divergence theorem (B.45):

∫
d3xxk

∂(ρvivj)

∂xi
= −

∫
d3x δkiρvivj = −2Kkj , (4.240a)

where we have assumed that ρ vanishes at large radii and have defined the
kinetic-energy tensor

Kjk ≡ 1
2

∫
d3x ρvjvk. (4.240b)

With the help of equation (4.26) we split K up into the contributions from
ordered and random motion:

Kjk = Tjk + 1
2Πjk , (4.241a)

where

Tjk ≡ 1
2

∫
d3x ρvjvk ; Πjk ≡

∫
d3x ρσ2

jk . (4.241b)

The derivative with respect to time in equation (4.239) may be taken outside
the integral sign because xk does not depend on time. Finally, averaging the
(k, j) and the (j, k) components of equation (4.239), we obtain

1
2

d

dt

∫
d3x ρ (xkvj + xjvk) = 2Tjk + Πjk +Wjk . (4.242)

Here we have exploited the symmetry under exchange of indices of T, Π (see
eq. 4.241b) and W (see eq. 2.22).
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The left side of equation (4.242) may be brought to a more intuitive
form if we define the tensor17 I by

Ijk ≡
∫

d3x ρxjxk. (4.243)

Differentiating I with respect to time, we have

dIjk
dt

=

∫
d3x

∂ρ

∂t
xjxk. (4.244)

With the continuity equation (4.204), the right side of this equation becomes

−
∫

d3x
∂(ρvi)

∂xi
xjxk =

∫
d3x ρvi (xkδji + xjδki) , (4.245)

where the equality follows by an application of the divergence theorem. Sub-
stituting this expression back into equation (4.244) yields

dIjk
dt

=

∫
d3x ρ (xkvj + xjvk) . (4.246)

We now combine equations (4.242) and (4.246) to obtain the tensor virial
theorem:

1
2

d2Ijk
dt2

= 2Tjk + Πjk +Wjk . (4.247)

Equation (4.247) enables us to relate the gross kinematic and morphological
properties of galaxies.18 In many applications the left side is simply zero
since the galaxy is time-independent.

(a) Scalar virial theorem The trace of the potential-energy tensor is
the system’s total potential energy W (eq. 2.23). Equations (4.240b) show
that K ≡ trace(T) + 1

2 trace(Π) is the total kinetic energy of the system.

Thus, if the system is in a steady state, Ï = 0, and the trace of equation
(4.247) becomes

2K +W = 0. (4.248)

Equation (4.248) is a statement of the scalar virial theorem.19 The kinetic
energy of a stellar system with mass M is just K = 1

2M〈v2〉, where 〈v2〉 is

17 The tensor defined by equation (4.243) is sometimes called the “moment of inertia
tensor” but we reserve this name for the related tensor that is defined by equation (D.41).

18 Equation (4.247) has here been derived from the collisionless Boltzmann equation,
which is only valid for a collisionless system, but we shall find in §7.2.1 that an analogous
result is valid for any system of N mutually gravitating particles. However, it should be
noted that (4.247) applies only to self-gravitating systems. Similar results may be derived
for systems embedded in an externally generated gravitational field; see Problems 3.12
and 4.38.

19 First proved by R. Clausius in 1870; Clausius also defined the virial of a system of N
particles as

PN
i miri · vi. The theorem was first applied to stellar systems by Eddington

(1916a). Einstein (1921) used it to estimate the mass of globular clusters.
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the mean-square speed of the system’s stars. Hence the virial theorem states
that

〈v2〉 =
|W |
M

=
GM

rg
, (4.249a)

where rg is the gravitational radius defined by equation (2.42). One often
wishes to estimate 〈v2〉 without going to the trouble of calculating rg. Spitzer
(1969) noted that in simple stellar systems the half-mass radius rh, which
is easily measured, is tightly correlated with rg. For example, the Jaffe and
Hernquist models (§2.2.2g) have rh/rg = 1

2 and 0.402, respectively, while
for spherical galaxies that have radius-independent mass-to-light ratios and
satisfy the Sérsic law (1.17) in projection, rh/rg ranges from 0.414 for m = 2
to 0.526 for m = 6 (Ciotti 1991). Moreover, we saw in §4.3.3c that along
the sequence of King models rh/rg is confined to the interval (0.4, 0.51)
(Figure 4.10). Hence, a useful approximation is

〈v2〉 =
|W |
M

' 0.45
GM

rh
. (4.249b)

If E is the energy of the system, we have from equation (4.248) that

E = K +W = −K = 1
2W. (4.250)

Thus if a system forms by collecting material together from a state of rest at
infinity (in which state, K = W = E = 0), and then settles by any process
into an equilibrium condition, it invests half of the gravitational energy that
is released by the collapse in kinetic form, and in some way disposes of the
other half in order to achieve a binding energy Eb = −E equal to its kinetic
energy. For example, suppose that our Galaxy formed by aggregating from
an initial radius that was much larger than its present size. Then, since most
of the galactic material is now moving at about vc ' 200 km s−1, whether
on circular orbits in the disk or on eccentric and highly inclined halo orbits,
we have that Eb = K ≈ 1

2Mgv
2
c of energy must have been released when the

Galaxy formed, where Mg is the mass of the Galaxy. This argument suggests
that as they form, galaxies radiate a fraction 1

2 (vc/c)
2 ' 3 × 10−7 of their

rest-mass energy.

(b) Spherical systems We may use the scalar virial theorem (4.248) to
evaluate the mass-to-light ratio Υ of a non-rotating spherical galaxy under
the assumption that Υ is independent of radius. We choose a coordinate
system in which the line of sight to the galaxy center coincides with the x
axis. Then the kinetic energy associated with motion in the x-direction is

Kxx = 1
2

∫
d3x ρv2

x. (4.251)
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Rewriting this in terms of the luminosity density j = ρ/Υ, we have

Kxx = 1
2Υ

∫
dy

∫
dz

∫
dx jv2

x. (4.252)

The innermost integral in this expression yields the luminosity-weighted dis-
persion of the line-of-sight velocities at position (y, z). Hence Kxx may be
expressed in terms of the surface brightness I(y, z) and the line-of-sight ve-
locity dispersion σ‖(y, z) as

Kxx = 1
2Υ

∫
dy

∫
dz I(y, z)σ2

‖(y, z) = 1
2ΥJ, (4.253a)

where J is the luminosity-weighted squared line-of-sight velocity dispersion

J ≡ 2π

∫ ∞

0

dRRI(R)σ2
‖(R). (4.253b)

Since the galaxy is assumed to be spherical and non-rotating, the total kinetic
energy is

K = 3Kxx = 3
2ΥJ. (4.254)

On the other hand, from equation (1.79) we have

ρ(r) = −Υ

π

∫ ∞

r

dR√
R2 − r2

dI

dR
. (4.255)

When we use this relation in equation (2.32), we obtain W as

W = Υ2J̃ , (4.256)

where J̃ is an integral that depends only on I(R). Using these results in
(4.248), we obtain finally

Υ = −3J/J̃. (4.257)

Thus Υ may be obtained from measurements of I(R) and σ‖(R). The nice
feature of equation (4.257) is that it is valid no matter what velocity anisot-
ropy there may be in the system. The main issues that must be addressed
in any practical application are: (i) do the kinematic data extend far enough
out for J to be calculated reliably?; (ii) is Υ really a constant throughout the
system? (iii) is the system really spherical, or is it an axisymmetric system
seen pole-on?

(c) The tensor virial theorem and observational data The analysis
of observational data is facilitated if we reformulate the tensor virial theorem
so that it involves the mean line-of-sight velocity v‖ and the line-of-sight
velocity dispersion σ‖ that are defined by equations (4.24) and (4.27). By
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analogy with (4.24a) we have that the mean-square line-of-sight velocity at
a location on the sky is

v2
‖ =

1

Σ

∫
dx‖

∫
d3v v2

‖f, (4.258a)

where

Σ =

∫
dx‖ ν =

∫
dx‖

∫
d3v f (4.258b)

is the probability per unit area of finding a particular star along the line of
sight. Hence, the line-of-sight velocity dispersion that is defined by equation
(4.25) is related to the df by

σ2
‖ = (v‖ − v‖)2 = v2

‖ − v2
‖

=
1

Σ

∫
dx‖

∫
d3v v2

‖f − 1

Σ2

(∫
dx‖

∫
d3v v‖f

)2

.
(4.259)

We now integrate Σv2
‖ over the sky and find that

∫
d2x Σv2

‖ =

∫
d2x Σ(σ2

‖ + v2
‖) =

∫
d3x

∫
d3vfv2

‖ =
2

M

∑

ij

ŝiKij ŝj ,

(4.260)
where M is the galaxy’s mass, Kij is defined by (4.240b), and ŝ is the unit
vector in the direction of the line of sight. We shall find it convenient to intro-
duce the notation 〈q〉 for the column-density weighted average of a quantity
q over the sky. In terms of this notation (4.260) can be written

〈
σ2
‖
〉

+
〈
v2
‖
〉

=
2

M
ŝ · K · ŝ where 〈q〉 ≡

∫
d2x Σq. (4.261)

Consider now the case of an axisymmetric galaxy that rotates around
its symmetry axis (the z axis) and is seen edge-on. The x axis is taken to
be parallel to the line of sight, so the yz plane is the sky plane. The tensors
K, T, etc., are diagonal in these coordinates. Moreover, Txx and Tyy are
equal, Tzz vanishes because there is only azimuthal streaming motion, and
ŝ · K · ŝ = Kxx. The tensor virial theorem provides just two non-trivial
equations

2Kxx +Wxx = 0

2Kzz +Wzz = 0
⇒

M
(〈
σ2
‖
〉

+
〈
v2
‖
〉)

Πzz
=
Wxx

Wzz
. (4.262)

As described in §4.1.2, the line-of-sight dispersion σ‖ has two components,
one arising from the velocity-dispersion tensor σ(x), and one from the vari-
ation in v(x) along the line of sight. In the present notation equation (4.27)
can be written

Σσ2
‖ =

∫
dx‖ ν(x)(σ2

xx + u2), (4.263)
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where u(x) is the difference between the component of v(x) parallel to the
line of sight and v‖. When this expression is integrated over the sky, we
obtain

Πxx

M
=
〈
σ2
‖
〉
−
∫

d3x ν(x)u2. (4.264)

We introduce the global anisotropy parameter δ to quantify the degree
of deviation from isotropy by

Πzz = (1 − δ)Πxx. (4.265)

On using this equation to eliminate Πzz from (4.262), we obtain

〈
v2
‖
〉

〈
σ2
‖
〉 =

(1 − δ)Wxx/Wzz − 1

α(1 − δ)Wxx/Wzz + 1
, (4.266a)

where

α ≡ 1〈
v2
‖
〉
∫

d3x ν(x)u2. (4.266b)

α is a dimensionless number that does not depend on how rapidly the galaxy
rotates but only on how the stellar density ν and streaming velocity v vary
within the (R, z) plane. For typical galaxy models, α lies in the range
(0.05, 0.2) (Binney 2005).

The left side of equation (4.266a) can be determined from spectroscopic
observations of an edge-on galaxy, while the ratio of components of W that
appears on the right side can be determined from photometry if we assume
that the galaxy’s light traces its mass. Hence we can use the equation to
determine the global anisotropy parameter δ.

Furthermore, when a system’s equidensity surfaces are similar spheroids,
the components Wij of its potential-energy tensor are given by (2.144), which
implies that the ratio Wxx/Wzz depends only on the ellipticity ε of the
spheroids, and is independent of the system’s radial density profile. Hence,
for such a system the right side of equation (4.266a) is a function of ε, α,
and δ only. Figure 4.22 shows the resulting relation between the rms rota-
tion velocity and rms velocity dispersion for two values of α (0.15, 0.1), and
the marked values of δ. Also shown are the locations of 48 elliptical and
lenticular galaxies from the sauron survey (Cappellari et al. 2007), which
has wide coverage of shapes and luminosities rather than being a photomet-
rically complete sample. The great majority of the galaxies lie in the region
0 ≤ δ ≤ 0.3. In §4.4.2c we saw that as an oblate, rotating galaxy is moved
from edge-on towards face-on position orientation, its representative point
in a v/σ diagram moves to the left (Figure 4.14), and from Figure 4.22 it is
clear that this movement will typically decrease the value of δ that we will
infer for the galaxy. Hence, from Figure 4.22 we conclude that most elliptical
galaxies have significantly anisotropic velocity-dispersion tensors, and that
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Figure 4.22 The ratio of the rms line-of-sight streaming velocity to the rms line-of-sight
velocity dispersion in an edge-on spheroidal galaxy as a function of the ellipticity of the
isodensity surfaces, for several values of the global anisotropy parameter δ. Full curves
are for α = 0.15 in equation (4.266a), while dotted curves are for α = 0.1. The black dots
show the locations of 48 luminous elliptical and lenticular galaxies from Cappellari et al.
(2007).

this anisotropy is at least as important as rotation in determining the shapes
of these objects. Naab, Jesseit, & Burkert (2006) discuss the implications of
the measured values of δ for models of the formation of elliptical galaxies in
mergers (§8.5).

4.9 Stellar kinematics as a mass detector

Knowing how mass is distributed in an astronomical system is fundamental
to understanding what the system is, how it works, and how it formed.
Since 1970 it has gradually emerged that “ordinary” baryonic matter, such
as we are made of, contributes ∼< 20% of the total matter of the universe
(§1.3.5), with the rest consisting of some mysterious form of dark matter. It
has also emerged that black holes with masses 106 to 109 M� reside at the
centers of many galaxies (§1.1.6). The most convincing way to detect dark
matter and black holes is through their gravitational fields. We have only
two ways of detecting a gravitational field: through its action on photons
(gravitational lensing; Schneider, Ehlers, & Falco 1999), and through its
action on masses such as stars and gas clouds. Consequently, considerable
effort has been expended on methods for inferring the gravitational field from
the kinematics of a population of objects such as stars, globular clusters, or
galaxies. These studies draw heavily on the theoretical tools that we have
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assembled in this chapter. We discuss in turn, the detection of central black
holes from stellar kinematics, probes for dark halos around elliptical galaxies,
and measurement of the mass density in the solar neighborhood. The same
physics underlies searches for both black holes and dark halos—we explain
it in the context of black-hole searches.

4.9.1 Detecting black holes

Suppose that we wish to determine the mass of the black hole at the center of
a spherical galaxy. From measurements of the surface brightness as a function
of radius, we can determine the luminosity density j(r). The pioneering work
on this problem (Sargent et al. 1978) estimated the mass within radius r by
setting β = 0 in equation (4.215) and writing

M(r) = − r

G

(
σ2 d ln j

d ln r
+

dσ2

d ln r

)
, (4.267)

where σ2 = v2
i is the mean-square of any component of velocity, which can be

determined from the line-of-sight velocity dispersion σ‖(R). If we were sure
that β did indeed vanish, the equation would determine both the black-hole
mass through M• = limr→0M(r), and the stellar mass M∗(r) = M(r)−M•.
The problem with this methodology is that we have no guarantee that β
vanishes, and Binney & Mamon (1982) showed that once β is allowed to
be a free function of radius, a wide variety of mass profiles are consistent
with given dispersion and surface-brightness profiles. In view of Figure 4.4
this result is not surprising: by varying β within modest limits, the central
velocity-dispersion profile can be made to rise or fall at will, whether or not
a black hole is present. Specifically, either inserting a black hole into an
isotropic model, or making β turn sharply positive at small radii will cause
σ‖(R) to turn upwards at small R (Figure 4.20); conversely, by causing β to
turn negative at small radii we can mask the effect of a black hole.

To make progress it is vital to characterize the losvd with more than
its dispersion, σ‖. The left panels of Figure 4.23 show three losvds for
each of the models that contribute velocity-dispersion profiles to Figure 4.4.
The right panels show the differences between each losvd and the Gaussian
that has the same dispersion; the losvd is called “cuspy” if it lies above
the equivalent Gaussian at zero velocity, and otherwise is said to be “flat-
topped.” From top to bottom the panels show losvds for the radially biased
model (β = 1

2 ), the isotropic model, and the tangentially biased model (β =

− 1
2 ). In the top left panel the losvd at R = 4a for the radially biased

model has a cusp at v‖ = 0 and lies above the equivalent Gaussian at small
v‖, as the top-right panel attests. The profile is cuspy because the losvd

is dominated by the region in which the line of sight passes closest to the
center and the density of stars is highest, and in this region stars on nearly
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Figure 4.23 Left panels: losvds for the Hernquist models plotted in Figure 4.4. From top
to bottom the models have anisotropy parameter β = 1

2
, 0 and − 1

2
. In each panel profiles

are shown for R = 0.1a, a and 4a. The right panels show the deviations of each losvd

from the Gaussian that has the same dispersion. From top to bottom the full curves have
Gauss–Hermite parameters h4 (BM §11.1.2) 0.001, 0.024 and 0.002; the dashed curves
have h4 = 0.038, −0.022 and −0.057.

radial orbits have v‖ ' 0. In contrast, the bottom left panel shows that
in the tangentially biased model the losvd at R = 4a has a flat top, and
the bottom-right panel shows that the losvd lies below the corresponding
Gaussian at small v‖. The model has a flat-topped profile because at the
point of closest approach of the line of sight to the center, the multitude of
stars on nearly circular orbits are seen at a variety of values of v‖ depending
on the inclinations of their orbital planes to the line of sight.

The full curves, which show the losvds at R = 0.1a, behave differently
because these lines of sight are dominated by stars where the gradient in
the stellar density is relatively shallow. Consequently the losvd is not so
heavily dominated by the tangent point, and the radial velocities of stars
make significant contributions to v‖.

The shape of the losvd is frequently parameterized by the Gauss–
Hermite coefficient h4 (van der Marel & Franx 1993; Gerhard 1993; BM
§11.1.2) and from the numbers given in the figure caption one sees that the
radially biased model can be distinguished from the tangentially biased one
if h4 can be determined with an accuracy greater than ∼ 0.03. Such accuracy
can be achieved only when the data have a high signal-to-noise ratio, and
when the template star used in the analysis of the galaxy’s spectrum is well
matched to the galaxy’s dominant stars (Houghton et al. 2006).
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Figure 4.24 losvds along R = 0.01a through a Hernquist model that either does not
(full line) or does (dotted curve) contain a black hole. The black-hole mass is a fraction
0.004 of the galaxy mass.

Figure 4.24 shows losvds at R = 0.01a for the radially (top panels)
and tangentially biased models, both with and without a central black hole
whose mass is 0.004 times the mass of the galaxy. The line-of-sight velocity
dispersion profiles of these models are shown in Figure 4.20, which shows
that the line of sight at R = 0.01a passes well inside the black hole’s radius
of influence. The full curves in Figure 4.24 show the case of no black hole.
The one in the top right panel shows that, in the absence of a black hole, the
losvd of the radially biased model at this small projected radius is rather
nearly Gaussian. The dashed line in the top left panel shows that when the
black hole is added, the losvd becomes distinctly flat-topped, falling well
below the Gaussian at small v‖. This shape reflects the large contributions
to v‖ from radial velocity at points that lie well in front of or behind the
point of closest approach of the line of sight to the center. The full curve in
the lower right panel shows that, in the absence of a black hole, the losvd

of the tangentially biased model is sharply peaked around v‖ = 0; this shape
reflects the tendency of nearly circular orbits with radii r � R to cut the line
of sight almost at right angles. The dashed curve in the bottom right panel
shows that adding a black hole makes the losvd rather nearly Gaussian.
The black hole reduces the number of stars seen at v‖ ' 0 by speeding up
stars with apocenters at r ∼< Rinfl (eq. 4.220).

These examples illustrate the following general effects:
• At R > a the radial stellar gradient is large all along the line of sight,

so radial bias makes the losvd cuspy while tangential bias makes it
flat-topped.
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• Along a line of sight that penetrates deeply into the central region in
which the stellar density gradient is shallow, radial bias creates a Gaus-
sian or flat-topped losvd while tangential bias makes the losvd cuspy.

• Along a line of sight that passes inside the black hole’s radius of influ-
ence, the black hole makes the losvd more flat-topped than it otherwise
would be, regardless of whether the model is radially or tangentially bi-
ased.

In a study of nearby elliptical galaxies (e.g., Gebhardt et al. 2003), one
might have Rinfl ' 10 pc and the galaxy might be at a distance d ' 20 Mpc.
Then the angular size of Rinfl will be 0.1 arcsec. This is only about a factor
2 larger than the best angular resolution achievable in photometry with the
Hubble Space Telescope, and comparable to the best angular resolution at
which spectroscopy can be done. Consequently, the deleterious effects of the
point spread function on the data (BM §4.2.2) are important. In particular,
the spectrum associated with the pixel that contains the galactic center will
contain light emitted by stars that are very close to the black hole and moving
at thousands of kilometers a second, as well as light from larger numbers of
more distant stars that are moving much more slowly. Hence, the black hole
will signal its presence by adding faint wings of large extent to the losvd.
Data of the highest quality are required if these wings are to be detectable.

Elliptical galaxies exhibit a wide variety of surface brightness profiles
near their centers (BM Figure 4.32). If at small radii I(R) ∝ R−α, then the
ease with which a central black hole can be detected from stellar kinematics
increases with α because (i) the signal from stars near the black hole is less
diluted by foreground and background stars when α is large, and (ii) it is
easier to get high signal-to-noise data when the surface brightness is high.
Galaxies have asymptotic slopes 0 ∼< α ∼< 1, and the Hernquist model lies
at the lower end of this range, so in some respects we have focused on a
particularly challenging example.

Several groups have hunted for central black holes in galaxies by fit-
ting models to both the galaxy’s photometry and the losvds measured at
different radii (e.g., Richstone & Tremaine 1985; van der Marel et al. 1998;
Gebhardt et al. 2003). These studies have detected mass concentrations that
are presumably black holes in many nearby galaxies, and have revealed the
correlation (1.27) between black-hole mass and the velocity dispersion near
the center of the galaxy. In most of this work the galaxies have been assumed
to be axisymmetric, and Schwarzschild’s modeling technique has been used
to predict losvds as a function of an assumed mass-to-light ratio Υ of the
galaxy and an assumed black-hole mass M•. The values of Υ and M• are
adjusted until a minimum is achieved in the χ2 of the fit of the data to the
observations. In general galaxies seem to exhibit mild radial biases, but there
is a tendency for tangential bias to develop in the immediate vicinity of the
black hole.

As we have seen, the detections of central black holes from stellar dynam-
ics are challenging measurements: they require the highest possible spatial
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resolution because the angular size of Rinfl (eq. 4.220) is so small, and they
require high-precision measurements of the shape of the losvd. For this
reason, the two most secure black-hole masses are that of the Milky Way,
which can be obtained by following the orbits of individual stars at distances
of order 10−3 pc from the black hole (Eisenhauer et al. 2003), and that of
NGC 4258, which is determined from observations of H2O masers in the sur-
rounding accretion disk (BM §7.2.4; Herrnstein et al. 2005). It is reassuring
that (i) both objects lie on the standard mass-dispersion correlation (1.27),
and (ii) black-hole mass measurements from gas kinematics define the same
mass-dispersion correlation as measurements from stellar kinematics.

4.9.2 Extended mass distributions of elliptical galaxies

Measurements of the luminosities L, effective radii Re, and central line-of-
sight velocity dispersions σ0 of spheroidal systems show that these variables
are tightly correlated, such that spheroids lie on the “fundamental plane” in
three-dimensional (log10 L, log10Re, log10 σ0) space (§1.1.3a and BM §4.3.4).
Photometric and spectroscopic measurements such as those we have dis-
cussed in connection with the determination of black-hole masses enable us
to estimate mass as a function of radius, M(r), within a given spheroidal
system. In particular, recalling that half the galaxy’s light lies within Re,
we can determine the mass-to-light ratio Υe ≡ 2M(Re)/L and ask how this
varies within the fundamental plane. Crudely we expect from the scalar
virial theorem (4.249b) that

σ2
0 ≈ GM(Re)

Re
' GΥeL

2Re
= πGΥeIRe, (4.268)

where we have used the relation L = 2πR2
eI between the luminosity and I ,

the mean surface brightness inside Re. Taking logarithms we obtain

log10Re = 2 log10 σ0 − log10 I − log10 Υe + constant. (4.269)

Can this theoretical relation be reconciled with the empirical relation (1.20)
that defines the fundamental plane?

Deviation of the data from the prediction of equation (4.269) is ex-
pected because high-mass spheroids are not simply scaled versions of low-
mass spheroids, so σ2

0 will not be precisely proportional to GM(Re)/Re as
equation (4.268) assumes. However, the violations of (4.269) expected from
this cause are much smaller than those implied by (1.20), so we consider
other ways of reconciling equation (4.269) with the fundamental plane.

The differences in the coefficients of log10 σ0 and log10 I in (4.269) and
(1.20) imply that Υe varies systematically with σ0 and I . If the masses
of spheroids were mostly contributed by dark matter, these variations in
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Figure 4.25 Upper panel: ratios ΥB(r) = M(r)/LB(r) of mass to light within radius r
for seven elliptical galaxies with high-quality data—each curve is labeled by the galaxy’s
NGC number. Lower panel: the local mass-to-light ratio ρ(r)/jB(r) in four such galaxies
(after Gerhard et al. 2001).

Υe might arise from changes in the ratio of stars to dark matter. If, by
contrast, the masses are mainly contributed by stars, the variations in Υe

should reflect changes in characteristics, such as the age and metallicity, of
the stellar population of each system.

Kronawitter et al. (2000) modeled photometry and spectroscopy of a
sample of 21 round elliptical galaxies. The luminosity density of each galaxy
was first determined from the photometry. Then the corresponding gravita-
tional potential was calculated assuming some mass-to-light ratio Υ. To this
was added a simple model Φ = 1

2v
2
0 ln(r2 +r2

c) for the additional contribution
of dark matter to the potential. Then dfs fj(H,L) of the form (4.80) were
found that produce the given luminosity density in the potential. Assuming
that the actual df was of the form f =

∑
j ajfj , σ‖ and h4 were calculated

at radii for which data were available. The coefficients aj were used to opti-
mize the fit to these data, and then the resulting value of χ2(Υ, v0, rc) was
noted. The procedure was then repeated for different values of the stellar
mass-to-light ratio Υ and the dark-halo parameters v0 and rc, to find the val-
ues that minimized χ2. The following conclusions emerged from this study
(Gerhard et al. 2001). (i) Most galaxies show slight radial anisotropy, with
β ∼ 0.2. (ii) For 0.2 ∼< r/Re ∼< 2 the circular speeds vary by no more than
∼ 10%. (iii) The circular speeds define a Tully–Fisher relation L ∝ vαc that
has a similar, or slightly shallower, slope α to that in the relation (1.24) for
spirals and a constant of proportionality that makes the ellipticals 0.6 mag
fainter in the R band at a given value of vc. (iv) Models in which all mass at
r ∼< Re is stellar are consistent with the data, although the spatial resolution
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was not high enough to detect black holes at the centers of the galaxies. (v)
The mass-to-light ratios Υ implied by these models are consistent with those
predicted by stellar population models. In particular, the observed increase
in Υ with L is consistent with the redder colors of more luminous galaxies.
While a tendency for age to increase with L may contribute to the increase in
Υ, the dominant effect is almost certainly increasing metal content. (vi) In
some systems there is no evidence for dark matter out to R = 2Re. In other
galaxies dM/dL increases outwards by as much as a factor 3–4 between the
center and 2Re (Figure 4.25). A study by Cappellari et al. (2006) of 25 E
and S0 galaxies additionally showed that (vii) the mass-to-light ratio inside
Re is tightly correlated with the velocity dispersion (eq. 1.23).

Beyond R ∼ Re the low surface brightness of an elliptical galaxy makes
it hard to obtain spectra that permit the reliable extraction of the losvd.
As was described in §1.1.3a, we have three possible ways to probe the mass
distributions of galaxies beyond Re: (i) dynamics of test particles such as
planetary nebulae and globular clusters; (ii) the hydrostatics of trapped X-
ray emitting gas; (iii) weak gravitational lensing. Both X-ray observations
and weak lensing show that many elliptical galaxies are surrounded by huge
amounts of dark matter (Humphrey et al. 2006; Heymans et al. 2006). On
the other hand, the kinematics of planetary nebulae around a few ellipticals
are most straightforwardly interpreted as indicating that they do not have
dark halos (Romanowsky et al. 2003). Ellipticals tend to exist in the most
crowded areas of the universe (BM §4.1.2), so they are more likely than disk
galaxies to have been affected by interactions with other galaxies (§8.2.2g).
It is very possible that ellipticals that are not stationary at the centers of
groups or clusters of galaxies have been largely stripped of their dark halos,
while galaxies that sit at the center of a group or cluster have extensive halos
that might be considered the property of the group or cluster rather than of
the galaxy itself. Hence it is still unclear whether elliptical galaxies generally
possess dark halos.

4.9.3 Dynamics of the solar neighborhood

A fundamental problem in Galactic structure, first studied by Kapteyn
(1922), is to determine the density of matter in the disk near the Sun. The
analysis of Oort (1932) and several subsequent workers was based on the
Jeans equation (4.222b). The first term in this equation involves the mixed
moment vRvz . In our discussion of asymmetric drift (§4.8.2a) we saw that

vRvz is probably smaller than, but on the order of, (v2
R − v2

z)(z/R). Thus if

we assume, as in the discussion following equation (4.155), that v2
R and v2

z

both decline with R as exp(−R/Rd), then we conclude that the first term in
equation (4.222b) is constrained by

∣∣∣∣
1

R

∂(RνvRvz)

∂R

∣∣∣∣ '
2ν

Rd
vRvz ∼<

2νz

Rd

v2
R − v2

z

R0
. (4.270)
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The second term in equation (4.222b) is of order νv2
z/z0, where z0 � R0 is

the scale height of the disk. Hence the first term is smaller than the second
by at least a factor 2zz0/(RdR0) ∼< 0.01 and we may neglect it as Oort did.
With this approximation we have

∂(νv2
z)

∂z
+ ν

∂Φ

∂z
= 0. (4.271)

This is the Jeans equation for a one-dimensional slab.
To relate the potential to the disk density we use Poisson’s equation

(3.88) in cylindrical coordinates. The first term vanishes when the circular-
speed curve is flat, and it is very much smaller than the second term for any
reasonable potential. Therefore we neglect it and have

4πGρ =
∂2Φ

∂z2
; (4.272)

once again the approximation for a one-dimensional slab. Combining equa-
tions (4.271) with (4.272), we now have

4πGρ = − ∂

∂z

(
1

ν

∂(νv2
z)

∂z

)
. (4.273)

Here the mass density ρ(z) is not necessarily proportional to the stellar den-
sity ν, which is that of any population of stars that is in a steady state.

If we could measure the run of density ν(z) and mean-square random

velocity v2
z(z) for any stellar population, from equation (4.273) we could read

off the mass distribution ρ(z). In practice statistical uncertainty in ν and v2
z

make it hard to estimate ρ reliably from (4.273).
An approach that relies on dfs rather than the Jeans equation probably

provides a better way of determining the local mass density given the nature
of the currently available observational data. At the end of §3.2.2 we saw
that when a star’s epicycle amplitude (the quantity X in eq. 3.91) is much
smaller than the disk scale length Rd, the quantity Hz defined by equation
(3.74) is an approximate isolating integral. By the Jeans theorem, we can
assume that the df that describes the distribution of stars in the (z, vz) plane
has the form f(Hz). The density of stars is

ν(z) =

∫ ∞

−∞
dvz f = 2

∫ ∞

0

dvz f( 1
2v

2
z + Φ). (4.274)

The function ν(z) we obtain by counting stars as a function of distance
from the plane. The function f(Hz) can be determined from the velocity
distribution at z = 0. The fraction of stars in an interval dvz is

P0(vz) dvz =
f
(

1
2v

2
z + Φ0

)

ν(0)
dvz where Φ0 ≡ Φ(0). (4.275)
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Figure 4.26 The change in gravitational potential near the Sun between the midplane
and height z above the plane. Squares show values obtained with equations (4.276) from
the A-star sample of Holmberg & Flynn (2000), while the triangles are from their F-star
sample. The full curve is a least-squares fit of a parabola: it is the internal gravitational
potential of a homogeneous slab with mass density 0.101M� pc−3. The dashed curve
shows the potential of Model I of §2.7.

Eliminating f between equations (4.274) and (4.275), we obtain

ν(z)

ν(0)
=

2

ν(0)

∫ ∞

0

dvz f [( 1
2v

2
z + Φ − Φ0) + Φ0] = 2

∫ ∞

0

dvz P0(u), (4.276a)

where
u ≡

√
v2
z + 2(Φ − Φ0). (4.276b)

The right side of equation (4.276a) can be evaluated as a function of Φ−Φ0,
and then Φ(z)−Φ0 is the value of Φ−Φ0 at which the right side is equal to
ν(z)/ν(0).

The Hipparcos catalog,20 which gives accurate three-dimensional loca-
tions and proper motions for stars in a sphere around the Sun of radius
≈ 120 pc, yields data to which we can apply equations (4.276). The catalog
is complete only to a relatively bright apparent magnitude V ∼ 8, and it is
important that the volume around the Sun within which the selected stars
lie is large enough to sample the vertical density profile ν(z). So one se-
lects luminous, main-sequence stars (MV < 2.5, B− V < 0.6), both because
these stars are in the complete part of the catalog throughout the volume
within which Hipparcos distances are accurate, and because they are young
and therefore have a small scale height (Figure 8.11). Since the Hipparcos

20 Hipparcos is the acronym of the HIgh Precision PARallax COllecting Satellite. The
acronym is inspired by the Greek astronomer Hipparchus.
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catalog includes radial velocities only for a kinematically biased sample, P0

has to be determined from proper motions alone.
The squares and triangles in Figure 4.26 show the values of Φ(z) −

Φ(0) that are obtained from equations (4.276) from two samples of tracer
objects, namely A stars and F stars, that were extracted from the Hipparcos
catalog by Holmberg & Flynn (2000). The density ρ(z), which is our goal, is
proportional to the double derivative of Φ(z), and it is clear from the figure
that simple numerical differentiation will not yield credible results.

One way to proceed is to fit the data with a simple functional form. The
simplest plan is to assume that Φ − Φ0 = 1

2kz
2, with k a parameter to be

fitted to the data. The full curve in Figure 4.26 shows a least-squares fit of
this formula to the data. The corresponding density is ρ(0) = k/(4πG) =
0.101M� pc−3. Using the same trial potential but a different approach to
the observational data, Crézé et al. (1998) concluded that ρ(0) = k/(4πG) =
(0.076 ± 0.015)M� pc−3. Holmberg & Flynn (2000) used a more complex
trial potential but still one that depends only on an overall density parameter.
They concluded that ρ(0) = (0.10±0.01)M� pc−2. These values of ρ(0) are
in good agreement with each other and with the density expected to be
contributed by stars and interstellar gas (Table 1.1). The dashed curve in
Figure 4.26 shows the potential of Model I from §2.7, which is more physically
plausible than the quadratic model shown by the full curve, but nonetheless
provides a slightly less good fit to the data.

We have seen that the local density can be determined using only data
in the Hipparcos catalog. Unfortunately, to determine the overall surface
density Σ =

∫
dz ρ(z) of the disk one has to use stars that are too distant

to have accurate distances from Hipparcos. In practice one uses photometric
distances to stars that lie towards the Galactic poles. In this direction, the
line-of-sight velocity, which can be readily measured, is vz, and the observa-
tions yield the distribution of stars in the (z, vz) plane.

Kuijken & Gilmore (1989) obtained distances and line-of-sight velocities
for 512 K dwarfs seen towards the south Galactic pole (BM §10.4.4). For
various trial potentials Φ(z) they converted the measured density profile ν(z)
into the functional dependence ν(Φ). With ν expressed as a function of Φ,
equation (4.274) becomes an Abel integral equation for f(Hz) (eq. B.74):

ν(z) =

∫ ∞

Φ(z)

dHz
f(Hz)√

2(Hz − Φ)
. (4.277)

The true dependence of Φ on z was estimated by varying the parameters
in a simple functional form for Φ(z) until the likelihood of the measured
distribution in the (z, vz) plane was at a maximum. From this analysis
Kuijken & Gilmore (1991) concluded that within 1.1 kpc of the plane the
surface density of material is

Σ1.1(R0) = (71 ± 6)M� pc−2. (4.278)
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Holmberg & Flynn (2004) used a sample of K giants and an updated lumi-
nosity function for these stars and found that Σ1.1(R0) = (74± 6)M� pc−2,
in agreement with (4.278).

Some part of Σ1.1 must be contributed by the halo rather than the local
disk. We can get an idea of the scale of this contribution by supposing that
(i) the halo is spherical, (ii) the circular speed vc = v0 = constant , and (iii)
without the halo, vc would be falling in Keplerian fashion, vc = (GMd/r)

1/2

at R0. With these hypotheses, the halo mass M(r) satisfies G[M(r)+Md] =
rv2

0 , so the halo density is

ρh =
1

4πr2

dM

dr
=

v2
0

4πGr2

= 0.014M� pc−3
( v0

200 km s−1

)2
(

R0

8 kpc

)−2

,

(4.279)

and the halo contributes only Σh
1.1 = (2.2 kpc)× ρh = 30.6M� pc−2 to Σ1.1.

Thus Σ1.1 must in fact be dominated by the disk not the halo, and the
local disk must contribute more than 40M� pc−2 to the local mass budget.
The Sun lies in the transition region in which both disk and halo contribute
significant mass.

4.10 The choice of equilibrium

One of the most important lessons of this chapter is that the range of equilib-
rium configurations accessible to a collisionless stellar system is large. The
question arises “what determines the particular configuration to which a
given stellar system settles?” Two classes of explanation are in principle
possible. (i) The configuration actually adopted is favored or demanded
by some fundamental physical principle, in the same way that the velocity
distribution of an ideal gas always relaxes towards the Maxwell–Boltzmann
distribution. (ii) The present configuration is a reflection of the particular
initial conditions that gave rise to the system’s formation, in the same way
that the shape of a particular stone in a field is due to particular circum-
stances rather than to any general physical principle. These two classes of
explanation are not mutually exclusive. For example, the meandering course
of the Mississippi River has been determined more by chance than by any
fundamental principle, yet many characteristics of the river channel—typical
sizes of elbows and the formation of oxbow lakes—can be understood in
terms of simple physical arguments. Nevertheless, it is profitable to analyze
the properties of galaxies in terms of first one and then the other of these
points of view. We start by asking whether the present states of galaxies are
simply more probable than any other configurations.
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4.10.1 The principle of maximum entropy

In the 1890s J. W. Gibbs discovered that the standard relations between the
thermodynamic variables of simple systems could be derived by hypothesiz-
ing that the probability that the system would be found to be in any small
volume dτ of its phase space is proportional to e−βHdτ , where β is a param-
eter he identified as the inverse of the system’s temperature, and H is the
system’s Hamiltonian. Since Gibbs’s day there have been almost as many
attempts to explain why this hypothesis works as there have been books
written on statistical mechanics. After all these decades of debate, scientists
are still far from agreement on this question. However, it is generally agreed
that Gibbs’s hypothesis can be derived from an alternative principle, that of
maximum entropy: the thermodynamic relations for any physical system
may be derived by seeking the probability density in phase space, p, that
maximizes the entropy

S ≡ −
∫

phase space

dτ p ln p+ constant, (4.280)

subject to all relevant constraints. Can we derive the structures of galaxies
from this principle?

The phase space of a galaxy of N stars is 6N -dimensional, and the
infinitesimal dτ in equation (4.280) refers to an element of this phase space
rather than an element of the phase space of a single star (§7.2.2). However,
as was discussed in §4.1.1, we may neglect correlations between the particles
of a collisionless system, so the probability pdτ associated with a range of
configurations in the 6N -dimensional phase space of the whole galaxy is just
the product of factors fd3xd3v associated with individual stars. In these
circumstances it is straightforward to show that

S = −N
∫

d3xd3v f ln f + constant. (4.281)

The obvious next step is to seek the form of f that maximizes S subject
to given values of the galaxy’s mass M and energy E. This calculation leads
to the conclusion that S is extremized if and only if f is the df (4.96) of
the isothermal sphere (§7.3.2). However, we have seen that the isothermal
sphere has infinite mass and energy, so the maximization of S subject to
fixed M and E leads to a df that is incompatible with finite M and E. The
reason for this contradiction is that no df with finite M and E maximizes
S: if we constrain only M and E, configurations of arbitrarily large entropy
can be constructed by suitable rearrangements of the galaxy’s stars.21 The
reason why this is so is easily explained.

21 It has sometimes been argued that the principle of increase of entropy dooms the
universe to a “heat death,” in which all matter is in a uniform, isothermal, maximum-
entropy state. This argument is invalid once gravitational forces are included, since then
there is no maximum-entropy state.
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Suppose we have a spherical galaxy of total mass M and binding energy
|E|. We mentally divide the system into a main body of mass M1 and
gravitational radius r1, and an outer envelope of radius r2 that divides mass
M2 �M among N2 stars. By the virial theorem (4.250) the binding energy
|E1| of the main body is GM2

1 /2r1, and the binding energy of the envelope
is |E2| ≈ GM1M2/r2 since its stars orbit in a potential dominated by M1.
Now imagine that we shrink the main body by a small fraction ε, so its
radius changes from r1 to (1− ε)r1. The shrinkage releases an energy ∆E ≈
εGM2

1 /r1. We deposit this energy in the outer envelope, which swells in
response to a radius r′2 given by |E′

2| = |E2 + ∆E| ≈ GM1M2/r
′
2.

The velocity dispersion in the swollen envelope is σ′
2 ≈

√
GM1/r′2. Thus

the volume V ≈ σ′
2

3
r′2

3
of the region of phase space over which the represen-

tative points of the envelope’s stars are distributed is V ≈ (GM1r
′
2)3/2 and

the envelope’s df is f ≈ V−1. Finally, by equation (4.281) the entropy of
the envelope is

S = −N2

∫
d3xd3v f ln f + constant ≈ N2 ln(V) + constant

≈ 3
2N2 ln(r′2) + constant ≈ − 3

2N2 ln(|E2 + ∆E|) + constant.

(4.282)

It follows that the entropy of the envelope tends to infinity as ∆E tends to
|E2|. It is easy to see that the entropy of the main body changes by only
a small amount as a result of the energy transfer. Hence the entropy of
the combined system increases without limit. In other words, we can always
increase the entropy of a self-gravitating system of point masses at fixed total
mass and energy by increasing the system’s degree of central concentration
(page 30), because the entropy grows arbitrarily when a small fraction of the
mass is put into a very large, diffuse envelope.

From this discussion we conclude that galaxies, unlike cold white-dwarf
stars or an ideal gas, are not in thermodynamic equilibrium even though
they are in dynamical equilibrium. Processes that disturb the dynamical
equilibrium offer them the opportunity of moving to states of higher entropy,
which will generally be characterized by a denser core and a more extensive
envelope. These processes include spiral structure (Chapter 6), two-body
relaxation (Chapter 7), and mergers (Chapter 8).

Because galaxies are not in thermodynamic equilibrium, if we wish to
understand their present configurations we must investigate the initial condi-
tions from which they started in life, and the rates at which various dynamical
processes occur within them. The insights into initial conditions that cos-
mology provides are described in Chapter 9. Now we identify two physical
mechanisms that play formative roles in the early lives of galaxies.
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Figure 4.27 Schematic representation of how an initially compact group of phase points
winds up into a larger region of lower coarse-grained phase-space density. (a) Initially the
phase points fill the wedge on the axis pθ = 0. As time passes, and the phase-points move
on circles like those shown, this wedge is drawn out into a band of ever-decreasing width.
(b) After several crossing times the coarse-grained phase-space density is approaching
uniformity in the annulus shown.

4.10.2 Phase mixing and violent relaxation

There are periods in the life of a galaxy when its material is far from a steady
state, for example when it first forms by the collapse of a primordial density
fluctuation (§9.2), or when it merges with another galaxy of comparable mass
(§8.5). At these times of disequilibrium two related mechanisms come into
play.

(a) Phase mixing Consider a collection of N independent pendulums
that are all of the same length l, and therefore all have the same dynamical
properties. Initially all the pendulums are swung back so they make angles
θ with the vertical that are uniformly distributed in the interval θ0 ± 1

2∆θ,
where ∆θ � θ0. Each pendulum is given a small random velocity so the
momenta p = l2θ̇ are uniformly distributed in the range ±∆p. When the
pendulums are released, they start to oscillate. This situation is shown
schematically in Figure 4.27—in reality the phase trajectories will be closed
curves of constant energy, but not circles. The period of each pendulum
depends on its amplitude, and therefore on its energy. The more energetic
pendulums, which in Figure 4.27 move on circles of larger radius, oscillate
slowest. Thus the patch formed in the figure by the phase-space points of the
pendulums is gradually sheared out into a spiral of ever-diminishing pitch
angle, which remains confined to the area between the curves of minimum
and maximum energy.

The evolution of the whole system of pendulums may be described by
the collisionless Boltzmann equation. According to this equation, the density
of phase points in an infinitesimal volume around the phase point of any
particular pendulum is constant. Consequently, the density of phase points
in the spiral into which the occupied patch in Figure 4.27a is sheared is the
same as the density in the original patch.
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A macroscopic observer estimates the coarse-grained df f introduced
in §4.1.1b by counting how many pendulums have phase-space coordinates
in each of a number of cells of finite size. Initially f = f , but at late times
the spiral has been wound so tightly that any of the macroscopic observer’s
phase-space cells that intersects the spiral will contain both strips of the
spiral and strips that are empty of phase points. When the observer works
out the mean density within each of his cells, he finds that f is constant
throughout the annulus in phase space between the limiting energy curves.
Since the area of the annulus is larger than the area of the small patch within
which the phase points originally lay, f is smaller than f .

The process that causes f to decrease in this way as the pendulums get
out of phase with one another is called phase mixing. An example is given
on page 414.

The role of the collisionless Boltzmann equation in the relaxation of
galaxies to equilibrium configurations is therefore rather subtle: it does not
ensure that the empirically measurable df f is constant along stellar orbits,
but rather it implies that f can increase along an orbit only when the orbit
mixes with other orbits that started from a higher phase-space density, and
are themselves are experiencing a decrease in f . In particular the combi-
nation of the collisionless Boltzmann equation and phase mixing forces the
maximum value of f to decrease monotonically. The overall effect of regions
of initially higher phase-space density mixing with regions of lower phase-
space density is to reduce the fraction of the mass in the system that resides
at values of f larger than any given value.

The entropy defined by equation (4.281) is time-independent since f is
constant along every orbit. However, if in equation (4.281) we replace f by
f , we obtain an entropy S that in general increases in time; it can be shown
that any decrease in the value of f along orbits, such as occurs during phase
mixing, causes S to increase, just as the entropies of familiar thermodynamic
systems increase when their different parts come into thermal equilibrium.
In particular, we may state that no isolated collisionless stellar system A can
evolve into a system B for which the entropy S(B) < S(A). For developments
of this idea, see Tremaine, Hénon, & Lynden–Bell (1986) and Dehnen (2005),
and for its bearing on what dark matter might be, see Sellwood (2000a).

(b) Violent relaxation Phase mixing plays an important role during the
relaxation of a galaxy of stars towards a steady state. But another relaxation
process, known as violent relaxation, is also at work (Lynden–Bell 1967).
While phase mixing changes the coarse-grained phase-space density near the
phase point of each star, violent relaxation changes the energies of the stars
themselves. When a star moves in a fixed potential Φ, its energy E = 1

2v
2+Φ

is constant. But if Φ is a function Φ(x, t) of both space and time, E is not
constant. In fact (eq. D.10),

dE

dt
=
∂Φ

∂t

∣∣∣∣
x(t)

. (4.283)
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As a simple example, consider a star that is at rest at the center of a
collapsing spherical protogalaxy. As the protogalaxy collapses, the potential
well at its center becomes deeper. On the other hand, the velocity of the
central star remains zero. Therefore the energy of this star decreases.

Other stars in the collapsing protogalaxy will gain energy. For example,
consider a star that is initially located outside the half-mass radius of the
system and is moving slowly radially outward. This star will be slow to
respond to the overall collapse of the system, and by the time it is falling
rapidly to the center, the system as a whole will be approaching its most
compact configuration. Hence the star will acquire a lot of kinetic energy
as it falls into the deep potential well at the center of the system. Later,
by the time the star has passed close to the center and is on its way out
again, the system will have re-expanded significantly and the potential well
out of which it has to climb will be less deep than that into which it fell.
Consequently, it will reach the potential at which it originally started with
more kinetic energy than it had originally.

The change in the energy of a particular star during a collapse depends
in a complex way on the initial position and velocity of that star—even in
a spherical collapse, but more so in the generic collapse of a lumpy matter
distribution—and the overall effect is to widen the range of energies of the
stars. In this respect, a time-varying potential provides a relaxation mecha-
nism analogous to collisions in a gas. However, there is an important distinc-
tion between relaxation in a gas and violent relaxation. Since the mass of the
star whose energy is being followed does not appear in equation (4.283) or in
the equation of motion that determines x(t), violent relaxation changes the
energy per unit mass of a star that has a given initial position and velocity
in a way that is independent of the star’s mass. In contrast, we know from
statistical mechanics that collisional relaxation tends to pump energy from
the most massive particles to the least massive particles, thus establishing
equipartition of energy (cf. page 583). It is sometimes desirable to be able
to check that collisional relaxation through gravitational encounters is not
playing an important role in a numerical simulation of a stellar system, and
the best way to do this is to check that the distribution of energies per unit
mass of stars is independent of mass.

The collisionless relaxation processes that we have described—phase
mixing and violent relaxation—are distinct effects. For example, the coarse-
grained phase-space density of an ensemble of non-interacting pendulums can
be radically reduced by phase mixing although the energies of the individual
pendulums are exactly constant. By contrast, while the phase-space density
in the neighborhood of the phase point of a star that is at rest at the center
of a collapsing protogalaxy does not change during a spherical collapse (the
motion of stars that remain very close to the center of the protogalaxy is
unaffected by the collapse), we have seen that violent relaxation does change
the energy of these stars. Although these processes are conceptually distinct,
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in §9.2.4 we shall see that in a collapsing system they work cooperatively,
and indeed drive one another.

4.10.3 Numerical simulation of the relaxation process

With an N-body program (§3.4) we can investigate the relaxation of stellar
systems experimentally. An N-body simulation is determined by the initial
assignment of positions and velocities to its stars. Most simulations start
from initial conditions that may be grouped into four broad categories.
(i) At t = 0 the particles are distributed through a sharply bounded region

with total energy E = T + W < 0, where T and W are the kinetic
and potential energies. The outcome of such a collapse simulation is
heavily influenced by the virial ratio 2T/|W |. By the virial theorem
(4.250) 2T/|W | will tend to unity, and the smaller it is initially the
more violently the simulation will relax. The goal is to determine how
the final equilibrium state depends on the initial conditions.

(ii) At t = 0 the particles form an equilibrium axisymmetric disk. Each
particle moves in the tangential direction with a velocity that is close
to that required for centrifugal support of this disk, and has a small
random radial motion. The goal of these disk simulations is to study
the stability and long-term evolution of galactic disks.

(iii) At t = 0 the particles are grouped into two galaxies. The positions
and velocities of the particles are chosen so that each galaxy, treated as
an isolated system, is in a steady state, and is approaching the other
galaxy. Thus the galaxies are set to collide with one another. The goal
of these merger simulations is to understand how galaxies merge and
what merger remnants look like.

(iv) At t = 0 the particles are nearly homogeneously distributed through-
out a spherical volume, and are receding from the sphere’s center with
velocities that are approximately proportional to radius. These cosmo-
logical simulations model galaxy formation by gravitational clustering
in an expanding universe.

We shall discuss disk simulations in §6.3.1, merger simulations in §8.5, and
cosmological simulations in §9.3. Here we discuss collapse simulations, which
mimic aspects of the formation of galaxies.

Figures 4.28 to 4.32 illustrate general features of collapse simulations
following van Albada (1982), who studied the collapse of cold, clumpy dis-
tributions of stars. The initial conditions are obtained by first distributing
50 000 stars of unit total mass uniformly in a sphere of unit radius. Each
star is then displaced from x to x + ∇ψ along the gradient of a Gaussian
random field ψ(x)—see §9.1.1 for an account of such fields. The initial ve-
locity of the star is ∇ψ/tff , where tff is the free-fall time (Problem 3.4) of
the original sphere; the idea here is that both the displacement ∇ψ and the
initial velocity result from the gravitational forces generated by small initial
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Figure 4.28 Four stages of a collapse simulation. Time is shown at the top of each panel
in units such that the initial free-fall time is π/23/2 ' 1.1 (Problem 3.4 with GM =
r = 1). Top left: initially the 50 000 particles have positions and velocities obtained by
shifting them from a homogeneous distribution within the unit sphere. Top right: gravity
causes the system to fragment into lumps that fall together to form a tight minimum
configuration. Bottom left: after several pulsations of ever-decreasing intensity, the core
has settled to a quasi-steady state. Bottom right: after a much longer time a low-density
halo of violently ejected stars is in place. Notice that the linear scale of the lower panels
is four times that of the upper ones.

inhomogeneities. These forces have acted throughout the time tff required
for the sphere to expand with the universe from infinite initial density to
unit radius, and the simulation starts as the sphere is beginning to collapse.
This prescription for choosing initial conditions approximately reproduces
the results of the more sophisticated theory of structure formation that we
shall outline in Chapter 9. The amplitude of ψ controls the initial virial ratio
2T/|W |.

Figure 4.28 shows the spatial structure at four evolutionary stages. The
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Figure 4.29 The radial density profile of the final configuration of the simulation shown
in Figure 4.28 (squares), together with the simulation’s initial density profile (dashed line)
and the density profile of the R1/4 model that has the same half-mass radius (full curve).

system first contracts to a very compact configuration on a timescale tff ,
and then partially re-expands. After the elapse of two or three times tff ,
the center of the system has settled to a nearly steady state, and over time
significant oscillations become confined to more and more peripheral regions.
The smaller 2T/|W | is, the more pronounced is the initial collapse, and
the higher the final central density is; in fact the final central density will
be comparable to the density of the most compact configuration. Smaller
values of 2T/|W | also lead to more mass being flung out into an extensive,
low-density halo that takes significant time to come into equilibrium—this
halo emerges between the bottom-left panel of Figure 4.28 at t = 4.3tff and
the bottom-right panel at t = 18tff .

Figure 4.29 shows the initial (dashed curve) and final (squares) density
profiles of the simulation of Figure 4.28 together with the density profile of
the R1/4 model (full curve and eq. 1.17 with m = 4) that has the same
half-mass radius rh = 1.35Re as the simulation. This particular simulation,
which started from 2T/|W | = 0.2, generates a system that fits the R1/4

model extremely well (van Albada 1982). Simulations with smaller values of
2T/|W | can be better fitted by the NFW profile (§2.2.2f).

Figure 4.30 shows the evolution of the differential energy distribution
N(E) that was introduced in §4.3.1b. Initially the energies of the particles
lie in a narrow range, but this range is rapidly extended as violent relaxation
causes particles to gain and lose energy. In the final configuration the most
densely populated energies lie near the escape energy E = 0. This is just
what we found to be the case in equilibrium models that are based on the
Jeans theorem (cf. Figure 4.3).
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Figure 4.30 The evolution of the differential energy distribution of the model shown in
Figure 4.28 at t = 0 (dashed curve), at t = 1.45tff (dotted curve) and t = 18tff (full
curve). Energy is measured in units of GM/R0, where M is the system’s mass and R0 is
the radius of the initial particle distribution.

Figure 4.31 Anisotropy parameter
β ≡ 1 − σ2

θ/σ
2
r in the final config-

uration of the simulation shown in
Figure 4.28.

As Figure 4.31 illustrates, the outer parts of the equilibrium system
are strongly radially biased. This situation arises because the particles that
populate the outer regions of the final system were accelerated onto their
present orbits by fluctuations in the strong gravitational field that prevails
near the galactic center. Consequently, most of these particles are on highly
elongated orbits that pass close to the center of the system.

If the initial configuration is triaxial rather than spherical, the final sys-
tem is also triaxial (Aarseth & Binney 1978). Figure 4.32 illustrates this
phenomenon by showing the endpoint of a simulation that started from the
triaxial configuration that is obtained by stretching the initial configuration
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Figure 4.32 Three orthogonal projections of the final configuration to which 50 000 par-
ticles settled after they had been released from a cold, elliptical initial configuration. The
initial conditions were generated by changing the initial conditions used to make Fig-
ure 4.28 from (x,v) to (x + ∇χ,v + ∇χ/tff), where χ ≡ 0.075(3x2 − y2 − 2z2).

of Figure 4.28 parallel to the x axis and compressing it in the perpendicular
directions. The velocity-dispersion tensors of ellipsoidal models formed in
this way are everywhere anisotropic, in contrast to the case of spherical sys-
tems, in which the dispersion tensor is isotropic at small radii—at the center
of the system shown in Figure 4.32 the principal velocity dispersions are in
the ratios 1 : 0.80 : 0.68. When the initial configuration is slowly rotating, the
figure of the final configuration also rotates (Wilkinson & James 1982). If
the initial configuration is spherical but slowly rotating, the final system will
be an oblate figure of rotation. When the initial rotation is rapid, the final
state will be a prolate triaxial bar (Hohl & Zang 1979; Miller & Smith 1979).
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Problems

4.1 [1] Show that in a frame that rotates with constant angular velocity Ω, with Φeff ≡
Φ − 1

2
|Ω× r|2, the collisionless Boltzmann equation can be written

∂f

∂t
+ v · ∇f − [2(Ω × v) + ∇Φeff ] · ∂f

∂v
= 0. (4.284)

Hint: see §3.3.2.

4.2 [2] Consider an infinite homogeneous system of collisionless zero-mass test particles in
D-dimensional space. The particles have an isotropic velocity distribution f(v). Initially
the particles are subject to no forces. At t = 0 a gravitational potential well suddenly
appears in a finite region of the space. Show that as t → ∞, the density of unbound
particles traveling through the well is smaller than the asymptotic density if D = 1, larger
if D = 3, and unchanged if D = 2.

4.3 [1] A spherical mass distribution is immersed in a sea of collisionless test particles,
which arrive with velocities v = (v, 0, 0) from the negative x-direction and are scattered
by the gravitational field from the mass. Does the df of the test particles satisfy the Jeans
theorem? If so, write down the df as a function of the integrals of motion; if not, explain
why the Jeans theorem fails.

4.4 [1] Prove that the density of a spherical, ergodic, self-consistent stellar system must
decrease outward. Hint: in the integral for ρ make Φ the integration variable.

4.5 [3] A spherical galaxy with a constant mass-to-light ratio and an ergodic df has an
R1/4 surface-brightness profile (eq. 1.17 with m = 4). The luminosity-weighted line-of-
sight velocity dispersion within the effective radius Re is σe, that is

σ2
e =

R Re

0
dRRI(R)σ2

‖(R)
R Re

0 dRRI(R)
. (4.285)

Show that the total mass of the galaxy can be written in the form

M = k
σ2
eRe

G
, (4.286)

and evaluate k numerically.

4.6 [2] The df of a spherical system is proportional to Lγf(E). Show that at all radii the
anisotropy parameter is β = − 1

2
γ.

4.7 [1] Show that a Hernquist model with constant anisotropy β = 1
2

has

N(E) =
3a

GM
eE2

„
1

eE
− 1

«2

, (4.287)

where eE = Ea/(GM) and M and a are the mass and scale radius of the Hernquist model.

4.8 [2] Consider a spherical system with df f(E , L). Let N(E , L)dEdL be the fraction of
stars with E and L in the ranges (E , E + dE) and (L,L+ dL).

(a) Show that

N(E , L) = 8π2Lf(E , L)Tr(E , L), (4.288)

where Tr is the radial period defined by equation (3.17).

(b) A spherical system of test particles with ergodic df surrounds a point mass. Show
that the fraction of particles with eccentricities in the range (e, e+ de) is 2e de.
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4.9 [1] Consider the df

f(E , L) =

(
Fδ+(L2)(E − E0)−1/2 (E > E0)

0 (E ≤ E0),
(4.289a)

where F and E0 are constants. Here δ+(x) ≡ δ(x− ε), where ε is a small positive number;
thus δ+(x) = 0 for x 6= 0 and

R∞
0 dx δ+(x) = 1 (cf. Appendix C.1). Show that this df

self-consistently generates a model with density

ρ(r) =


Cr−2 (r < r0)

0 (r ≥ r0),
(4.289b)

where C is a constant and Ψ(r0) = E0 (Fridman & Polyachenko 1984).

4.10 [2] Consider a spherical system in which at every radius the star density in velocity
space is constant on ellipsoidal figures of rotation. Show that the df has the form f = f(Q),
where Q(E , L) is defined by equation (4.73).

4.11 [2] Prove that the following df generates a stellar system in which the density dis-
tribution is that of a homogeneous sphere of density ρ and radius a:

f(E,L) =
9

16π4Gρa5
1q

L2/a2 + 4
3
πGρa2 − 2E

(L2 < 4
3
πGρa4). (4.290)

Here it is understood that f = 0 when the argument of the square root is not positive, the
df is normalized so that

R
d3xd3v f = 1, the potential Φ = 0 at r = 0, and the system is

isolated (Polyachenko & Shukhman 1973).

4.12 [2] Show that the Osipkov–Merritt model that self-consistently generates the Jaffe
model has df

f(Q) =
1

2π3(GMa)3/2

»
F−

„q
2eQ
«

−√
2F−

“√eQ
”

−√
2

„
1 +

a2

2r2a

«
F+

“√eQ
”

+

„
1 +

a2

r2a

«
F+

„q
2eQ
«–

,

(4.291)

where eQ = aQ/(GM).

4.13 [2] Show that when the df of a spherical system depends only on the function Q(x,v)
defined by equation (4.73), the ratio of the mean-square tangential and radial speeds is

v2t

.
v2r =

2

1 + (r/ra)2
. (4.292)

4.14 [1] A self-consistent stellar system has an ergodic df and a power-law density profile
ρ = ρ0(r0/r)α with 1 < α < 3. Show that the velocity dispersion is given by

v2r (r) =
2πGρ0rα0 r

2−α

(3 − α)(α − 1)
(α 6= 2). (4.293)

What does this formula become in the case α = 2 of the singular isothermal sphere?

4.15 [1] Solve the Lane–Emden equation (4.91b) for the case n = 1, to show that

ψ =

8
>><
>>:

sin
√

3s√
3s

(s < π/
√

3)

π√
3s

− 1 (s ≥ π/
√

3).

(4.294)

Show that the model’s total mass is M = 1
2
Ψ0G−3/2

p
π/c1, where c1 is defined by

equation (4.85b).
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4.16 [1] Consider a stellar system having a df of the form f ∝ E−1/2 for E > 0 and zero
otherwise. The density and potential are related by ρ = c1Ψ for Ψ > 0, and zero otherwise
(eq. 4.85). Prove that Poisson’s equation is satisfied if the density of the system has the
form

ρ(x, y, z) = A cos
“πx

2L

”
cos
“πy

2L

”
cos
“πz

2L

”
, (4.295)

for |x|, |y|, |z| ≤ L and zero otherwise, where L2 = 3π/(16Gc1). Does this mean we can
construct a cubical galaxy?

4.17 [2] An extension to the polytropes described in §4.3.3a is obtained by considering
spherical stellar systems with the df

f(E) = FE−n−3/2 (E ≥ 0); (4.296)

here f is defined so that
R

d3v f = ρ and the potential is defined so that Φ = 0 at the
center of the system.

(a) Show that the density satisfies

ρ = dnΦ−n (Φ > 0), (4.297)

and evaluate dn. What values of n are allowed?

(b) Show that the dimensionless radius s ≡ r/b and potential φ ≡ Φ/Φ0 satisfy the
equation

1

s2
d

ds

„
s2

dφ

ds

«
= 3φ−n, (4.298)

where Φ0 is arbitrary and b ≡ ( 4
3
πGΦ−n−1

0 dn)−1/2. What is the stellar system described
by these equations in the limit n → ∞?

(c) Show that these equations admit power-law solutions of the form ρ ∝ r−α for n > 0,
with α = 2n/(1 + n) so 0 < α ≤ 2.

(d) In Problem 4.14 we found self-consistent power-law stellar systems with 1 < α < 3.
Why does the current approach not find the systems with 2 < α < 3? Why does the
approach in Problem 4.14 not find the solutions with 0 < α ≤ 1?

4.18 [1] For a Maxwellian distribution of velocities with one-dimensional dispersion σ,

show that: (a) the mean speed is v = (8/π)1/2σ; (b) the mean-square speed is v2 = 3σ2;

(c) the mean-square of one component of velocity is v2
x = σ2; (d) the mean-square relative

speed of any two particles is v2rel = 6σ2; (e) the fraction of particles with v2 > 4v2 is
0.00738.

4.19 [1] At large radii, the density in a Michie model (eq. 4.117) is dominated by stars
with E/σ2 � 1. In this case, show that the density can be written in the form

ρ ∝
Z √

2Ψ

0
dvt vt exp

„
− r2v2t

2r2aσ
2

«`
2Ψ − v2t

´3/2
. (4.299)

Hence show that as the tidal radius rt is approached, ρ tends to zero as

ρ ∝ Ψ5/2 ∝ (rt − r)5/2. (4.300)

4.20 [1] Show that in a Kepler potential, the Schwarzschild df (4.153) is equivalent to the
Rayleigh distribution of eccentricities and inclinations,

dn ∝ ei exp

„
− e

2

e20
− i2

i20

«
de di. (4.301)

What is the relation of e20 to σ2
R and i20 to σ2

z?
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4.21 [2] We may study the vertical structure of a thin axisymmetric disk by neglecting all
radial derivatives and assuming that all quantities vary only in the coordinate z normal
to the disk. Thus we adopt the form f = f(Ez) for the df, where Ez ≡ 1

2
v2z +Φ(z). Show

that for an isothermal disk in which f = ρ0(2πσ2
z)

−1/2 exp(−Ez/σ2
z), the approximate

form (2.74) of Poisson’s equation may be written

2
d2φ

dζ2
= e−φ, where φ ≡ Φ

σ2
z

, ζ ≡ z

z0
, and z0 ≡ σz√

8πGρ0
. (4.302a)

By solving this equation subject to the boundary conditions φ(0) = φ′(0) = 0, show that
the density in the disk is given by (Spitzer 1942)

ρ(z) = ρ0 sech2( 1
2
z/z0). (4.302b)

Show further that the surface density of the disk is

Σ =
σ2
z

2πGz0
= 4ρ0z0. (4.302c)

4.22 [3] Determine the density ρ(z) of an isothermal distribution of stars with dispersion
σz in a disk that also contains a razor-thin layer of gas in the midplane, with surface
density Σg . Hint: generalize the results of Problem 4.21.

4.23 [2] Using the one-dimensional approximation of Problem 4.21, write a numerical
procedure that finds the fraction F (z) of stars that reach a maximum height above the
midplane that exceeds z. Show that F (z0) = 0.808. Find F (2z0).

4.24 [3] Every star in a spherical system loses mass slowly and isotropically. If the initial
df is f0(E , L), show that after every star has been reduced to a fraction p of its original
mass, the df will be

fp(E , L) = f0(p
−2E , L). (4.303)

How has the density profile of the system changed? Hint: see Richstone & Potter (1982).

4.25 [2] A spherical stellar system has surface brightness I(R), line-of-sight velocity dis-
persion σ‖(R), and constant mass-to-light ratio. From these functions, together with the
Jeans equations, can we deduce uniquely the luminosity density j(r), the radial dispersion
profile, σ2

r (r), and the anisotropy parameter β(r)? Hints: (i) consider a change in the
dispersions of the form ∆σ2

r = 2ε/(jr3), ∆σ2
θ = − 1

2
∆σ2

r ; (ii) the answer may depend on
whether I(R) and σ‖(R) are known over a finite range of radii or at all radii (see Dejonghe
& Merritt 1992).

4.26 [3] A finite, spherical stellar system of test particles is confined by the potential
Φ(r) = v2c ln r.

(a) If the df is ergodic, prove that the number of stars with line-of-sight velocity in the
interval (v‖, v‖ + dv‖) is n(v‖) dv‖, where

n(v‖) ∝ exp
“
−3v2‖

.
2v2c

”
. (4.304)

(b) If the df is radial, that is, if all of the test particles have zero angular momentum,
prove that the distribution of line-of-sight velocities is given by

n(v‖) ∝ E1

“
v2‖

.
2v2c

”
, (4.305)

where E1 is the exponential integral.

4.27 [1] Show that a self-gravitating isothermal stellar system with velocity dispersion
σ, cylindrical symmetry, and non-singular, non-zero density ρ0 at R = 0 has the density
distribution

ρ(R, φ, z) = ρ0

„
1 +

πGρ0R2

2σ2

«−2

. (4.306)
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4.28 [1] In a spherical stellar system with mass profile M(r), a stellar population with
number density n(r) has anisotropy parameter (4.61) of the form β(r) = r2/(r2a + r2),
where ra is a constant. Show that

v2r (r) =
G
R∞
r dr [(ra/r′)2 + 1]n(r′)M(r′)

(r2a + r2)n(r)
. (4.307)

4.29 [2] Let us write the general nth-order velocity moment in spherical coordinates in

the form vn−jθ vj−kφ vkr . Prove that when f = f(H) (i) the moment vanishes if any of j, k,

or n is odd; (ii) if j, k, and n are all even, then

vn−jθ vj−kφ vkr = vnr

“
k−1
2

”
!
“
n−j−1

2

”
!
“
j−k−1

2

”
!

π
`
n−1

2

´
!

. (4.308)

4.30 [2] When the df of an axisymmetric system has the form f(H,Lz), show that the
nth-order velocity moments are related by

vn−j+2
R vj−k−2

z vkφ =
n− j + 1

j − k − 1
vn−jR vj−kz vkφ, (4.309)

where j, k, and n are all even. Moments that contain odd powers of either vR or vz
vanish. Hence the independent non-vanishing nth order moments may be taken to be vnφ ,

vn−2
φ v2R, vn−4

φ v4R, . . . .

4.31 [1] Show that in a stellar-dynamical polytrope v2r ∝ Ψ. Show that for a Plummer
model the coefficient of proportionality is 1

6
.

4.32 [2] The velocity dispersion in some axisymmetric stellar system is isotropic and a
function σ(ρ) of the density alone. Show that the mean azimuthal velocity must be a
function vφ(R) of the cylindrical radius R only. Is this configuration physically plausible?

4.33 [2] A static, spherically symmetric stellar system with ergodic df is confined by a
spherical vessel of radius rb. Show that 2K+W = 4πr3bp, where K and W are the system’s

kinetic and potential energies, and p = ρv2r is the pressure exerted by the system on the
vessel’s walls.

4.34 [1] Suppose the principal axes of the velocity ellipsoid near the Sun are always
parallel to the unit vectors of spherical coordinates. Then show that for |z|/R small,

vRvz ' (v2r − v2θ)(z/R).

4.35 [1] A stationary stellar system of negligible mass and finite extent is confined by the
potential Φ(r) = v2c ln r + constant .

(a) Prove that the mean-square velocity is 〈v2〉 = v2c , independent of the shape, radial
profile, or other properties of the stellar system. Hint: as in the derivation of the virial
theorem, consider the behavior of d2I/dt2, where in this case I = r2.

(b) The singular isothermal sphere has the same potential (eq. 4.104), but in this system
the mean-square velocity is 〈v2〉 = 3σ2 = 3

2
v2c . How is this consistent with the result of

part (a)?

4.36 [2] The energy per unit mass of a star in a stationary stellar system can be written
ε = 1

2
v2 + Φ, where v is the speed of the star and Φ(x) is the gravitational potential.

Prove that the total energy of the stellar system is

eE = 1
3
M〈ε〉, (4.310)

where M is the total mass of the system and 〈·〉 denotes a mass-weighted average over the
stars.
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4.37 [1] Show that the part of equation (4.239) that is antisymmetric in j and k is equiv-
alent to the law of conservation of angular momentum.

4.38 [1] Show that in the presence of an externally generated gravitational potential Φext,
the right side of equation (4.247) acquires an extra term:

Vjk ≡ − 1
2

Z
d3x

„
xk
∂Φext

∂xj
+ xj

∂Φext

∂xk

«
ρ. (4.311)

4.39 [2] In this problem we use the tensor virial theorem to connect the shape of a bar,
its pattern speed, and the extent to which there is less motion parallel to the axis of figure
rotation than in the perpendicular directions. Let the z axis coincide with a principal axis
of the tensor I (eq. 4.243), and suppose that the density distribution is stationary in a
frame that rotates about this axis with angular frequency Ω. Show that at an instant when
Ixy = 0, the left side of equation (4.247) is Ω2 times the diagonal tensor with components
(Iyy − Ixx), (Ixx − Iyy), and 0 along the diagonal. Hence show that

Ω2 = − (Wxx −Wyy) + 2(Txx − Tyy) + (Πxx − Πyy)

2(Ixx − Iyy)
, (4.312a)

and if Tzz = 0,
v20
σ2
0

= (1 − δ)
Wxx +Wyy

Wzz
− 2, (4.312b)

where v20 ≡ 2(Txx + Tyy)/M , σ2
0 ≡ (Πxx + Πyy)/2M and (1 − δ)(Πxx + Πyy) ≡ 2Πzz .

4.40 [1] Suppose that the Oort limit has been determined as described in §4.9.3 from
observations of stars whose distances have been systematically overestimated by a factor
λ. By what factor is the derived local mass density ρ(0) in error, if the kinematics are
derived from (a) radial velocities; (b) proper motions?

4.41 [2] Consider a hypothetical disk galaxy in which all the mass is contained in a central
point mass. The disk density is negligible; more precisely, the disk consists of a population
of stars of zero mass with rms z-velocity σz that is independent of z. At radius R, the
number density of these stars as a function of z is ν(z) = ν(0) exp(−z2/2z20), where z0 � R
is a constant. (a) What is the relation between σz and z0? (b) What does equation (4.273)
predict for the local mass density if these stars are used as tracers? Why is the wrong
answer obtained?

4.42 [2] Consider a time-independent, self-gravitating collisionless stellar system with slab
symmetry, that is, a system in which the density ρ depends only on a single coordinate z.
Prove that the system must be symmetric, that is, with a suitable choice of the coordinate
origin ρ(z) = ρ(−z).
4.43 [3] A natural model df for a razor-thin axisymmetric disk is given by equation (4.147),

f(H,Lz) = S(Lz) exp[−∆/σ2
R(Lz)], (4.313)

where ∆ = H − Ec(Lz) and Ec(Lz) is the energy of a circular orbit with angular
momentum Lz . For a disk with surface density Σ(R) ∝ exp(−R/Rd), in a poten-
tial with a constant circular speed v0, we may take σ2

R(Lz) ∝ exp[−Lz/(Rdv0)] and
S(Lz) ∝ Σ(Lz/v0)/σ2

R(Lz) ∝ constant (see eq. 4.156 and the following discussion). With
these assumptions, the df in the solar neighborhood, at radius R = R0, depends on the
dimensionless parameters ξ ≡ R0/Rd and b ≡ σR(R0v0)/v0 , which is � 1 in a cool disk.
Show that in the solar neighborhood

vφ = v0 + ( 1
4
− ξ)

w

v0
+ ( 1

32
+ 5

12
ξ + 3

2
ξ2 − 9

8
ξ3)

w2

v30
+ O(w3),

(vφ − vφ)2 = 1
2
w − ( 1

8
+ ξ − 5

4
ξ2)

w2

v20
+ O(w3),

(4.314)
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where w ≡ v2R. Relate the O(w) terms to epicycle theory (§3.2.3) and Stromberg’s asym-
metric drift equation (§4.8.2a). The O(w2) terms provide convenient analytic estimates
for the errors incurred in using the epicyle and Stromberg approximations. Hint: use
computer algebra.

4.44 [2] (a) By taking a suitable moment of the collisionless Boltzmann equation, show
that in a steady-state axisymmetric galaxy

∂(νv2Rvφ)

∂R
+
∂(νvRvzvφ)

∂z
− ν

R

„
v3φ − vφR

∂Φ

∂R

«
+

2ν

R
v2Rvφ = 0. (4.315)

(b) Given that the system is symmetric in z, and that all odd moments of vφ− vφ vanish,

so 0 = v2R(vφ − vφ) and 0 = (vφ − vφ)3, etc., show that at z = 0

v2R

„
∂vφ

∂R
+
vφ

R

«
− 2

R
vφ
`
vφ − vφ

´2
= 0. (4.316)

Hence using equation (4.222a), show that (cf. eq. 3.100)

σ2
φ

σ2
R

≡
`
vφ − vφ

´2

v2R

' −B
A−B

, (4.317)

where A and B are the Oort constants (eq. 3.83). What is the most questionable assump-
tion made in this derivation? Explain why violations of equation (4.317) increase with
σR, and compare this result to the results of Problem 4.43.

4.45 [3] A rotating axisymmetric stellar system has a star density in velocity space that
is constant on ellipsoids, that is, the df at a given position depends on velocity v only
through the combination Q =

P
i,j sij(vi − vi)(vj − vj), where v = vφêφ is the mean

azimuthal velocity.22

(a) If the df depends only on E and Lz , prove that the rotation curve must have the form

vφ(R, z) =
R

a+ bR2
, (4.318)

where a and b are constants.

(b) If the velocity distribution is isotropic (constant on spheres in velocity space), so
sij = sδij , prove that the system rotates at constant angular velocity, that is, the constant
b in equation (4.318) is zero.

(c) Prove that result (b) holds for any stationary df, even if it depends on a third integral.

22 Systems of this kind were a major early focus of research in stellar dynamics, because
Schwarzschild’s observation that the velocity distribution was ellipsoidal in the solar neigh-
borhood (§4.4.3) led theorists to explore the ellipsoidal hypothesis that the distribution
was ellipsoidal at all points in the Galaxy. See Chandrasekhar (1942).



5
Stability of Collisionless Systems

5.1 Introduction

In this chapter we examine how an equilibrium stellar system responds to
external forces. Does it ring like a bell? Does the disturbance grow larger
and larger, like the tilt of a pencil that is initially balanced on its point? Or
does the disturbance die away? In fact, we shall find that all three types of
response can be present in stellar systems.

The stability of a dynamical system is a particular aspect of its response
to external forces; loosely speaking, the system is unstable if a small pertur-
bation causes a large response. Obviously, we would not expect to find in
nature a system so delicately balanced that the slightest change causes it
to evolve rapidly away from its initial state. Hence we should test any pro-
posed stellar-dynamical configuration for stability before using it to model
a real stellar system. It turns out that many equilibrium stellar systems are
unstable. For example, the simplest model of a disk galaxy consists of a
self-gravitating, razor-thin disk in which the stars move on precisely circu-
lar orbits, but we shall find that any cold disk, with no random motions,
is violently unstable. It appears that a minimum level of random motion is
needed to stabilize a self-gravitating disk (eq. 6.71).
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Stability analyses can also aid us to interpret observations of astronomi-
cal systems. A classic example is furnished by Saturn’s rings: Laplace (1829)
showed that these could not be rigid bodies, as most astronomers then be-
lieved, because a solid ring would be unstable (Problem 5.1). A more recent
example concerns the structure of disk galaxies. Dynamical models of low-
luminosity disk galaxies often exhibit a fierce non-axisymmetric instability
that results in the growth of a large bar-like structure in the central regions.
Since these galaxies do not seem to be unstable, we infer that dark matter
probably dominates the gravitational forces throughout the disk (see §6.3.4).

In Chapter 3 discussed the stability of orbits in a variety of fixed grav-
itational potentials. The instabilities that we shall encounter here are of a
different type. They are caused by cooperative or collective effects, in which
a density perturbation gives rise to extra gravitational forces, which deflect
the stellar orbits in such a way that the original density perturbation is
enhanced.

The response of a galactic disk is strongly influenced by differential rota-
tion—the variation of angular speed with distance from the galactic center.
Differential rotation shears out disk disturbances since the material at each
radius is carried around the galaxy at a different rate. We shall defer this
complication to Chapter 6, which is devoted to the dynamics of differentially
rotating disks and the origin of spiral structure in galaxies. In this chapter
we focus on static and uniformly rotating stellar systems.

Our task is made easier by the similarities between stellar systems and
two other kinds of systems:

(i) Self-gravitating fluids. As we saw in Chapter 4, many equilibrium stellar
systems have close fluid analogs. The analogies arise because a fluid
system is supported against gravity by gradients in the scalar pressure p,
while a stellar system is supported by gradients in the stress tensor −νσ2

ij

(see the discussion after eq. 4.209). Similarly, in this chapter we shall
find it useful to draw analogies between the responses of self-gravitating
fluid and stellar systems. A fluid system resists the gravitational collapse
of a local density enhancement through pressure gradients, while a stellar
system resists collapse because the spread in stellar velocities at every
point tends to disperse any density enhancement before it has time to
grow. Since the fluid systems are simpler, and important in their own
right, we shall analyze fluid systems alongside the analogous stellar-
dynamical ones.

(ii) Electrostatic plasmas. Rarefied plasmas share with collisionless stellar
systems the property that the mean field of the system is more im-
portant than forces from nearby particles (§1.2). Hence many of the
techniques of plasma physics can be used in stellar dynamics. However,
there is a fundamental difference: plasmas have both positive and nega-
tive charges, so they are neutral on large scales and can form static ho-
mogeneous equilibria. By contrast, gravity is always an attractive force,
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so equilibrium gravitating systems must be inhomogeneous. This essen-
tial inhomogeneity of self-gravitating systems complicates the study of
their stability.

In the remainder of this section we develop the machinery of linear response
theory and linear perturbation theory that we shall use to analyze the stabil-
ity and response of fluid and stellar systems. In §5.2 we examine the response
of infinite, homogeneous, self-gravitating systems—this case is artificial but
illuminates much of the behavior of more realistic fluid and stellar systems.
In §5.3 we outline the methods used to evaluate the response of general stellar
systems; in §5.4 we describe the energy principles that constrain the behav-
ior of stellar systems, and in §5.5 we apply these tools to spherical systems.
Finally, in §5.6 we examine the novel behavior seen in uniformly rotating
stellar systems, as an introduction to the analysis of differentially rotating
systems in Chapter 6.

5.1.1 Linear response theory

Some insight into the linear response of stellar or fluid systems can be
achieved before actually solving the equations of motion. Let us examine
an equilibrium system with density ρs(x) that is forced by an external grav-
itational field −ε∇Φe, where |∇Φe| is of the same order as the gravitational
field in the equilibrium system, and ε � 1. The density distribution that
would generate this field is ερe(x, t) where

∇2Φe = 4πGρe. (5.1)

Because the perturbation is weak, the response is linear and therefore also
proportional to ε; thus we may write the induced density perturbation in the
system as ερs1(x, t). The response function R(x,x′, τ) defined by

ρs1(x, t) =

∫
d3x′dt′R(x,x′, t− t′)ρe(x′, t′) (5.2)

relates the response density ρs1(x, t) to the forcing density ρe(x′, t′). The
response depends only on the difference between t and t′ because the equi-
librium system is time-independent, so the response at time t from an instan-
taneous impulse at t′ can depend only on the lag t − t′. Causality requires
that R(x,x′, τ) = 0 for τ < 0 (the effect cannot precede the cause).

Both the forcing density ρe and the response density ρs1 contribute to the
gravitational potential, and it is the total perturbing potential Φ1 ≡ Φe +Φs1

that determines the dynamics of the system. The corresponding density is
ρ1 = ρe + ρs1. The polarization function P (x,x′, τ) relates the response
density ρs1 to the total density ρ1:

ρs1(x, t) =

∫
d3x′dt′ P (x,x′, t− t′)ρ1(x′, t′). (5.3)
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Once again, P (x,x′, τ) = 0 for τ < 0.
It is important to understand the physical difference between the re-

sponse and polarization functions. The response function describes the den-
sity response to an external perturbing force, while the polarization function
describes the density response to a total perturbing force, which includes any
contributions from the self-gravity of the density response. If the self-gravity
of the density response is negligible, then the polarization and response func-
tions are identical.1

The temporal Fourier transform of a function y(τ) that vanishes for
τ < 0 is ỹ(ω), where (eq. B.71)

ỹ(ω) =

∫ ∞

0

dτ y(τ)eiωτ ; y(τ) =

∫ ic+∞

ic−∞

dω

2π
ỹ(ω)e−iωτ , (5.6)

and the real number c > 0 is large enough so that
∫

dτ exp(−cτ)y(τ) con-
verges.

We shall mostly work with the Fourier transform of R and P , since
then the convolution over time in equation (5.2) or (5.3) is simplified to a
multiplication:

ρ̃s1(x, ω) =

∫
d3x′ R̃(x,x′, ω)ρ̃e(x

′, ω) =

∫
d3x′ P̃ (x,x′, ω)ρ̃1(x′, ω). (5.7)

The functions R̃(x,x′, ω) and P̃ (x,x′, ω) can usually be analytically con-
tinued over the entire complex ω-plane, except for isolated poles. Problems
5.2 and 5.3 describe some of the general properties of these functions.

In practice the response function can be determined analytically only for
simple systems, such as those in §5.2.4; more powerful numerical techniques
are described in §5.3.

1 The term “polarization function” suggests an analogy with the electrostatics of
macroscopic media (e.g., Jackson 1999). In a homogeneous medium, the electric field
E, macroscopic charge density ρ, polarization P, and displacement D are related by

∇ ·D = ρ ; P = ε0χE ; D = ε0E + P = εE ;
ε

ε0
= 1 + χ, (5.4)

where ε0 is the electric constant (permittivity of the vacuum), and ε/ε0 and χ are the
dielectric constant and susceptibility of the medium. Here D arises from unbound charges
and hence is analogous to the external or forcing density ρe; ε0E represents the total
field and hence is analogous to ρ1, and ε0E − D = −P represents the field arising from
the response of the medium and is analogous to ρs1. For a uniform, time-independent
gravitational field in a homogeneous medium, the polarization and response functions are
scalars, so ρs1 = Pρ1 = Rρe. Thus the analogy implies that

P =
ρs1

ρ1
⇔ −P

ε0E
= −χ ; R =

ρs1

ρe
⇔ −P

D
= − ε0χ

ε
= − χ

1 + χ
. (5.5)

The minus sign in the analogy P ⇔ −χ is significant: in a dielectric the movement of
bound charges cancels the imposed field D, whereas in a gravitational system polarization
tends to enhance the applied field.
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5.1.2 Linearized equations for stellar and fluid systems

The dynamics of self-gravitating collisionless stellar systems is described by
the collisionless Boltzmann equation (4.7),

∂f

∂t
+ [f,H ] =

∂f

∂t
+ v · ∂f

∂x
− ∂Φ

∂x
· ∂f
∂v

= 0, (5.8)

and Poisson’s equation (2.10),

∇2Φs(x, t) = 4πG

∫
d3v f(x,v, t). (5.9)

In these equations Φ(x, t) is the total potential, H = 1
2v

2 + Φ(x, t) is the
Hamiltonian, [·, ·] is the Poisson bracket, and Φs(x, t) is the gravitational
potential of the stellar system itself, which may differ from the total potential
Φ(x, t) if there are external forces. Here and throughout this chapter, the
df f(x,v, t) is defined to be the mass density of stars in phase space, as
opposed to the definition in terms of probability density used in §4.1.

An isolated equilibrium stellar system is described by a time-independent
df f0(x,v) and potential Φ0(x) that are solutions of (5.8) and (5.9),

[f0, H0] = 0 ; ∇2Φ0 = 4πG

∫
d3v f0, (5.10)

where H0 = 1
2v

2 + Φ0(x).
Now imagine that this equilibrium system is subjected to a weak grav-

itational force arising from some external potential εΦe(x, t), where |∇Φe|
is of order |∇Φ0| and ε � 1. In response to this disturbance, the df of
the stellar system and the gravitational potential arising from its stars are
modified to

f(x,v, t) = f0(x,v) + εf1(x,v, t) ; Φs(x, t) = Φ0(x) + εΦs1(x, t), (5.11)

and the total gravitational potential becomes

Φ(x, t) = Φ0(x, t) + εΦ1(x, t), where Φ1(x, t) = Φs1(x, t) + Φe(x, t).
(5.12)

Hence the Hamiltonian in equation (5.8) becomes H = H0 + εΦ1. Substi-
tuting these results into equations (5.8) and (5.9), we find that the terms
that are independent of ε vanish by virtue of (5.10). Dropping the terms
proportional to ε2 since ε� 1, we have

∂f1

∂t
+ [f1, H0] + [f0,Φ1] = 0 ; ∇2Φs1 = 4πG

∫
d3v f1. (5.13)
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The first of these equations is called the linearized collisionless Boltz-
mann equation; the second is simply Poisson’s equation (5.9), except that
it relates Φs1 and f1, instead of Φs and f . Much of this chapter is devoted
to analyzing solutions of these equations.

Equation (4.9) states that

df1

dt
≡ ∂f1

∂t
+ [f1, H0] (5.14)

is the rate of change of f1 as seen by an observer moving through phase
space along the unperturbed orbit. Hence the first two terms in the first
of equations (5.13) can be replaced by df/dt. Integrating the equation we
obtain

f1(x,v, t) = −
∫ t

−∞
dt′ [f0,Φ1]x(t′),v(t′),t′ , (5.15)

where the Poisson bracket is evaluated along the unperturbed orbit x(t′),v(t′)
that reaches x,v at time t.

We shall examine the response of fluid systems in parallel with stellar
systems. Therefore we now consider the fluid-dynamical analogs of equations
(5.13). A fluid system with density ρs(x, t), pressure p(x, t), and velocity
v(x, t) in a potential Φ(x, t) obeys the continuity equation (F.3),

∂ρs

∂t
+ ∇ · (ρsv) = 0, (5.16)

Euler’s equation (F.10),

∂v

∂t
+ (v · ∇)v = − 1

ρs
∇p− ∇Φ, (5.17)

and Poisson’s equation,

∇2Φs = 4πGρs, where Φ = Φs + εΦe (5.18)

is the sum of the potentials arising from the fluid and the forcing mass
distribution.

We must also specify the equation of state relating p and ρ. For our
purposes it is sufficient to use a simple equation of state. Thus, we will
consider barotropic fluids (eq. F.27), in which the pressure is a function of
the density only:

p(x, t) = p[ρs(x, t)]. (5.19)

When the equation of state is barotropic, Euler’s equation (5.17) can be
replaced by

∂v

∂t
+ (v · ∇)v = −∇(h+ Φ), (5.20)
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where the specific enthalpy is defined by (eq. F.29)

h(ρs) ≡
∫ ρs

0

dp(ρ)

ρ
. (5.21)

In the absence of self-gravity, weak short-wavelength disturbances propagate
through a barotropic fluid at the sound speed vs(x) (eq. F.50), defined by

v2
s (x) ≡

[
dp(ρ)

dρ

]

ρ0(x)

. (5.22)

An isolated equilibrium fluid is described by the time-independent den-
sity, enthalpy, velocity, and potential distributions ρ0(x), h0(x), v0(x), and
Φ0(x), which are solutions of equations (5.16)–(5.20). Then we consider the
response of the fluid to a weak external potential εΦe(x, t):

ρs(x, t) = ρ0(x) + ερs1(x, t) ; h(x, t) = h0(x) + εh1(x, t),

v(x, t) = v0(x) + εv1(x, t) ; Φ(x, t) = Φ0(x) + εΦ1(x, t).
(5.23)

Here, as before, Φ1 = Φs1 + Φe is the total perturbation in the gravitational
potential, the sum of the external potential Φe and the potential Φs1 arising
from the density perturbation ρs1. Substituting equations (5.23) into the
fluid equations, we find that the terms that are independent of ε sum to
zero, and discarding terms proportional to ε2, we obtain

∂ρs1

∂t
+ ∇ · (ρ0v1) + ∇ · (ρs1v0) = 0, (5.24a)

∂v1

∂t
+ (v0 · ∇)v1 + (v1 · ∇)v0 = −∇(h1 + Φs1 + Φe), (5.24b)

∇2Φs1 = 4πGρs1, (5.24c)

h1 =
p1

ρ0
=

(
dp

dρ

)

ρ0

ρs1

ρ0
= v2

s

ρs1

ρ0
. (5.24d)

Equations (5.24a) to (5.24d) constitute a complete set of linear equations
that govern the response of a barotropic fluid to small perturbations.
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5.2 The response of homogeneous systems

5.2.1 Physical basis of the Jeans instability

Consider a fluid of density ρ0 and pressure p0, with no internal motions so
v0 = 0. Now draw a sphere of radius r around any point and suppose that we
compress this spherical region by reducing its radius to (1−α)r, where α� 1.
We will deal only with order-of-magnitude arguments in this subsection,
so the details of how the fluid is compressed and the exact shape of the
perturbed density distribution are not important. To order of magnitude,
the density perturbation is ρ1 ≈ αρ0, and the pressure perturbation is p1 ≈
(dp/dρ)0αρ0 = αv2

s ρ0. The pressure force per unit mass is Fp = −∇p/ρ,
and our compressive perturbation therefore leads to an additional outward
pressure force Fp1, where |Fp1| ≈ p1/(ρ0r) ≈ αv2

s /r, where we have replaced
the gradient ∇ by 1/r. Similarly, the enhanced density of the perturbation
gives rise to an extra inward gravitational force |Fg1| ≈ GMα/r2, whereM =
4
3πρ0r

3 is the mass originally within r; in other words, |Fg1| ≈ Gρ0rα. If the
net force is outward, the compressed fluid re-expands and the perturbation
is stable; if the net force is inward, the fluid continues to contract and the
perturbation is unstable. Thus, there is instability if |Fg1| > |Fp1|, or if

Gρ0rα ∼> αv2
s /r, that is, if r2 ∼>

v2
s

Gρ0
. (5.25)

The same approximate criterion can be derived by comparing the gravita-
tional potential energy and internal energy in a volume V of size r or mass
M ≈ ρ0r

3. The potential energy is W ≈ −GM 2/r ≈ −Gρ2
0r

5, and the inter-
nal energy is U ≈ Mv2

s ≈ ρ0v
2
s r

3. If the perturbation is localized within V ,
and there is no energy flow into V , then the sum of these two energies plus
the bulk kinetic energy associated with the perturbation must be zero. Since
the kinetic energy is positive, the perturbation can grow only if W +U < 0.
This requires r2 ∼> v2

s /(Gρ0).

We conclude that perturbations with a scale longer than ≈ vs/(Gρ0)1/2

are unstable. This behavior is known as the Jeans instability (Jeans 1902).
We now give a more careful treatment for homogeneous fluids and stellar
systems; our goal is both to analyze the Jeans instability and to sharpen our
tools for investigating the response of more realistic systems.

5.2.2 Homogeneous systems and the Jeans swindle

As we mentioned in §5.1, an infinite homogeneous gravitating system cannot
be in static equilibrium. Nevertheless, it is useful to set up artificial homo-
geneous systems because their linear stability properties are relatively easy
to analyze. Consider, for example, the response function R(x,x′, τ) defined
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in equation (5.2). In a homogeneous system this can depend on x, x′ only
through their difference, so the response function takes the form R(x−x′, τ),
and equation (5.2) simplifies to a convolution in both space and time.

We showed in §5.1.1 that equations involving convolutions in time can
be analyzed with temporal Fourier transforms. Similarly, equations involving
convolution in space are best analyzed using spatial Fourier transforms. We
define the spatial Fourier transform of the function g(x) by (eq. B.68)

g(k) =

∫
d3x g(x)e−ik·x ; g(x) =

∫
d3k

(2π)3
g(k)eik·x. (5.26)

We shall assume that all relevant functions vanish at spatial infinity so their
Fourier transforms exist.

We replace R(x,x′, t) in equation (5.2) by R(x − x′, t), with a similar
replacement in equation (5.3), multiply both equations by exp(−ik · x) and
integrate over d3x, to find

ρs1(k, t) =

∫
dt′R(k, t− t′)ρe(k, t′) =

∫
dt′ P (k, t− t′)ρ1(k, t′). (5.27)

Taking a temporal Fourier transform, we obtain:

ρ̃s1(k, ω) = R̃(k, ω)ρ̃e(k, ω) = P̃ (k, ω)ρ̃1(k, ω). (5.28)

There is a simple relation between the polarization and response functions
for homogeneous systems. Using the relation ρ1 = ρs1 + ρe (cf. eq. 5.12),
equation (5.28) can be rewritten as

ρ̃s1(k, ω) = R̃(k, ω)ρ̃e(k, ω) = P̃ (k, ω)[ ρ̃s1(k, ω) + ρ̃e(k, ω)]. (5.29)

Combining these equations gives the desired relations:

R̃(k, ω) =
P̃ (k, ω)

1 − P̃ (k, ω)
; P̃ (k, ω) =

R̃(k, ω)

1 + R̃(k, ω)
. (5.30)

We construct our artificial equilibrium for a homogeneous system by
perpetrating what we shall call the Jeans swindle. Mathematically, the dif-
ficulty we must overcome is that if the density and pressure of the medium
ρ0, p0 are constant, and the mean velocity v0 is zero, then Euler’s equa-
tion (5.17) implies that ∇Φ0 = 0. The same conclusion follows from symme-
try considerations—since the system is homogeneous, there is no preferred
direction for the vector ∇Φ0 to point. On the other hand, Poisson’s equa-
tion (5.18) requires that ∇2Φ0 = 4πGρ0. These two requirements are in-
consistent unless ρ0 = 0. Physically, there are no pressure gradients in a
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homogeneous medium to balance gravitational attraction. A similar incon-
sistency arises in an infinite homogeneous stellar system. We remove the
inconsistency by the ad hoc assumption that Poisson’s equation describes
only the relation between the perturbed density and the perturbed potential,
while the unperturbed potential is zero. An equivalent statement is that
some fixed gravitational field from an unspecified source cancels ∇Φ0. This
assumption constitutes the Jeans swindle; it is a swindle, of course, because
there is no justification for discarding the unperturbed gravitational field.
However, the swindle is vindicated by the insight it provides, so long as its
limitations are kept in mind—for further discussion see §5.2.5.2

5.2.3 The response of a homogeneous fluid system

We use the linearized fluid equations (5.24a) to (5.24d). The equilibrium
state is ρ0 = constant , v0 = 0, and the Jeans swindle lets us set Φ0 = 0. We
then have

∂ρs1

∂t
+ ρ0∇ · v1 = 0 ;

∂v1

∂t
= −∇(h1 + Φs1 + Φe), (5.31a)

∇2Φs1 = 4πGρs1 ; h1 = v2
s ρs1/ρ0, (5.31b)

and the sound speed vs is a constant.
By taking the time derivative of the first of equations (5.31) and the

divergence of the second, and eliminating v1, Φs1, and h1 with the aid of the
other equations, we can combine equations (5.31) into the single equation

∂2ρs1

∂t2
− v2

s∇2ρs1 − 4πGρ0ρs1 = 4πGρ0ρe. (5.32)

We now take the spatial Fourier transform by multiplying by exp(−ik·x) and
integrating over d3x. We then apply the divergence theorem (B.45) twice
to eliminate ∇2, using the fact that the boundary terms are zero since all
perturbed quantities are assumed to vanish at spatial infinity. We obtain

∂2ρs1(k, t)

∂t2
+ v2

s k
2 ρs1(k, t) − 4πGρ0ρs1(k, t) = 4πGρ0ρe(k, t). (5.33)

A mode is a perturbation that can be sustained without external
forces. Setting ρe(k, t) = 0 and substituting ρs1(k, t) ∝ exp(−iωt) into equa-
tion (5.33), we find that modes must satisfy the dispersion relation

ω2 = ω2
0(k) ≡ v2

s k
2 − 4πGρ0 = v2

s (k2 − k2
J), (5.34)

2 The Jeans swindle is not needed in one (unrealistic) cosmological model. This is the
static model proposed, and later repudiated, by Einstein, in which the gravitational at-
traction of the unperturbed density ρ0 is canceled by vacuum energy ρΛ. See Problem 1.8.



404 Chapter 5: Stability of Collisionless Systems

where the Jeans wavenumber kJ is defined by

k2
J ≡ 4πGρ0

v2
s

. (5.35)

For k > kJ (short wavelengths) ω2 > 0 and the solutions are oscillatory;
for k < kJ (long wavelengths) the solutions are exponentially growing or
decaying.

Now suppose that the external density is given by ρe(k, t) = δ(t − t0),
where as usual δ(τ) is the delta function (Appendix C.1). Then equa-
tion (5.27) implies that ρs1(k, t) is equal to the response function R(k, t−t0);
substituting this result into equation (5.33) yields

∂2R(k, τ)

∂τ2
+ v2

s k
2R(k, τ) − 4πGρ0R(k, τ) = 4πGρ0 δ(τ), (5.36)

subject to the causality condition R(k, τ) = 0 for τ < 0. We now solve this
to determine the response function.

First consider the case of an oscillatory perturbation (k > kJ). For τ > 0
the external potential is zero, so R(k, τ) must satisfy the dispersion relation
(5.34),

R(k, τ) = A sin[ω0(k)τ ] +B cos[ω0(k)τ ], (5.37)

where A and B are constants chosen to satisfy the boundary conditions at
τ = 0. The response function must be a continuous function of τ , since
the response density cannot change discontinuously even if subjected to an
impulse from an external source. Since the response function is zero for
τ < 0, we must have B = 0. Now integrate equation (5.36) from τ = −ε
to τ = ε, where ε is a small positive number. Since the response function
is continuous, the second and third terms on the left side vanish as ε → 0.
Since

∫ ε
−ε dτ δ(τ) = 1 we have

∂R(k, τ)

∂τ

∣∣∣∣
ε

−ε
= 4πGρ0, (5.38)

which requires Aω0 = 4πGρ0. Thus the response function for k > kJ is

R(k, τ) =
4πGρ0

ω0(k)
H(τ) sin[ω0(k)τ ] (5.39)

where H(τ) is the step function (Appendix C.1). For k < kJ, ω0(k) is purely
imaginary, so it proves more convenient to use

γ2
0(k) ≡ −ω2

0(k) = v2
s (k2

J − k2), (5.40)
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and a similar derivation shows that the response function is

R(k, τ) =
4πGρ0

γ0(k)
H(τ) sinh[γ0(k)τ ]. (5.41)

Taking the temporal Fourier transform (5.6) of our results we obtain

R̃(k, ω) =





− 4πGρ0

ω2 − ω2
0(k)

, k > kJ, Im(ω) > 0,

− 4πGρ0

ω2 + γ2
0(k)

, k < kJ, Im(ω) > γ0(k).

(5.42)

The polarization function for a homogeneous system can be obtained
by a closely analogous derivation (Problem 5.6). However, there is a simpler
route: the general relation (5.30) between the polarization and response
functions in homogeneous systems gives

P̃ (k, ω) = − 4πGρ0

ω2 − v2
s k

2
, Im(ω) > 0, (5.43)

and the inverse Fourier transform gives

P (k, τ) =
4πGρ0

vsk
H(τ) sin(vskτ). (5.44)

This result can also be derived by considering equation (5.39) in the limit
that self-gravity is negligible, which occurs when kJ/k → 0. As we argued
in the paragraph following equation (5.3), if self-gravity is negligible the
polarization and response functions are identical. As kJ → 0, ω0(k) → vsk,
so (5.44) follows from (5.39).

The dispersion relation for modes, equation (5.34), can be obtained by
setting the external density ρe in equation (5.29) to zero; thus

P̃ (k, ω) = 1. (5.45)

The solutions of the dispersion relation are the singularities of the response
function (5.30), since a mode has non-zero density response even though
there is no external forcing.

We now describe these results in more physical terms. Equation (5.39)
shows that an external impulse with wavenumber k > kJ sets up a sinusoidal
oscillation in the fluid, with frequency ω0(k). When the density ρ0 is small,
the oscillation consists of sound waves, since the dispersion relation (5.34)
reduces to that of a sound wave, ω2(k) = v2

s k
2 (eq. F.54). As the density is

increased, the frequency ω decreases and the oscillation becomes more and
more sluggish, until eventually ω reaches zero at k = kJ. When k < kJ,
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the external impulse excites a growing density disturbance with temporal
dependence ∝ exp γ0(k)t at large time (eq. 5.40). The presence of the growing
solution implies that the system is unstable whenever k2 < k2

J .
In terms of the wavelength, the perturbation is unstable if λ exceeds the

Jeans length λJ = 2π/kJ, that is, if3

λ2 > λ2
J =

πv2
s

Gρ0
. (5.46)

We define the Jeans mass MJ as the mass originally contained within a
sphere of diameter λJ:

MJ =
4π

3
ρ0( 1

2λJ)3 = 2.92
v3

s

G3/2ρ
1/2
0

. (5.47)

The Jeans instability in a fluid has a simple interpretation in terms of en-
ergy. The energy density of an ordinary sound wave is positive. However,
the gravitational energy density of a sound wave is negative, because the
enhanced potential energy in the compressed regions outweighs the reduced
potential energy in the dilated regions. The Jeans instability sets in at the
wavelength λJ at which the net energy density becomes negative, so kinetic
energy is available to feed the growing wave (see Problem 5.7).

5.2.4 The response of a homogeneous stellar system

The equilibrium state of an infinite, homogeneous stellar system is described
by the df f0(v), which is taken here to describe the mass density of stars in
(x,v) phase space. We shall usually assume that this df is Maxwellian,

f0(v) =
ρ0

(2πσ2)3/2
e−v

2/(2σ2). (5.48)

Since the sound speed vs in an ideal gas is closely related to its velocity
dispersion (see eq. F.55), it is natural to define the Jeans wavenumber kJ of
a homogeneous, Maxwellian stellar system by analogy with equation (5.35),

k2
J ≡ 4πGρ0

σ2
. (5.49)

We show below that this analogy is exact, in that perturbations to the stel-
lar system with wavelength λ < 2π/kJ are stable, and perturbations with

3 The dispersion relation (5.34) is similar to the dispersion relation for electrostatic
plasma waves, ω2

0(k) = v2s k
2 + ω2

P, where ω2
P = ne2/(ε0m) is the square of the plasma

frequency, ε0 is the electric constant, n is the electron number density and e and m are
the electron charge and mass. In a plasma like charges repel, so the dispersion relation
involves +ω2

P instead of −k2
Jv

2
s and all wavelengths are stable.
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λ > 2π/kJ are unstable. However, the details of the behavior of fluid and stel-
lar systems are otherwise quite different. In particular, the response of most
homogeneous stellar systems to perturbations with λ < 2π/kJ is strongly
damped, in contrast to the oscillatory response of fluid systems. This inter-
esting phenomenon of damping in a time-reversible system—apparent dissi-
pation even though the collisionless Boltzmann equation contains no friction,
viscosity, or other dissipative effects—is a fundamental but paradoxical prop-
erty of most stellar systems, which we shall examine with some care.

To analyze the response of the homogeneous stellar system, we use the
linearized collisionless Boltzmann and Poisson equations (5.13), and invoke
the Jeans swindle to set Φ0 = 0. We have

∂f1

∂t
+v · ∂f1

∂x
− ∂

∂x
(Φs1 +Φe) ·

∂f0

∂v
= 0 ; ∇2Φs1 = 4πG

∫
d3v f1, (5.50)

where as usual Φs1 is the perturbed potential due to the self-gravity of the
system, and Φe is the perturbing external potential. We multiply these
equations by exp(−ik · x), integrate over d3x, and then use the divergence
theorem (B.45) to eliminate spatial derivatives, assuming that f1, Φe, and
Φs1 vanish at infinity. We find

∂f1

∂t
+ ik · vf1 = i (Φs1 + Φe)k · ∂f0

∂v
;

−k2Φs1 = 4πG

∫
d3v f1 = 4πGρs1,

(5.51)

where f1(k,v, t) is the spatial Fourier transform of f1(x,v, t), defined as in
equation (5.26), and ρs1 is the perturbed density of the stellar system. The
first of equations (5.51) has the integrating factor exp(ik ·v t); assuming that
the perturbation vanishes as t→ −∞, its solution is

f1(k,v, t) = ik · ∂f0

∂v

∫ t

−∞
dt′ eik·v(t′−t) [Φs1(k, t′) + Φe(k, t

′)
]
. (5.52)

We now integrate over velocity, replace Φs1 + Φe by the total perturbing
potential Φ1, and replace this in turn by the perturbing density ρ1 using
Poisson’s equation. We then have

ρs1(k, t) =

∫
d3v f1 = −4πG i

k2

∫
d3v k · ∂f0

∂v

∫ t

−∞
dt′eik·v(t′−t) ρ1(k, t′).

(5.53)
Comparing with equation (5.27), we find that the polarization function for
a homogeneous stellar system is

P (k, τ) = −4πG i

k2
H(τ)

∫
d3v k · ∂f0

∂v
e−ik·vτ . (5.54)
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Figure 5.1 Integration contours in the complex
x-plane.

In particular, for the Maxwellian df (5.48),

P (k, τ) = 4πGρ0τH(τ)e−(kστ)2/2. (5.55)

The polarization function decays to zero at τ → ∞, in contrast to the polar-
ization of a fluid, which oscillates (eq. 5.44). This decay is a manifestation
of phase mixing (§4.10.2).

We now turn to the response function. We take the temporal Fourier
transform of the polarization function (5.54),

P̃ (k, ω) =

∫
dτ P (k, τ)eiωτ = −4πG

k2

∫
d3v

k · v − ω
k · ∂f0

∂v
, Im(ω) > 0.

(5.56)
The response function follows from equations (5.6) and (5.30),

R(k, τ) =
1

2π

∫ ic+∞

ic−∞
dω R̃(k, ω)e−iωτ

=
1

2π

∫ ic+∞

ic−∞
dω

P̃ (k, ω)e−iωτ

1 − P̃ (k, ω)
,

(5.57)

where c is a sufficiently large real number. To evaluate this integral, we
wish to extend the integration path to a closed contour. For τ > 0, this can
be done using a large semi-circle in the lower half-plane. Consequently, the
value of the integral is given by the sum over the residues of any poles that
the integrand has below the original integration path. Specifically,

R(k, τ) = −i
∑

p

Rpe−iωpτ , (5.58)
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where Rp is the residue of R̃(k, ω) at the pole ω = ωp. The location of
these poles determines the stability of the stellar system: if the maximum
value of Im(ωp) is positive, then exp(−iωpτ) grows exponentially, and the
system is unstable; if zero, the system is stable but oscillates forever after a
disturbance; and if negative all disturbances eventually decay exponentially,
with the largest value of Im(ωp) dominating the long-term response.

To find the poles, we first consider the upper half-plane Im(ω) > 0. The

numerator P̃ (k, ω) has no poles in the upper half-plane, since the integral
(5.56) is non-singular in this region. Hence, any poles in the upper half-
plane must arise from zeros of the denominator, i.e., from solutions of the
dispersion relation

P̃ (k, ω) = 1, Im(ω) > 0; (5.59)

solutions of this equation yield unstable modes.

Equation (5.56) does not define P̃ (k, ω) for Im(ω) ≤ 0: in this region,

the integrand of (5.57) is defined by the analytic continuation of P̃ (k, ω) to
the lower half-plane. We next examine how to do this.

We set up Cartesian coordinates (v1, v2, v3) in velocity space, with the
1-axis parallel to k, and let F0(v1) =

∫
dv2dv3 f0(v) and x = kv1. Then

equation (5.56) simplifies to

P̃ (k, ω) = −4πG

k2

∫ ∞

−∞
dx

F ′
0(x/k)

x− ω
, Im(ω) > 0, (5.60)

where F ′
0(v1) = dF0/dv1. Next, we consider x to be a complex variable, and

recall that because we are integrating along the real x axis and Im(ω) > 0,
the integral in (5.60) is non-singular. This situation corresponds to the top
panel in Figure 5.1. Now let us analytically continue the function in equa-
tion (5.60) to Im(ω) = 0. Before doing so, we make the small semicircular
deformation of the integration contour in the complex x-plane that is shown
in the middle panel of Figure 5.1. This deformation does not change the
value of the integral, but allows us to reduce Im(ω) to zero without crossing
the integration contour. Similarly, to continue analytically equation (5.60)
to Im(ω) < 0 we make the keyhole-shaped deformation shown in the bottom
panel of Figure 5.1, which once again does not change the value of the inte-
gral. Therefore the analytic continuation of the polarization function can be
written as

P̃ (k, ω) = −4πG

k2

∫

L
dx

F ′
0(x/k)

x− ω
, (5.61)

where L is the Landau contour shown in Figure 5.1 (Landau 1946). The

Landau contour allows us to continue analytically P̃ (k, ω) over the entire
complex ω-plane.
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By the residue theorem

∫

L
dx

F ′
0(x/k)

x− ω
=





∫∞
−∞ dx

F ′
0(x/k)
x− ω

(Im(ω) > 0)

℘
∫∞
−∞ dx

F ′
0(x/k)
x− ω

+ πiF ′
0(ω/k) (Im(ω) = 0)

∫∞
−∞ dx

F ′
0(x/k)
x− ω

+ 2πiF ′
0(ω/k) (Im(ω) < 0),

(5.62)

where ℘ denotes the Cauchy principal value (eq. C.6).

For the Maxwellian df (5.48), F0(v1) = ρ0 exp(− 1
2v

2
1/σ

2)/
√

2πσ2, so
the integrals on the right of equation (5.62) can be written

− ρ0√
2πσ3k

∫ ∞

−∞
dx

x e−x
2/(2k2σ2)

x− ω
, (5.63)

with the understanding that the principal value is to be taken if ω is real.
Then equations (5.61) and (5.62) can be combined to give

P̃ (k,
√

2kσw) =
4πGρ0

k2σ2
[1 + wZ(w)] , (5.64)

where the “plasma dispersion function” is

Z(w) =
1√
π

∫ ∞

−∞
ds

e−s
2

s− w
(Im(w) > 0), (5.65)

and its analytic continuation for Im(w) ≤ 0. The analytic properties of the
plasma dispersion function are described in Appendix C.3 and by Fried &
Conte (1961).4

The dispersion relation follows from equation (5.59),

k2

k2
J

= 1 + wZ(w), ω =
√

2kσw, (5.66)

where the Jeans wavenumber kJ is defined by equation (5.49).
In examining the dispersion relation (5.66) there are three cases to con-

sider:

(a) Unstable solutions In this case Im(ω) > 0. In order for the disper-
sion relation (5.66) to be satisfied, the imaginary part of wZ(w) must vanish.
Since the integration variable s in (5.65) is real,

wZ(w) =
w√
π

∫ ∞

−∞
ds

(s− w∗) e−s
2

|s− w|2 (5.67)

4 Analogs for non-Maxwellian dfs—which can be simpler than the Maxwellian case—
are discussed in Problem 5.8.
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Figure 5.2 The dispersion relation for infinite homogeneous fluid and stellar systems,
equations (5.34) and (5.59). The real and imaginary parts of the frequency are plotted
separately, in units of (4πGρ0)1/2. The Jeans wavenumber kJ is defined by equation (5.35)
for fluids and equation (5.49) for stellar systems. Unstable branches are marked by heavy
lines. As discussed on page 413, the curves with Im(ω) < 0 describe Landau-damped
waves rather than true modes.

so

Im[wZ(w)] =
Im(w)√

π

∫ ∞

−∞
ds

se−s
2

|s− w|2 . (5.68)

This integral can vanish only if Re(w) = 0: if, for example, Re(w) > 0, the
absolute value of the integrand at s = s0 > 0 will always be larger than its
value at s = −s0 < 0, and the integral will be positive, while if Re(w) < 0
the integral will be negative. Hence unstable solutions must have w and ω
imaginary—in other words, there are no overstable modes with Im(ω) > 0
and Re(ω) 6= 0. Setting ω = iγ in equation (5.66) and using equation (C.22),
we obtain the dispersion relation for unstable modes,

k2

k2
J

= 1 −
√
πγ√
2kσ

exp

(
γ2

2k2σ2

)[
1 − erf

(
γ√
2kσ

)]
. (5.69)

The growth rate γ is zero at k = kJ, which confirms that the definition
(5.49) for the Jeans wavenumber in a Maxwellian stellar system does indeed
separate stable and unstable wavenumbers. Unstable waves—solutions of
(5.69) with γ > 0—exist if and only if k2 < k2

J. The dispersion relation
(5.69) is plotted in Figure 5.2, along with the analogous relation (5.34) for a
fluid.

(b) Neutrally stable solutions Here Im(ω) = 0, Re(ω) 6= 0. From
equation (5.62), for real argument the plasma dispersion function is

Z(w) =
1√
π
℘

∫ ∞

−∞
ds

e−s
2

s− w
+ i

√
πe−w

2

. (5.70)
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The principal value is real, so Im [wZ(w)] = 0 only when ω = 0. Conse-
quently, there are no undamped traveling waves. In this respect the stellar
system is quite different from a fluid system, whose dispersion relation (5.34)
allows undamped gravity-modified sound waves at all wavelengths less than
the Jeans length.

(c) Damped solutions Since only waves having k < kJ are unstable,
and there are no undamped waves, all waves with k > kJ must be damped.
Numerical evaluation of Z(w) (Figure 5.2) shows that there is an infinite
number of solutions of (5.66) for a given wavenumber, all of them strongly
damped, in the sense that |Im(ω)/Re(ω)| is of order unity or greater (the
minimum value of this ratio for any k < kJ is 0.481). This damping is called
Landau damping.5

Landau damping arises because of the singularity in the integrand of
the polarization function (5.56) when

k · v − ω = 0. (5.71)

When a star’s velocity v satisfies this equation, its position x at time t,
namely x(t) = x0 +vt, is such that its phase with respect to the wave (ω,k)
is constant: φ ≡ k ·x−ωt = k ·x0 + (k ·v−ω)t. That is, the star follows the
wave in the same way that a surfer rides an ocean wave: the surfer may have
a substantial velocity parallel to the crest of the wave, but perpendicular to
the crest he tries to move at exactly the same speed as the crest; that is, he
tries keep his phase with respect to the wave constant.

The surfer sets his phase such that the downhill direction is the direction
in which the wave is running, for then the wave is doing work on him: the
horizontal component of the buoyancy force F that the water imparts to the
surfboard accelerates him in the direction of the wave motion, so the rate of
doing work on the surfer is F · v > 0 (cf. eq. D.4). The surfer adjusts his
speed parallel to the wave crests such that this work balances the dissipation
of energy that arises from the board’s motion through the water.

If the surfer crosses to the back side of the wave crest, he will do work
on the wave, and will slow down. But one can imagine a speedboat holding
its position on this side of the crest by driving endlessly up the retreating
slope of the wave. The boat would then be steadily transferring energy to
the wave. Thus a particle that is in resonance with a wave can either draw
energy from the wave, or give energy to the wave, depending on its phase
with respect to the wave.

In a hot stellar system stars have a continuous distribution of velocities,
and few stars will be close to resonance with a given wave. Non-resonant stars
will in quick succession do work on the wave when they are on a retreating
slope, and gain energy from the wave when they are on an advancing slope,

5 Waves in electrostatic plasmas can exhibit much slower Landau damping, in the sense
that |Im(ω)| � |Re(ω)|.



5.2 Homogeneous systems 413

so on the average they will exchange negligible energy with the wave. By
contrast, stars that are nearly resonant can suffer net gains or losses. Stars
that are initially moving slightly faster than the wave may lose enough energy
as they move up a retreating slope to fall back and become trapped near a
trough of the wave. Conversely, stars that are initially moving slower than
the wave may gain enough energy on an advancing slope of the wave to
become trapped. If the energy given up by the fast stars exceeds that gained
by the slow stars, the amplitude of the wave must increase to conserve energy.
When the distribution of stellar velocities is Maxwellian, as assumed in our
calculation above, there are more slow stars than fast stars, and overall the
near-resonant stars gain energy from the wave, so the wave decays. Trapping
of stars at wave troughs is a nonlinear process, but nevertheless the rate
of energy transfer through this process is captured correctly by the linear
mathematical analysis that we have used (Stix 1992).

Both Landau damping and phase mixing (§4.10.2) can damp waves in a
stellar system, but the processes differ in several ways: (i) Landau damping
is due to collective effects arising because of self-gravity, while phase mixing
is a kinematic process that occurs even in systems with no self-gravity. (ii) In
phase mixing the amplitude of the fluctuations in the df does not decay—the
decay in the amplitude of the fluctuations in spatial density arises because
the fluctuations in the df become more and more tightly wound in phase
space. In contrast, Landau damping washes out the fluctuations in the df.
(iii) Phase mixing almost always leads to decaying density fluctuations, while
Landau damping can lead to either growth or decay, depending on the equi-
librium df. (iv) Phase mixing is determined by the behavior of the numera-
tor of the integrand in equation (5.57), while Landau damping is determined
by the zeros of the denominator. (v) The rate of decay of the density fluc-
tuations due to phase mixing depends on the initial perturbation and the
equilibrium df, while Landau damping always leads to an exponential de-
cay. For example, if the df is Maxwellian, the polarization function (5.55)
decays faster than an exponential, so Landau “damping” actually extends
the long-term survival of a perturbation.

A subtle but important point is that Landau-damped waves are not
modes. Our analysis shows only that as t → ∞, the density response is
∝ exp(−iωpt), where ωp is determined from the dispersion relation (5.66)
using the Landau contour. In contrast, a mode is a solution of the lin-
earized collisionless Boltzmann and Poisson equations (5.50) that behaves
like exp(−iωt) at all times. Solutions of the dispersion relation (5.59)
are modes only in the part of the complex ω-plane where the polarization
function exists, which for homogeneous Maxwellian stellar systems means
Im(ω) > 0 (unstable modes). The properties of Landau-damped waves
are determined by the analytic continuation of the polarization function to
Im(ω) < 0, where modes do not exist. There are modes of a homogeneous
stellar system with k > kJ, but these van Kampen modes have quite dif-
ferent properties from Landau-damped waves: they exist for all real ω and
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k > kJ and have singular dfs (Box 5.1).
The distinction between phase mixing and Landau damping can be il-

lustrated by a numerical calculation of the response function for an infinite
homogeneous stellar system.6 We start with equation (5.53) and replace the
density ρ1 by ρs1 + ρe to obtain

ρs1(k, t) = −4πG i

k2

∫
d3v k · ∂f0

∂v

∫ t

−∞
dt′ eik·v(t′−t)[ρs1(k, t′) + ρe(k, t

′)].

(5.72)
Now set ρe(k, t) = δ(t) and assume that ρs1(k, t) = 0 for t < 0. In this case
equation (5.27) shows that ρs1(k, t) is just the response function R(k, t).
Thus

R(k, t) = −4πG i

k2

∫
d3v k · ∂f0

∂v
e−ik·vt

− 4πG i

k2

∫
d3v k · ∂f0

∂v

∫ t

0

dt′eik·v(t′−t)R(k, t′),

(5.73)

for t > 0, and zero for t < 0. For a Maxwellian df,

R(k, t) =
4πGρ0i

(2π)3/2σ5k2

∫
d3v k · v e−v

2/(2σ2)−ik·vt

+
4πGρ0i

(2π)3/2σ5k2

∫
d3v k · v e−v

2/(2σ2)

∫ t

0

dt′eik·v(t′−t)R(k, t′).

(5.74)

Now set up Cartesian coordinates (v1, v2, v3) in velocity space, with the 1-
axis parallel to k. Then the integrations over v2 and v3 are immediate, the
integral over v1 is straightforward, and we have

R(k, t) = 4πGρ0te
−(kσt)2/2 + 4πGρ0

∫ t

0

dt′(t− t′)e−k
2σ2(t′−t)2/2R(k, t′).

(5.75)
This is a Volterra integral equation, which is easily solved numerically

(Press et al. 1986).7 The results are shown in Figure 5.3. The perturba-
tion grows when k < kJ and damps for k > kJ, as expected. In the limit
k/kJ → ∞ the damping is entirely due to phase mixing (cf. §4.10.2), the
response function is equal to the polarization function of equation (5.55),
and the density response decays as a Gaussian in time. As the effects of self-
gravity increase, the qualitative nature of the damping changes: the damping
becomes less rapid and the density response decays at the exponential rate
characteristic of Landau damping—as mentioned earlier, Landau damping
actually slows the decay relative to phase mixing.

6 Suggested by A. Toomre.
7 A simple df for which the response function can be determined analytically is de-

scribed in Problem 5.8.
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Box 5.1: Van Kampen modes

If Landau-damped waves are not modes, then what are the modes of
a homogeneous stellar system with k > kJ? We look for solutions
of the linearized collisionless Boltzmann and Poisson equations (5.51)
in which ω is real, the external potential Φe = 0, the perturbed df

f1(k,v, t) = f1(k,v) exp(−iωt), and the potential due to self-gravity
Φs1(k, t) = Φs1(k) exp(−iωt). This requires

(k · v − ω)f1 − Φs1k · ∂f0

∂v
= 0 ; −k2Φs1 = 4πG

∫
d3v f1 = 4πGρs1.

(1)
An obvious solution to the first equation is

fa(k,v) =
Φs1

k · v − ω
k · ∂f0

∂v
; (2)

however, van Kampen (1955) pointed out that when k · v − ω = 0, the
first of equations (1) does not constrain f1, so the most general solution
is fa + f b, where

fb(k,v) = cg(v⊥)δ(k · v − ω). (3)

Here c is a constant, v⊥ is the component of v that is perpendicular to
k, g(v⊥) is an arbitrary function normalized such that

∫
d2v⊥g(v⊥) = 1,

and δ(x) is the delta function.
Integrating fa + fb over velocity and using the second of equations

(1), it is straightforward to show that the df of the mode is

f1(k,v) =
a

k · v − ω
k · ∂f0

∂v

− k3a

4πG

[
1 +

4πG

k2
℘

∫
d3v′

k · v′ − ω
k · ∂f0

∂v′

]
g(v⊥)δ(k · v − ω),

(4)
where a is an arbitrary constant and ℘ denotes the principal value
(eq. C.6). The corresponding potential is simply Φs1 = a.

Singular modes of this form are known as van Kampen modes. It can
be shown that the van Kampen modes are complete and that Landau-
damped waves can be regarded as a superposition of van Kampen modes
(van Kampen 1955; Case 1959; Stix 1992; Vandervoort 2003). The modes
do not satisfy a dispersion relation since they exist for all real ω and
k > kJ. Since these solutions are neither growing not decaying, they
resolve the apparent paradox of how all perturbations in a time-reversible
system can decay, as appears to happen with Landau-damped waves. The
van Kampen modes also demonstrate that a stellar system has a much
richer—and more pathological—set of modes than a fluid.
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Figure 5.3 Response function
of an infinite homogeneous
Maxwellian stellar system, in
units of 4πGρ0/(kσ) (eq. 5.75).
Time is measured in units of
(kσ)−1 . Curves are labeled by
the value of k2/k2

J.

5.2.5 Discussion

The stability of an infinite homogeneous stellar system is closely related
to the stability of the analogous fluid system: in both cases there is in-
stability if and only if the wavenumber of the disturbance is less than the
Jeans wavenumber kJ, defined by equation (5.35) for fluids and (5.49) for
a Maxwellian stellar system. However, the responses to perturbations with
k > kJ are quite different: the fluid supports undamped gravity-modified
sound waves while the disturbance in the stellar system is strongly phase-
mixed and Landau-damped.

These results rest on two linked foundations: the assumption that the
system is infinite and homogeneous, and the Jeans swindle of neglecting the
gravitational potential of the unperturbed system. It is time to pause and
investigate the consequences of these assumptions.

The virial theorem (4.248) tells us that a stellar system of mass M and
mean-square velocity v2 has a characteristic size λ0 ≈ GM/v2. In terms of
the mean density ρ ≈ M/λ3

0, we have λ2
0 ≈ v2/Gρ. However, from equa-

tion (5.46) the Jeans length is given by λ2
J ≈ v2/Gρ, which is the same as λ2

0

to order of magnitude. Thus the Jeans length is comparable to the size of
the system, and the assumption of homogeneity generally is not valid. Ac-
cordingly, the Jeans analysis does not establish that there is a real instability
in an isolated stellar system. Nevertheless, the analysis is a cornerstone of
stability theory for self-gravitating systems, for several reasons:
• The homogeneity assumption is valid and the Jeans swindle is legitimate

on scales λ � λ0, because the effects of the inhomogeneity and self-
gravity of the equilibrium system are small on small scales. Therefore,
we can conclude from our analysis that stationary stellar systems with
dfs that are approximately Maxwellian are stable on small scales.
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• The Jeans analysis can be used to investigate whether non-Maxwellian
dfs introduce new instabilities on small scales. For example, we can
ask whether there is an analog for stellar systems of the two-stream
instability, which arises in a plasma containing two interpenetrating
beams of electrons or ions with different mean velocities (Stix 1992).
Because the stellar system is already unstable for k < kJ, the two-
stream instability is distinct from the Jeans instability only if the df

f2(v) ≡ 1
2 [f0(v+V)+f0(v−V)] is unstable at wavenumbers where the

df f0(v) is stable. It is found that there is no two-stream instability in
an infinite homogeneous medium when f0(v) is Maxwellian (Sweet 1963;
Araki 1987), although related instabilities can occur in disks containing
equal populations of stars rotating in opposite directions (Sellwood &
Merritt 1994; Lovelace, Jore, & Haynes 1997).

• Generalizations of Jeans’s analysis to relativistic fluids in a homogeneous
expanding universe are central to cosmology, where structures such as
galaxies arise from gravitational instabilities (§9.1.2b). In this case the
stability analysis can be done self-consistently, without invoking the
Jeans swindle.

• The physics of the Jeans instability enables us to interpret small-scale
instabilities in rotating disk systems (see §5.6.1 and §6.2.3).

• The Jeans analysis provides insight into aspects of the behavior of more
realistic stellar systems, such as the phenomenon of Landau damping,
which is discussed in the context of spherical systems in §5.5.3.

5.3 General theory of the response of stellar systems

The response of realistic, finite, inhomogeneous stellar systems is substan-
tially more complicated than the response of infinite homogeneous systems
that we described in the last section. Fortunately, many of the tools that
we have developed for homogeneous systems remain relevant. Most funda-
mentally, the linear response of any stellar system is still determined by the
linearized collisionless Boltzmann and Poisson equations (5.13). A key to
analyzing these systems is the insight that the natural variables for solving
these two equations are different: the Poisson equation is simplest in coor-
dinates that reflect the spatial symmetry of the equilibrium system, while
the linearized collisionless Boltzmann equation is simplest in the angle-action
variables of the equilibrium potential. Most of the work consists of trans-
forming between these two sets of variables, which is numerically tedious but
conceptually straightforward. Palmer (1994) provides a thorough review of
this approach.
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5.3.1 The polarization function in angle-action variables

Let us suppose that the potential Φ0(x) of the equilibrium stellar system
is integrable, in other words that there exist angle-action variables (θ,J) in
which the equilibrium Hamiltonian is independent of angles, H = H0(J). All
spherical and two-dimensional axisymmetric disk potentials are integrable,
as are the triaxial Stäckel potentials discussed in §3.5.3. The position and
velocity of any star are functions of the actions and angles, which we may
write as x(θ,J) and v(θ,J).

According to the Jeans theorem, the equilibrium df may be assumed to
depend only on the actions; thus f0 = f0(J). To compute the polarization
function we imagine that the stellar system is subjected to a weak gravi-
tational force arising from some potential εΦ1(x, t), where ε � 1 and Φ1

includes the self-gravity of the response. The df is then modified to

f(θ,J, t) = f0(J) + εf1(θ,J, t). (5.76)

Since f0 and H0 are independent of the angles θ, the linearized collisionless
Boltzmann equation (5.13) becomes

0 =
∂f1

∂t
+ [f1, H0] + [f0,Φ1]

=
∂f1

∂t
+
∂f1

∂θ
·Ω − ∂f0(J)

∂J
· ∂Φ1

∂θ
,

(5.77)

where

Ω(J) =
∂H0

∂J
(5.78)

gives the rate of change θ̇ of the angles in the unperturbed system (eq. 3.190).
Any function of the phase-space coordinates must be a periodic function

of the angles θ. Thus we can expand f1 and Φ1 in Fourier series (cf. eqs. B.62
and B.64),

f1(θ,J, t) =
∑

m

fm(J, t)eim·θ ; Φ1[x(θ,J), t] =
∑

m

Φm(J, t)eim·θ,

(5.79)
where m denotes a triple of integers (m1,m2,m3) and

fm(J, t) =
1

(2π)3

∫
d3θ′ e−im·θ′

f1(θ′,J, t),

Φm(J, t) =
1

(2π)3

∫
d3θ′ e−im·θ′

Φ1[x(θ′,J), t].

(5.80)

Equation (5.77) must be satisfied separately by each Fourier component.
Thus

∂fm
∂t

+ im ·Ωfm = im · ∂f0(J)

∂J
Φm. (5.81)
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We multiply this result by exp(iωt) and integrate from t = 0 to infinity. The
first term can be integrated by parts, yielding

[
fmeiωt

]∞
0

+i(m ·Ω−ω)

∫ ∞

0

dt fmeiωt = im · ∂f0(J)

∂J

∫ ∞

0

dtΦmeiωt. (5.82)

We assume that the system was initially in its equilibrium state, so fm =
Φm = 0 for t ≤ 0. We also assume that Im(ω) > c, where c is a positive
constant chosen large enough to ensure that fmeiωt → 0 as t→ ∞. Then the
first term in equation (5.82) vanishes. The integrals in the other terms are

simply the temporal Fourier transforms f̃m(J, ω) and Φ̃m(J, ω) (cf. eq. 5.6).
Thus

f̃m(J, ω) = m · ∂f0(J)

∂J

Φ̃m(J, ω)

m ·Ω − ω
, Im(ω) > c. (5.83)

Multiplying equation (5.83) by exp(im · θ) and summing over m gives

the linearized df f̃1(θ,J, ω). However, what we need for the polarization
function is the density response ρ̃1(x, ω). The direct conversion from one to
the other is straightforward—just integrate over velocity—but cumbersome,
since we must first convert back from angle-action variables to Cartesian
coordinates. In the next section, we obtain formulae that are both simpler
and more useful, by recasting the problem in a matrix form.

5.3.2 The Kalnajs matrix method

In §2.8 we introduced the concept of a bi-orthonormal potential-density basis:
two complete sets of basis functions Φα(x) and ρα(x) such that

∇2Φα = 4πGρα,

−
∫

d3x Φ∗
α(x)ρβ(x) = δαβ ,

(5.84)

where α and β are labels for the members of the basis, and δαβ is 1 if α = β
and zero otherwise. We expand the densities in equation (5.7) using the
bi-orthonormal basis:

ρ̃s1(x, ω) =
∑

β

d̃β(ω)ρβ(x) ; ρ̃1(x, ω) =
∑

β

g̃β(ω)ρβ(x). (5.85)

Because ρβ(x) and Φβ(x) satisfy Poisson’s equation (5.84), the potentials
corresponding to ρ̃s1 and ρ̃1 are described by the same coefficients; thus

Φ̃s1(x, ω) =
∑

β

d̃β(ω)Φβ(x) ; Φ̃1(x, ω) =
∑

β

g̃β(ω)Φβ(x). (5.86)
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We substitute the expansions (5.85) into equation (5.7), multiply by Φ∗
α(x),

integrate with respect to d3x, and use the orthogonality relation (5.84) to
obtain

d̃α(ω) =
∑

β

P̃αβ(ω)g̃β(ω), (5.87a)

where

P̃αβ(ω) = −
∫

d3x d3x′ Φ∗
α(x)P̃ (x,x′, ω)ρβ(x′). (5.87b)

In more compact notation, we may write equation (5.87a) as

d̃(ω) = P̃(ω)g̃(ω), (5.88)

where d̃, g̃ are vectors and P̃ is a matrix. Thus we have replaced the integral
equation (5.7) with a matrix equation, and the polarization function with a
polarization matrix. In principle, the matrix has infinite dimension, since
there are infinitely many basis functions. However, if the bi-orthonormal
basis is chosen sensibly we can obtain an accurate representation of the
response with a manageable subset of the basis (Kalnajs 1971, 1977).

Let f̃β(x,v, ω) exp(iωt) be the perturbation to the df induced by the
potential from a total perturbing density ρβ(x) exp(iωt). Then

∫
d3v f̃β(x,v, ω) =

∫
d3x′ P̃ (x,x′, ω)ρβ(x′), (5.89)

so the polarization matrix (5.87b) can be written

P̃αβ(ω) = −
∫

d3x d3v Φ∗
α(x)f̃β(x,v, ω). (5.90)

Now the transformation from Cartesian phase-space coordinates (x,v) to
angle-action variables (θ,J) is canonical, so d3x d3v = d3θ d3J (eq. D.81).
We can therefore convert the integration variables in equation (5.90) to angle-
action variables,

P̃αβ(ω) = −
∫

d3θ d3J Φ∗
α[x(θ,J)]f̃β(θ,J, ω). (5.91)

We next expand the potential basis functions in a Fourier series (cf. eq. 5.79)

Φα[x(θ,J)] =
∑

m

Φα,m(J)eim·θ, (5.92)

and employ equation (5.83) to evaluate f̃β:

P̃αβ(ω) = −
∑

m,m′

∫
d3θ d3Jm · ∂f0(J)

∂J

Φ̃∗
α,m′(J)Φ̃β,m(J)

m · Ω− ω
ei(m−m′)·θ. (5.93)
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The integration over d3θ vanishes unless the integer triples m and m′ are
equal, so the expression simplifies to

P̃αβ(ω) = −(2π)3
∑

m

∫
d3Jm · ∂f0(J)

∂J

Φ̃∗
α,m(J)Φ̃β,m(J)

m · Ω− ω
. (5.94)

An equally valid form is obtained by applying the divergence theorem (B.45):8

P̃αβ(ω) = (2π)3
∑

m

∫
d3J f0(J) m · ∂

∂J

[
Φ̃∗
α,m(J)Φ̃β,m(J)

m · Ω− ω

]
. (5.95)

All these expressions should be restricted to Im(ω) > c.
A mode requires that ρs1 = ρ1, so by (5.85) d = g, and by (5.88)

P̃(ω)d̃ = d̃, Im(ω) > c; (5.96)

in words, a mode with frequency ωp exists if d̃ is an eigenvector of P̃(ωp)
with eigenvalue 1. This matrix equation is the direct analog of the dispersion
relation (5.45) that we derived for homogeneous stellar systems.

5.3.3 The response matrix

The response matrix is defined by analogy to the polarization matrix (5.87b),

R̃αβ(ω) = −
∫

d3x d3x′ Φ∗
α(x)R̃(x,x′, ω)ρβ(x′). (5.97)

If we expand the external density in the bi-orthonormal basis (cf. eq. 5.85)

ρ̃e(x, ω) =
∑

β

h̃β(ω)ρβ(x), (5.98)

then as in equation (5.88),

d̃(ω) = R̃(ω)h̃(ω). (5.99)

The response matrix can be determined from the polarization matrix
by generalizing the arguments of §§5.2.2 and 5.2.4 from scalar functions of
ω to matrices (Kalnajs 1971). The total perturbing density is the sum of
the external density and the perturbed density of the stellar system; thus
ρ1 = ρs1 +ρe and g = d+h. Using equations (5.88) and (5.99) we then have

d̃ = P̃(ω)g̃ = P̃(ω)h̃ + P̃(ω)d̃ = P̃(ω)h̃ + P̃(ω)R̃(ω)h̃. (5.100)

8 The surface term vanishes; see Problem 5.11.
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Since this relation holds for arbitrary h̃, comparison with equation (5.99)
implies that

R̃(ω) = P̃(ω) + P̃(ω)R̃(ω) or [I − P̃(ω)]R̃(ω) = P̃(ω), (5.101)

where I is the identity matrix.
Equation (5.94) shows that the matrix elements of P(ω) shrink to zero

as Im(ω) → ∞. Thus there exists some positive constant c such that the

series I+ P̃+ P̃2 + · · · converges for Im(ω) > c; in this case the series is equal

to [I − P̃(ω)]−1, and we can invert equation (5.101) to obtain a relation
between the polarization and response matrices,

R̃(ω) = [I − P̃(ω)]−1P̃(ω), Im(ω) > c. (5.102)

This matrix equation is the analog of the scalar equation (5.30) for homoge-
neous systems.

From equations (5.99) and (5.102) the basis-function expansion of the
response density is

d̃(ω) = [I − P̃(ω)]−1P̃(ω)h̃(ω), Im(ω) > c. (5.103)

Taking the inverse Fourier transform (5.6) yields

d(t) =
1

2π

∫ ic+∞

ic−∞
dω d̃(ω)e−iωt =

1

2π

∫ ic+∞

ic−∞
dω [I − P̃(ω)]−1P̃(ω)h̃(ω)e−iωt,

(5.104)
which gives the response density d as a function of the external density h.

As in §5.2.4, we evaluate the integral by closing the contour in the lower
half-plane. Then by the residue theorem (cf. eq. 5.58)

d(τ) = −i
∑

p

dpe−iωpτ , (5.105)

where dp is the residue of the integrand at the pole ω = ωp. These contribu-

tions can arise from poles in either P̃(ω) or [I − P̃(ω)]−1. The matrix P̃(ω)

is non-singular for Im(ω) > 0 (see eq. 5.94). The poles of [I − P̃(ω)]−1 are
determined by the equation

P̃(ω)d̃ = d̃, (5.106)

where P̃(ω) is now the analytic continuation of the polarization matrix. For

Im(ω) > 0, equation (5.95) defines P̃(ω) and values of ω that satisfy (5.106)

correspond to unstable modes. Analytic continuation of P̃(ω) to Im(ω) ≤ 0
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may give rise to solutions of (5.106) that are not associated with modes, but
rather Landau-damped disturbances.

These matrix equations can be simplified when the stellar system has
certain symmetries. For example, when the equilibrium system is spherical
the density of a mode can always be assumed to have the form ρ1(x, t) =
d(r)Ym

l (ϑ, φ) exp(−iωt), where Ym
l (ϑ, φ) is a spherical harmonic (Appendix

C.6) and d(r) and ω are independent of m (see Box 5.2). Thus it is suffi-
cient to restrict the basis-function expansion to axisymmetric (m = 0) basis
functions, and to a single value of the angular quantum number l at a time,
repeating the calculation for l = 0, 1, 2, . . . as required.

The Kalnajs matrix method has been used to determine the stability of a
variety of stellar systems, including spherical systems, plane-parallel systems,
and differentially rotating disks (see §5.5, page 432, and §6.3.1 respectively).

5.4 The energy principle and secular stability

Energy considerations often provide a powerful technique for determining
the stability of dynamical systems. For example, a ball resting at the bot-
tom of a hemispherical bowl must be stable, because all nearby positions of
the ball have higher energy. In this case it is not necessary to solve the lin-
earized equations of motion to determine that the configuration is stable. A
similar criterion can be established for continuous systems: they are certain
to be stable if all neighboring configurations with the same total mass have
higher energy. A system that satisfies this criterion is said to enjoy secular
stability (Lyttleton 1953; Hunter 1977). Secular stability is sufficient but
not necessary for dynamical stability, because the lower energy states may
not be dynamically accessible. An example of a system that is dynamically
stable but secularly unstable is a ball that rolls around a bowl at constant
height, maintaining a balance between centrifugal and gravitational forces.
The ball’s trajectory is dynamically stable (in the absence of friction) despite
the existence of states of lower energy, because the ball cannot reach these
states while conserving its angular momentum (see Problem 5.12).

To find energy-based stability criteria we must first find the energy
change resulting from a small perturbation to the system. Once again, we
shall examine self-gravitating fluid systems in parallel with stellar systems.

5.4.1 The energy principle for fluid systems

The rate at which work is done against an external force F = −εm∇Φe in
moving a particle of mass m is (cf. eq. D.4)

−F · v = εmv · ∇Φe. (5.107)
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Box 5.2: Response of spherical systems

The polarization function of a spherical fluid or stellar system, P (x,x′, τ),
inherits certain symmetry properties from the spherical symmetry of the
equilibrium system. In particular, the polarization function can depend
on x and x′ only through their magnitudes r = |x|, r′ = |x′|, and the
angle γ between the two vectors, defined by cos γ = x · x′/(rr′). Thus it
can be expanded in a complete set of angular functions,

P (x,x′, τ) =

∞∑

k=0

Kk(r, r′, τ)Pk(cos γ), (1)

where Pk is a Legendre polynomial (Appendix C.5). Using the expansion
(C.47), this can be rewritten in spherical harmonics as

P (x,x′, τ) =
4π

2k + 1

∞∑

k=0

k∑

n=−k
Kk(r, r′, τ)Yn

k
∗(ϑ′, φ′)Yn

k (ϑ, φ), (2)

where x = (r, ϑ, φ), x′ = (r′, ϑ′, φ′) in spherical coordinates. (To mini-
mize confusion between spherical coordinates and angle variables, in this
chapter we reserve ϑ for the usual polar angle, and continue to use θi for
the variable conjugate to Ji.)

Now consider a density perturbation of the form

ρ1(x, t) = g(r)Ym
l (ϑ, φ) exp(−iωt). (3)

Substituting this result and equation (2) into the definition (5.3) of the
polarization function, and using the orthonormality of the spherical har-
monics (eq. C.44), we find that the response density is

ρs1(x, t) =
4π

2l+ 1
Ym
l (ϑ, φ)e−iωt

∫
dr′ r′

2
f(r′)

∫ ∞

0

dτ Kl(r, r
′, τ)eiωτ .

(4)
The condition for a mode is that ρ1 = ρs1. Since both are proportional
to Ym

l (ϑ, φ) we may always choose the modes of spherical fluid or stellar
systems to have this angular dependence. Moreover, when written in
this form the equation determining the modes is independent of the az-
imuthal wavenumber m; thus the frequency ω and the radial density
profile g(r) of the mode are also independent of m. In other words there
are 2m + 1 degenerate modes for each l. Because of this symmetry, in
practice we need to calculate the response of a spherical system only to
axisymmetric m = 0 disturbances.

This argument does not yield the behavior of the df in velocity
space; for this see Barnes, Goodman, & Hut (1986).
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The rate of doing work on the particle is the negative of this expression, so
the total rate of doing work on a fluid system is

dE

dt
= −ε

∫
d3x ρv · ∇Φe, (5.108)

where ρ is the fluid density. We shall assume that the integration volume is
large enough that the density is zero at its boundary, so matter and energy
cannot flow into or out of the volume.

The energy principle is most useful for static fluids, in which the unper-
turbed velocity v0 = 0, so we shall restrict ourselves to systems of this kind.
Since v0 = 0, the rate of doing work is zero to first order in the perturba-
tion parameter ε: thus, the energy change must be a quadratic, not linear,
function of the perturbation strength. To go to quadratic order, we write
v(x, t) = εv1(x, t), so

dE

dt
= −ε2

∫
d3x ρ0v1 · ∇Φe; (5.109)

note that we have replaced the density ρ(x, t) by its unperturbed value ρ0(x)
since we are dropping terms of order ε3.

The linearized Euler equation (5.24b) reads

∂v1

∂t
= −∇(h1 + Φs1 + Φe). (5.110)

We eliminate Φe from equations (5.109) and (5.110) to obtain

dE

dt
= ε2

∫
d3x ρ0v1 ·

[
∂v1

∂t
+ ∇(Φs1 + h1)

]
. (5.111)

The contribution of the first term in square brackets can be rewritten as

ε2
∫

d3x ρ0v1 ·
∂v1

∂t
= 1

2ε
2 d

dt

∫
d3x ρ0v

2
1. (5.112)

To evaluate the second and third terms, we apply the divergence theorem
(B.45)—the boundary terms vanish, since ρ0 = 0 at large distances—and use
the linearized continuity equation (5.24a):

ε2
∫

d3x ρ0v1 · ∇(Φs1 + h1) = −ε2
∫

d3x (Φs1 + h1)∇ · (ρ0v1)

= ε2
∫

d3x (Φs1 + h1)
∂ρs1

∂t
.

(5.113)
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Using the linearized equation of state (5.24d) we can rewrite the term in-
volving the enthalpy as

ε2
∫

d3xh1
∂ρs1

∂t
= ε2

∫
d3x

(
dp

dρ

)

ρ0

ρs1

ρ0

∂ρs1

∂t

= 1
2ε

2 d

dt

∫
d3x

ρ0

(
dp

dρ

)

ρ0

ρ2
s1.

(5.114)

The gravitational potential is related to the density by Poisson’s equation,

Φs1(x, t) = −G
∫

d3x′ ρs1(x′, t)

|x − x′| ; (5.115)

thus the term in equation (5.113) involving the potential can be written

ε2
∫

d3x
∂ρs1

∂t
Φs1 = −ε2G

∫
d3x d3x′ ∂ρs1(x, t)

∂t

ρs1(x′, t)

|x − x′|

= −ε2G
∫

d3x d3x′ ∂ρs1(x′, t)

∂t

ρs1(x, t)

|x − x′| ,
(5.116)

where in the last equation we have simply exchanged the integration variables
x and x′. Averaging the two right sides of the last equation gives

− 1
2ε

2G
d

dt

∫
d3x d3x′ ρs1(x, t)ρs1(x′, t)

|x − x′| . (5.117)

Combining equations (5.112), (5.114), and (5.117) we have

dE

dt
= 1

2ε
2 d

dt

(∫
d3x ρ0v

2
1 +

∫
d3x

ρ0

∣∣∣∣
dp

dρ

∣∣∣∣
ρ0

ρ2
s1 −G

∫
d3x d3x′ ρs1ρ

′
s1

|x − x′|

)
,

(5.118)
where we have replaced dp/dρ by |dp/dρ| since dp/dρ is equal to the square of
the sound speed (eq. 5.22), which must be positive for any realistic equation
of state. Hydrostatic equilibrium requires ∇p0 = −ρ0∇Φ0 (eq. 5.17), so
dp0 = −ρ0dΦ0 and |dp/dρ|ρ0 can be replaced by ρ0|dΦ/dρ|0.

Finally, assuming that the perturbations E, v1 and ρs1 all vanish as
t→ −∞, we can integrate with respect to time to obtain our final expression
for the energy,

E = 1
2ε

2

[ ∫
d3x ρ0(x)v2

1(x, t) +

∫
d3x

∣∣∣∣
dΦ

dρ

∣∣∣∣
0

ρ2
s1(x, t)

−G

∫
d3x d3x′ ρs1(x, t)ρs1(x′, t)

|x − x′|

]
.

(5.119)
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Notice that we have successfully derived an expression for the energy that
is correct to order ε2 using the linearized equations (5.24), which are correct
only to order ε. Calculating the second-order perturbations in the density,
velocity, etc., proved to be unnecessary for this task.

Now in any unstable mode, all of the perturbed quantities such as ρs1

and v1 grow as exp(γt), γ > 0. Therefore all of the terms on the right side
of equation (5.119) grow as exp(2γt). However, the energy E is constant and
cannot grow; hence the energy of any unstable mode must be zero. Since the
first term on the right side is positive, the sum of the second and third terms
must be negative. Thus a sufficient condition for stability is that the sum
of these two terms is non-negative for all functions ρs1(x). This condition
can be sharpened by restricting the range of possible functions for ρs1(x)
to those for which

∫
d3x ρs1(x) = 0, since mass must be conserved in any

physical perturbation. Thus we arrive at

Chandrasekhar’s variational principle: A barotropic fluid in static equi-
librium with dp(ρ)/dρ > 0 is stable if the quantity

W [ρ1] ≡
∫

d3x

∣∣∣∣
dΦ

dρ

∣∣∣∣
0

ρ2
1(x) −G

∫
d3x d3x′ ρ1(x)ρ1(x′)

|x − x′| (5.120)

is non-negative for all real functions ρ1(x) that conserve the total mass,∫
d3x ρ1(x) = 0.

The constraint that the trial functions ρ1(x) must conserve the mass
can be incorporated automatically by writing ρ1 = −∇ · (ρ0ξ) (eq. F.5) and
examining arbitrary displacement vector fields ξ(x). The expression (5.120)
is zero for ξ = constant , as it must be, since this corresponds to a uniform
displacement of the entire system (Problem 5.14).

This variational principle was first stated by Chandrasekhar (1963,
1964). The condition W [ρ1] ≥ 0 is necessary as well as sufficient for sta-
bility (Laval, Mercier, & Pellat 1965; Kulsrud & Mark 1970).

5.4.2 The energy principle for stellar systems

In stellar systems, the energy principle is most useful if the equilibrium df

is ergodic, that is, if it can be written in the form f0(H0), where H0(x,v) ≡
1
2v

2 + Φ0(x) is the Hamiltonian for motion in the unperturbed potential Φ0

(§4.2.1a). We restrict ourselves to systems of this kind; in practice these
normally have spherical or plane-parallel symmetry (Box 4.1). We shall also
assume that f ′

0(H0) = df0/dH0 < 0 everywhere, a condition that is satisfied
by most realistic models of stellar systems.

By analogy with equation (5.108), the rate at which an external potential
εΦe does work on a stellar system is

dE

dt
= −ε

∫
d3x d3v f(x,v, t)v · ∇Φe ; (5.121)
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where, as usual in this chapter, the df f(x,v, t) is defined to be the phase-
space mass density.

Since ε� 1 we can expand the df in powers of ε, f(x,v, t) = f0(H0) +
εf1(x,v, t)+ · · ·. The contribution of f0 to dE/dt is zero, since H0 is an even
function of v while v · ∇Φe is odd. Thus the dominant energy change is

dE

dt
= −ε2

∫
d3x d3v f1(x,v, t)v · ∇Φe ; (5.122)

once again the energy change depends quadratically on the perturbation
strength.

To evaluate this formula we use the linearized collisionless Boltzmann
equation (5.13),

0 =
∂f1

∂t
+ [f1, H0] + [f0,Φs1 + Φe]

=
∂f1

∂t
+ [f1, H0] − f ′

0(H0)v · ∇(Φs1 + Φe).

(5.123)

We may now eliminate Φe from equation (5.122):

dE

dt
= −ε2

∫
d3x d3v

f ′
0(H0)

f1

(
∂f1

∂t
+ [f1, H0]

)
+ ε2

∫
d3x d3vf1 v · ∇Φs1.

(5.124)
The middle term can be written

∫
d3x d3v

f ′
0(H0)

f1[f1, H0] = 1
2

∫
d3x d3v

f ′
0(H0)

[f2
1 , H0]. (5.125)

Furthermore,
1

f ′
0(H0)

[f2
1 , H0] = [f2

1 , h(H0)] (5.126)

where h(H0) ≡
∫H0 dx/f ′

0(x) (eq. 5.210c). Now since f1 vanishes at infinity,
we know that

∫
d3xd3v [f2

1 , h(H0)] = 0 (eq. 5.210a). Thus equation (5.125)
is zero, and equation (5.124) simplifies to

dE

dt
= − 1

2ε
2

∫
d3x d3v

f ′
0(H0)

∂f2
1

∂t
− ε2

∫
d3x Φs1∇ ·

∫
d3v f1v, (5.127)

where the divergence theorem (B.45) has been used on the second term (the
boundary terms vanish since the df vanishes at large distances).

We next integrate the linearized collisionless Boltzmann equation (5.123)
over velocity, to obtain an equation analogous to the Jeans continuity equa-
tion (4.204),

∂ρs1

∂t
+ ∇ ·

∫
d3vf1v = 0, (5.128)
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where ρs1 =
∫

d3v f1. Therefore equation (5.127) can be rewritten as

dE

dt
= − 1

2ε
2 d

dt

∫
d3x d3v

f ′
0(H0)

f2
1 + ε2

∫
d3x

∂ρs1

∂t
Φs1. (5.129)

Since f ′(H0) < 0 by assumption, we may replace it with −|f ′(H0)|. Following
the logic that took us from equation (5.116) to (5.117), and integrating with
respect to time, we finally obtain

E = 1
2ε

2

[∫
d3x d3v

|f ′
0(H0)|f

2
1 (x,v, t) −G

∫
d3x d3x′ ρs1(x, t)ρs1(x′, t)

|x− x′|

]
. (5.130)

As for a fluid system, the energy of any unstable mode must be zero.
Thus a sufficient condition for stability is that E is always positive (or always
negative; but this cannot occur since E is positive for any f1 that is an odd
function of v—the first term in 5.130 is positive and the second is zero).
Thus we have the

Variational principle for stellar systems: A stellar system having an
ergodic df f0(H0) with f ′

0(H0) < 0 is stable if the quantity

W [f1] ≡
∫

d3x d3v

|f ′
0(H0)|f

2
1 (x,v) −G

∫
d3x d3v d3x′d3v′

|x − x′| f1(x,v)f1(x′,v′)

(5.131)
is non-negative for all functions f1(x,v) that conserve the total mass, that
is,
∫

d3x d3v f1(x,v) = 0. As in the case of fluid systems, the trivial per-
turbation f1 = −ξ ·∇f0 corresponds to a uniform displacement of the entire
system and yields W [f1] = 0.

We can sharpen this result, because not all trial functions f1 are phys-
ically plausible. In particular, f1 must arise from the displacement of stars
from their original phase-space positions and by analogy with equation (F.5)
we may write

εf1 = − ∂

∂x
· (f0∆x) − ∂

∂v
· (f0∆v). (5.132)

Furthermore the displacements (∆x,∆v) must be due to the motion of the
stars under the influence of some Hamiltonian. The time-evolution operator
that describes Hamiltonian motion is canonical (see discussion on page 803),
so the transformation from the original phase-space position (x,v) to the
new position (x′,v′) ≡ (x + ∆x,v + ∆v) is a canonical transformation.
The generating function for this transformation can be written S(x,v′) =
x · v′ + εg(x,v′). Using equations (D.93) we have

x′ = x + ε
∂g

∂v′ ; v = v′ + ε
∂g

∂x
, (5.133)
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or

∆x = ε
∂g(x,v)

∂v
; ∆v = −ε∂g(x,v)

∂x
, (5.134)

where we have replaced v′ by v on the right side of these equations since the
difference between the two velocities is small.

Equation (5.132) now becomes

f1 = − ∂

∂x
f0
∂g

∂v
+

∂

∂v
f0
∂g

∂x
= [g, f0]. (5.135)

Moreover, all functions of this form conserve total mass,
∫

d3x d3v f1 = 0
(by eq. 5.210a). The condition (5.135) severely restricts the allowable trial
functions f1, and with this restriction Antonov (1960) was able to show
that the variational principle (5.131) provided both necessary and sufficient
conditions for stability. Thus we have

Antonov’s variational principle: A stellar system having an ergodic df

f0(H0) with f ′
0(H0) < 0 is stable if and only if the quantity

WA[g] ≡
∫

d3x d3v

|f ′
0(H0)| [g, f0]2 −G

∫
d3x d3v d3x′d3v′

|x − x′| [g, f0]x,v[g, f0]x′,v′

(5.136)
is non-negative for all functions g(x,v).

We have already argued that WA[g] ≥ 0 is sufficient for stability.
Antonov’s original proof of this result takes a different but instructive route,
which is traced in Problem 5.15. The proof that WA[g] ≥ 0 is necessary for
stability is more delicate. Antonov’s proof assumed that the stellar system
has a complete set of modes, i.e., that every perturbation can be written as
a sum of modes, but this assumption is difficult to justify for a stellar system
(see, for example, Box 5.1). An alternative and more satisfactory proof is
given by Kulsrud & Mark (1970); for a general discussion of energy-based
criteria for stability of stellar systems see Bartholomew (1971) and references
therein.

A simple corollary of Antonov’s variational principle, proved in Prob-
lem 5.15, is that the modes of a stellar system having an ergodic df f0(H0)
with f ′

0(H0) < 0 have frequency ω such that ω2 is real. In other words the
modes either have real frequencies, corresponding to undamped oscillations,
or imaginary frequencies, corresponding to growing modes. There are no
growing oscillations (overstabilities).

Finally, we state without proof

Goodman’s variational principle: An equilibrium stellar system in which
the df is invariant under velocity reversal, f(x,v) = f(x,−v), and the
potential Φ0(x) is integrable is unstable if the quantity

−
∫

d3x d3x′Φ∗(x)P̃ (x,x′, is)ρ(x′)

−
∫

d3x Φ∗(x)ρ(x)
> 1 (5.137)
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for any s > 0. The restrictions on the trial functions ρ(x), Φ(x) are that∫
d3x ρ(x) = 0, and Φ(x) is the gravitational potential corresponding to an

isolated mass distribution with density ρ(x).

The proof is given by Goodman (1988). Goodman’s variational principle
is mainly important for the conceptual insight it provides rather than as a
practical tool for determining stability—it requires the polarization function,
and once this is known it is not too hard to calculate the modes of the sys-
tem directly rather than through a variational principle. Loosely speaking,
Goodman’s principle formalizes the intuitive feeling that a system is unstable
if the response ρs1 is greater than the stimulus ρ1.

5.4.3 The relation between the stability of fluid and stellar

systems

The analogy between Antonov’s variational principle (5.136) for stellar sys-
tems and Chandrasekhar’s variational principle (5.120) for fluids can be made
precise by

Antonov’s first law: A stellar system having an ergodic df f0(H0) with
f ′

0(H0) < 0 is stable if the barotropic star with the same equilibrium density
distribution is stable.

To prove this, consider the function

ρ1(x) =

∫
d3v [g, f0]. (5.138)

We now use Schwarz’s inequality (B.75), with A = |f ′
0(H0)|1/2 and B =

[g, f0]/|f ′
0(H0)|1/2, which yields

∫
d3v

[g, f0]2

|f ′
0(H0)| ≥

(∫
d3v [g, f0]

)2
∫

d3v |f ′
0(H0)| =

ρ2
1∫

d3v |f ′
0(H0)| . (5.139)

The denominator on the right side of (5.139) can be related to the unper-
turbed density ρ0(Φ0) =

∫
d3v f0( 1

2v
2 + Φ0) by differentiating both sides of

the latter expression with respect to Φ0:
(

dρ

dΦ

)

0

=

∫
d3v f ′

0(H0) = −
∫

d3v |f ′
0(H0)| . (5.140)

Combining equations (5.136)–(5.140), we obtain

WA[g] ≥
∫

d3x

∣∣∣∣
dΦ

dρ

∣∣∣∣
0

ρ2
1 −G

∫
d3x d3x′

|x − x′| ρ1(x)ρ1(x′). (5.141)

If the barotropic fluid with density ρ0(r) is stable, then the right side is non-
negative by Chandrasekhar’s variational principle. Hence WA[g] ≥ 0 and the
stellar system is stable by Antonov’s variational principle.
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5.5 The response of spherical systems

The tools developed in §5.3 can be used to investigate the linear response and
stability of a wide variety of stellar systems, so long as the Hamiltonian that
describes motion in the equilibrium potential is integrable. The simplest of
these are plane-parallel and spherical stellar systems. Plane-parallel systems
are mostly used to model the properties of galactic disks in the direction
normal to the galactic plane; an example is the isothermal sheet described
in Problem 4.21. For stability analyses of plane-parallel systems see Kulsrud
& Mark (1970), Mark (1971), Antonov (1971), Kalnajs (1973a), Fridman &
Polyachenko (1984), Araki (1985), Mathur (1990), and Weinberg (1991b).
For the sake of brevity, in this section we focus exclusively on spherical
systems.

As shown in Box 5.2, the modes of spherical fluid or stellar systems
can always be chosen to have density distributions with angular dependence
proportional to a spherical harmonic Ym

l (ϑ, φ), and the frequency of the
mode associated with (l,m) is independent of m. Modes with l = m = 0 are
spherically symmetry and hence are called radial modes, while modes with
l ≥ 1 are called non-radial.

5.5.1 The stability of spherical systems with ergodic DFs

We begin by examining the stability of spherical systems in which the equi-

librium df is ergodic, f0 = f0(H0) = f0[ 1
2v

2 + Φ0(r)]. Once again we shall
exploit the analogy with barotropic fluids.

Chandrasekhar’s variational principle (eq. 5.120) can be used to derive a
remarkably general result that was proved independently by Antonov (1962b)
in the context of stellar systems and by Lebovitz (1965) for stars. This is
the

Antonov–Lebovitz theorem: All non-radial modes of a barotropic star
with dp(ρ)/dρ > 0 are stable.

The proof is given in Appendix H.
This theorem shows that only radial modes are dangerous for the sta-

bility of a spherical star.
Now any spherical stellar system with an ergodic df that satisfies

f ′
0(H0) < 0 must have dρ0/dr < 0—this follows from equation (5.140) and

the observation that dΦ0/dr > 0 since the gravitational force in a spherical
system is always radially inward. Thus an immediate consequence of the
Antonov–Lebovitz theorem and Antonov’s first law is

Antonov’s second law: All non-radial modes of a stellar system having
an ergodic equilibrium df f0(H0) with f ′

0(H0) < 0 are stable.

Unfortunately, Antonov’s first law is not very helpful when we consider
the stability of stellar systems to radial modes. The barotropic analogs of
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realistic stellar systems are usually unstable to radial modes, so the theorem,
which provides only sufficient but not necessary conditions for stability, does
not constrain the stability of the analogous stellar systems. A much more
powerful tool is provided by the

Doremus–Feix–Baumann theorem: All radial modes of a stellar system
with an ergodic equilibrium df f0(H0) and f ′

0(H0) < 0 are stable.

The proof is given in Appendix I.9

The Doremus–Feix–Baumann theorem, combined with Antonov’s sec-
ond law, shows that almost all realistic spherical stellar systems with an
ergodic df are stable. Thus, for example, all of the polytropic stellar sys-
tems (§4.3.3a) with n > 3

2 are stable.10 In particular, the Plummer model
(n = 5) is stable; this is important because the density distribution in the
Plummer model is similar to the density distribution in many real stellar
systems. The isothermal sphere (§4.3.3b) is also stable.

The ergodic df for the isochrone model (eq. 2.47) is given by equa-
tion (4.54); as shown in Figure 4.2 this model has f ′

0(H0) < 0 and hence is
stable, as are the Jaffe and Hernquist models shown in the same figure. The
Jaffe and Hernquist models are special cases of the Dehnen models (eq. 2.64
with β = 4); it is straightforward to show that all Dehnen models with er-
godic dfs have f ′

0(H0) < 0 and hence are stable (Tremaine et al. 1994).
Finally, the dfs of King models (eq. 4.110) decrease with increasing energy,
so all King models are stable.

5.5.2 The stability of anisotropic spherical systems

In most spherical stellar systems the df depends both on energy and angular
momentum, f0 = f0(H0, L). In such systems, the variational principles that
we have proved cannot be used to establish stability to non-radial modes.
However, a modified version of these principles can still be applied to radial
modes. To show this, we note that in this case ∇Φ1 = êrdΦ1/dr, so

−∇Φ1 ·
∂f0

∂v
= −∂Φ1

∂r

∂f0

∂vr
= −∂Φ1

∂r
vr
∂f0

∂H0
. (5.142)

When we substitute this expression into the left side of the linearized col-
lisionless Boltzmann equation (5.13), no partial derivatives of the form
∂f0/∂L appear. Hence all of the steps leading to the variational princi-
ples (5.131) and (5.136) can be carried out by simply replacing df0/dH0 by
∂f0/∂H0 wherever it appears, and the Doremus–Feix–Baumann theorem can
be extended to:

9 Our discussion here is restricted to linear stability. Nonlinear stability is discussed
by Holm et al. (1985) and Rein (2007) among others.

10 Polytropes with 1
2
< n < 3

2
are somewhat unrealistic because they have an integrable

singularity in f0 at the boundary E = 0. However, numerical experiments (Hénon 1973a;
Barnes, Goodman, & Hut 1986) indicate that these systems are also stable. Thus f ′

0(H0) <
0 is sufficient but not necessary for stability.
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Figure 5.4 Instability in a spherical stellar system with the Hernquist density distribution
(eq. 2.64). The df has the Osipkov–Merritt form (§4.3.2c) with anisotropy radius ra =
0.3a. The radial-orbit instability converts the initial spherical system on the left to the
triaxial one on the right in a few crossing times. From Meza & Zamorano (1997).

All radial modes of a spherical stellar system with ∂f0/∂H0 < 0 are stable.

For example, all Michie models (eq. 4.117) are stable to radial modes, as are
the constant-anisotropy Hernquist models with β = ± 1

2 (eqs. 4.69 and 4.72).

The stability of anisotropic spherical systems to non-radial modes is
more complicated. In contrast to ergodic systems, which are generally stable
to non-radial perturbations because of Antonov’s second law, anisotropic
systems with predominantly radial orbits are susceptible to the radial-orbit
instability. As an example, Figure 5.4 shows the evolution of an initially
spherical Hernquist model with anisotropy radius ra/a = 0.3. There is a
strong instability, which leads to a triaxial or bar-like final state, and persists
in models with ra/a ' 1.

Physical basis of the radial-orbit instability In a smooth, spherical
galactic potential, stars can oscillate back and forth through the center on
radial orbits. A time exposure of a star on such an orbit would show a
bright, straight wire or rod, symmetric about the origin and reaching out
to the star’s apocenter. The image would be faintest at the center of the
galaxy, since the star travels fastest there, and brightest at apocenter, since
the stellar velocity is temporarily zero at this point. Because of this geometry,
rather than thinking of the orbit as having a single apocenter that rotates
by π in one radial period, it is convenient to regard the orbit as having two
apocenters on opposite sides of the galaxy, each of them stationary. The
orientation can be specified by the azimuthal angle ψa of either apocenter.

Next consider a star of energy E on a nearly radial orbit, with small but
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non-zero angular momentum L. Each apocenter precesses slowly, at a rate

dψa

dt
=

∆ψ − π

Tr
= Ωφ − 1

2Ωr, (5.143)

where ∆ψ is the angle between successive apocenters, defined by equation
(3.18b), Tr is the radial period (eq. 3.39b), and Ωr = 2π/Tr and Ωφ are
the radial and azimuthal frequencies. A sequence of images of the trajectory,
with exposure time long compared to Tr but short compared to the precession
time (ψ̇a)−1, would show a nearly straight wire that rotated slowly around

its center at the rate ψ̇a. For nearly radial orbits in non-singular potentials11

∆ψ = π + p(E)L+ higher-order terms in L. (5.144)

Thus the rate of precession of nearly radial orbits is

dψa

dt
=

p(E)

Tr(E)
L+ O(L2), (5.145)

where Tr(E) is the radial period at zero angular momentum.
For example, in the isochrone potential (2.47), the angle between suc-

cessive apocenters for an orbit with angular momentum L is12

∆ψ = π +
πL√

L2 + 4GMb
, (5.146)

so p(E) = 1
2π(GMb)−1/2.

Now imagine that the star is subjected to a weak non-radial gravitational
field. Its angular momentum will change at an average rate L̇ = N , where
N is the torque per unit mass exerted by this field, averaged over one radial
period. Changes in the angular momentum affect the precession rate through
equation (5.145); we have

d2ψa

dt2
' d

dt

p(E)

Tr(E)
L ' p(E)

Tr(E)
N. (5.147)

We have neglected the effect of the torque on the energy; this has a much
smaller influence on the precession rate because ψ̇a is proportional to L and
L is small.

11 This property does not hold for singular potentials; for example, in the Kepler po-
tential the angle between successive apocenters is 2π, independent of L. The behavior of
∆ψ in singular power-law potentials is discussed in Problem 3.19.

12 This result follows from equation (3.40), after replacing π sgn(L) by π since π and
−π are equivalent azimuths.
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For comparison, the orientation of a rigid body subjected to the same
torque would change at a rate given by

d2ψ

dt2
=
N

I
, (5.148)

where I is the moment of inertia per unit mass (eq. D.43). Thus we deduce
that a near-radial orbit has an effective moment of inertia I = Tr(E)/p(E);

for example, in the isochrone potential I(E) = 2π−1Tr(E)
√
GMb. In con-

trast to rigid bodies, the effective moment of inertia of nearly radial orbits
can be negative, although it is positive for most galactic potentials (i.e.,
nearly radial orbits precess in the same direction that they revolve).13

The mass distribution in a spherical galaxy composed of stars on nearly
radial orbits can be regarded as a collection of wires, resembling a hedgehog
or porcupine. The wires have various lengths and orientations, and precess
at different rates, but on average the mass distribution is spherical so there
are no significant non-radial gravitational forces. Now suppose that for some
reason the wires in a small solid angle are squeezed together, forming a clump
with slightly higher density than the rest of the sphere. The enhanced grav-
itational force from the clump tends to attract more wires, whose additional
mass promotes the growth of this clump. This tendency is counterbalanced
by the precession of the wires in random directions, which tends to disperse
the clump before it has time to grow. This competition between self-gravity
and dispersion is the same one that appears in the Jeans instability.

We argued after equation (5.25) that the Jeans instability set in when the
sum of the gravitational potential energy and the kinetic energy in a volume
of homogeneous fluid became negative. Similarly, an approximate criterion
for the radial-orbit instability in a spherical stellar system can be derived
by comparing the potential and kinetic energies associated with precessional
motion in a cone of opening angle ϑ. For simplicity we shall assume that the
effective moment of inertia I > 0. The mass of the cone is M ≈ ρr3ϑ2 where
ρ and r are the mean density and radius of the system, and the gravitational
potential energy associated with the cone is W ≈ −GM 2/r ≈ −Gρ2r5ϑ4.
The kinetic energy per unit mass associated with precession of the orbits in
the cone is 1

2L
2/I (cf. eq. D.43), so the total kinetic energy is K ≈ML2/I ≈

ρr3ϑ2L2/I . Instability sets in when K +W ∼< 0, or when ϑ2 ∼> L2/(Gρr2I).
An important difference between the Jeans instability and the radial-

orbit instability is that infinite homogeneous systems are always unstable if
the scale λ is sufficiently large. In contrast, the angle ϑ cannot exceed a value
of order unity, so we expect that the system is stable if the typical angular
momentum L2 ∼> Gρr2I , that is, tangential velocity dispersion suppresses
the instability.

13 It is precisely because I > 0 for the logarithmic potential ΦL(x, y) (eq. 3.103) that
long-axis orbits are stable while short-axis orbits are unstable.
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The existence of the radial-orbit instability was pointed out by Antonov
(1973), who argued that any spherical system composed entirely of stars on
radial orbits was unstable, and similar arguments were made by Lynden–
Bell (1979) in the context of bar formation in disk galaxies. Polyachenko
(1981) demonstrated the presence of the instability in N-body simulations.
However, its importance was widely recognized only after it was rediscov-
ered by Barnes (1985). Merritt & Aguilar (1985) and Meza & Zamorano
(1997) have investigated the onset of the radial-orbit instability in simula-
tions of Osipkov–Merritt models (§4.3.2b) with the Dehnen density distri-
bution (2.64); they find that these models are unstable if the anisotropy
radius ra is less than about 40% of the half-mass radius rh. The stability
boundary can be determined more precisely by evaluating the complex fre-
quencies of the modes of anisotropic spherical systems, using the Kalnajs
matrix method (Polyachenko & Shukhman 1981; Palmer & Papaloizou 1987;
Saha 1991; Weinberg 1991a; Saha 1992; see Merritt 1999 for a review).

The radial-orbit instability is sensitive to the details of the df near
L = 0 and the potential near the center: any spherical system in which the
df is unbounded as L → 0 is unstable if the potential is smooth (Palmer
& Papaloizou 1987); conversely, a small central point mass can suppress the
instability in otherwise unstable systems (Palmer & Papaloizou 1988).

The radial-orbit instability is important because the dark halos of galax-
ies are believed to form hierarchically from the dissipationless collapse and
merging of smaller sub-units (§9.2), and this process tends to produce sys-
tems with radially biased orbits. Thus it is likely that the radial-orbit insta-
bility operates during the collapse process. As this argument would suggest,
N-body simulations of dark-halo formation in a cosmological context usually
yield triaxial final states (Dubinski & Carlberg 1991; Bullock 2002; Bailin &
Steinmetz 2005).

5.5.3 Landau damping and resonances in spherical systems

Stability theory addresses only one aspect of how a stellar system responds
to external forces. A natural next question is whether a stable stellar sys-
tem can sustain undamped oscillations, that is, can it ring like a bell? The
answer is not obvious, since two simple systems we have relied on for guid-
ance give quite different answers: the response of the infinite homogeneous
stellar system that we analyzed in §5.2.4 is strongly damped at all wavenum-
bers greater than the Jeans wavenumber kJ, while barotropic self-gravitating
systems (e.g., stars) exhibit a rich spectrum of undamped oscillations.

To examine this question, let us focus initially on radial oscillations of a
spherical stellar system. The stars in such a system have radial frequencies
Ωr that lie in the range Ωr,min to Ωr,max. The minimum radial frequency is
non-zero so long as the system has finite extent, and the maximum radial
frequency will be finite so long as the system has a smooth core.
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Assume that the perturbed gravitational potential oscillates radially at
some real frequency ω. The orbital radius of a star with actions J oscil-
lates with frequency Ωr(J) and its harmonics kΩr(J), where k is an integer.
Consequently the oscillation of the stellar system resonates with stars that
satisfy the condition

kΩr(J) = ω. (5.149)

Resonant stars damp the oscillations of their host stellar system, because
energy is transferred from the oscillation to the resonant stars, just as os-
cillations in an infinite homogeneous stellar system decay through Landau
damping when the resonance condition (5.71) is satisfied. The collection of
resonant stars can be thought of as a singular van Kampen mode, in which
the perturbation is restricted to the surface of action space on which the
resonant condition (5.149) is satisfied (Vandervoort 2003).

We define the resonant spectrum to be the set of all frequencies ω at
which resonant stars are present. All oscillations with frequencies in the res-
onant spectrum are damped. Normally, the resonant spectrum is continuous.
However, there may be frequencies that are not in the resonant spectrum.
In particular, there is a gap in the spectrum for −Ωr,min < ω < Ωr,min, and
other gaps may exist if |k|Ωr,max < (|k|+ 1)Ωr,min for integer k. Oscillations
with frequencies in these gaps will not be damped, since they are not in
resonance with any stars in the system.

A more careful version of this argument is provided by Mathur (1990),
who also proves that at least some spherical systems have radial modes with
frequencies in the gaps of the continuous resonant spectrum. Thus spherical
stellar systems can ring like a bell, although in most cases they do not.

These arguments can be extended to non-radial oscillations. In this case
the general resonance condition is

m ·Ω(J) = ω, (5.150)

where m is an integer triple and Ω(J) = ∂H0/∂J (eq. 3.190). In spherical
systems we may choose the actions J = (J1, J2, J3) to be respectively the
z-component of angular momentum, the total angular momentum, and the
radial action (Table 3.1). In this case Ω1 = 0, Ω2 = Ωϑ is the azimuthal
frequency, and Ω3 = Ωr is the radial frequency.

The gravitational potential arising from a mode of a spherical system
can be written in the form Φ1(x, t) = f(r)Ym

l (ϑ, φ) exp(−iωt) (see Box 5.2).
When this potential is written as a Fourier series in angle-action variables,
Φ1(x, t) =

∑
m Φm(J) exp[i(m·θ−ωt)], the only non-zero terms havem1 = m

and |m2| ≤ l.14 Thus the resonant condition (5.150) for perturbations of order
l can be written

m2Ωϑ +m3Ωr = ω (|m2| ≤ l). (5.151)

14 The relation m1 = m follows because an azimuthal rotation by ∆φ changes θ1 by
∆φ but leaves θ2 and θ3 unaffected; thus the two forms of Φ1 change by exp(im∆φ) and
exp(im1∆φ). Since these two changes must be the same, m = m1. The relation |m2| ≤ l
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For l = 0 the oscillations are radial, m1 = m2 = 0, and we recover
the resonant condition (5.149) with m3 = k. Oscillations with l = 1 shift
the core of the galaxy relative to its outer parts, and are sometimes called
“sloshing” or “seiche” oscillations (see Problem 5.17).

Using the Kalnajs matrix method (§5.3.2), Weinberg (1994b) has shown
that many spherical stellar systems exhibit low-frequency seiche oscillations
that decay very slowly, having damping times of tens to hundreds of crossing
times. Thus seiche oscillations may dominate the appearance of a galaxy
long after the other effects of a disturbance have died away. Moreover the
simple geometry and low frequency of seiche oscillations imply that they
are easily excited by the strong tidal forces that are present during galaxy
mergers (§8.5).

5.6 The stability of uniformly rotating systems

Stability analyses are more difficult for rotating systems than for spherical
systems, for two main reasons. First, since rotating systems are usually flat-
tened rather than spherically symmetric, both the equilibrium gravitational
field corresponding to a given density distribution and the behavior of orbits
in that field are more difficult to determine than in the spherical case. Sec-
ond, and equally fundamental, the system now has a reservoir of rotational
kinetic energy to feed any possible unstable modes.

Because of these complications, there are few general stability theorems
for rotating stellar systems. Instead, we must develop our insight using
simple models, N-body simulations, and numerical mode calculations. In
this chapter we restrict ourselves to uniformly rotating systems, deferring
the discussion of differentially rotating systems to the next chapter.

There is a rich literature, dating back to Newton, on uniformly rotating,
self-gravitating fluid systems. As in the case of spherical systems, these
provide useful analogs to rotating stellar systems. A brief summary of this
classic topic in applied mathematics is given in §5.6.3.

5.6.1 The uniformly rotating sheet

We begin by investigating a fluid model that exhibits the effects of rotation
and a flattened geometry in the simplest possible way. Our model consists
of an infinite disk or sheet of zero thickness and constant surface density Σ0.

arises because a rotation to a new coordinate system (ϑ′, φ′) in which the equatorial
plane of the coordinate system and the plane of a given orbit coincide changes Ym

l (ϑ, φ)

into a sum of spherical harmonics Ym
′

l (ϑ′, φ′) with the same l but different m′. Then
after one radial period, m′φ′ has increased by 2πm′Ωϑ/Ωr , while m2θ2 has increased by
2πm2Ωϑ/Ωr . Since these must be the same, m′ = m2 and thus |m2| ≤ l. See Tremaine
& Weinberg (1984b).
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The sheet occupies the plane z = 0, is uniform in the x- and y-directions,
and rotates with constant angular velocity Ω = Ωêz.

We consider the response of the sheet to disturbances in its own plane.
We do not examine bending or corrugation modes, deferring these to §6.6.
The analysis is simplified if we work in a frame that rotates with the un-
perturbed sheet at Ω; thus the continuity equation (5.16), Euler’s equa-
tion (5.17), and Poisson’s equation (5.18) read

∂Σd

∂t
+ ∇ · (Σdv) = 0, (5.152a)

∂v

∂t
+ (v · ∇)v = −∇p

Σd
− ∇Φ − 2Ω× v + Ω2(xêx + yêy), (5.152b)

∇2Φ = 4πGΣδ(z), (5.152c)

where δ(z) is the delta function, v(x, y, t) = vx(x, y, t)êx + vy(x, y, t)êy is
the velocity in the rotating frame, and the last two terms on the right side
of equation (5.152b) are the Coriolis and centrifugal forces (eq. 3.116). The
function Σ(x, y, t) is the total surface density, composed of the surface den-
sity Σd(x, y, t) of the disk and the surface density Σe(x, y, t) of an exter-
nal perturber that interacts with the disk only through gravitational forces.
Note that the first two of equations (5.152) are defined only in the (x, y)
plane but the third must hold throughout three-dimensional space. In a
two-dimensional system of this kind, the pressure p is assumed to act only
in the plane of the sheet and has dimensions of force per unit length. We
assume that the equation of state is barotropic and write (cf. eq. 5.19)

p(x, y, t) = p[Σd(x, y, t)]. (5.153)

In the unperturbed state Σ = Σd = Σ0, v = 0, and p = p0 = p(Σ0).
Equation (5.152a) is satisfied trivially, and equations (5.152b) and (5.152c)
read

∇Φ0 = Ω2(xêx + yêy), (5.154)

∇2Φ0 = 4πGΣ0δ(z). (5.155)

Since the sheet is uniform there is no preferred direction in the (x, y) plane.
Hence the gravitational field −∇Φ0 must point in the z-direction, and it is
easy to show that Φ0 = 2πGΣ0|z| (Problem 2.3). Thus equation (5.154) can-
not be satisfied as it stands: there are no pressure gradients or gravitational
forces to balance the centrifugal force. To proceed further we must perpe-
trate a version of the Jeans swindle: we assume that the centrifugal force is
balanced by a gravitational force that is produced by some unspecified mass
distribution. The nature of this mass distribution does not concern us, since
its only function is to ensure centrifugal balance in the equilibrium state.
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We now consider a small perturbation of the form Σ(x, y, t) = Σ0 +
εΣ1(x, y, t), v(x, y, t) = εv1(x, y, t), etc., where ε is sufficiently small. Keep-
ing only terms linear in ε in equations (5.152) and (5.153), we have

∂Σd1

∂t
+ Σ0∇ · v1 = 0, (5.156a)

∂v1

∂t
= − v2

s

Σ0
∇Σd1 − ∇Φ1 − 2Ω× v1, (5.156b)

∇2Φ1 = 4πGΣ1δ(z), (5.156c)

where we have introduced the sound speed vs defined by (cf. eq. 5.22)

v2
s =

[
dp(Σ)

dΣ

]

Σ0

. (5.157)

These equations are similar to equations (5.31) except that there is a Coriolis
term in Euler’s equation arising from the rotation, and Poisson’s equation is
modified to apply to a two-dimensional system.

To solve equations (5.156) we write Σ1(x, y, t) = Σa exp[i(k · x − ωt)],
Σd1(x, y, t) = Σda exp[i(k ·x−ωt)], v1(x, y, t) = (vaxêx+ vayêy) exp[i(k ·x−
ωt)], and Φ1(x, y, z = 0, t) = Φa exp[i(k ·x−ωt)]. With no loss of generality,
we can choose the x axis to be parallel to k, so k = kêx. First consider
Poisson’s equation (5.156c). For z 6= 0 we have ∇2Φ1 = 0 but when z = 0,
Φ1 = Φa exp[i(kx − ωt)]. The only continuous function that satisfies both
constraints and that approaches zero far from the sheet has the form

Φ1(x, y, z, t) = Φaei(kx−ωt)−|kz|. (5.158)

To relate Φa to Σa we integrate equation (5.156c) from z = −ζ to z = ζ,
where ζ is a positive constant, and then let ζ → 0. Since ∂2Φ1/∂x

2 and
∂2Φ1/∂y

2 are continuous at z = 0, but ∂2Φ1/∂z
2 is not, the left side gives

lim
ζ→0

∫ ζ

−ζ
dz∇2Φ1 = lim

ζ→0

∫ ζ

−ζ
dz

∂2Φ1

∂z2
= lim

ζ→0

∂Φ1

∂z

∣∣∣∣
ζ

−ζ
= −2|k|Φaei(kx−ωt).

(5.159)
The right side of (5.156c) gives

4πG lim
ζ→0

∫ ζ

−ζ
dzΣ1δ(z) = 4πGΣaei(kx−ωt). (5.160)

Hence −2|k|Φa = 4πGΣa or

Φ1(x, y, z, t) = −2πGΣa
|k| ei(kx−ωt)−|kz|. (5.161)
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Substituting for Σd1, Σ1, v1, and Φ1 in equations (5.156) we obtain

ωΣda = kΣ0vax,

ωvax =
v2

s kΣda

Σ0
− 2πGΣak

|k| + 2iΩvay,

ωvay = −2iΩvax.

(5.162)

This set of equations can be solved for Σda to yield

Σda = P̃ (k, ω)Σa, where P̃ (k, ω) =
2πGΣ0|k|

4Ω2 − ω2 + v2
s k

2
, (5.163)

where P̃ (k, ω) is the Fourier transform of the polarization function (eq. 5.7)
that relates the response density Σda to the total density Σa.

In the absence of an external perturber, we require P̃ (k, ω) = 1, which
yields the dispersion relation for the uniformly rotating sheet,

ω2 = 4Ω2 − 2πGΣ0|k| + v2
s k

2. (5.164)

The sheet is stable if ω2 ≥ 0 and unstable if ω2 < 0.
Equation (5.164) is central to understanding the stability of disk sys-

tems. First consider the case in which the sheet is not rotating. If Ω = 0,
the sheet is unstable when v2

s k
2 − 2πGΣ0|k| < 0, in other words if

|k| < kJ ≡ 2πGΣ0

v2
s

, (5.165)

where kJ may be thought of as the Jeans wavenumber for the sheet. There
is evidently a direct analog to the classical Jeans instability (eq. 5.34) for a
three-dimensional homogeneous medium: in both cases long wavelengths are
subject to a gravitational instability.

Next consider the case in which the sheet rotates, but has zero sound
speed. Now the sheet is unstable if |k| > 2Ω2/(πGΣ0). As k → ∞ the
perturbation grows as exp(γt), where γ2 = −ω2 = 2πGΣ0|k|. Thus the
growth rate γ → ∞ as λ → 0: a cold disk is violently unstable on small
scales. This result is easy to understand from the three-dimensional case:
the growth rate of the Jeans instability in a three-dimensional fluid with
zero sound speed is γ = (4πGρ0)1/2 (eq. 5.34); the average density of the
sheet within a sphere of radius λ is ρ0 ∼ Σ0/λ, so the growth rate of the
Jeans instability in the sheet is γ ∼ (Gρ0)1/2 ∼ (GΣ0/λ)1/2 ∼ (GΣ0|k|)1/2.

Neither rotation nor pressure is able by itself to stabilize the sheet: a
rotating sheet with zero sound speed is unstable at small wavelengths, and
a non-rotating sheet with non-zero sound speed is unstable at large wave-
lengths. However, rotation and pressure working together can stabilize the
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sheet: if both effects are present, the right side of the dispersion relation
(5.164) is quadratic in k, with a minimum at the “most unstable wavenum-
ber” |k| = πGΣ0/v

2
s = 1

2kJ. The sheet is stable at all wavelengths if this
minimum is positive, which requires that

vsΩ

GΣ0
≥ 1

2π = 1.5708. (5.166)

Toomre (1964) has given a physical interpretation of this stability cri-
terion, using arguments analogous to those used to interpret the Jeans in-
stability in §5.2.1. Consider a small circular patch of the sheet. The radius
of the patch is h and its mass M = πΣ0h

2. Now suppose that the patch
radius is reduced to a fraction (1 − α) of its original value, where α � 1.
The resulting pressure perturbation will be p1 ≈ αp0 ≈ αv2

s Σ0. The pressure
force per unit mass is Fp = −∇p/Σ, so the extra outward pressure force has
magnitude |Fp1| ≈ p1/(Σ0h) ≈ αv2

s /h. Similarly, the compression leads to
an extra inward gravitational force per unit mass Fg1, where

|Fg1| ≈ GMα/h2 ≈ GΣ0α. (5.167)

In the absence of other effects, the sheet is expected to be stable if |Fp1|
exceeds |Fg1|, that is, if

h ∼<
v2

s

GΣ0
≡ hl. (5.168)

There are also internal motions in the patch, which arise from the rotation of
the sheet. If we neglect external influences, the compressed region will tend
to conserve spin angular momentum around its own center. The typical
spin angular momentum per unit mass is S ≈ Ωh2, where Ω is the angular
speed of the sheet. The outward centrifugal force per unit mass is given
by |Fc| ≈ Ω2h ≈ S2/h3. If S is conserved, the centrifugal force felt by
each element is increased by the compression; the amount of the increase is
|Fc1| ≈ αS2/h3 ≈ αΩ2h. Stability requires that |Fc1| exceeds |Fg1|, or

h ∼>
GΣ0

Ω2
≡ hu. (5.169)

Equations (5.168) and (5.169) show that both small and large regions are
stable, one through pressure and the other through centrifugal force. The
instability is suppressed at intermediate radii if hu ∼< hl, which requires

vsΩ

GΣ0
∼> 1, (5.170)

an order of magnitude statement of the stability criterion (5.166).
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Although equation (5.166) was derived for a fluid sheet, a very similar
stability criterion applies to the analogous stellar system. A razor-thin sheet
of stars with a Maxwellian velocity distribution is stable if (Toomre 1964)

σΩ

GΣ0
≥ 1.68, (5.171)

where σ is the one-dimensional velocity dispersion of the stars. We defer the
derivation of this important result to §6.2.3, where it appears as a special case
of Toomre’s stability criterion for differentially rotating disks. The coefficient
on the right of equation (5.171) differs by less than 7% from the coefficient in
the fluid stability criterion (5.166), illustrating once again the close analogies
between stellar systems and fluids.

The approximation that the sheet is razor-thin has greatly simplified
the stability analysis. Nevertheless, it is possible to investigate the stability
of more realistic sheets with three-dimensional structure. These sheets or
disks are still uniform in the x and y directions, but have an equilibrium
vertical structure ρ0(z) that is determined by the equation of state and the
equation of hydrostatic equilibrium. The stability criteria derived by such
analyses are generally very similar to equation (5.166). For example, Gol-
dreich & Lynden–Bell (1965b) have analytically determined the stability of
a uniformly rotating isothermal disk (equation of state p = v2

s ρ, where vs is
a constant). They find that the disk is stable if

vsΩ

GΣ0
≥ 1.06, (5.172)

a result that differs by only about 30% from equation (5.166). The reason
that the idealized two-dimensional sheet works so well is that the most un-
stable wavelength is several times the characteristic disk thickness, and the
behavior of perturbations with such relatively long wavelengths is insensitive
to the details of the vertical structure.

In conclusion, the uniformly rotating sheet exhibits three important
features: (i) a cold sheet is violently unstable; (ii) the sheet can be stabilized
by a sound speed vs or velocity dispersion σ that satisfies the stability criteria
(5.166) or (5.171) for fluid or stellar systems, respectively; (iii) the stability
properties of fluid and stellar sheets are very similar. We shall encounter all
of these features again in more realistic models of uniformly and differentially
rotating disks.

5.6.2 Kalnajs disks

This family, described in §4.5.2, comprises the simplest self-gravitating stellar
disks and one of the few self-consistent stellar systems whose modes can
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be studied analytically. Kalnajs disks have potential and surface density
(eqs. 4.166 and 4.167)

Σ0(R) = Σc

√
1 − R2

a2
; Φ0(R) = 1

2Ω2
0R

2, (5.173)

where

Ω2
0 =

π2GΣc

2a
(5.174)

and a is the radius of the disk edge. The mean angular speed Ω of the stars in
a Kalnajs disk is independent of position, and relative to this mean speed the
stars have isotropic velocity dispersion in the disk plane, given by equation
(4.175).

The modes of razor-thin disks such as these can be separated into hor-
izontal oscillations or density waves, in which the disk’s surface density
varies but it remains in its original plane, and vertical oscillations or bend-
ing waves, in which the surface density remains unchanged and the disk
oscillates in the direction normal to its original plane. The horizontal and
vertical modes of the Kalnajs disks were analyzed by Kalnajs (1972a) and
Polyachenko (1977) respectively. The horizontal modes, on which we focus
here, have potentials that can be written as

Φml (R, φ, t) = P
|m|
l (η)ei(mφ−ωt)

(
l > 0, |m| ≤ l

l −m even

)
. (5.175)

Here η =
√

1 −R2/a2 and Pml is an associated Legendre function (Appendix
C.5). The corresponding surface density can be determined from equations
(2.202) and (2.204a); after adjusting to the notation of the present section,
we have

Σml (R, φ, t) = − 2

π2Gaglmη
P

|m|
l (η)ei(mφ−ωt)

(
l > 0, |m| ≤ l

l−m even

)
,

(5.176)
where glm is defined by equation (2.204b).

There are three trivial zero-frequency modes of the Kalnajs disks. The
two modes with l = 1, m = ±1 correspond to a uniform translation of the
disk.15 The third zero-frequency mode has l = 2, m = 0 and corresponds
to a rescaling of the outer radius a of the disk. There is also a non-trivial

15 The proof is simple. If we displace the origin to ξ, the equilibrium potential in
equation (5.173) becomes 1

2
Ω2

0(R − ξ)2. Expanding to first order in the small quantity

ξ, the corresponding potential perturbation is just Φ1(R) = −Ω2
0R · ξ. The potential

perturbation arising from a displacement of the origin by ξ = ε(êx ± iêy) is therefore

Φ1(R) = −εΩ2
0(x± iy) ∝ Re±iφ, (5.177)

which is the same as equation (5.175) for l = 1, m = ±1 and ω = 0.
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mode with l = 2, m = 0 and non-zero frequency, corresponding to a stable
pulsation in which the outer radius oscillates but the surface-density profile
of the disk retains the form (5.173).

More interesting behavior is exhibited by the modes with quantum num-
bers l = 2, m = ±2, corresponding to a bar-like distortion of the disk. These
modes can be analyzed relatively simply, without even using the collisionless
Boltzmann equation (Kalnajs & Athanassoula–Georgala 1974).16

The surface density and potential of the mode with l = m = 2 are given
by equations (5.175) and (5.176)17

Φ1(R, φ, t) = R2ei(2φ−ωt) = (x+ iy)2e−iωt

Σ1(R, φ, t) = − 8

3π2Ga

(x+ iy)2e−iωt

√
1 −R2/a2

.
(5.178)

The unperturbed equations of motion are

R̈0 = −∇Φ0 = −Ω2
0R0. (5.179)

If we now add a weak potential perturbation equal to ε times (5.178), the
perturbed orbit R(t) is governed by the equations

R̈ = −∇(Φ0 + εΦ1), (5.180)

where the right side must be evaluated at R(t). We now assume that ε
is sufficiently small that we may work to first order in ε and set R(t) =
R0(t) + εR1(t). To first order in ε the right side of (5.180) is given by

[∇(Φ0 + εΦ1)]R0(t)+εR1(t) = (∇Φ0)R0(t)+εR1(t) + ε (∇Φ1)R0(t) + O(ε2)

= (∇Φ0)R0
+ ε [(R1 · ∇)∇Φ0]R0

+ ε (∇Φ1)R0
+ O(ε2).

(5.181)
Since ∇Φ0 = Ω2

0R, we have (R1 · ∇)∇Φ0 = Ω2
0R1. When we subtract the

unperturbed equations of motion (5.179), the perturbed equations become

R̈1 + Ω2
0R1 = − (∇Φ1)R0(t) , (5.182)

which is the equation of motion for a driven harmonic oscillator. We now
write R1(t) ≡ [x1(t), y1(t)] and seek the solution of this equation for the

16 Even the finite-amplitude oscillations corresponding to these quantum numbers can
be described analytically: for real ω these are simply the Freeman bars discussed in Box 4.2.

17 We do not have to consider modes with m < 0 since Re{Φa(R) exp[i(mφ − ωt)]} =
Re{Φ∗

a(R) exp[i(−mφ + ω∗t)]}. Thus every mode with m < 0 and frequency ω is also a
mode with m > 0 and frequency −ω∗.
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unperturbed trajectory that passes through (xi, yi) with velocity (vxi, vyi)
at time ti. We find

x1(t) =
xi + iyi − i(vxi + ivyi)/Ω0

ω2 − 2Ω0ω
ei(Ω0t−Ω0ti−ωt)

+
xi + iyi + i(vxi + ivyi)/Ω0

ω2 + 2Ω0ω
ei(−Ω0t+Ω0ti−ωt);

(5.183)

in the analogous equation for y1(t) the right side is multiplied by i. If we
now set t = ti we obtain a relation between the displacement (x1, y1) and
the unperturbed phase-space position of a star,

x1(t) = −iy1(t) = 2
ω(x+ iy) − 2i(vx + ivy)

ω(ω2 − 4Ω2
0)

e−iωt. (5.184)

To first order in the perturbation, the equation of continuity may be
written in the form (eq. F.5)

Σ1 + ∇ · (Σ0ξ) = 0, (5.185)

where ξ is the mean displacement of the stars at a given position. We may
write ξ = x1êx + y1êy, where the bar, as usual, denotes the average over
velocities of the stars at a given position.

The unperturbed mean velocity at (x, y) is ẋ0 = −Ωy, ẏ0 = Ωx. The
mean displacement is obtained by averaging equation (5.184) over all veloc-
ities at a given point,

x1(t) = −iy1(t) = 2
(ω + 2Ω)(x+ iy)

ω(ω2 − 4Ω2
0)

e−iωt. (5.186)

We now substitute into the continuity equation (5.185) using equation (5.173)
for Σ0. It is straightforward to show that

Σ1 =
2Σc

a2

ω + 2Ω

ω(ω2 − 4Ω2
0)

(x + iy)2e−iωt

√
1 −R2/a2

. (5.187)

The frequency of the mode is determined by the requirement that equation
(5.178) be consistent with (5.187). Eliminating Σ1 from these equations and
using equation (5.174), we find the equation for the frequencies of the modes
with quantum numbers (l,m) = (2, 2):

ω3 − 5
2Ω2

0ω + 3ΩΩ2
0 = 0. (5.188)

To analyze stability we rewrite this as ω3 − 5
2Ω2

0ω = −3ΩΩ2
0. The cubic

polynomial on the left has a local minimum of −2( 5
6 )3/2Ω3

0 at ω = ( 5
6 )1/2Ω0.
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Figure 5.5 Stability of
Kalnajs disks as a function
of the degree of centrifugal
support Ω/Ω0. The solid lines
represent zones of instability.

If the right side is less than this local minimum, then there is only one real
root, and one of the pair of complex roots corresponds to an unstable mode.
Hence the disk is stable if and only if −2( 5

6 )3/2Ω3
0 < −3ΩΩ2

0, or

Ω

Ω0
<

√
125

486
= 0.507. (5.189)

A convenient measure of the importance of rotation for the equilibrium
structure of any self-gravitating body is the ratio t of the rotational kinetic
energy T to the body’s self-gravitational potential energy W :

t ≡ T

|W | . (5.190)

The virial theorem (4.248) states that K/|W | = 1
2 , where K = T + 1

2Π is
the sum of the rotational kinetic energy T and the kinetic energy in random
motions 1

2Π. Thus we have 0 ≤ t ≤ 1
2 . For a Kalnajs disk, t = 1

2 (Ω/Ω0)2.
Thus the Kalnajs disks are unstable to a bar-like mode if

t > 0.1286. (5.191)

It is natural to speculate that this instability is related to the bars found
in many disk galaxies, but uniformly rotating stellar systems such as Kalnajs
disks can behave quite differently from the differentially rotating disks found
in galaxies, and we shall find in Chapter 6 that bar-like instabilities in dif-
ferentially rotating disks arise from a quite different mechanism.

Figure 5.5 shows the regions of instability for modes with quantum num-
ber l ≤ 5, as determined by Kalnajs (1972a) using the linearized collisionless
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Boltzmann equation. As l increases, the behavior becomes increasingly com-
plicated: for a given pair of indices (l,m), a Kalnajs disk has up to l+ 1 dif-
ferent modes with different frequencies ω. The figure shows that all Kalnajs
disks are unstable to one or more modes; however, there are stable composite
systems consisting of superimposed Kalnajs disks.

5.6.3 Maclaurin spheroids and disks

Throughout this chapter we have stressed the analogies between the dynam-
ics of stellar and fluid systems. This analogy extends to the bar-like insta-
bility of rapidly rotating Kalnajs disks, which is also present in uniformly
rotating, self-gravitating bodies of incompressible fluid.

The study of rotating fluid bodies was initiated by Newton, who treated
the Earth as a homogeneous, incompressible fluid body in order to estimate
the expected flattening of the earth due to its rotation. His treatment was
valid only for small rotation speeds, but in 1742 C. Maclaurin found an exact
solution for the equilibrium of an incompressible, uniformly rotating fluid
body (Problem 5.19). These Maclaurin spheroids form a one-parameter
family of oblate (flattened) spheroids (§2.5.2), which can be parametrized by
their angular momentum or angular speed, by the ratio of polar to equatorial
axes, or by the parameter t defined in equation (5.190).

A surprise came in 1834 when C. G. Jacobi showed that the Maclau-
rin spheroids were not the only possible equilibrium shape for a uniformly
rotating, incompressible fluid body: there were also equilibria in which the
fluid surface was ellipsoidal, with all three principal axes different. In other
words, while a non-rotating fluid body supported by its own self-gravity must
be spherical by Lichtenstein’s theorem (Box 4.1), a rotating fluid body sup-
ported by its own self-gravity need not be axisymmetric. It is a measure of
the unexpectedness of this result that Jacobi’s discovery came almost a cen-
tury after Maclaurin’s. The relationship of the Jacobi ellipsoids, as these
configurations are now called, to the simpler Maclaurin spheroids remained
obscure until the end of the nineteenth century, when Poincaré and others
showed that the Jacobi ellipsoids are actually the preferred configurations of
rapidly rotating fluid bodies because they have lower energy for fixed angular
momentum and mass. In the language of §5.4, rapidly rotating Maclaurin
spheroids with 0.1375 < t < 0.2738 are dynamically stable but secularly un-
stable: if the fluid has even the tiniest viscosity, they will gradually evolve
into Jacobi ellipsoids.

There is a simple physical basis for this instability. The kinetic energy of
a uniformly rotating body is 1

2L
2/I , where L is the angular momentum and

I is the moment of inertia (eq. D.43). The deformation of the spheroid into
an ellipsoid increases the moment of inertia and thus lowers the rotational
kinetic energy. The deformation also raises the gravitational potential en-
ergy; however, for sufficiently large angular momentum the loss of rotational
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kinetic energy is greater than the gain of potential energy, so the spheroid is
secularly unstable.

For the most rapidly rotating Maclaurin spheroids, 0.2738 < t < 0.5,
the secular instability is overwhelmed by a more rapid dynamical instability
to a bar-like mode, reminiscent of the dynamical instability that plagues the
Kalnajs disks with 0.1286 < t < 0.5 (eq. 5.191).

The complete spectrum of modes of the Maclaurin spheroids was first an-
alyzed by Bryan (1888). More recent discussions appear in Lyttleton (1953),
Chandrasekhar (1969), and Tassoul (1978). An even closer fluid analog to
the Kalnajs disk is the Maclaurin disk, a razor-thin disk of two-dimensional
fluid, in which the pressure acts only in the disk plane and the surface-density
distribution is the same as in the Kalnajs disks. The Maclaurin disks be-
come secularly unstable to a bar-like mode at t = 1

8 = 0.125, and dynamically

unstable at t = 1
4 = 0.25 (Problem 5.20; Takahara 1976; Weinberg 1983).

Finally, in 1860 Riemann showed that even the Jacobi ellipsoids are only
special members of a much larger family of triaxial equilibrium configurations
of self-gravitating fluid; the Riemann ellipsoids not only rotate but have
internal streaming motions (Chandrasekhar 1969). The Riemann ellipsoids
draw attention to the distinction between the material speed at which the
matter of a rotating triaxial body streams and the pattern speed, the angular
speed at which the figure of the body rotates. This distinction is important
for bars in disk galaxies because the pattern speed governs the gravitational
interaction of the bar with the rest of the galaxy, while the material speed
determines the observed velocities.

Problems

5.1 [1] For over 150 years, most astronomers believed that Saturn’s rings were rigid
bodies, until Laplace showed that a solid ring would be unstable. The same instability
plagues Larry Niven’s famous fictional planet Ringworld. Following Laplace, consider a
rigid, circular wire of radius R and mass m that lies in the x-y plane, centered on a planet
of mass M � m at the origin. The wire rotates around the planet in the x-y plane at
the Keplerian angular speed ΩK = (GM/R3)1/3 . Show that this configuration is linearly
unstable and find the growth rate of the instability.

5.2 [2] (a) Prove that the temporal Fourier transform of the polarization function satisfies

eP ∗(x,x′, ω) = eP (x,x′,−ω∗), (5.192)

where the star denotes complex conjugation.

(b) If P (x,x′, τ) exp(−cτ) → 0 as τ → ∞ for some real constant c > 0, prove that
eP (x,x′, ω) is analytic throughout the half-plane Im(ω) > c. Hint: use causality and the
residue theorem.

(c) Do analogous results also hold for the response function eR(x,x′, ω)?

5.3 [1] (a) Let eP (x,x′, ω) denote the temporal Fourier transform of the polarization func-

tion of a stable system. We assume that eP (x,x′, ω) → 0 as |ω| → ∞ in the upper
half-plane. Prove that Z ∞

−∞
dω′ eP (x,x′, ω′)

ω′ − ω + iη
= 0, (5.193)

where ω and ω′ are real and η is a positive number. Hint: use Problem 5.2.
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(b) Prove that

eP (x,x′, ω) = − i

π
℘

Z ∞

−∞
dω′ eP (x,x′, ω′)

ω′ − ω
, (5.194)

where ℘ denotes the Cauchy principal value, defined in equation (C.6). Hint: use the
Plemelj identity, equation (C.5).

(c) Prove that for real ω, the polarization function can always be written in the form

eP (x,x′, ω) ≡ eP+(x,x′, ω) + eP−(x,x′, ω), (5.195)

where
eP ∗
±(x′,x, ω) = ±eP±(x,x′, ω). (5.196)

(d) Prove the Kramers–Kronig relations,

eP±(x,x′, ω) = − i

π
℘

Z ∞

−∞
dω′ eP∓(x,x′, ω′)

ω′ − ω
. (5.197)

The same results apply to eR(x,x′, ω).

5.4 [1] At typical sea-level conditions (p = 1.01× 105 Nm−2 and T = 15◦ C), the density
of air is 1.22 kg m−3 and the speed of sound is 340 m s−1. Find (i) the fractional change
in frequency due to the self-gravity of the air, for a sound wave with wavelength 1 meter;
(ii) the Jeans length.

5.5 [2] Suppose that the gravitational potential due to a body of mass m is modified from
the Newtonian form to the Yukawa potential, Φ(r) = −Gm exp(−αr)/r. How does this
modification affect the Jeans wavenumber for a homogeneous fluid (eq. 5.35) or stellar
system (eq. 5.49)? Is the Jeans swindle needed in this analysis (Kiessling 2003)? Hint:
see Problem 2.12.

5.6 [1] Modify the derivation in equations (5.32)–(5.39) to find the polarization function
P (k, τ) rather than the response function.

5.7 [3] Appendix F.3.1 derives the energy density of sound waves. Here we generalize
these results to find the energy density of sound waves with self-gravity.

(a) Consider a homogeneous fluid with constant density ρ0, and implement the Jeans
swindle by assuming that the equilibrium gravitational field −∇Φs0 associated with this
density is canceled by a fixed external field −∇Φe, i.e., Φs0 = −Φe. Starting from equation
(F.26), show that the self-gravity of the fluid contributes an energy density Eg0 + ∆Eg,
where Eg0 is the gravitational energy density in the homogeneous fluid,

∆Eg = 1
2
ρ0∆Φs − 1

2
∆ρΦs0 + 1

2
∆ρ∆Φs, (5.198)

and ∆ρ ≡ ρ− ρ0, ∆Φs ≡ Φs − Φs0.

(b) Prove that

E′
g ≡ 1

2
ρ0∆Φs − 1

2
Φs0∆ρ ; F ′

g ≡ 1

8πG

„
Φs0

∂2∆Φs

∂x∂t
− ∂Φs0

∂x

∂∆Φs

∂t

«
(5.199)

are the non-wave contributions to the energy density ∆Eg, by showing that they satisfy
the transport equation ∂E′

g/∂t + ∂F ′
g/∂x = 0.

(c) The gravitational wave energy is ∆Eg − E′
g, and the total wave energy density is

Ew,g ≡ Ew + ∆Eg − E′
g, where Ew is given by equation (F.62). For wavetrains of the

form (F.64), prove that the average wave energy density is

〈Ew,g〉 =
A2
ρ

4k2ρ0
(ω2 + v2s k

2 − 4πGρ0) + O(A3) =
A2
ρω

2

2k2ρ0
+ O(A3), (5.200)

where the last equality makes use of the dispersion relation (5.34). This result holds only
for wavenumbers k > kJ, since disturbances with smaller wavenumber are unstable rather
than oscillatory. All oscillatory wavetrains have positive energy density, but the energy
density decreases to zero at the stability boundary k2 = 4πGρ0/v2s = k2

J.
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(d) Waves with k < kJ have the form ρ1 = Aρ exp(λt) cos(kx), vx1 = Av exp(λt) sin(kx).
Prove that

Av = − λ

ρ0k
Aρ. (5.201)

(e) Prove that all unstable disturbances have 〈Ew〉 = 0, as required by energy conservation
since the amplitude of the wave is growing as exp(λt).

5.8 [2] An infinite homogeneous stellar system has density ρ0 and df

f0(v) =
ρ0θ

π2

1

(v2 + θ2)2
, (5.202)

where θ is a measure of the characteristic velocity (note that θ2 is not the mean-square
velocity, which diverges for this df). Using the Jeans swindle, show that the polarization
function is (Summers & Thorne 1991)

P (k, τ) = 4πGρ0H(τ)τe−θkτ , (5.203)

where H(τ) is the step function (Appendix C.1); that the Fourier transform of the polar-
ization function is

eP (k, ω) = − 4πGρ0

(ω + ikθ)2
, Im(ω) > 0; (5.204)

and that the response function is

R(k, τ) = ω0H(τ)e−θkτ sinh(ω0τ), (5.205)

where ω0 = (4πGρ0)1/2. Hence show that the system is unstable if

k < kJ ≡
„

4πGρ0

θ2

«1/2

. (5.206)

5.9 [2] The Jeans instability can be analyzed exactly in rotating systems, without invoking
the Jeans swindle. Consider a homogeneous, self-gravitating, barotropic fluid of density
ρ0, contained in an infinite cylinder of radius R0 whose symmetry axis is the z axis. The
cylinder walls and the fluid rotate at angular speed Ω = Ωêz .

(a) Show that the gravitational field inside the cylinder is

−∇Φ0 = −2πGρ0(xêx + yêy). (5.207)

(b) Using Euler’s equation in a rotating frame (cf. eq. 5.152b), find the condition on Ω so
that the fluid is in equilibrium.

(c) Now let R0 → ∞, or, what is equivalent, consider wavelengths λ � R0, so the boundary
condition due to the wall can be neglected. Working in the rotating frame, find the
dispersion relation analogous to equation (5.34) for (i) waves propagating perpendicular
to Ω; (ii) waves propagating parallel to Ω. Show that waves propagating perpendicular
to Ω are always stable, while waves propagating parallel to Ω are stable if and only if the
usual Jeans criterion k < kJ is satisfied (Chandrasekhar 1961). See Lynden–Bell (1962b)
for the analogous stellar system.

5.10 [3] In this problem we examine the linear modes of a self-gravitating sphere of in-
compressible liquid of density ρ and equilibrium radius R. The radius of the surface of the
perturbed sphere can be written as r(θ, φ, t) = R + εYml (θ, φ) exp(−iωlt), where ε � R,
l = 1, 2, . . ., and |m| ≤ l. Show that the frequencies of these Kelvin modes satisfy
(Chandrasekhar 1961)

ω2
l =

8πGρ

3

l(l − 1)

2l + 1
. (5.208)

Hint: the gravitational potential arising from the small distortion ε of the surface of the
sphere is the same as the potential arising from a surface density ερ.
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5.11 [2] Let V be the action space for a given Hamiltonian H(J). For example, the
actions (J1, J2, J3) defined in Table 3.1 have an action space −J2 ≤ J1 ≤ J2, 0 ≤ J2 ≤ ∞,
0 ≤ J3 ≤ ∞. Let S be the surface bounding the action space, and let n̂(J) be the normal to
this surface at a given point. We now perturb the Hamiltonian by adding a potential Φ(x),
which can be expanded in a Fourier series in the angles, Φ(x) =

P
m Φm(J) exp(im · θ)

(eq. 5.79). Prove that

m · n̂(J)Φm(J) = 0 everywhere on S. (5.209)

This result is used in deriving equation (5.95). Hint: argue that particles cannot cross the
boundaries of the action space.

5.12 [1] This problem analyzes a simple example of secular stability. We consider a
hemispherical bowl of radius R, which rotates about a vertical axis with angular speed Ω.
A particle slides inside the bowl. The particle is subject to a frictional force −k(v − vb),
where v is the velocity of the particle and vb is the velocity of the bowl. The coefficient of
friction k may be assumed to be very small. The particle is initially at rest, at the bottom
of the bowl, and then is given a small displacement.

(a) Prove that the particle returns to rest at the bottom of the bowl (secular stability) if
and only if Ω < (g/R)1/2 , where g is the acceleration due to gravity.

(b) If the motion is secularly unstable, what is the final fate of the particle?

5.13 [1] Let A(x,v), B(x,v), and C(x,v) be arbitrary functions that vanish as |x|, |v| →
∞. Prove the following identities involving Poisson brackets:

Z
d3x d3v [A,B] = 0; (5.210a)

Z
d3xd3vA[B,C] =

Z
d3x d3vC[A,B] =

Z
d3xd3vB[C,A]; (5.210b)

[A, f(B)] = f ′(B)[A,B] = [f ′(B)A,B] for any function f(B). (5.210c)

5.14 [2] Prove that W [ρ1] in Chandrasekhar’s variational principle (5.120) is zero for a
uniform displacement, ρ1(x) = −∇ · (ρ0ξ) with ξ constant.

5.15 [2] In this problem we describe Antonov’s original proof of his variational principle
for the stability of stellar systems with an ergodic df having f ′

0(H0) < 0.

(a) Show that any df f1(x,v, t) can be written in the form

f1(x,v, t) = f+(x,v, t) + f−(x,v, t), (5.211)

where f+ is an even function of v and f− is an odd function of v.

(b) If the external potential Φe = 0, show that the linearized collisionless Boltzmann
equation (5.123) can be written in the form

∂f+

∂t
+ [f−,H0] = 0 ;

∂f−
∂t

+ [f+,H0] + f ′0(H0)[H0,Φ1] = 0, (5.212)

where as usual H0(x,v) = 1
2
v2 + Φ0(x).

(c) Show that equations (5.212) can be combined into a single equation for f− (Antonov
1960; Laval, Mercier, & Pellat 1965; Kulsrud & Mark 1970)

∂2f−
∂t2

− [[f−,H0],H0] +Gf ′0(H0)

»
H0,

Z
d3x′d3v′

|x− x′|
[f−,H0]x′,v′

–
= 0. (5.213)
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(d) Take the temporal Fourier transform (5.6) of equation (5.213), multiply by ef∗−/f ′0(H0),

integrate over d3xd3v, and use equations (5.210) to obtain

ω2

Z
d3xd3v

|f ′0(H0)|
|ef−|2 =

Z
d3xd3v

|f ′0(H0)|

˛̨
˛[ef−, H0]

˛̨
˛
2

−G
Z

d3x d3v d3x′ d3v′

|x− x′|
[ef−,H0]∗x,v[ef−,H0]x′,v′ .

(5.214)

(e) Prove that all modes of stellar systems with an ergodic df have real ω2; stable modes
have ω2 ≥ 0 and unstable modes have ω2 < 0.

(f) Using the substitution ef− = f ′0(H0)g, prove that Antonov’s variational principle
WA[g] ≥ 0 (eq. 5.136) is sufficient for stability.

5.16 [3] Let f1(x,v, t) be the linear response of a spherical stellar system with an ergodic
df f0(H0) to a weak gravitational potential Φ1(x, t), which includes both an external
potential and the potential arising from the self-gravity of the response. Assume that
Φ1 → 0 as t → −∞.

(a) If Φ1 varies slowly (i.e., on a timescale much greater than the orbital time) prove that

f1(x,v, t) = f ′0(H0) [Φ1(x, t) − 〈Φ1〉x,v ] , (5.215)

where 〈X〉x,v is the time average of X over the unperturbed orbit that passes through the
phase-space point (x,v) (Lynden–Bell 1969). Hint: use equation (5.83).

(b) Show that the density response is

ρ1(x, t) =

Z
d3v f1(x,v, t) =

„
dρ

dΦ

«

0

Φ1(x, t) −
Z

d3v f ′0(H0)〈Φ1〉x,v . (5.216)

(c) Show that the linear response of a static, barotropic fluid to a similar perturbation is
given by the first of the two terms in the final expression in equation (5.216).

5.17 [1] A semicircular trough of radius a contains water of density ρ. The maximum
depth of the water is h � a. The trough is gently moved back and forth until the water
is excited into a sloshing or seiche mode, in which the surface of the water stays flat but
its angle ϑ from the horizontal oscillates. What is the oscillation period for |ϑ| � 1?

5.18 [2] A simple way to stabilize the Kalnajs disks is to imagine that they are embedded
in a fixed axisymmetric gravitational field (say, due to the halo of the galaxy). Suppose
that the fixed potential is Φh(R) = 1

2
hΩ2

0R
2, where the constant h is chosen so that the

disk provides a fraction fd of the total radial force in the equilibrium system. Show that
a Kalnajs disk embedded in such a halo is stable to l = m = 2 modes if and only if

Ω2

Ω2
h

<
(8 − 3fd)3

486f2
d

, (5.217)

where Ωh is the angular speed of a cold disk. For what values of fd are all of the Kalnajs
disks stable?

5.19 [2] The gravitational potential in a Maclaurin spheroid is given by equation (2.128)
and Table 2.1. Prove that t = T/|W | (eq. 5.190) is related to the eccentricity e of the
surface of the spheroid by

t =
3

2e2
− 1 − 3

√
1 − e2

2e sin−1 e
. (5.218)

5.20 [3] The Maclaurin disks (§5.6.3) are razor-thin fluid disks. The fluid pressure p acts
only in the disk plane and has a polytropic equation of state, p = KΣ3, where Σ is the
surface density. Maclaurin disks have the same surface-density distribution as Kalnajs
disks, Σ(R) = Σc(1 − R2/a2)1/2 (eq. 4.167), and rotate at uniform angular speed Ω.
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(a) Prove that

Ω2 = Ω2
0 − 3KΣ2

c

a2
, (5.219)

where Ω0 is given by equation (4.166).

(b) Prove that the Maclaurin disks have modes with the same surface-density distribution
as the modes of the Kalnajs disks (eq. 5.176), with the frequency ω of the mode having
quantum numbers (l,m) given by (Takahara 1976)

ω3
r −ωr

˘
4Ω2 + (l2 + l −m2)[Ω2

0(1 − glm) − Ω2]
¯

+2mΩ[Ω2
0(1− glm)−Ω2] = 0, (5.220)

where ωr ≡ ω −mΩ and glm is defined by equation (2.204b).

(c) Prove that (i) the modes with l = 1 correspond to a uniform translation of the disk; (ii)
the modes with l = 2, m = ±2 (the bar mode) are unstable if and only if Ω/Ω0 > 2−1/2.
Hint: for l = 2, m = ±2 one root is ω = 2mΩ.



6
Disk Dynamics and Spiral Structure

Galaxies contain disks for the same basic reason that planetary systems,
planetary rings, accretion disks, and many other astrophysical systems are
flat: gas can radiate energy but not angular momentum, and for a given
distribution of angular momentum along an axis, the state of lowest energy
is a flat disk perpendicular to that axis.

Galactic disks exhibit more interesting and complex behavior than hot,
slowly rotating stellar systems such as elliptical galaxies as a result of the
interplay of energy and angular momentum. Loosely speaking, systems such
as galaxies tend to evolve to states of lower energy. The virial theorem
tells us that a self-gravitating system can lose energy at constant mass M
by contracting to a smaller radius. Uniform contraction of a rotating disk
is not permissible because it would not conserve the angular momentum.
However, the disk can release energy by a more subtle strategy. Suppose
that a small element of mass m initially at radius Ri is moved to a circular
orbit at a radius Rf that is much larger than the typical radius of material
in the disk. The gravitational field of the disk is approximately Keplerian at
large radii, so the angular momentum of the mass element in its new orbit
is m(GMRf)

1/2, which diverges as Rf → ∞. On the other hand, the energy
of the mass element in its new orbit is − 1

2GMm/Rf , which approaches a
constant value of zero as Rf → ∞. Thus a small mass element can swallow
most or all of the angular momentum of the disk with a negligible energetic
penalty. Having thus been relieved of its angular momentum, the rest of the
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disk can release free energy by shrinking.

A more precise statement is that it is energetically favorable for differen-
tially rotating disks to transfer angular momentum outward and mass inward
(Lynden–Bell & Pringle 1974). In fluid disks this transfer can be effected
by viscous or magnetic stresses and, indeed, angular-momentum transfer
through these stresses is believed to drive the accretion disks that power
active galactic nuclei, cataclysmic variable stars, and many stellar X-ray
sources. Disks that are collisionless stellar systems have neither viscosity nor
magnetic fields, but can transfer angular momentum through gravitational
torques that are generated by non-axisymmetric features such as spiral arms.
It is the ability of such features to liberate energy stored in the disk that is
the root cause of their formation in disk galaxies.

The disk of a spiral galaxy exhibits far richer behavior than a purely
stellar disk because it contains both stars and gas. These two components
interact in complex ways, not only through their mutual gravity but also
because gas can be converted to stars—in particular, we shall find that star
formation is strongly enhanced by the non-axisymmetric features that we
are trying to study. A complete exposition of the dynamics of galactic disks
would therefore require that we first understand stellar dynamics, gas dynam-
ics, stellar evolution, and star formation; despite much progress, astronomers
are still groping towards this goal.

The first part of this chapter is devoted to spiral structure, the most
dramatic and beautiful aspect of disk dynamics in galaxies. After describing
the phenomenology of spiral structure in §6.1, we investigate the propagation
and evolution of density waves in §6.2. The analysis in this section is based on
the fundamental approximation that the waves are tightly wound spirals. In
§6.3 we relax this assumption, and show that numerical calculations of waves
in stellar disks can be understood by thinking of the disk as a cavity within
which resonant wave patterns are established. The growth and decay of waves
in this cavity is determined by the competition between a built-in amplifier
and absorber, in the same way that audio feedback is established between a
microphone, amplifier, and loudspeaker. In §6.4 we apply this understanding
of disk dynamics to spiral structure, where we must deal with the additional
complications caused by interstellar gas and the birth of new stars from
it. In §6.5 we discuss the structure and dynamics of the prominent bar-like
structures that are found in the centers of many disk galaxies, including our
own. Finally, in §6.6 we discuss the collective motions of stars in the direction
perpendicular to the disk plane, which give rise to warps and other structures
that dominate the appearance of the outermost parts of many disk galaxies.
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6.1 Fundamentals of spiral structure

The majestic sweep of spiral arms across the face of a galaxy like M51 or
M100 (Plates 1 and 17) is one of the most inspiring sights in the sky. Fea-
tures such as these are more than just decorative frosting on a galactic disk.
As the primary sites of star formation, spiral arms mold the properties of
the stellar disk, as well as the chemical composition, dynamics, and thermal
balance of the interstellar gas. Their strength and shape offer probes of the
dynamics of the gas and stars in the disk. Spiral arms drive the long-term
dynamical evolution of the galactic disk, through such processes as grav-
itational scattering of stars (see §8.4.2) and angular-momentum transport
(see §§6.1.5, 6.2.6, and Appendix J). Spiral or bar-like structure in the inner
disk may also feed massive black holes in galaxy centers with gas, thereby
contributing to the luminosities of some active galactic nuclei.

Understanding the origin and evolution of spiral structure has proved
to be one of the harder problems in astrophysics. The first major attack was
made by the Swedish astronomer Bertil Lindblad, who struggled with this
problem until his death in 1965. Lindblad correctly recognized that spiral
structure arises from the interaction between the orbits and gravitational
forces of the stars of the disk. In this view he stood almost alone; at the
time of his death most astronomers believed that spiral structure is caused
by the interstellar magnetic field, which we now know is not responsible for
large-scale spiral structure (see Box 6.1). However, Lindblad’s methods have
been superseded by more powerful analytical and numerical tools.

At about the time of Lindblad’s death, two major insights ignited the
interest of the astronomical community in spiral structure, and established
much of the needed theoretical framework for the study of both spiral struc-
ture and the stability of galactic disks (see Pasha 2002, 2004 for a historical
account).

The first of these insights came from C. C. Lin and Frank Shu at MIT.
They recognized that spiral structure could be viewed as a density wave, a
periodic compression and rarefaction of the disk surface density that prop-
agates through the disk in much the same way that waves propagate over
the ocean surface. Lin and Shu also showed that many of the tools of wave
mechanics could be used to study the properties of density waves in differ-
entially rotating stellar disks. They combined these insights with a bold
hypothesis due to Lindblad: that the spiral patterns in galaxies—or at least
some galaxies—are long-lasting, in other words, that the appearance of the
pattern remains stationary (unchanged except for an overall rotation) over
many orbital periods. We shall call this the stationary spiral structure
hypothesis. These concepts led to the Lin–Shu hypothesis, that spiral
structure is a stationary density wave. In more mathematical terms, the
Lin–Shu hypothesis is that spiral structure is a neutrally stable mode of the
galactic disk, analogous to the modes of spherical stellar systems that we
examined in Chapter 5.
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Box 6.1: Magnetism and spiral structure

In the 1950s, most astronomers suspected that spiral structure was the
result of interactions between the interstellar gas and magnetic field. This
argument is no longer viable for the largest and most prominent spirals,
because spiral structure is found to be present in the old disk stars,
which are unaffected by interstellar magnetic fields (§6.1.2). However, the
magnetic field could play some role in shaping small-scale spiral structure
in gas and young stars. The following simple energy argument allows us
to assess this possibility. The energy density due to a magnetic field B is
1
2B

2/µ0 (Jackson 1999). The kinetic-energy density in a patch of the disk

with an internal spread in velocity ∆v and gas density ρ is 1
2ρ(∆v)2. If

the patch has size ∆R then the rotation of the galaxy imparts a velocity
spread of order Ω∆R, where Ω is the circular angular speed; since the
interstellar clouds have random motions as well, it is safe to assume
that ∆v ∼> Ω∆R. Setting ρ = 0.05M� pc−3 (the local gas density
according to Table 1.1) and equating the magnetic- and kinetic-energy
density yields ∆R ∼< 0.5 kpc (B/nT). Typical magnetic fields in galaxies
are ∼ 0.5 nT (Beck et al. 1996). Thus the interstellar magnetic field is
not strong enough to play a role in large-scale spiral structure, although
it may facilitate the formation of smaller features such as spurs (Kim
& Ostriker 2002), cloud complexes (Parker 1966; Basu, Mouschovias, &
Paleologou 1997) and nuclear rings (Beck et al. 1999).

The Lin–Shu hypothesis enabled theorists, for the first time, to make a
wide variety of quantitative predictions for comparison with observations of
spiral galaxies, and offered them the heady vision of computing the shapes
and other properties of spiral galaxies from first principles. Unfortunately,
we shall see that the Lin–Shu hypothesis is not correct, at least for most
galaxies: large-scale spiral structure is a density wave—the most convincing
evidence comes from near-infrared images of nearby galaxies, as we discuss
in §6.1.2—but the spiral pattern is far from stationary.

The second major discovery was that galactic disks are remarkably re-
sponsive to small disturbances. This insight came from two quite different
research projects. At Cambridge University, Peter Goldreich and Donald
Lynden–Bell investigated the evolution of small-scale disturbances in a sim-
plified model of a differentially rotating, self-gravitating fluid disk. They
found the surprising result that generic initial disturbances in the disk were
amplified—grew for a limited time while being sheared by the differential
rotation—by a factor of ten or more, even when the disk itself was safely
stable. Simultaneously, William Julian and Alar Toomre at MIT asked how
a differentially rotating stellar disk would respond to the presence of a point
mass traveling on a circular orbit within the disk. They found that the grav-
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itational field of the mass induced a unexpectedly strong spiral-shaped wake
or wave in the stars of the disk. Remarkably, the total mass enhancement
associated with the wake could exceed the mass of the perturber by an order
of magnitude or more. The results emerging from Cambridge and MIT re-
inforced one another, by showing that differentially rotating, self-gravitating
disks responded vigorously both to temporary disturbances and to steady
forcing, and by showing that this phenomenon was present in both fluid and
stellar disks. The obvious inference was that strong spiral patterns are likely
to result from a wide variety of causes—clumps of matter in the interstel-
lar gas, tidal forces from companion or satellite galaxies, or (in hindsight,
since dark halos were not then known) substructure in the dark-matter halo,
etc.—and hence that spiral structure in galaxies may mostly be transitory
rather than stationary.

The study of the dynamics of differentially rotating disks has been de-
veloped into an extensive formalism called density-wave theory, which
is central to understanding all kinds of astrophysical disks. Density-wave
theory is also the main tool for studying the gravitational stability of disk
galaxies and other astrophysical disks.

The number of reviews of spiral-structure theory is disappointingly small
for such an important subject (but see Marochnik & Suchkov 1996). Remark-
ably, the article by Toomre (1977a) is still worth careful reading, even after
several decades.

6.1.1 Images of spiral galaxies

Spiral structure is closely related to the large-scale properties of galaxies.
This relation is reflected in the Hubble classification of spirals, which was
briefly described in §1.1.3 (see Sandage & Bedke 1994 or BM §4.1.1 for more
details). The Hubble classification tells us that the properties of the spiral
arms (how tightly they are wound, how smooth they are, etc.) are correlated
with properties such as the luminosity of the bulge relative to the disk, and
the relative masses in interstellar gas and stars.

Despite these general correlations, there is a great deal of variety in
the spiral structure exhibited by galaxies, even those of the same Hubble
type. Hence the best introduction to spiral structure is to study images of
nearby spiral galaxies (Malin 1993; Sandage & Bedke 1994; see also the web-
based galleries maintained by observatories such as the Anglo–Australian
Observatory, the National Optical Astronomy Observatory, and the Hubble
Space Telescope). As an introduction, consider some of the galaxies shown
in the color insert:

(i) M100=NGC 4321 (Plate 17): This galaxy contains two major spiral
arms, each of which can be traced for almost a full revolution around the
galaxy’s center. Since the arms are fairly open and there is only a small
central bulge, the galaxy is classified as Sbc. Spirals exhibiting this high
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degree of symmetry and large-scale coherence are rare, although they are
over-represented in textbooks and image galleries because of their striking
appearance. Galaxies such as these, having long, continuous, symmetric
arms, are called grand-design spirals; presumably, they have been formed
by some large-scale global process that involves the whole galaxy. Grand-
design spirals almost always have two main arms; thus, the appearance of
the galaxy remains approximately the same if the image is rotated 180◦.
The thin dark stripes are dust lanes caused by absorption of the galaxy’s
starlight in dense clouds of gas and dust (see BM §§4.1.1, 4.4.7, 8.3.2); notice
that these generally follow the spiral arms. Other examples of grand-design
spirals are M51 (Plate 1) and M81 (Plate 8). In looking at grand-design
spiral structure, it is worth remembering that the human brain sometimes
finds long-range order in images even when none exists; this is presumably
a consequence of many millenia spent looking for tigers in the jungle.

(ii) M101=NGC 5457 (Plate 18): Here the spiral arms, though promi-
nent and well-defined, are less regular than in M100. Individual arms can be
followed only for about half a rotation, and the two arms seen in M100 have
been replaced by multiple arms which give a visual impression of branching
or bifurcating. Note the prominent dark dust lanes and the bright blue knots
of star formation that follow the spiral arms. This intermediate-scale spi-
ral structure is coherent over scales that are a significant fraction of the
galaxy size, but not over the whole galaxy. In contrast to grand-design spi-
rals, intermediate-scale spirals do not give the impression of being long-lived
features. To quote Oort (1970), “Looking at the irregularities in the actual
spiral galaxies one wonders whether the present spirals could continue to
exist for such a large number of revolutions. The problem seems particularly
acute for the outer parts of Sc spirals, like M101. . . .” The spiral structure of
the Milky Way is probably of this type.

(iii) M33=NGC 598 (Plate 19): This is one of the nearest spiral galax-
ies. It has little or no central bulge, and its arms are broken up into stars and
HII regions (see §6.1.2e); hence it is classified Scd. The arms are less regular
than in M101, though it is still classified as an intermediate-scale spiral.

(iv) M63=NGC 5055 (Plate 9): The appearance of this galaxy is quite
different from M100 or M101. Each spiral arm can be followed over only a
small angle and the overall spiral pattern is composed of many patchy arm
segments—a “swirling hotch-potch of pieces of spiral arms,” in the words of
Goldreich & Lynden–Bell (1965a). Such galaxies are often called flocculent
spirals, in contrast to grand-design or intermediate-scale spirals (Elmegreen
1981). In galaxies like this one, there is probably little or no causal connection
between the arms on opposite sides of the galaxy, and a local, rather than
global, origin seems likely. The distinction between flocculent and grand-
design structure is independent of the Hubble type: like M51, M63 is classi-
fied as Sbc. Elmegreen & Elmegreen (1987) describe the arm classification
of a large sample of galaxies.
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(v) NGC 1300 (Plate 10): Here is one of the most dramatic barred
spirals. It is classified SBb (the letter B stands for “bar”; thus NGC 1300
is a barred Sb galaxy). The two spiral arms are very symmetrical: they can
easily be followed through 180◦, and on deep images through almost a full
circle; thus the galaxy is classified as a grand-design spiral. Note that (a)
there are sharp, straight dust lanes that extend from the sides of the central
nucleus to the end of the bar; (b) the spiral arms start at the tips of the bar;
(c) at the start of each spiral arm there is a cluster of HII regions (which
look like bright stars on this image), indicating rapid star formation. These
are all common features of barred spiral galaxies.

(vi) NGC 6745 (Plate 12): This galaxy has a peculiar lopsided, warped
appearance and an extended trail of young, blue stars at the lower right.
These features are probably the result of a recent encounter with the smaller
galaxy just visible at the bottom right corner of the image. The gravitational
field from the small galaxy has compressed and shocked the interstellar gas
in NGC 6745, leading to a burst of star formation, and has dragged out the
trail of stars pointing back towards it. This image is included as a reminder
that not all galaxies have the relatively symmetrical structure seen in the
other examples here.

6.1.2 Spiral arms at other wavelengths

Images like those in Plates 17 and 10 are dominated by the light from lumi-
nous, young stars and HII regions, which delineate narrow, sharply defined
spiral arms. In the apt phrase of Baade (1963), the HII regions are “strung
out like pearls along the arms”. Since these stars live less than ∼ 10 Myr,
compared to a typical orbital period of 100 Myr in the disk, they cannot
travel far from their birthplace. We conclude that the star-formation rate in
spiral arms is much higher than in the rest of the disk.

Since the appearance of these images is so strongly affected by the young
stellar population, it is important to examine spiral galaxies at other wave-
lengths. Images in near-infrared light are particularly instructive, for two
reasons. First, absorption by dust is much less severe at longer (redder) wave-
lengths, so the distribution of stars is unobscured—the optical depth due to
dust is a factor of 10 smaller at 2.2µm (K band) than at 550 nm = 0.55µm
(V band) (see Tables 2.1 and 3.21 of BM). Second, near-infrared emission
(∼ 1–5µm) is mostly due to giant stars that are continuously produced from
the old main-sequence dwarf stars that dominate the mass. The contribu-
tion of young stars to the near-infrared flux is small, except in localized
regions of rapid star formation (Rix & Rieke 1993; Rhoads 1998). Thus,
near-infrared light traces mass, while blue light traces star formation; both
tracers are valuable but the mass is more fundamental for the dynamics of
spiral structure.

Figure 6.1 shows a near-infrared image of M51, for comparison with
Plate 1. The spiral pattern in the infrared image is similar to that traced
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Figure 6.1 An image of M51 in the near-infrared (3.6 µm), taken by the Spitzer Space
Telescope (Calzetti et al. 2005). At this wavelength the dominant emission is from old
stars, except for isolated point-like sources which are foreground stars or knots of rapid star
formation. Note the faint, diffuse tidal streamers extending from the companion galaxy
NGC 5195 (Toomre 1978). Credit: R. C. Kennicutt and the Spitzer Nearby Galaxies
Survey.

by the young, blue stars, but the arms are smoother and broader—probably
because the irregular spatial distribution of star formation sites has been
phase-mixed away in the old stars. This difference between blue and red arms
was discovered in a prescient paper by Zwicky (1955), and was confirmed and
extended by Schweizer (1976). The presence of spiral structure in the old
stars that dominate the mass is common to most grand-design spiral galaxies
(Eskridge et al. 2002), and implies that the entire stellar disk participates in
the spiral pattern; that is, there is a spiral pattern in both the surface density
of the stellar disk (seen in near-infrared light) and in the star-formation
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rate (seen in visible light). Typically, the arm traced by the young stars is
displaced slightly inside the old-star arm.

Similar broad near-infrared spiral arms are seen in other grand-design
spirals such as M100 and M81, and in galaxies with intermediate-scale arms
such as M101. The presence of spirals in the old stars and hence in the disk
mass is the strongest single piece of evidence that spiral structure in M51
and many other galaxies is a density wave, as envisaged by Lindblad, Lin,
and Shu decades ago.

What is the physical connection between the spiral density wave and the
spiral pattern in the young stars? Most likely, the gravitational field from
the density wave deflects and squeezes the streamlines of the interstellar gas,
thereby enhancing the gas density in the arms (see §6.4.1). In some cases the
gas may even pass through a shock.1 The star-formation rate is enhanced in
these high-density regions, partly because there is simply more gas mass per
unit volume, and partly because dense gas turns into stars faster (i.e., the
star-formation rate per unit mass is higher). The spiral pattern in the young
stars traces these regions of high star-formation rate.

In flocculent spirals, on the other hand, there is little or no spiral struc-
ture in the old, red disk stars (Elmegreen & Elmegreen 1984; Thornley 1996).
This result suggests that the short spiral segments in flocculent galaxies may
simply be local patches of star formation that have been sheared out into a
spiral form by differential rotation, without significant spiral structure in the
mass distribution.

It is helpful to have names for the spiral arms outlined by different
tracers. The center of the mass arm is delineated by the maximum surface
density at a given radius, which approximately coincides with the maximum
near-infrared surface brightness (although gas can also contribute to the
density). The potential arm is marked by the minimum of the gravitational
potential, which is determined from the shape of the mass arm by solving
Poisson’s equation (see Problem 6.1). The center of the gas arm is the
maximum of the gas density (see §6.4.1); and the bright-star arm is marked
by the maximum of the luminosity density due to young stars.

Spiral structure can be seen in almost every component of the disk:

(a) Dust Several of the galaxies in the plates show thin, dark dust lanes,
which curve along the spiral arms and partially mask the light from the
luminous young stars that trace the arms. Barred galaxies also show straight
dust lanes along the bar (e.g., NGC 1300 in Plate 10). Many of the properties
of the dust lanes can be explained simply by assuming that the dust-to-gas
ratio is constant, so the dust lane coincides with the gas arm. However, this
model is almost certainly oversimplified, since the mechanisms that create

1 The concept of a shock from fluid mechanics (Landau & Lifshitz 2000) is only ap-
proximately valid in this context since the interstellar gas is concentrated in clouds that
occupy only a small fraction of the disk volume; “shock” should be taken to mean “region
of greatly enhanced cloud-cloud collision rate”.
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and destroy interstellar dust—formation in stellar outflows, by coagulation,
or accretion from the gas phase; destruction in shock waves from supernovae
or young stars, by grain-grain collisions, or by sputtering—are all enhanced
in spiral arms. See Draine (2004) for a review of interstellar dust.

In most grand-design spirals the dust lanes are displaced inside the
bright-star arm. There is a natural explanation for this feature. Let us
assume that the sense of rotation of the spiral density wave relative to the
material in the disk is such that the gas and stars approach the density wave
from the inside (in the language we shall develop later in this chapter, this
occurs if spiral structure is trailing and inside corotation). If the dust lane
coincides with the gas arm, it marks the location of maximum density in the
interstellar gas. This high density promotes the formation of massive stars,
but only after the time lag of a few Myr needed for the protostellar clouds
to collapse. The bright-star arm is therefore displaced downstream (outside)
from the gas arm. For a typical relative velocity between the gas and the
spiral pattern of ∼ 100 km s−1, the displacement will be a few hundred pc.

(b) Relativistic electrons The interstellar gas in galaxies contains both
relativistic electrons and magnetic fields. The electrons emit synchrotron
radiation as they spiral in the magnetic field, which is detectable as polarized
non-thermal radio emission (BM §8.1.4). The rate of energy loss per unit
volume is proportional to neB

2, where ne is the electron density and B is the
magnetic field strength. Since the magnetic field is frozen into the interstellar
gas (Kulsrud 2005), compression of the gas in a spiral arm increases both
ne and B, and therefore can dramatically enhance the synchrotron emission.
As this simple model would predict, well-defined radio spiral arms are seen
in M51, lying inside the bright-star arms, and the magnetic field is oriented
along the arms (Figure 6.2). In the nearby grand-design spiral M81 (Plate 8),
however, the radio arms are broader and centered on the bright-star arms
(Kaufman et al. 1989), possibly because they are strongest where supernova
remnants enhance ne. Moreover, the large-scale magnetic fields are strongest
in the interarm region (Beck et al. 1996). Thus the relation of the radio arms
to the other arm tracers remains somewhat unclear.

(c) Molecular gas Figure 6.3 shows the distribution of emission from
the carbon monoxide (CO) molecule in M51, as traced by the rotational
transition with wavelength 2.6 mm (BM §8.1.4). The CO luminosity is be-
lieved to trace the total mass in molecular gas (mostly H2). The narrow
spiral arms delineated by CO coincide closely with the dust lanes (Rand &
Kulkarni 1990), as we would expect if the CO arms trace high-density gas.
The enhanced CO emission arises not only because the gas density is higher,
but also because the higher density both enhances the rate of collisional
excitation and promotes the formation of new molecules.

(d) Neutral atomic gas Spiral structure is also seen in the surface den-
sity of neutral atomic hydrogen (HI), as measured by the 21-cm hyperfine
transition (BM §8.1.4)—see Plates 5, 6, and 20. For nearby galaxies, the
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Figure 6.2 Radio emission in M51 at 6 cm wavelength, arising mainly from synchrotron
radiation. The map has a resolution of 8 arcsec and is based on combined observations with
the Very Large Array and the Effelsberg telescope. The vectors give the orientation of the
interstellar magnetic field. The map is overlaid on an optical image of the galaxy. Credit:
A. Fletcher and R. Beck (Max Planck Institute for Radio Astronomy, Bonn, Germany).
See also Beck et al. (1996).

HI emission can also provide a detailed kinematic map of the mean gas ve-
locity as a function of position in the galaxy disk, which shows how the
gas is deflected or shocked by the gravitational field from the spiral arms,
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Figure 6.3 Emission from molecular gas in M51, as traced by the 2.6-mm CO line. The
contours are logarithmically spaced. The vertical bar represents a distance of 1 kpc, and
the adjacent small circle shows the resolution of the map. The companion galaxy NGC
5195 is just off the figure to the top. From Regan et al. (2001), reproduced by permission
of the AAS.

and thus provides a further probe of the dynamics of spiral structure. The
best-studied example is M81 (Visser 1980; Kaufman et al. 1989; Adler &
Westpfahl 1996).

In several grand-design spirals, the HI arms coincide with the bright-
star arms. This finding suggests that the enhanced density of HI in the arms
does not arise from the compression of the gas, but rather from dissociation
of molecular hydrogen by ultraviolet radiation from the young stars formed
in the arm (Tilanus & Allen 1989). Thus in some cases the HI arms may be
a product, rather than a precursor, of rapid star formation.

(e) HII regions These are regions of ionized gas that surround hot stars
(see BM §8.1.3). HII regions are visible in the Hα emission line of the Balmer
series at 656 nm, which arises when a proton recombines with a free electron
to form neutral hydrogen in an excited state, which then cascades down to
the ground state by emitting a series of photons. HII regions are also visible
at radio frequencies from their bremsstrahlung and radio recombination lines
(see BM §8.1.4). The HII regions generally trace the bright-star spiral arms;
groups of them are seen in several of the color plates as pinkish knots.

To summarize, in M51 the spiral arms seen in dust, non-thermal radio
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continuum emission, and CO all coincide, and presumably mark the high-
density gas arms caused by orbit crowding. The spiral arms in HI, young
stars, and HII regions are also coincident, and lie outside the gas arms. All
of these features can be explained qualitatively by density-wave theory, in
which the displacement of the bright-star arms from the gas arms marks the
time lag required for star formation. If the spiral is trailing (as described in
the next subsection), then this displacement implies that the wave must be
moving more slowly than the disk material. However, these observations do
not necessarily show that the spiral structure is stationary over many orbital
periods—for example, we shall argue below (§6.4.3) that the grand-design
spiral in M51 is probably a transitory event, due to a recent encounter with
the companion galaxy NGC 5195.

Many of the features seen in M51 are shared by other nearby grand-
design spirals such as M81 and M100 (Kaufman et al. 1989; Knapen & Beck-
man 1996). It is far from clear, however, that the conclusions we have drawn
about grand-design spirals can be applied to galaxies with intermediate-scale
or flocculent spiral structure. For example, in flocculent spirals the spiral
pattern in the old stars is weak or non-existent (Elmegreen & Elmegreen
1984; Thornley 1996), and the distribution of CO is more uniform and less
concentrated in narrow arms (Regan et al. 2001).

We close this discussion by repeating a prescient comment made by Oort
(1962) on the relation between spiral structure and the interstellar gas. The
principal features that distinguish lenticular or S0 galaxies from spirals are
the low density of cold interstellar gas, the absence of young stars, and the
absence of spiral arms. Only a tiny fraction of gas-poor disk galaxies exhibit
spiral arms, and most of these may be spirals that have recently been stripped
of gas (Strom, Jensen, & Strom 1976; Kennicutt & Edgar 1986; Yamauchi
& Goto 2004). Thus, even though spiral structure is present in the old disk
stars, interstellar gas is essential for persistent spiral structure.

6.1.3 The geometry of spiral arms

(a) The strength and number of arms Disk galaxies are oriented
at random to the line of sight. However, because they are thin, flat, and
approximately axisymmetric, we can use the surface-brightness distribution
in the sky plane to deduce the surface brightness that would be seen in a face-
on view. The two principal uncertainties are the effects of dust obscuration
and deviations from axisymmetry (BM §4.4), but these are usually significant
only for galaxies that are seen nearly edge-on.

Consider a disk galaxy with face-on surface brightness I(R, φ), where
(R, φ) are the usual polar coordinates in the disk plane, centered on the
galactic center. If the surface brightness distribution is unchanged under a
rotation through 2π/m radians, I(R, φ+2π/m) = I(R, φ), the galaxy is said
to have m-fold rotational symmetry and m arms (m > 0).
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Figure 6.4 Leading and trail-
ing arms.

The strength of the spiral structure can be parametrized by the ampli-
tude of its Fourier components, defined by expressing the surface brightness
as a Fourier series (eq. B.66),

I(R, φ)

I(R)
= 1 +

∞∑

m=1

Am(R) cosm[φ− φm(R)] (Am(R) > 0). (6.1)

Here I(R) ≡ (2π)−1
∫ 2π

0 dφ I(R, φ) is the azimuthally averaged surface bright-
ness at radius R, and Am and φm are the amplitude and phase of the mth
Fourier component.

If a single Fourier component m dominates the spiral structure, the
strength can also be parametrized by the arm-interarm surface-brightness
ratio K, which is related to Am by

K =
1 +Am
1 −Am

. (6.2)

Most grand-design spiral galaxies have two arms and approximate two-
fold rotational symmetry. In near-infrared light, which traces the surface
density, the amplitude of the arms lies in the range 0.15 ∼< A2 ∼< 0.6 (Rix
& Zaritsky 1995), corresponding to arm-interarm ratios of 1.4 ∼< K ∼< 4.
Grand-design spirals with m 6= 2 are rare, although a significant fraction
of disk galaxies exhibit lopsided distortions (A1 ∼> 0.2) in their outer parts,
and careful Fourier decomposition occasionally reveals three-armed spiral
patterns (Rix & Zaritsky 1995). The dominance of two-armed patterns in
grand-design spirals is a striking observational fact that demands explanation
in a successful theory of spiral structure.

(b) Leading and trailing arms Spiral arms can be classified by their
orientation relative to the direction of rotation of the galaxy. A trailing arm
is one whose outer tip points in the direction opposite to galactic rotation,
while the outer tip of a leading arm points in the direction of rotation (see
Figure 6.4).

It is not easy to determine observationally whether the arms of a given
galaxy are leading or trailing. In face-on galaxies we cannot determine the
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Figure 6.5 The appearance of leading and trailing arms. Galaxy A has leading arms,
while galaxy B has trailing arms, but both exhibit the same image on the sky and the
same radial-velocity field.

direction of rotation from radial velocities, and in edge-on galaxies we cannot
see the spiral arms. Even in galaxies with intermediate inclinations the task
is difficult, as we now show. Consider the two galaxies A and B in Figure 6.5.
In both cases the (x, y) plane is the celestial sphere and the z axis points
towards the Sun. Galaxy A is inclined so that the side nearest the Sun is in
the half plane y > 0, while galaxy B is closer in the half plane y < 0. We have
marked a spiral pattern and a rotation direction on both galaxies; the spiral
in A is leading and in B is trailing. Despite this difference the appearance
of both galaxies as seen from the Sun is the same; Figure 6.5 shows that
in both systems the spiral pattern curves in an anti-clockwise direction as
one moves out from the center, and the side with x > 0 has radial velocity
towards the Sun. Thus radial-velocity measurements cannot by themselves
distinguish leading and trailing spirals in thin disks.

To determine whether a given galaxy leads or trails, we must determine
which side of the galaxy is closer to us. A variety of clues can be used to
do this. If the inner disk is dusty, so it absorbs a significant fraction of the
starlight passing through it, then the surface brightness of the bulge at a
given distance along its apparent minor axis will be lower on the near side,
and the number density of any population with a spheroidal distribution
(such as globular clusters) will also be lower (see Figure 6.6). Similarly, dust
filaments in the inner disk obscure a larger fraction of the bulge light on the
near side, and hence are more prominent.

In almost all cases in which the answer is unambiguous, the spiral arms
trail (Hubble 1943; de Vaucouleurs 1959; Pasha 1985). The arms in our own
Galaxy trail as well (BM §4.3). There are occasional reports of galaxies with
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Figure 6.6 Distinguishing near and far sides of a disk galaxy. The dots represent objects
such as novae or globular clusters. There is an obscuring dust layer in the central plane of
the disk which is shown as a line in the side view at left. In the observer’s view, at right,
objects behind the dust layer (open circles) are fainter and hence fewer are present in a
flux-limited survey.

leading arms (Pasha 1985; Buta, Byrd, & Freeman 2003), and transitory one-
armed leading spirals can be produced by plausible dynamical processes, for
example encounters with companion galaxies on retrograde orbits. Never-
theless, in the vast majority of cases spiral arms are trailing.

(c) The pitch angle and the winding problem The pitch angle α
at any radius R is the angle between the tangent to the arm and the circle
R = constant (see Figure 6.8); by definition 0 < α < 90◦.

It is useful to think of the center of each arm as a mathematical curve
in the plane of the galaxy, which we write in the form φ+ g(R, t) = constant
where t is the time. Suppose that the galaxy has m-fold rotational symmetry,
that is, the arm pattern is unchanged if we rotate the galaxy by 2π/m radians
(m > 0). Then a more convenient expression, which defines the locations of
all m arms, is

mφ+ f(R, t) = constant (mod 2π), (6.3)

where f(R, t) ≡ mg(R, t) is the shape function. It is also useful to intro-
duce the radial wavenumber

k(R, t) ≡ ∂f(R, t)

∂R
. (6.4)

The sign of k determines whether the arms are leading or trailing. If, as
we shall always assume, m > 0 and the galaxy rotates in the direction of
increasing φ, then

leading arms ⇔ k < 0 ; trailing arms ⇔ k > 0. (6.5)

The pitch angle is given by

cotα =

∣∣∣∣R
∂φ

∂R

∣∣∣∣ , (6.6)
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Figure 6.7 Pitch angles (eq. 6.6) in degrees, as a function of Hubble type (Ma 2002).

where the partial derivative is evaluated along the curve (6.3). Thus

cotα =

∣∣∣∣
kR

m

∣∣∣∣ . (6.7)

Figure 6.7 shows the pitch angle as a function of Hubble type for a
sample of spiral galaxies. The pitch angle is correlated with Hubble type—
as it should be, since openness of the spiral arms is one of the criteria in
Hubble’s classification scheme—but there is substantial scatter. The typical
spiral has α ' 10◦–15◦.

We now conduct a simple thought experiment. At some initial time
t = 0 we paint a narrow stripe or arm radially outward across the disk of a
galaxy. The initial equation of the stripe is φ = φ0, where φ is the azimuthal
angle (Figure 6.8). The disk rotates with an angular speed Ω(R), where R is
the distance from the center of the disk. The disk is said to be in differential
rotation if Ω(R) is not independent of R. When the disk is in differential
rotation the arm does not remain radial as the disk rotates. The location of
the arm φ(R, t) is described by the equation

φ(R, t) = φ0 + Ω(R)t. (6.8)

The pitch angle is given by equation (6.6),

cotα = Rt

∣∣∣∣
dΩ

dR

∣∣∣∣ . (6.9)

For a galaxy with a flat circular-speed curve, RΩ(R) = vc = 200 km s−1,
R = 5 kpc, and t = 10 Gyr, the pitch angle would now be α = 0.14◦, far



6.1 Fundamentals of spiral structure 473

a

R

Xt

X(R)

ø = ø0

Figure 6.8 How a material arm winds up in
a differentially rotating disk. The rotation law
is Ω(R) ∝ R−1.

smaller than observed pitch angles. This discrepancy is called the winding
problem: if the material originally making up a spiral arm remains in the
arm, the differential rotation of the galaxy winds up the arm in a time short
compared with the age of the galaxy. A remarkably clear statement of the
winding problem was given over a century ago by Wilczynski (1896).

There are several possible ways to resolve the winding problem:
(i) It may be that the spiral pattern is statistically in a steady state, but

that any individual spiral arm is quite young. If we continuously dribble
cream into a freshly stirred cup of coffee, each droplet briefly takes on
a spiral form before it is stretched out and disappears. Similarly, if
localized luminosity features are continuously produced in a galactic
disk (say, by the collapse of a gravitationally unstable patch, leading to
a burst of star formation) each feature will be sheared out into a spiral,
which winds up more and more but lasts only until the luminous young
stars die off. This model, which we discuss further in §6.4.3, is plausible
for flocculent galaxies but cannot explain grand-design spirals.

(ii) As we have discussed, the Lin–Shu hypothesis is that spiral structure is a
stationary density wave in the stellar density and gravitational potential
of the disk, and hence not subject to the winding problem.2

(iii) The spiral pattern may be a temporary phenomenon resulting from a
recent violent disturbance such as a close encounter with another galaxy.

2 Other types of stationary wave are possible. New stars that explode as supernovae
induce further star formation in adjacent regions—direct evidence of this is seen in su-
pershells, complex HI structures with radii of several hundred parsecs that appear to be
formed by a sequence of supernovae, and are often bordered by young stars. Mueller &
Arnett (1976) and Gerola & Seiden (1978) have suggested that star formation induced
in this way could lead to a detonation wave of star formation that propagates across
the entire galaxy like an infectious disease, and takes the form of a grand-design spiral.
However, a wave of this kind cannot explain the presence of spiral structure in the old disk
stars, and fine tuning is needed to ensure that induced star formation is reliable enough to
propagate across the whole galaxy, but not so strong that it consumes all of the interstellar
gas.
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Encounters may indeed be responsible for many of the most striking
grand-design spirals. For example, the prototypical grand-design spiral
M51=NGC 5194 has recently suffered an encounter with its companion
galaxy NGC 5195 (Plate 1 and Figure 6.25).

(d) The pattern speed According to the Lin–Shu hypothesis, spiral
structure is a wave pattern that rotates rigidly. In this case we may define
the pattern speed Ωp to be the angular speed of rotation of the spiral wave
as viewed from an inertial frame. If the amplitude of the spiral pattern is
small, the material in the galaxy travels in nearly circular orbits at an angular
speed that varies with radius, Ω(R), which we can assume to be positive. The
radius at which Ωp = Ω(R), the corotation radius or corotation resonance,
was already introduced in §3.3.3 in the context of weak bars. Since the
material angular speed Ω(R) is a decreasing function of radius for almost all
galaxies, a spiral pattern at radius R with Ω(R) > Ωp is said to lie “inside
corotation,” while a pattern with Ω(R) < Ωp is “outside corotation.”

As we discussed in §6.1.2a, in grand-design spirals the dust lanes usually
lie inside the arms traced by luminous stars, and this displacement may
reflect the time lag between the maximum compression of the gas and the
formation of stars. This explanation requires that the gas and stars approach
the density wave from the inside. Since spiral arms are usually trailing, the
gas must rotate faster than the spiral pattern, rather than vice versa; in
other words, the pattern in grand-design spirals is usually inside corotation.

Several methods of varying reliability are used to estimate the pattern
speed:

(i) We can fit the observed spiral pattern to analytic or numerical models
of the dynamics of the galactic disk that predict the pitch angle as a function
of pattern speed and radius, such as the dispersion relation that we derive
in §6.2.2 below. This method requires that we understand completely the
complex dynamics of the disk, that we have accurate estimates of the disk
surface density, velocity dispersion, and circular-speed curve, and that a
well-defined pattern speed exists.

(ii) We can use the surface-density distribution measured from the near-
infrared light to calculate the gravitational potential in the disk, including
the non-axisymmetric potential due to the spiral arms. We then compute
the streamlines for cold gas moving in this potential, as a function of pattern
speed, and find the pattern speed at which the model line-of-sight velocities
best match the velocities determined from the spectral lines of HI and CO
(Kranz, Slyz, & Rix 2003).

(iii) In §3.3.3 on weak bars, we introduced the Lindblad radii, at which
the apparent frequency of an m-armed perturbation with a fixed pattern
speed, m(Ω − Ωp), resonates with the epicycle frequency κ of a star. At
these radii, cold gas will experience strong radial forcing, leading to shocks
and thus (perhaps) to rapid star formation. These regions of intense star
formation may be visible as rings (Buta 1995). The pattern speed can be
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determined from the Lindblad radii once the circular-speed curve is known.
Unfortunately, the epicycle frequency depends on the first derivative of the
angular speed (eq. 3.80), so the result is sensitive to uncertainties in the
circular-speed curve. See §6.5.2d for a discussion of rings in barred galaxies.

(iv) Suppose that there is some component of the galaxy that satisfies
the continuity equation, such as old disk stars, and that we can determine
the mean line-of-sight velocity v‖ and surface number density or surface
brightness Σ of this population at every point on the disk. Let the (x, y)
plane coincide with the disk, and let (x′, y′) be coordinates that rotate with
the pattern speed Ωp = Ωpêz. The disk is stationary in the rotating frame,
so in that frame the continuity equation (F.4) reads

∂

∂x′
(Σv′x) +

∂

∂y′
(
Σv′y

)
= 0. (6.10)

The velocity in an inertial frame is v = v′ + Ωp × x′ (see §3.3.2), so

∂

∂x′
[Σ(vx + Ωpy

′)] +
∂

∂y′
[Σ(vy − Ωpx

′)]

=
∂

∂x
(Σvx) +

∂

∂y
(Σvy) + Ωpy

∂Σ

∂x
− Ωpx

∂Σ

∂y
= 0,

(6.11)

where in the last line we have dropped the primes on x and y since we can
choose the rotating and non-rotating coordinates to coincide at any given
instant.

We now integrate this equation over x from −∞ to ∞. The first and
third terms yield vanishing integrals because Σ → 0 as |x| → ∞. Thus we
are left with

∂

∂y

(∫ ∞

−∞
dxΣvy − Ωp

∫ ∞

−∞
dxΣx

)
= 0. (6.12)

This result implies that the quantity in parentheses is independent of y;
since it must vanish as |y| → ∞ it must be zero, and we have (Tremaine &
Weinberg 1984a)

Ωp =

∫∞
−∞ dxΣvy∫∞
−∞ dxΣx

. (6.13)

If the x axis is chosen to be the line of nodes of the disk (the intersection of
the disk plane with the sky plane), then vy = v‖/ sin i where v‖ is the line-
of-sight velocity relative to the center of the galaxy, and i is the inclination,
the angle between the disk normal and the line of sight. Thus the quantities
on the right side of equation (6.13) can all be measured. Each value of y
yields an independent measurement of the pattern speed, and if all is well
these measurements will be consistent.

The crucial assumptions in this method are that there is a well-defined
pattern speed—that is, that the surface density Σ and velocity field v are
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Figure 6.9 Determination of the pattern speed in M100 (Plate 17), using emission from
molecular gas. The numerator (vertical axis) and denominator (horizontal axis) of the
expression in equation (6.13), plotted for each of 13 integration paths parallel to the
major axis of the galaxy. The slope of the line from the origin to each data point gives an
independent measurement of the pattern speed. The best-fit slope, shown by the line, is
Ωp = 28 km s−1 kpc−1. From Rand & Wallin (2004).

stationary in time except for an overall rotation—and that the population
we are examining satisfies the continuity equation—that is, its members are
neither created nor destroyed. The second condition is satisfied by old disk
stars (cf. §4.1.1a) but not by luminous young stars, which are short-lived,
or by HI gas, since atomic gas can be converted into molecular gas and vice
versa (page 467).

So far the method has mostly been used to measure the pattern speeds of
bars in SB0 and SBa galaxies with little or no recent star formation (§6.5.1); it
is harder to apply to spiral galaxies because the luminous young stars obscure
the contribution of the old stars to the spectrum. Rand & Wallin (2004) have
applied this method to spirals in which the interstellar gas is dominated by
the molecular phase, arguing that in this case a large fraction of the molecular
gas cannot be rapidly created or destroyed so the continuity equation should
apply. They derive pattern speeds for five galaxies including M100, for which
they find Ωp = (28 ± 5) km s−1 kpc−1, consistent with estimates from other
methods (Figure 6.9).

(v) The pattern speeds of bars are easier to measure than the pattern
speeds of spirals (§6.5). Since the spiral arms usually appear to emerge from
the tips of the bar, and since strong bars are expected to drive spiral struc-
ture, it is natural to assume that the pattern speeds of the spiral and the
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bar are equal. Unfortunately this appealing argument leads to an unsettling
result: in general the corotation radius for a bar lies close to the end of the
bar, which implies that most of the spiral pattern will lie outside corotation.
However, the dust lanes in barred spirals lie inside the arms traced by lumi-
nous stars, so, as we argued at the start of this section, the spirals should
lie inside corotation. Sellwood & Sparke (1988) suggest that the flaw in this
chain of argument is that in fact the spirals have a much smaller pattern
speed than the bar. They illustrate from N-body simulations that the spiral
appears to be connected to the tips of the bar for most of the beat period
between the two pattern speeds, even when they are quite different.

All of these methods assume the stationary spiral structure hypothesis,
that is, that the spiral pattern actually has a well-defined pattern speed.
The agreement of the points in Figure 6.9 with the dashed line provides
some reassurance that this assumption is correct in M100. However, a se-
cure confirmation of the stationary spiral structure hypothesis would require
accurate, consistent measurements of the spiral pattern speed at a variety of
radii, using several different methods. We are far from achieving this goal
with any galaxy, including our own.

6.1.4 The anti-spiral theorem

Newton’s equations of motion and law of gravitation are time-reversible. If
we make a movie of the trajectories of N point masses interacting through
their mutual gravity, the trajectories seen when we run the movie backwards
are also dynamically possible. Thus, if the dynamics of a spiral galaxy is
governed by Newton’s equations, and the galaxy is in a stationary state—that
is, if there is some frame rotating at a pattern speed Ωp in which the galaxy’s
df is time-independent—then a time-reversed movie of the galaxy should
also represent a possible steady-state solution of the equations. However,
time reversal changes trailing spirals into leading spirals, by changing the
sign of all velocities without changing the instantaneous luminosity density.
This argument is the basis of the anti-spiral theorem, which states that
if a stationary solution of a time-reversible set of equations has the form of
a trailing spiral, then there must be an identical solution in the form of a
leading spiral (Lynden–Bell & Ostriker 1967).

The anti-spiral theorem implies that spiral galaxies cannot be under-
stood simply as steady-state solutions of the collisionless Boltzmann equation
and Newton’s law of gravity—the prevalence of trailing spirals demands an
additional ingredient in the physics. The most likely explanations are that
either (i) the spirals are not in a steady state (for example, they are a result
of a recent disturbance), or are somehow continuously regenerated; or (ii)
the spiral form is influenced by processes that are not time-reversible, such
as dissipation in the interstellar gas or absorption at a Lindblad resonance.
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6.1.5 Angular-momentum transport by spiral-arm torques

Spiral structure produces a spiral gravitational field, which exerts torques
and transfers angular momentum from one part of the disk to another. We
now investigate the strength of these torques and their consequences.

Consider a galaxy with disk density ρd(x, t) and potential Φ(x, t). We
assume that the disk is symmetric about the plane z = 0, and focus on
the disk material outside a cylinder of radius R0 whose symmetry axis is
the z axis. The torque per unit mass exerted by the gravitational potential
is −∂Φ/∂φ, so the z-component of the torque exerted on the disk material
outside this cylinder is

CG(R0) = −
∫ ∞

R0

dRR

∫ 2π

0

dφ

∫ ∞

−∞
dz ρd

∂Φ

∂φ
. (6.14)

In principle the torque due to a given spiral density field can be found directly
from this formula, but there is a more instructive approach. We assume that
the non-axisymmetric component of the potential is generated by the disk,
so ∂Φ/∂φ can be replaced by ∂Φd/∂φ, where Φd is the disk potential, and
ρd is related to Φd by Poisson’s equation (2.10). Using equation (B.52) for
∇2 in cylindrical coordinates, we have

CG(R0) = − 1

4πG

∫ ∞

R0

dRR

∫ 2π

0

dφ

∫ ∞

−∞
dz

×
[

1

R

∂

∂R

(
R
∂Φd

∂R

)
+

1

R2

∂2Φd

∂φ2
+
∂2Φd

∂z2

]
∂Φd

∂φ
.

(6.15)

The contribution of the second term in square brackets vanishes, since
∫ 2π

0

dφ
∂2Φd

∂φ2

∂Φd

∂φ
= 1

2

∫ 2π

0

dφ
∂

∂φ

(
∂Φd

∂φ

)2

= 0. (6.16)

The remaining terms can be integrated by parts with respect to R and z:

CG(R0) = − 1

4πG

∫ 2π

0

dφ

∫ ∞

−∞
dz R

∂Φd

∂R

∂Φd

∂φ

∣∣∣∣
R=∞

R=R0

− 1

4πG

∫ ∞

R0

dRR

∫ 2π

0

dφ
∂Φd

∂z

∂Φd

∂φ

∣∣∣∣
z=∞

z=−∞

+
1

4πG

∫ ∞

R0

dRR

∫ 2π

0

dφ

∫ ∞

−∞
dz

(
∂Φd

∂R

∂2Φd

∂φ∂R
+
∂Φd

∂z

∂2Φd

∂φ∂z

)
.

(6.17)
The final line can be shown to vanish, using manipulations similar to those
in (6.16). The terms that involve the potential at z → ±∞ or R → ∞ also
vanish, since the potential decays to zero at large distances. Hence

CG(R0) =
R0

4πG

∫ 2π

0

dφ

∫ ∞

−∞
dz

∂Φd

∂R

∂Φd

∂φ

∣∣∣∣
R=R0

. (6.18)
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This formula can be evaluated explicitly for tightly wound spiral struc-
ture, in which the pitch angle is small or the radial wavenumber k satisfies
|kR| � 1 (we shall discuss this approximation in greater detail in §6.2.2).
Let us assume that the disk is razor-thin, and that the non-axisymmetric
component of the surface density has the form

Σd(R, φ) = Σ1(R) cos[mφ+ f(R)] (m > 0), (6.19)

where Σ1(R) is a slowly varying function of radius, f(R) is the shape func-
tion (eq. 6.3), df/dR = k (eq. 6.4), and |kR| � 1; we may neglect any time
dependence since the torque is determined by the instantaneous surface den-
sity and potential. The corresponding potential is found by inspecting the
real parts of equations (6.29) and (6.30) below:

Φd(R, φ, z) = Φ1(R)e−|kz| cos[mφ+ f(R)], where Φ1 = −2πGΣ1

|k| .

(6.20)
The torque (6.18) is then

CG(R0) = sgn(k)
mR0Φ2

1

4G
= sgn(k)

π2mR0GΣ2
1

k2
, (6.21)

where sgn(k) = ±1 depending on the sign of k. In deriving this result we
neglect derivatives of Σ1(R) in comparison to radial derivatives of cos[mφ+
f(R)], since |kR| � 1 while Σ1(R) is slowly varying.

Since m > 0, the sign of the torque depends only on the sign of the
wavenumber k and hence on whether the spiral arms are leading or trailing:
trailing arms (k > 0) exert positive gravitational torque on the outer parts
of the disk, and thereby transport angular momentum from the inner to the
outer disk, while leading arms transport angular momentum inward.

To estimate the strength of this torque, consider a Mestel disk, in which
the unperturbed surface density is Σ0(R) = v2

0/(2πGR) (eq. 4.158), and
suppose that the amplitude of the spiral surface density pattern is a fraction
Am of the axisymmetric density, Σ1(R) = AmΣ0(R). The total angular
momentum contained in the unperturbed disk inside radius R0 is

L(R0) = 2π

∫ R0

0

dRΣ0(R)v0R
2 =

v3
0R

2
0

2G
. (6.22)

After a time t, the fraction of the angular momentum initially inside R0 that
has been transported outside R0 by the spiral gravitational torque is

CGt

L(R0)
= 1

2m sgn(k)
A2
m

(kR0)2

v0t

R0

= sgn(k)
tan2 α

m
πA2

mNrot,

(6.23)
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where Nrot is the age in units of the local rotation period 2πR0/v0, and
equation (6.7) has been used to write kR0 in terms of the pitch angle α.

We have seen in §6.1.3 that typical grand-design spirals have surface-
density amplitudes A2 in the range 0.15–0.6, pitch angles of 10◦–15◦, cor-
responding to tanα ' 0.2–0.3, and ages Nrot ' 50–100. For these values
the ratio of the time-integral of the torque to the reservoir of angular mo-
mentum in equation (6.23) varies from about 0.05 to 5. We conclude that
in some cases spiral gravitational torques might significantly rearrange the
angular-momentum distribution in the galactic disk over the galactic age of
10 Gyr, if the spiral pattern were permanently present. A similar conclu-
sion was reached by Gnedin, Goodman, & Frei (1995) for the grand-design
spiral M100 (Plate 17). These rather large values of CGt/L(R) for strong,
open, grand-design spirals suggest that such patterns cannot be permanent,
since they would dramatically alter the galaxy’s angular-momentum distri-
bution on a timescale much less than its age. In other words, it is likely that
prominent grand-design spirals persist for only ∼< 1 Gyr.

Gravitational torques tell only part of the story. Just as ordinary sound
waves carry momentum and energy by advection (Appendix F.3.1), spiral
waves carry angular momentum and energy (see Appendix J). The advective
transport is generally comparable in magnitude to transport by gravitational
torques. The rate at which angular momentum is transported out of the
region inside R0 is the sum of the gravitational torque CG(R0) and the
advective current of angular momentum CA(R0) (see §6.2.6).

Angular-momentum transport by spiral arms is an example of secular
evolution in galaxies, slow changes due to internal dynamical processes.
Other examples of secular evolution include gas inflow resulting from dis-
sipation in the interstellar gas, the excitation of random velocities of disk
stars by the gravitational fields from molecular clouds or spiral arms (often
called disk “heating”; see §8.4), the conversion of the inner parts of disks
into thick structures that resemble bulges (pseudobulges), and the slowing
of bar pattern speeds due to dynamical friction from the dark halo (§8.1.1d).
Early in the history of the universe, most galaxy evolution was due to ex-
ternal processes such as mergers (§§9.2 and 9.3). As a result of the aging
and expansion of the universe, the rate of infall and mergers has declined
steadily with time (Figure 9.13). Thus galaxy evolution is experiencing a
gradual transition from an early phase dominated by rapid, violent, external
events such as mergers to a late phase dominated by slower, more gradual
internal processes (Kormendy & Kennicutt 2004).
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Figure 6.10 The appearance of elliptical orbits in a frame rotating at Ωp = Ω − nκ/m.
Left: (n,m) = (0, 1), solid line; (1, 2), dotted line; (1,−2), dashed line. Right: (n,m) =
(2, 3).

6.2 Wave mechanics of differentially rotating disks

6.2.1 Preliminaries

(a) Kinematic density waves The galactocentric distance of a particle
that orbits in the equatorial plane of an axisymmetric galaxy is a periodic
function of time with period Tr (see eq. 3.17). During the interval Tr the
azimuthal angle increases by an amount ∆φ (eq. 3.18b). These quantities
are related to the radial and azimuthal oscillation frequencies Ωr = 2π/Tr
and Ωφ = ∆φ/Tr. In general, ∆φ/(2π) is irrational, so the orbit forms a
rosette figure such as the one shown in Figure 3.1.

Now suppose that we view the orbit from a frame that rotates at angular
speed Ωp. In this frame, the azimuthal angle is φp = φ−Ωpt, which increases
in one radial period by ∆φp = ∆φ − ΩpTr. Therefore we can choose Ωp so
that the orbit is closed; in particular, if ∆φp = 2πn/m, where m and n are
integers, the orbit closes after m radial oscillations. In this case

Ωp = Ωφ − nΩr
m

' Ω − nκ

m
, (6.24)

where in the last equality we have approximated Ωφ and Ωr by their values
for nearly circular orbits, the circular frequency Ω and the epicycle frequency
κ (see eqs. 3.79). The appearance of the closed orbits in the rotating frame
is shown in Figure 6.10.

In general Ω(R) − nκ(R)/m will be a function of radius, so no single
choice for Ωp can ensure that orbits at all radii are closed. In Figure 6.11 we
show the behavior of Ω−nκ/m for several values of m and n. The curves are



482 Chapter 6: Disk Dynamics and Spiral Structure

Figure 6.11 Behavior of
Ω − nκ/m in: (top) the
isochrone potential (eq. 2.47);
(bottom) Model I for our
Galaxy, described in §2.7.

plotted for two representative galactic circular-speed curves, the isochrone
potential (eq. 2.47) and Model I for our Galaxy, as described in Table 2.3.

This diagram exhibits an intriguing fact noticed by Lindblad many
decades ago: while most of the Ω − nκ/m curves vary rapidly with radius,
the curve for n = 1,m = 2 (or n = 2,m = 4, etc.) is relatively constant
across much of the galaxy.3 To understand the significance of Lindblad’s re-

3 This result is related to the shape of galaxy circular-speed curves in their inner parts.
In most galaxies the circular speed rises linearly from the center with a steep slope. Thus,
both Ω and κ are large at small radii, so for most values of m and n, |Ω − nκ/m| is
much larger near the center than at large radii. However, in the central region where the
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mark, let us suppose for the moment that Ω − 1
2κ were exactly constant,

and equal to some number Ωp. Then in a frame rotating at Ωp the orbits of
the type shown as a dotted line in the left panel of Figure 6.10a would be
exactly closed at every radius. Hence we could set up a nested, aligned set
of these orbits covering a range of radii, as shown in Figure 6.12a. If we fill
up these orbits with stars we create a bar-like pattern, which is stationary
in the rotating frame and appears as a density wave rotating at the pattern
speed Ωp in the inertial frame. By rotating the axes of the ellipses we can
create leading or trailing spiral density waves as in Figure 6.12b and c.

In a real galaxy Ω − 1
2κ is not exactly constant. Hence, no matter

what the value of Ωp, most orbits are not exactly closed. The orientations
of different orbits drift at slightly different speeds, so the pattern tends to
twist or wind up. This is a modified version of the winding problem which
we have already discussed—but now applied to density waves rather than
material arms—and the rate of winding can be calculated in a similar way.
Let φp(R, t) be the angle of the major axis of the pattern, as viewed in the
frame rotating at the pattern speed. Let us suppose that the major axes
are aligned at time t = 0; thus φp(R, 0) = φ0. The drift rate is ∂φp/∂t =
Ω − 1

2κ− Ωp; thus

φp(R, t) = φ0 + [Ω(R) − 1
2κ(R) − Ωp]t (6.25)

(cf. eq. 6.8). Equation (6.6) now gives the pitch angle as

cotα = Rt

∣∣∣∣
d(Ω − 1

2κ)

dR

∣∣∣∣ . (6.26)

In Model I for the Galactic potential of §2.7, the average of
∣∣R d(Ω − 1

2κ)/dR
∣∣

is about 7 km s−1 kpc−1 between 5 and 10 kpc, and after t = 10 Gyr the pitch
angle in this region is about α = 0.8◦. For comparison we computed after
equation (6.9) that a material arm would have α < 0.2◦ in a galaxy with a
similar circular-speed curve. Thus, the wave pattern winds up more slowly
than the material arm by a factor of five or so. Although the pitch angle is
still too small by a factor 10–20, we have come some way towards resolving
the winding problem. We conclude that in galaxies with circular-speed curves
similar to our own, n = 1,m = 2 density waves can resist the winding process
much better than material arms. This result suggests a natural explanation
for the prevalence of two-armed spirals, providing we can find a way to adjust
the slow drift rates of all the orbits to a common standard.

Density waves of the type described above are called kinematic density
waves because they involve only the kinematics of orbits in an axisymmetric
potential. In a galaxy, the orbits will deviate from the paths we have assumed

circular speed is roughly proportional to radius, Ω ' 1
2
κ (see eq. 3.80). Thus Ω − 1

2
κ is

much smaller near the center than Ω − nκ/m for other values of n and m.
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Figure 6.12 Arrangement of closed orbits in a galaxy with Ω− 1
2
κ independent of radius,

to create bars and spiral patterns (after Kalnajs 1973b).

because the spiral pattern itself produces a non-axisymmetric component of
the gravitational field. A major goal of spiral-structure theory is to determine
whether the non-axisymmetric gravitational field due to the spiral itself can
coordinate the drift rates of the orbits in such a way as to produce long-lived
spiral patterns.

(b) Resonances Orbits, like springs and drums, have natural resonant
frequencies. If the gravitational field generated by spiral structure perturbs
an orbit near one of its resonant frequencies, then the response of the orbit is
strong, even when the perturbing field is weak. To investigate the response
of a stellar disk to non-axisymmetric forces, an essential first step is to locate
the resonant orbits.

A gravitational potential that is stationary in a rotating frame can be
written in the form Φ1(R, φ, t) = Φ(R, φ − Ωpt), where Ωp is the pattern
speed of the potential. Examples of systems that generate potentials of this
form include the rotating bars seen at the centers of many disk galaxies, a
satellite galaxy on a circular orbit in the disk plane, and any stationary spi-
ral structure pattern (i.e., any structure with a well-defined pattern speed).
More complicated potentials can be regarded as superpositions of potentials
with different pattern speeds.

We now examine the effect of a weak potential of this form on a disk
composed of stars on circular or near-circular orbits. Since the potential is
periodic in φ−Ωpt, it can be decomposed into a series of terms proportional
to cos[m(φ−Ωpt) + fm(R)], where m ≥ 0 is an integer. We studied orbits in
potentials of this form in §3.3.3, and found that resonances occurred when
the circular frequency Ω and the epicycle frequency κ in the unperturbed
axisymmetric potential satisfied one of three conditions: Ω = Ωp (corotation
resonance), m(Ω−Ωp) = κ (inner Lindblad resonance), or m(Ω−Ωp) = −κ
(outer Lindblad resonance). These resonances occur at specific radii in a
differentially rotating disk. The location and even the existence of these
radii, called the corotation and Lindblad radii, depend on the circular-speed
curve and the pattern speed. For example, inspection of Figure 6.11 shows
that the isochrone potential has zero or two inner Lindblad radii with m = 2,
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depending on the value of Ωp, while Model I for the Galaxy has one inner
Lindblad radius if Ωp > 0, and 0 otherwise.

Note that the condition (6.24) for a stationary kinematic density wave
with n = ±1 is identical to the condition for a Lindblad resonance. This is
to be expected: near resonance a weak perturbation with m-fold rotational
symmetry can produce a strong response with the same symmetry, hence
we expect that when the Lindblad resonance condition is satisfied exactly,
a stationary m-fold wave pattern can persist even in the absence of any
perturbing force.

6.2.2 The dispersion relation for tightly wound spiral arms

We analyze the behavior of density waves in disks by a three-step process.
First, we use Poisson’s equation to calculate the gravitational potential of an
assumed surface-density pattern. Second, we determine how this potential
affects the stellar orbits and thus alters the surface density in the galaxy.
Finally, we match this response surface density to the input surface density
to obtain a self-consistent density wave.

We approximate the disk as razor-thin so we can work in two spatial
dimensions, rather than three. We also assume that the density perturbations
imposed on the original axisymmetric disk are small, so we can analyze
the dynamics using linear perturbation theory. Then self-consistent density
waves are simply linear modes of the galactic disk, which can be computed
using the Kalnajs matrix method that we introduced for spherical stellar
systems in §5.3.2.

Calculating the modes of a stellar disk is a difficult task. The modes can
be found analytically only for the Kalnajs disks (§5.6.2), and numerical mode
calculations have been done for only a handful of models, based on simple
potentials such as the isochrone disk (eq. 2.47), the Kuzmin disk (eq. 2.68),
and power-law disks (Zang 1976; Kalnajs 1978; Vauterin & Dejonghe 1996;
Pichon & Cannon 1997; Evans & Read 1998; Jalali & Hunter 2005).

(a) The tight-winding approximation One of the principal difficulties
in mode calculations is that gravity is a long-range force, so perturbations
in all parts of the system are coupled. In the early 1960s a number of
workers, notably A. J. Kalnajs, C. C. Lin, and A. Toomre, realized that
for tightly wound density waves (waves whose radial wavelength is much
less than the radius), the long-range coupling is negligible, the response is
determined locally, and the relevant solutions are analytic. As we shall
see, this tight-winding, short-wavelength, or WKB approximation4

is an indispensable tool for understanding the properties of density waves in
differentially rotating disks.

How tightly wound are spiral arms in real galaxies? The radial separa-
tion between adjacent arms at a given azimuth is ∆R, where |f(R+∆R, t)−

4 Named after the Wentzel–Kramers–Brillouin approximation of quantum mechanics.
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f(R, t)| = 2π, and f(R, t) is the shape function (eq. 6.3). If the arms are
tightly wound, we may replace f(R+ ∆R, t) by f(R, t) + (∂f/∂R)∆R; using
equations (6.4) and (6.7) we can replace ∂f/∂R by the wavenumber k, to
find

∆R =
2π

|k| =
2πR

m
tanα. (6.27)

Thus for tightly wound arms the radial wavelength is 2π/|k|, consistent with
the usage of the term “wavenumber” in other branches of physics. Figure 6.7
shows that typical pitch angles in spiral galaxies are between 10◦ and 15◦.
For two-armed spirals, this implies |kR| ' 7–11. The WKB approximation
requires |kR| � 1, although in many situations it works fairly well even for
|kR| as small as unity. Thus the WKB approximation is satisfied by most
spiral galaxies, but not by a very comfortable margin.

Evidently the results of analyses based on the WKB approximation must
be applied with caution: they should be used more as an aid to interpreting
numerical mode calculations and N-body simulations than as a definitive
theory.

Although the terms “tightly wound” and “short-wavelength” are often
applied interchangeably to density waves, there are situations in which these
are not equivalent: (i) Axisymmetric waves (m = 0) have zero pitch angle
(eq. 6.7) and hence are always tightly wound, even though their wavelengths
may not be short. The analysis we describe below is valid for axisymmetric
waves only if they also have short wavelengths, |kR| � 1. (ii) If the azimuthal
wavenumber is large, waves may have short wavelength without being tightly
wound, if |kR| ∼ m � 1. In this case the analysis below fails, and we
must resort to a quite different approximation, the sheared sheet of §§8.3.2
and 8.4.2 (Goldreich & Lynden–Bell 1965a; Julian & Toomre 1966; Goldreich
& Tremaine 1978).

(b) Potential of a tightly wound spiral pattern The surface density
of a zero-thickness disk can be represented mathematically as the sum of
an axisymmetric or unperturbed surface density Σ0(R), and a perturbed
surface density Σ1(R, φ, t) which represents the spiral pattern. For a tightly
wound spiral it is convenient to write Σ1 in a form that separates the rapid
variations in density as one passes between arms from the slower variation
in the strength of the spiral pattern as one moves along an arm. We may
accomplish this by writing

Σ1(R, φ, t) = H(R, t)ei[mφ+f(R,t)], (6.28)

where f(R, t) is the shape function of equation (6.3), and H(R, t) is a slowly
varying function of radius that gives the amplitude of the spiral pattern. As
usual, the physical surface density is given by the real part of equation (6.28).
This expression assumes that the surface-density variation is approximately
sinusoidal in radius, which proves to be correct for the linear perturbation
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theory that we examine below; more complicated surface-density variations
can be Fourier decomposed into a sum of sinusoids.

The next step is to determine the gravitational potential due to the
pattern (6.28). Since the perturbed surface density oscillates rapidly around
zero mean, there will be nearly complete cancellation of the contribution
from the distant parts of the pattern to the local potential; in other words,
the perturbed potential at a given location will be almost entirely determined
by the properties of the pattern within a few wavelengths of that location.
Thus, to determine the potential in the neighborhood of a point (R0, φ0), we
may replace the shape function f(R, t) by the first two terms in its Taylor
series, f(R0, t) + k(R0, t)(R−R0). Hence

Σ1(R, φ, t) ' Σaeik(R0,t)(R−R0), where Σa = H(R0, t)e
i[mφ0+f(R0,t)]. (6.29)

We have neglected variations with angle φ since these are much slower than
radial variations when the wave is tightly wound. Equations (6.29) show that
in the vicinity of (R0, φ0), the spiral wave closely resembles a plane wave with
wavevector k = kêR. The potential of a plane wave in a razor-thin disk was
determined in §5.6.1. According to equation (5.161),

Φ1(R, φ, z, t) ' Φaeik(R0,t)(R−R0)−|k(R0,t)z|, where Φa = −2πGΣa
|k| .

(6.30)
We are now free to set R = R0, φ = φ0, and z = 0, thereby obtaining our
final result for the potential in the plane due to the surface density (6.28),

Φ1(R, φ, t) = −2πG

|k| H(R, t)ei[mφ+f(R,t)]. (6.31)

The fractional error in this result is O(|kR|−1). An alternative expression
can be obtained by differentiating equation (6.31) with respect to radius and
neglecting the derivative of H(R, t) compared to the derivative of f(R, t),
which also involves an error of order |kR|−1 and hence does not degrade the
accuracy of the approximation any further. We find

Σ1(R, φ, t) =
i sgn (k)

2πG

∂

∂R
Φ1(R, φ, t), (6.32)

again with fractional error O(|kR|−1). Since this result involves the wavenum-
ber k only through its sign, it is valid for any tightly wound spiral whose
Fourier decomposition involves predominantly either leading (kR � −1) or
trailing (kR � 1) waves. Shu (1970) gives a more accurate version whose
fractional error is only O(|kR|−2):

Σ1(R, φ, t) =
i sgn (k)

2πG
√
R

∂

∂R

[√
RΦ1(R, φ, t)

]
. (6.33)
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(c) The dispersion relation for fluid disks We now determine the
response of the galactic disk to a potential perturbation. Since fluid disks
are simpler than stellar disks, we consider spiral structure in fluid disks before
we tackle the more complicated stellar disks. Many of the results that we
obtain presage similar features of stellar disks.

We shall begin without using the tight-winding approximation, only
invoking it after equation (6.50) when it is needed to avoid numerical cal-
culations. We again neglect the thickness of the disk, and assume that the
pressure p acts only in the disk plane. Thus the motion is confined to the
plane z = 0. Using equation (B.56) for (v · ∇)v in cylindrical coordinates,
Euler’s equations (F.10) can be written

∂vR
∂t

+ vR
∂vR
∂R

+
vφ
R

∂vR
∂φ

−
v2
φ

R
= −∂Φ

∂R
− 1

Σd

∂p

∂R

∂vφ
∂t

+ vR
∂vφ
∂R

+
vφ
R

∂vφ
∂φ

+
vφvR
R

= − 1

R

∂Φ

∂φ
− 1

ΣdR

∂p

∂φ
,

(6.34)

where we have replaced the volume density ρ by the disk surface density
Σd since we are dealing with a two-dimensional disk. We choose a simple
equation of state, namely

p = KΣγd. (6.35)

With this equation of state, sound waves in a disk with surface density Σ0

propagate at a speed vs given by equation (F.50),

v2
s (Σ0) =

(
dp

dΣ

)

Σ0

= γKΣγ−1
0 . (6.36)

The equations of motion (6.34) are simplified if we replace p by the specific
enthalpy (see eq. F.29)

h =
γ

γ − 1
KΣγ−1

d . (6.37)

For example, the right side of the first of equations (6.34) then becomes

−∂Φ

∂R
− 1

Σd

∂p

∂R
= −∂Φ

∂R
− γKΣγ−2

d

∂Σd

∂R
= − ∂

∂R
(Φ + h), (6.38)

with a similar simplification in the second of equations (6.34).
We now assume that the spiral wave is only a small perturbation on a

steady-state axisymmetric disk, so we can linearize the equations of motion.
Denoting quantities in the unperturbed disk by the subscript “0” we have
vR0 = 0 and ∂Φ0/∂φ = ∂p0/∂φ = 0. Euler’s equations for the unperturbed
disk become simply

v2
φ0

R
=

d

dR
(Φ0 + h0) =

dΦ0

dR
+ v2

s

d

dR
ln Σ0, (6.39)
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which equates the centripetal acceleration v2
φ0/R on the left to the gravita-

tional and pressure force per unit mass on the right. In the cases of interest to
us, the sound speed vs is much smaller than the rotation speed vφ0—for exam-
ple, in the Galactic interstellar gas vs ' 10 km s−1 while vφ0 ' 220 km s−1—
and thus the term v2

s d ln(Σ0)/dR in equation (6.39) can be neglected. Hence

vφ0 '
√
R

dΦ0

dR
= RΩ(R), (6.40)

where Ω(R) is the circular frequency.
We now write vR = εvR1, vφ = vφ0 +εvφ1, h = h0 +εh1, Σd = Σ0 +εΣd1,

Φ = Φ0 + εΦ1, where ε � 1 and the quantities with subscript 1 are of the
same order of magnitude as the quantities with subscript 0. Keeping only
terms that are first order in ε, equations (6.34) yield

∂vR1

∂t
+ Ω

∂vR1

∂φ
− 2Ωvφ1 = − ∂

∂R
(Φ1 + h1),

∂vφ1

∂t
+

[
d(ΩR)

dR
+ Ω

]
vR1 + Ω

∂vφ1

∂φ
= − 1

R

∂

∂φ
(Φ1 + h1).

(6.41)

The square bracket in the second equation may be written −2B(R), where
B(R) is defined in equation (3.83) and is related to the epicycle frequency
κ(R) by equation (3.84).

Any solution of equations (6.41) is a sum of terms of the form

vR1 = Re[vRa(R)ei(mφ−ωt)] ; vφ1 = Re[vφa(R)ei(mφ−ωt)],

Φ1 = Re[Φa(R)ei(mφ−ωt)] ; h1 = Re[ha(R)ei(mφ−ωt)],

Σd1 = Re[Σda(R)ei(mφ−ωt)].

(6.42)

where m ≥ 0 is an integer, and the perturbation has m-fold rotational sym-
metry. Substituting these definitions into equations (6.41) and solving for
vRa and vφa we find

vRa(R) =
i

∆

[
(ω −mΩ)

d

dR
(Φa + ha) − 2mΩ

R
(Φa + ha)

]
,

vφa(R) = − 1

∆

[
2B

d

dR
(Φa + ha) +

m(ω −mΩ)

R
(Φa + ha)

]
,

(6.43)

where
∆ ≡ κ2 − (ω −mΩ)2, (6.44)

and κ, Ω, ∆ are all functions of radius, as are Φa and ha. By equations
(6.36) and (6.37), the linearized version of the equation of state is

ha = γKΣγ−2
0 Σda = v2

s Σda/Σ0, (6.45)
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where the sound speed vs(Σ0) is a function of the unperturbed density.
If ω is real, there may be radii at which ∆ = 0 and equations (6.43)

diverge. The origin of this singularity can be clarified by writing the exponent
in equations (6.42) as i(mφ − ωt) = im(φ − Ωpt), where Ωp = ω/m is the
pattern speed. Thus the singularity in the perturbed velocities arises when

Ωp = Ω ± κ

m
, (6.46)

which we recognize as the condition for a Lindblad resonance, or a kinematic
density wave with n = ±1 (eq. 6.24).5 The singularity arises because non-
axisymmetric disturbances can be sustained at these resonances even when
the forcing functions in square brackets in equations (6.43) are zero. Our
analysis breaks down near these resonances and a separate, more careful
treatment is required (Goldreich & Tremaine 1979).

The perturbed surface density is related to the perturbed velocities by
the equation of continuity (F.3). Keeping only terms linear in the small
quantity ε, we have

∂Σd1

∂t
+ ∇ · (Σd1v0) + ∇ · (Σ0v1) = 0, (6.47)

which we write in cylindrical coordinates using equation (B.47):

∂Σd1

∂t
+ Ω

∂Σd1

∂φ
+

1

R

∂

∂R
(RvR1Σ0) +

Σ0

R

∂vφ1

∂φ
= 0. (6.48)

With equations (6.42) this becomes

−i(ω −mΩ)Σda +
1

R

d

dR
(RvRaΣ0) +

imΣ0

R
vφa = 0. (6.49)

Equations (6.43), (6.45), and (6.49) provide four constraints on the
five variables Σda, vRa, vφa, ha, and Φa. Thus, they determine the dy-
namical response Σda of the disk to an imposed potential Φa. If this po-
tential is generated through Poisson’s equation by a surface density Σ1 =
Re[Σa(R)ei(mφ−ωt)], then we may formally write

Σda(R) =

∫
dR′P̃m(R,R′, ω)Σa(R′), (6.50)

where P̃m(R,R′, ω) is the polarization function that relates the response
density Σda(R) to the total density Σa(R) (cf. eq. 5.7). A self-consistent
density wave requires that Σa = Σda. Thus equations (6.43), (6.45), (6.49),

5 Resonances with |n| > 1 are unimportant in fluid disks because they correspond to
orbits that are self-intersecting, as in Figure 6.10b, and hence cannot be present in a fluid.
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and Poisson’s equation can be solved numerically to yield the shapes and
frequencies of the modes in a given disk (Hunter 1965; Bardeen 1975; Aoki
et al. 1979).

In this section we concentrate on a simpler task: we use the WKB
approximation to obtain analytic local solutions for density waves. As usual,
the potential of a tightly wound wave can be written in the form

Φa(R) = F (R)eif(R) = F (R)ei
∫ R

k dR, (6.51)

where k = df(R)/dR and |kR| � 1. The potential and surface density
are related by Poisson’s equation (6.31), which holds with fractional error
O(|kR|−1). The disk response Σda and—through equation (6.45)—ha share
with Φa the factor exp[if(R)], which varies rapidly with radius. Hence, in
equations (6.43), the terms proportional to (Φa + ha)/R are smaller than
those involving d(Φa + ha)/dR by a factor ∼ kR, and we can neglect them
without degrading the accuracy of our work. We may also write d(Φa +
ha)/dR = ik(Φa + ha) to the same level of accuracy. Thus equations (6.43)
simplify to

vRa = − (ω −mΩ)

∆
k(Φa + ha) ; vφa = −2iB

∆
k(Φa + ha). (6.52)

Similarly, in equation (6.49) we replace d(RΣ0vRa)/dR by ikRΣ0vRa. Since
equations (6.52) show that vRa and vφa are of the same order, the second
term dominates over the third in equation (6.49) by O(|kR|), and hence we
drop the latter term. The continuity equation thus has the form

−(ω −mΩ)Σda + kΣ0vRa = 0. (6.53)

We eliminate vRa using the first of equations (6.52), eliminate ha using (6.45),
and eliminate Φa using (6.30). We find

Σda(R) = P̃m(k,R, ω)Σa(R), where

P̃m(k,R, ω) =
2πGΣ0|k|

κ2 − (ω −mΩ)2 + v2
s k

2

(6.54)

is the polarization function for tightly wound density waves. The tight-
winding approximation has allowed us to reduce the integral equation (6.50)
to a simple analytic expression for the polarization function.

For self-consistent density waves, P̃m(k,R, ω) must be unity, yielding
the dispersion relation for a fluid disk in the tight-winding limit:

(ω −mΩ)2 = κ2 − 2πGΣ|k| + v2
s k

2, (6.55)

where for brevity we have dropped the subscript in the equilibrium surface
density Σ0. In the case of m = 0 waves in a disk with uniform rotation
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(constant angular speed, for which κ = 2Ω), equation (6.55) reduces to the
dispersion relation for a rotating sheet, equation (5.164).

We have derived the dispersion relation (6.55) by dropping all terms in
Euler’s equation, the continuity equation, and Poisson’s equation that are
smaller than the dominant terms by O(|kR|−1) or more. At the cost of more
algebra, we can drop only those terms that are smaller than the dominant
terms by O(|kR|−2) or more (this requires using the more accurate version
6.33 of Poisson’s equation). This procedure leads to the additional constraint

d

dR

[
R|Φa|2

(
v2

s |k|
πGΣ

− 1

)]
= 0. (6.56)

In Appendix J we show that this constraint has a simple physical interpreta-
tion. As we have seen in §6.1.5, spiral waves transport angular momentum.
The rate at which angular momentum is transported outward through radius
R is the angular-momentum current, which is composed of the gravita-
tional current CG(R) due to torques exerted by the inner disk on the outer
disk (eqs. 6.21 or J.23), and the advective current CA(R) (eq. J.22). Equa-
tion (6.56) is simply the condition that the total angular-momentum current
CG(R) +CA(R) carried by the density wave is conserved (eq. J.24), as must
be true in a steady state.

Before discussing the implications of the WKB dispersion relation (6.55),
we shall derive the analogous result for collisionless stellar-dynamical disks.

(d) The dispersion relation for stellar disks The WKB dispersion
relation for a disk of stars may be calculated by the same principles that we
used to obtain the dispersion relation for a fluid disk: we use the equations
of motion to calculate the surface-density perturbation Σd1 arising from a
potential perturbation Φ1 of the form (6.42), and then require that Σd1 and
Φ1 be related by Poisson’s equation. The hardest step in this calculation
is determining the perturbation vR1 in the mean radial velocity of the stars
that is induced by Φ1 at a given point (R, φ). If the disk were quite cold,
that is, if the unperturbed orbits were all circular, we could obtain vR1

from equation (6.52) with ha = 0, because a cold stellar disk is dynamically
equivalent to a fluid disk with zero pressure. Thus for a cold stellar disk,

vRa = −ω −mΩ

∆
kΦa, (6.57)

where ∆ is defined by equation (6.44).
This expression is accurate if the disk is cool enough that the typical

epicycle amplitude is much smaller than the wavelength 2π/k of the imposed
spiral pattern: if this condition is not fulfilled, stars passing through a given
location (R, φ) at a given time, which come from a range of radii of width
equal to twice the epicycle amplitude, will have sampled entirely different
parts of the spiral potential. Consequently, the effects of the spiral potential
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on the mean velocity perturbation will partially cancel. Formally, we can
allow for this cancellation by rewriting equation (6.57) in the form

vRa = −ω −mΩ

∆
kΦa F , (6.58)

where F ≤ 1 is the reduction factor, the factor by which the response of
the disk to a given spiral perturbation is reduced below the value for a cold
disk. We temporarily defer the task of computing F .

Once we have vRa, it is straightforward to calculate the response density
Σda, since the Jeans equation (4.204) is identical to the continuity equation
of the fluid disk. Thus the analog of equation (6.53) is

−(ω −mΩ)Σda + kΣ0vRa = 0. (6.59)

The final step is to eliminate vRa between equations (6.58) and (6.59),
and combine the resulting equation with the WKB form of Poisson’s equa-
tion (6.30) to obtain the polarization function for stellar disks (cf. eq. 6.54),

P̃m(k,R, ω) =
2πGΣ0|k|F

κ2 − (ω −mΩ)2
. (6.60)

Self-consistent density waves require that P̃m(k,R, ω) = 1, which yields
the dispersion relation for a stellar disk in the tight-winding limit,

(ω −mΩ)2 = κ2 − 2πGΣ|k|F , (6.61)

the analog of equation (6.55) for a fluid disk.
In Appendix K we evaluate the reduction factor F for a razor-thin disk

having the Schwarzschild df discussed in §4.4.3, which has the form

f0(R, vR, vφ) =
γΣ(R)

2πσ2
R(R)

exp

[
−
v2
R + γ2ṽ2

φ

2σ2
R(R)

]
, (6.62)

where Σ(R) is the surface density, ṽφ = vφ−vc(R), vc(R) = RΩ(R) is the cir-
cular speed, σR(R) is the radial velocity dispersion, and γ(R) = 2Ω(R)/κ(R).
As required by the epicycle approximation, we assume that σR � vc. For
this df, the reduction factor can be written in the form (eqs. K.25 and K.21)

F
(ω −mΩ

κ
,
σ2
Rk

2

κ2

)
≡ F(s, χ) =

2

χ
(1 − s2)e−χ

∞∑

n=1

In(χ)

1 − s2/n2

=
1 − s2

sinπs

∫ π

0

dτ e−χ(1+cos τ) sin sτ sin τ.

(6.63)
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Here In(χ) is a modified Bessel function (Appendix C.7). These formulae
were derived independently by Lin & Shu (1966) and Kalnajs (1965). Note
that the definition of F implies that F(s, 0) = 1.

The complicated arguments of the reduction factor have a simple phys-
ical interpretation. The first, (ω −mΩ)/κ, is simply the “Doppler-shifted”
forcing frequency ω as viewed from a star orbiting at the circular frequency
Ω, divided by the radial frequency κ. The second is proportional to the
square of the ratio of the typical epicycle size σR/κ to the spiral wavelength
2π/|k|; we expect that the response will be small when this term is large.

The dispersion relations (6.55) and (6.61) are the key equations in the
analytic study of density waves in disks. As we have seen, the conditions
for the validity of the WKB approximation are satisfied by only a modest
margin for the spiral structure in typical galactic disks. Nevertheless, when
properly buttressed by numerical work, these dispersion relations provide
an invaluable guide to the behavior of density waves in galaxies. Like any
local dispersion relations, they establish the relation between wavenumber
and frequency that is satisfied by a traveling wave as it propagates across
the disk. They do not show that a permanent standing wave pattern can be
set up in the disk—this requires more input physics, including the boundary
conditions at the center and outer edge of the disk, and an understanding of
how the wave behaves at the Lindblad and corotation resonances, where the
local dispersion relations break down.

6.2.3 Local stability of differentially rotating disks

The dispersion relations (6.55) and (6.61) for fluid and stellar disks can be
used to determine whether a disk is locally stable to axisymmetric pertur-
bations.6 All of the analysis we have done so far is for tightly wound non-
axisymmetric disturbances, that is, for |kR/m| � 1. However, it is easy to
see that the dispersion relations (6.55) and (6.61) also hold for axisymmetric
disturbances (m = 0) so long as |kR| � 1.

Consider first the case of a cold disk. A cold fluid disk has vs = 0, so
for axisymmetric disturbances, equation (6.55) becomes

ω2 = κ2 − 2πGΣ|k|. (6.64)

For a cold stellar disk, σR = 0, and since F(s, 0) = 1 the dispersion relation
(6.61) also reduces to equation (6.64)—as expected, since a cold fluid disk is
equivalent to a cold stellar disk.

6 Local stability to non-axisymmetric perturbations is more complicated. Goldreich
& Lynden–Bell (1965a) and Julian & Toomre (1966) show that non-axisymmetric distur-
bances in fluid and stellar disks always wind up, just like the kinematic density waves of
§6.2.1a, and hence appear to be stable. However, unstable non-axisymmetric modes can
occur if there is feedback from trailing to leading waves, as we describe in §6.3.2.



6.2 Wave mechanics of disks 495

Since the quantities on the right side of equation (6.64) are real, ω2 must
also be real. If ω2 > 0, then ω is real and the disk is stable. If, on the other
hand, ω2 < 0, say ω2 = −p2, then ω = ±ip, and exp(−iωt) = exp(±pt).
Hence for ω2 < 0, there is a perturbation whose amplitude grows exponen-
tially, and the disk is unstable. Thus all perturbations with wavenumber
|k| < kcrit or wavelength λ > λcrit are unstable, where

kcrit ≡
κ2

2πGΣ
; λcrit ≡

2π

kcrit
=

4π2GΣ

κ2
. (6.65)

Moreover, the instability is a violent one: as the wavelength of the distur-
bance shrinks to zero, the growth rate p = (4π2GΣ/λ−κ2)1/2 grows without
limit—a cold, zero-thickness disk disintegrates on small scales in an arbitrar-
ily short time!

Next consider a fluid disk with non-zero sound speed. For axisymmetric
disturbances, equation (6.55) reads

ω2 = κ2 − 2πGΣ|k| + v2
s k

2. (6.66)

Once again, the disk is unstable if and only if ω2 < 0, and the line of neutral
stability is

κ2 − 2πGΣ|k| + v2
s k

2 = 0. (6.67)

The fluid disk is stable if there is no solution of equation (6.67) for positive
|k|. Since the equation is quadratic in |k|, it is easily solved, and we find that
axisymmetric stability requires

Q ≡ vsκ

πGΣ
> 1 (for fluids). (6.68)

The line of neutral stability defined by equation (6.67) is drawn in Figure 6.13
in terms of the dimensionless ratios Q and λ/λcrit.

The stability criterion (5.166) for a uniformly rotating sheet is a special
case of (6.68) when κ = 2Ω. Of course, in a general disk vs, κ, and Σ are all
functions of radius, so Q is also a function of radius. In this case Q(R) < 1
implies only local axisymmetric instability near radius R, in the sense that
a short-wavelength traveling wave that crosses a region with Q(R) < 1 will
be amplified while it is in this region.

The analysis of the stability of a stellar disk is similar. By analogy we
expect that the boundary between stable and unstable axisymmetric waves is
given by ω = 0, just as in the case of a fluid disk. Thus from equation (6.61)
the stability boundary is given by

κ2 = 2πGΣ|k|F(0, σ2
Rk

2/κ2), (6.69)

or, using the first of equations (6.63) and the identity (C.67),

|k|σ2
R

2πGΣ
=

[
1 − e−σ

2
Rk

2/κ2

I0

(
σ2
Rk

2

κ2

)]
, (6.70)
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Figure 6.13 Neutral stability curves for tightly wound axisymmetric perturbations in a
fluid disk (dashed line, from eq. 6.67) and a stellar disk (solid line, from eq. 6.70).

a relation first derived by Toomre (1964).
There is no solution to (6.70), and thus the stellar disk is stable, if

Q ≡ σRκ

3.36GΣ
> 1 (for stars). (6.71)

The stability boundary (6.70) is plotted in Figure 6.13 as a function of the di-
mensionless ratios Q and λ/λcrit. Note the close analogy between fluid and
stellar disks: the dashed (fluid) and solid (stellar) stability curves in Fig-
ure 6.13 almost coincide, and the stability criterion for stellar disks (6.71) is
obtained from the criterion for fluid disks (6.68) simply by replacing the
sound speed vs by the radial velocity dispersion σR, and the coefficient
π ' 3.14 by 3.36. The inequality (6.68) or (6.71) is known as Toomre’s
stability criterion;7 its physical interpretation is discussed in the context
of the uniformly rotating sheet in §5.6.1. Toomre’s Q can be thought of as a
temperature scale for galactic disks. “Hot” disks have large velocity disper-
sion and high Q, while “cool” disks have low dispersion and Q, and “cold”
disks have zero dispersion and Q = 0.

As Q drops below unity, instability first appears at a single wavelength,
which we may write as λ(most unstable) ≡ pλcrit, where the constant p is
0.5 or 0.55 for zero-thickness fluid or stellar disks, respectively. Toomre’s
stability criterion is reliable only if λ(most unstable) is short compared to
the size of the system (since we have used the WKB approximation), and
long compared to the thickness of the disk (since we have modeled the disk as
razor-thin), but in practice it often works reasonably well somewhat outside
the regime in which it is strictly justified.

7 An approximate version of equation (6.68) dates back to Safronov (1960).
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The most reliable evidence on the value of Q in a real galactic disk comes
from the solar neighborhood. The solar neighborhood contains significant
amounts of both stars and gas. The total surface density in stars is Σ? '
(36 ± 5)M� pc−2, from Table 1.1. From Table 1.2, the epicycle frequency
κ0 ' (37 ± 3) km s−1 kpc−1. We adopt the radial velocity dispersion of red
main-sequence stars (B−V > 0.6), since stars in this color range are mostly
old, and dominate the total stellar mass in the solar neighborhood; from
Table 1.2 we have σR = (38 ± 2) km s−1. With these parameters, the stars
alone give Q? = 2.7 ± 0.4 (eq. 6.71). The interstellar gas is a complex
multi-phase medium but for our purposes we may treat it as a fluid with
surface density Σg ' 13M� pc−2 (Table 1.1) and sound speed vs = 7 km s−1.
With these parameters, the gas alone has Qg = 1.5 (eq. 6.68). Of course,
the perturbations in the stars and gas are coupled through gravity, so the
separate analyses we have carried out for the stability of fluid and stellar
disks must be combined. Although the surface density of the gas is much
smaller than that of the stars, it turns out to have a strong destabilizing effect
on the combined system because it is cold (vs � σR). Using parameters
similar to the ones here, Rafikov (2001) finds that the solar neighborhood is
stable, but not by a large margin—only 15% changes in the surface density or
sound speed of the gas component can lead to instability. The most unstable
wavelength is ∼ 2 kpc, so the WKB approximation is fairly accurate.

There are at least two major uncertainties in this estimate of the local
stability of the solar neighborhood. (i) We have oversimplified the interstellar
gas by treating it as a single barotropic fluid. (ii) The stellar surface density
in spiral galaxies varies with azimuth due to spiral structure, by factors of
1.4–4 (eq. 6.2); we do not understand well how the local stellar surface density
is related to the azimuthally averaged surface density at the solar radius, or
how such variations affect stability.

6.2.4 Long and short waves

The dispersion relations (6.55) and (6.61) for fluid and stellar disks relate
the wavenumber k or wavelength 2π/|k| to the frequency ω or pattern speed
Ωp = ω/m. We have plotted these relations in Figure 6.14, assuming for
simplicity that Toomre’s Q (eqs. 6.68 or 6.71) is the same at all radii. We use
the dimensionless wavenumber k/kcrit (eq. 6.65) as the horizontal coordinate,
and the dimensionless frequency

s ≡ m(Ωp − Ω)

κ
(6.72)

as the vertical coordinate. The corotation resonance is at s = 0, and the
Lindblad resonances are at s = ±1. With these coordinates, Figure 6.14
applies to any disk with constant Q—only the relation between s and radius
depends on the circular-speed curve. For example, an m-armed spiral in a



498 Chapter 6: Disk Dynamics and Spiral Structure

Figure 6.14 The dispersion relation for tightly wound disturbances in stellar (left panel)
and fluid (right panel) disks. The horizontal coordinate is the wavenumber k in units of
the critical wavenumber kcrit (eq. 6.65), and the vertical coordinate is the dimensionless
frequency s (eq. 6.72). The curves shown are for Q = 1, 1.5, 2, and 2.5. Since only |s| and
|k| are shown, there is no distinction between leading and trailing waves, or waves inside
and outside corotation. Secondary branches of the dispersion relation (not shown) occupy
narrow regions near |s| = 2, 3, . . . (Lovelace, Jore, & Haynes 1997).

Mestel disk (constant rotation speed) with corotation radius RCR has s =
m(R/RCR−1)/

√
2 and the Lindblad resonances are at R = RCR(1±

√
2/m).

These figures illustrate the following:

(i) The dispersion relations for leading (k < 0) and trailing (k > 0) waves
(eq. 6.5) are identical. This is consistent with the anti-spiral theorem
of §6.1.4. The dispersion relations are also even functions of s. Thus if
(s, k/kcrit) is a solution of the dispersion relation, so are (−s, k/kcrit),
(−s,−k/kcrit), and (s,−k/kcrit).

(ii) In disks with Q > 1 there is a region around corotation in which the
dispersion relation has no real solutions. In this “forbidden” region,
tightly wound density waves are evanescent, that is, the wave has a
complex wavenumber k and thus decays or grows exponentially with
radius. The width of the forbidden region increases as Q increases.

(iii) In the region that is outside the forbidden region but between the Lind-
blad resonances s = ±1, there are two branches of the dispersion rela-
tion. The long-wave branch (the one with larger λ or smaller |k|) begins
at k = 0, |s| = 1, and |s| decreases as |k| increases. Sufficiently near the
Lindblad resonances the long-wave dispersion relation is independent of
Q and is the same for fluid and stellar disks:

|k|
kcrit

= 1 − s2. (6.73)
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The behavior of fluid and stellar disks in this regime is similar because
the dispersion relation is determined solely by the self-gravity of the disk,
which dominates at large wavelengths, not by the pressure or velocity
dispersion, which dominate at short wavelengths.

(iv) Along the short-wave branch (the one with smaller λ or larger |k|),
|s| increases as |k| increases. In stellar disks, |k| → ∞ as |s| → 1, so
the short-wave branch terminates at the Lindblad resonance |s| = 1. In
fluid disks the short-wave branch passes smoothly through the Lindblad
resonance, crossing at wavenumber |k| = 4kcrit/Q

2 = 2πGΣ/v2
s .

(v) As Q→ ∞, the forbidden region grows to cover the entire region |s| < 1
between the Lindblad resonances. Thus in a stellar disk with Q � 1, a
stationary disturbance can be present only near the Lindblad resonances
at s = ±1—not a surprising result, since we have seen that stationary
kinematic waves can exist at the Lindblad resonances in the absence of
any collective effects. A fluid disk with Q � 1 sustains density waves
only outside the Lindblad resonances, |s| > 1, satisfying the dispersion
relation s2 = 1 + v2

s k
2/κ2. These are sound waves modified by Coriolis

and centrifugal forces, in which the self-gravity of the disk plays no role.

There is a simple physical basis for much of this behavior. The dimensionless
frequency s represents the ratio of the forcing frequency seen by a particle,
m(Ωp − Ω), to its natural radial frequency, κ. If no perturbing forces are
present, a steady wave can be set up only if the two frequencies are equal,
which occurs at the Lindblad resonances, s = ±1. When Q is of order unity,
the self-gravity of the disk becomes important. Self-gravity is attractive, and
reduces the natural radial frequency below κ, so waves can be present when
|s| < 1. As the wavenumber |k| increases, self-gravitational forces become
more important, so the natural frequency |s| decreases with increasing |k|
on the long-wave branch. Eventually the repulsive pressure forces in a fluid
disk, or the reduction factor F in a stellar disk, begin to dominate over self-
gravity, so |s| increases again on the short-wave branch. In a fluid disk, the
pressure forces can actually increase the natural radial frequency above κ, so
waves can also be present when |s| > 1. A stellar disk has no pressure forces
and therefore cannot support waves with |s| > 1.8

6.2.5 Group velocity

The waves described by Figure 6.14 are traveling waves, and they propagate
with a group velocity (Appendix F.4). The group velocity of a wave packet
in a homogeneous dispersive medium is vg = dω(k)/dk. Similarly, when the
medium is inhomogeneous and the frequency of a wave of given k depends

8 Except in narrow regions near the resonances at |s| = 2, 3, . . . which are unlikely to
be of much practical importance for galaxy disks (Lovelace, Jore, & Haynes 1997).
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on position, ω = ω(k,R), the group velocity at radius R is (Whitham 1974)

vg(R) =
∂ω(k,R)

∂k
, (6.74)

so long as the distance over which ω varies is much larger than the wave-
length. Toomre (1969) first pointed out that this relation could be applied
to Figure 6.14 to determine the evolution of a tightly wound density wave
packet. We show in the next subsection that the group velocity also deter-
mines the direction and rate of angular momentum and energy transport in
the disk.

The dispersion relation for a fluid disk (6.55) yields a group velocity

vg(R) = sgn(k)
|k|v2

s − πGΣ

ω −mΩ
. (6.75)

In this equation vs, Σ, and Ω are functions of radius determined by the
unperturbed disk, the frequency ω is a property of the wave packet, and k
is determined from these by the dispersion relation. A wave packet localized
around a radius R propagates radially outward if vg(R) > 0, and inward if
vg(R) < 0.

The group velocity in stellar disks is derived from (6.74) and the WKB
dispersion relation (6.61) (Toomre 1969):

vg(R) = −κ
k

1 + 2
∂ lnF(s, χ)

∂ lnχ

∂
∂s

ln
F(s, χ)

1 − s2

. (6.76)

The group velocity can be obtained by a graphical construction from
Figure 6.14. The axes are x ≡ k/kcrit and s = (ω − mΩ)/κ (to within
a sign). Thus dω|R = κ ds and dk|R = kcritdx; hence vg = (∂ω/∂k)R =
(κ/kcrit)(ds/dx). In other words, to within a sign the group velocity is
simply the slope of the curves in Figure 6.14 times the characteristic velocity
κ/kcrit = 2πGΣ/κ. The sign of the group velocity is simply the sign of this
slope times the sign of ks.

In the solar neighborhood, κ/kcrit ' 36 km s−1 (using Σ = 49M� pc−2,
κ = 37 km s−1 kpc−1 from Tables 1.1 and 1.2). It is instructive to estimate
the time required for a wave packet to propagate across the Galaxy. Let us
take 0.3 as a typical absolute value of the slopes of the curves in Figure 6.14.
Then the group velocity is 0.3κ/kcrit ' 12 km s−1, and the time required to
propagate 5 kpc is 400 Myr. For comparison, the rotation period at the solar
radius is 2π/Ω ' 220 Myr (Table 1.2). It is evident that any tightly wound
wave packet will propagate across a substantial fraction of the galactic disk
within at most a few rotation times; more precisely, it will propagate into
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Figure 6.15 Dispersion relation in the form of wavenumber versus radius for a tightly
wound m = 2 wave in a stellar Mestel disk with Q = 1.2. The radial scale is in units of
the corotation radius RCR. The inner and outer Lindblad resonances, at R = 0.293RCR

and R = 1.707RCR, are marked by dashed lines.

either a Lindblad resonance or the forbidden region around the corotation
resonance. What is the fate of a density wave packet at these resonances?

The life story of a density wave can be deduced with the help of Fig-
ure 6.15, which shows the relation between wavenumber and radius in a
stellar Mestel disk with constant Q = 1.2. Let us begin with a wave packet
localized near point A, which can be characterized as a leading (k < 0)
short-branch wave. The group velocity is positive and the packet propagates
outward. As the radius increases, |k| decreases. Eventually, at point B, the
edge of the forbidden region, the group velocity changes sign, and the packet
begins to propagate inward as a leading wave on the long branch (point C).
This reversal in direction can be thought of as a reflection of the packet off the
forbidden region, in the same way that wave packets in quantum mechanics
reflect off potential barriers.

On the long branch, the tight-winding approximation is suspect, because
|k| → 0 as the group velocity carries the wave packet towards the Lindblad
resonance at k = 0. The accuracy of the tight-winding approximation for a
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given disk can be characterized by the parameter

X ≡ kcritR

m
=

κ2R

2πGΣm
; (6.77)

equation (6.7) shows that X is simply the cotangent of the pitch angle for
waves of the critical wavenumber kcrit. So long as X � 1—so long as
the tight-winding approximation is satisfied at the critical wavelength—the
WKB approximation is valid throughout most of the long branch, and when
the wave reaches the Lindblad resonance it simply reflects off this resonance
and propagates away on the long trailing branch (Goldreich & Tremaine
1978, 1979). At the forbidden region it is reflected again, this time into
a short-branch trailing wave, and then propagates inward (point D). From
now on its wavelength becomes shorter and shorter without limit; in a stellar
disk the wave is eventually absorbed at the Lindblad resonance, by a process
akin to Landau damping (Mark 1974), while in a fluid disk the wave propa-
gates straight through the resonance and on towards the center of the disk.
The evolution of waves outside corotation follows a similar sequence. The
behavior of waves when X ∼< 1 is described in §6.3.2.

In the evolution that we have described here, the wavenumber k in-
creases monotonically: a tightly wound leading wave becomes first a loosely
wound leading wave, then a loosely wound trailing wave, and finally a trailing
wave that becomes ever more tightly wound. This behavior is reminiscent of
the winding up of material spiral arms. The rate of winding of tightly wound
density waves can be worked out quantitatively using the dispersion relation
and the group velocity. For the simple example of a fluid, Q = constant
Mestel disk, we show in Problem 6.5 that a trailing wave winds up at a rate

d

dt
(cotα) = Ωp. (6.78)

For comparison, according to equation (6.9), a material arm in a Mestel disk
winds up at the rate

d

dt
(cotα) = R

∣∣∣∣
dΩ

dR

∣∣∣∣ = Ω, (6.79)

where the last equation follows because Ω ∝ R−1 in a Mestel disk. Also for
comparison, an m = 2 kinematic density wave winds up at the rate (eq. 6.26)

d

dt
(cotα) =

∣∣∣∣R
d(Ω − 1

2κ)

dR

∣∣∣∣ =

(
1 − 1√

2

)
Ω, (6.80)

using the relation κ =
√

2Ω for a Mestel disk.
In this example, wave packets wind up at a rate comparable to material

arms or kinematic density waves: waves outside corotation (Ω < Ωp) wind up
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faster than material arms, while waves inside corotation (Ω > Ωp) wind up
slower. Kinematic density waves wind up about 0.3 times as fast as material
arms. This conclusion is a serious blow to the Lin–Shu hypothesis: our hope
at the outset of this analysis was that non-axisymmetric gravitational forces
within the disk could eliminate the winding problem and enable the disk
to sustain a long-lived spiral pattern. Instead, we have seen that including
these forces actually increases the winding rate over much of the disk in
comparison to the winding rate for kinematic density waves.

However, the behavior of galactic disks is more complex than this sim-
ple example would suggest, mainly because the tight-winding approximation
often fails badly for waves on the long branch of the dispersion relation.
For example, in the solar neighborhood the parameter X of equation (6.77)
equals 4.2 for a two-armed spiral, which is not large enough that the tight-
winding approximation is trustworthy on the long branch. As a consequence,
we shall find that the simple evolutionary path that was described above—in
which short leading waves reflect off the forbidden region into long leading
waves, which then reflect off the Lindblad resonance into long trailing waves,
etc.—requires major modifications in realistic galactic disks.9 To investigate
the fate of leading disturbances and their influence on disk stability, we must
turn to numerical experiments, as described in §6.3.

6.2.6 Energy and angular momentum in spiral waves

We have seen that tightly wrapped density waves in a rotating fluid or stellar
disk obey a WKB dispersion relation and propagate radially at the group ve-
locity vg(R). Waves in a dispersive medium transport energy and momentum
through the medium at the group velocity—we show this for ordinary sound
waves in Appendix F.3.1—and thus we expect that tightly wrapped density
waves do the same, except that in an axisymmetric system they transport
angular momentum rather than linear momentum.

The total angular-momentum current—the rate at which angular mo-
mentum is transferred outward across a cylinder of radius R—due to tightly
wrapped waves in a fluid disk without viscosity is given by equation (J.24):

CL(R) = sgn(k)
mR|Φa|2

4G

(
v2

s |k|
πGΣ

− 1

)
. (6.81)

We may define the angular-momentum density Lw(R) in the spiral wave
such that the wave angular momentum between R and R+ dR is Lw(R)dR.
Then if the current CL arises from the transport of angular-momentum den-
sity at the group velocity, we have

Lw(R) =
CL(R)

vg(R)
=
m2R(Ωp − Ω)|Φa|2

4πG2Σ
. (6.82)

9 There are, of course, disk systems other than galaxies in which the tight-winding
approximation works extremely well. For example, in Saturn’s rings, X ≈ 107/m.
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Notice that the wave can have either positive or negative angular-momentum
density: waves inside corotation have Lw < 0 while those outside corotation
have Lw > 0.10

Similarly, the angular-momentum current and angular-momentum den-
sity in a stellar disk can be derived from equations (J.25) and (6.76):

CL(R) = −sgn(k)
mR|Φa|2

4G

(
1 + 2

∂ lnF(s, χ)

∂ lnχ

)

Lw(R) =
CL(R)

vg(R)
=
mR|Φa|2|k|

4Gκ

∂

∂s

F(s, χ)

1 − s2
.

(6.83)

It is straightforward to show from equation (6.63) for F(s, χ) that the sign of
Lw is the sign of Ωp−Ω, so tightly wound waves in a stellar disk, like those in
a fluid disk, have positive or negative angular-momentum density according
to whether they are outside (Ω < Ωp) or inside (Ω > Ωp) corotation.

The energy current and energy density of the wave can be determined
from CL and Lw by the following heuristic argument. Imagine that we excite
a wave in the disk by the imposition of a potential Φext(R, t). The torque
per unit mass exerted on the disk is −∂Φext/∂φ so the rate of change of the
disk angular momentum is

L̇ = −
∫

d2R Σ
∂Φext

∂φ
. (6.84)

The rate of change of the disk energy is (cf. eq. D.10)

Ė =

∫
d2R Σ

∂Φext

∂t
. (6.85)

To excite a wave with pattern speed Ωp, we use an external potential that
has the same pattern speed, that is, Φext(R, t) = Φext(R, φ − Ωpt). In this

case, ∂Φext/∂t = −Ωp∂Φext/∂φ, so Ė = ΩpL̇. If this energy and angular mo-
mentum all goes into the wave then the wave energy and angular-momentum
densities are related by

Ew(R) = ΩpLw(R), (6.86)

a result that can be confirmed by more rigorous but longer routes. Sim-
ilarly, the energy current CE(R) is just Ωp times the angular-momentum
current, since both energy and angular momentum are transported at the
group velocity.

10 A simple device to remember the sign of this result is to think of the wave as having
negative angular momentum if its “speed” Ωp is less than the disk speed Ω.
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Figure 6.16 Initial evolution of a uniformly rotating disk of 105 stars with Q = 1 that is
constrained to remain axisymmetric. The time unit is the constant rotation period of the
stars in the initial disk, 2π/Ω0. From Hohl (1971), reproduced by permission of the AAS.

6.3 Global stability of differentially rotating disks

In the last section we described how tightly wound spiral disturbances prop-
agate through galactic disks. Unfortunately, the WKB analysis of tightly
wound waves does not give a complete picture of disk dynamics, because it
does not apply to loosely wound structures. Hence we now turn to a descrip-
tion of numerical experiments on disk dynamics. We shall find that many of
the results of these experiments can be understood by treating the disk as a
resonant cavity, within which tightly wound disturbances rattle to and fro.

6.3.1 Numerical work on disk stability

One of the earliest and most influential studies of disk stability was carried
out by Hohl (1971), who followed 105 bodies using a particle-mesh Poisson
solver (§2.9.3) on a 256× 256 grid. The initial potential and surface density
were those of a Kalnajs disk (eqs. 4.166 and 4.167). The stellar velocities were
assigned from the Schwarzschild velocity distribution (4.157), with initial
radial velocity dispersion chosen so that the disk was marginally stable in
the WKB approximation (Q = 1, eq. 6.71).
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Figure 6.17 Further evolution of the disk in Figure 6.16, after removing the constraint
that the disk remain axisymmetric.

These initial conditions do not correspond to an exact stationary solu-
tion of the collisionless Boltzmann equation (the df that is a stationary solu-
tion for the chosen surface density, the Kalnajs df of eq. 4.168, is somewhat
unrealistic because it has an integrable singularity). To obtain a stationary
df, Hohl simply ran his program for several orbital times while constraining
the gravitational field to remain azimuthally symmetric. The resulting evo-
lution is shown in Figure 6.16. Apart from some blurring of the sharp outer
edge of the initial distribution, there is rather little change, indicating that
the disk has settled into equilibrium. The velocity dispersion of the stars
does not rise noticeably, Q remains near unity, and there is no sign of any
instability. These results suggest that in this case Toomre’s local stability
criterion Q > 1 is also sufficient for global stability to axisymmetric modes.

With the disk now in equilibrium, Hohl removed the constraint that
the gravitational field should remain axisymmetric. The resulting evolution,
shown in Figure 6.17, is dramatically different. In less than two rotations,
the disk evolves into a bar-like structure with trailing spiral arms. At later
times the bar gradually dissolves, leaving behind a disk with large random
velocities (Q ≈ 2–4) surrounding a slowly rotating oval structure. There is
evidently a strong m = 2 or bar instability, which was not predicted by
the local analysis of the previous section.
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Hohl’s results are consistent with the analytic study of the modes of
the Kalnajs disks reported in §5.6.2. We found there that the Kalnajs disks
are bar-unstable if Ω/Ω0 > 0.507 (eq. 5.189), and in Hohl’s axisymmetric
disk Ω/Ω0 = 0.81, well above the instability threshold.11 The investigations
by Kalnajs and Hohl were almost simultaneous and mutually reinforcing:
Kalnajs’s analytic work showed that the strong bar instability found by Hohl
was not a numerical artifact, while Hohl’s work showed that the instability
was not due to the singularity in the Kalnajs df.

The bar instability is equally strong in differentially rotating disks, as
illustrated by the simulation in Figure 6.18.

By now the stability of a wide range of disk models has been investi-
gated, both by N-body simulations (Zang & Hohl 1978; Sellwood 1981, 1985;
Sellwood & Moore 1999) and linear mode calculations using the methods de-
scribed in §5.3.2 (Zang 1976; Kalnajs 1978; Sawamura 1988; Vauterin &
Dejonghe 1996; Pichon & Cannon 1997; Evans & Read 1998).12 The results
largely confirm the two main conclusions of Hohl’s classic paper:

(i) Toomre’s local stability criterion Q > 1 is a fairly accurate predictor of
stability to axisymmetric modes of all wavelengths.

(ii) If most of the kinetic energy of a disk is in rotational motion, then the
disk is usually strongly unstable to a large-scale bar-like mode.

The second conclusion leads to the important question: why are disk galaxies
apparently stable? Ostriker & Peebles (1973) were the first to stress the
grave consequences of the bar instability for our own Galaxy and other disk
galaxies. They argued that the most plausible way to stabilize the Galaxy
was to add a massive dark halo, possibly containing even more mass than
the visible disk within the solar radius. The dark halo provides part of the
equilibrium gravitational field, thereby reducing the required disk mass and
the destabilizing effect of the disk’s self-gravity. For example, Kalnajs disks
embedded in a rigid halo are stable to the bar mode so long as the disk
contributes less than fd = 2

3 of the equilibrium radial force (Problem 5.18).

The need to stabilize disks against bar formation was one of the influ-
ential early arguments for the presence of large amounts of dark matter in
galaxies, although we shall see below that there are other ways to stabilize
galactic disks, and the actual contribution of dark matter to the total mass
inside the solar radius may be as small as 10–20%.

11 Axisymmetric (m = 0) instabilities are also present in some of the Kalnajs disks, as
seen in Figure 5.5. In rapidly rotating disks these arise because Q < 1, while in slowly
rotating Kalnajs disks they are probably connected with the integrable singularity in the
df; thus neither instability is expected to be present in Hohl’s model.

12 An important element of these investigations is the comparison of the results from
these two methods, which has been done for the Kalnajs disks (Sellwood 1983), the Kuzmin
disk (Sellwood & Athanassoula 1986), the isochrone disk (Earn & Sellwood 1995), and the
Mestel disk (Sellwood & Evans 2001).
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Figure 6.18 The development of the bar instability in a differentially rotating disk. The
initial surface-density distribution in the disk is exponential (eq. 2.162) with unit scale
length Rd, unit total mass, and G = 1. The initial radial velocity dispersion in the disk
is chosen so that Q = 1.2 (eq. 6.71). The disk is embedded in an approximately spherical
dark halo; thus at radius 2Rd the disk contributes only fd = 0.53 of the total radial force.
The gravitational potential is softened with a softening length ε = 0.1 (eq. 2.226). The
disk and halo are modeled by 0.5 × 106 and 2.5 × 106 particles, respectively. Each panel
shows three orthogonal views of the disk, with a time label at the upper right. Courtesy
of J. Sellwood.

6.3.2 Swing amplifier and feedback loops

Many features of the bar instability can be understood by augmenting the
WKB dispersion relations with two new physical concepts.

(a) The swing amplifier In §6.2.5 we argued that any leading distur-
bance in a disk inevitably unwinds. If the parameter X defined by equa-
tion (6.77) is of order unity or smaller, the WKB approximation is unable
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to follow the evolution of an unwinding leading wave after it reaches the
long branch of the dispersion relation. We may use numerical experiments
to study what actually happens next.

Following Toomre and Zang (Toomre 1981) we consider a stellar Mestel
disk with constant Q. We assume that the disk is embedded in a rigid, fixed
“halo” component, such that the disk contributes only a fraction fd < 1 of
the total radial force in the equilibrium system. If the disk surface density
is written as Σ(R) = v2

0/(2πGR) (eq. 4.158), the disk contributes a radial
force v2

0/R, and the circular frequency Ω is therefore given by

Ω2 =
v2

0

fdR2
. (6.87)

Using the relation κ =
√

2Ω (see eq. 3.80), we have from equation (6.77),

X =
2

fdm
. (6.88)

Toomre and Zang used linear perturbation theory to follow numerically
the evolution of a leading wave packet with m = 2 in a disk with Q = 1.5,
fd = 1

2 , and X = 2. The results are shown in Figure 6.19. As expected,
within a few rotation periods the wave unwinds into a relatively open pattern
(frame 3) and then into a trailing pattern that becomes more and more
tightly wound (frame 9). The striking feature of these calculations is that the
amplitude of the trailing wave in frame 9 is about twenty times larger than
the amplitude of the initial leading wave in frame 1, and that at intermediate
stages (frames 4, 5, and 6) an even stronger transient spiral pattern is formed.

These results are a manifestation of swing amplification, a phe-
nomenon that is not captured by the WKB approximation.13 The following
heuristic explanation of the basic mechanism of the amplification is given by
Toomre (1981). Consider a material arm described by equation (6.8). For
the purposes of this argument we redefine the quadrant of the pitch angle
so that 0 < α < 90◦ for trailing arms and 90◦ < α < 180◦ for leading arms.
Thus equation (6.9) is written as

cotα = −RtdΩ

dR
= 2At, (6.89)

where A, defined in equation (3.83), is a measure of the shear in the disk.
The rate of change of pitch angle is

dα

dt
= − 2A

1 + 4A2t2
. (6.90)

13 Weaker amplification, up to a factor of two, is present in the WKB approximation
if Q is very close to unity. This process has an elegant physical interpretation in terms
of tunneling across the forbidden region at corotation (Mark 1976; Goldreich & Tremaine
1978, 1979).
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Figure 6.19 Evolution of a packet of leading waves in a Mestel disk with Q = 1.5 and
fd = 1/2 (equal contributions from the disk and the rigid halo to the flat circular-speed
curve). Contours represent fixed fractional excess surface densities; since the calculations
are based on linear perturbation theory, the amplitude normalization is arbitrary. Con-
tours in regions of depleted surface density are not shown. The time interval between
diagrams is one-half of a rotation period at corotation. ILR, CR, and OLR denote the
radii of the inner Lindblad resonance, the corotation resonance, and the outer Lindblad
resonance. From Toomre (1981), c© Cambridge University Press 1981. Reprinted by
permission of Cambridge University Press.
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Figure 6.20 Schematic diagram showing the reason for swing amplification. The panels
show the motion of a star in its epicycle and the motion of an unwinding material arm in
a Mestel disk. The dashed and solid straight lines show the movement of the material arm
between panels. The interval between panels is 0.2 times the epicycle period. Note the
temporary similarity of angular speeds of the arm and the star: between κt/(2π) ' −0.2
and +0.2 the arm and the star swing around at roughly the same rate, so the gravitational
field of the arm can steadily attract the star.

When the arm is tightly wound, its rotation rate dα/dt is slow, but as it
swings from leading to trailing it reaches a maximum rotation rate of 2A.
This maximum is comparable to the average angular speed of stars around
their epicycles, κ (for a Mestel disk, 2A = Ω and κ =

√
2Ω). Moreover, both

the unwinding of the arm and the rotation of the stars around their epicycles
are in the same sense, opposite to the direction of rotation (see Figure 6.20).
Thus there is a temporary near-match between the epicyclic motion and
the rotating spiral feature, which enhances the effect of the gravitational
force from the spiral on the stellar orbit—and the contribution of the star’s
own gravity to the spiral perturbation. This enhancement can lead to rapid
growth in the strength of the arm over the interval of about one radian when
the arm is most open.

Swing amplification is effective when Q exceeds unity, but not by too
much—so the disk is stable, but still responds strongly to gravitational per-
turbations. Numerical experiments show that the amplification factor during
the swing from leading to trailing is extremely sensitive to the value of Q
when Q is near unity. For example, in Mestel disks there is an increase of a
factor of five in the amplification as Q is decreased from 1.5 to 1.2. Strong
amplification also requires that X is not too large—if X � 1, the wave will
propagate away from corotation on the long branch of the dispersion relation
before swinging through α = 90◦, so corotating stars are not coupled to the
swinging spiral field. Figure 6.21 shows the gain of the swing amplifier as
a function of the parameters X and Q, in disks with a flat circular-speed
curve. This figure suggests that 1 ∼< X ∼< 3, Q ∼< 2 are necessary and suffi-
cient conditions for swing amplification factors of more than a few in such
disks; and when X ' 2 and Q = 1.2 the amplification factor can easily be
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Figure 6.21 Gain of the swing amplifier as a function of X and Q, for a disk with a flat
circular-speed curve. The first two panels show calculations based on the sheared sheet
(§8.3.2); the left panel is for a fluid (Goldreich & Lynden–Bell 1965a) and the middle panel
is for a stellar system (Julian & Toomre 1966). The right panel shows calculations using
the Zang (1976) model of a Mestel disk. Note that all three models give similar results, that
the gain is small forX ∼> 3, and that the vertical scale is logarithmic. From Toomre (1981),
c© Cambridge University Press 1981. Reprinted by permission of Cambridge University
Press.

30–100.14

(b) Feedback loops Swing amplification of a single leading disturbance
is not sufficient by itself to destabilize a galactic disk. However—as anyone
who has set up a public address system knows—an amplifier together with
positive feedback from output to input can give rise to instability. Thus, any
mechanism that turns trailing waves into leading waves is liable to initiate
instability in a disk with a strong swing amplifier. For example:
(i) Suppose that the disk has a sharp outer edge that lies outside the forbid-

den region around corotation but inside the outer Lindblad resonance.
Trailing waves that approach this edge can reflect off it, in the same
way that waves reflect off the end of a hanging chain or an organ pipe.
The reflection reverses the sign of the wavenumber k and hence reflects
trailing waves into leading waves with the same wavelength. This is
a simple example of feedback, but it is probably not present in most
galactic disks because their outer edges are not sufficiently sharp.

(ii) In some cases the disk may have no inner Lindblad resonance, because
the maximum value of Ω − 1

2κ is less than the pattern speed. For ex-

14 The gain of the swing amplifier in disks with other circular-speed curves is discussed
by Athanassoula (1984) and Fuchs (2001).
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Figure 6.22 A graphical argument
that suggests why trailing waves
that propagate through the center
of a disk emerge as leading waves.
A small patch of three incoming
trailing waves with pitch angle α <
90◦ is shown on the left. The patch
propagates through the center as a
plane wave and emerges with a pitch
angle α′ = 180◦ − i. Since α′ > 90◦

the emerging wave is leading.

ample, in the isochrone potential (eq. 2.47), there is no inner Lindblad
resonance when Ωp > 0.0593(GM/b3)1/2 (Figure 6.11a). In this case,
trailing waves can propagate right in to the center of the disk, from where
they emerge as leading waves propagating outward (see Figure 6.22).

(iii) Nonlinear interactions of trailing spiral waves can generate leading spi-
rals. To illustrate how this happens, we consider two tightly wrapped
trailing spirals with surface density of the form

Σi(R, φ, t) = Hi(R) cos[fi(R) +mi(φ − Ωpit)] (i = 1, 2). (6.91)

In the collisionless Boltzmann equation, the gravitational field due to
one of these waves interacts with the perturbed df of the other to
generate a perturbation to the df whose spatial form is proportional
to Σ1Σ2. The rapidly varying component of this perturbation is pro-
portional to cos[f1(R) + m1(φ − Ωp1t)] cos[f2(R) + m2(φ − Ωp2t)]. Us-
ing the formula cosx cos y = 1

2 cos(x + y) + 1
2 cos(x − y), it is easy

to show that this corresponds to spiral waves with shape function
f±(R) = f1(R)±f2(R), azimuthal wavenumberm± = m1±m2, and pat-
tern speed Ωp± = (m1Ωp1±m2Ωp2)/(m1 ±m2). If the radial wavenum-
ber k± = df±/dR is negative and satisfies the WKB dispersion relation
with the corresponding azimuthal wavenumber and pattern speed, then
the nonlinear interaction will launch a leading wave that can later be
amplified by the swing amplifier (Sygnet et al. 1988; Fuchs, Dettbarn,
& Tsuchiya 2005).

(c) Physical interpretation of the bar instability These results yield
a simple physical interpretation of the bar instability: any minor leading
disturbance unwinds and is then swing amplified into a short trailing dis-
turbance, which propagates through the disk center and emerges as a short
leading disturbance, which then unwinds and is amplified further.

One clue that supports this point of view is shown in Figure 6.23.
The figure shows an unstable m = 2 mode for a disk with surface den-
sity Σ(R) = Σ0 exp(− 1

2R
2/R2

0). Only a fraction fd of the radial force in the
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Figure 6.23 Shapes of unstable modes in a Gaussian disk (Toomre 1981). Left: no rigid
halo. Right: one-third of the central force arises from a rigid halo. The growth rate is
17% of the pattern speed in the first case but only 3% of the pattern speed in the second.
This calculation used a cold disk and softened gravity to model a disk with non-zero Q
(see Problem 6.3). Dots mark the corotation circle. From Toomre (1981), c© Cambridge
University Press 1981. Reprinted by permission of Cambridge University Press.

unperturbed system arises from the disk; the remainder comes from a rigid
“halo” component. The fraction fd = 1 in the model on the left (no halo)
and fd = 2

3 on the right. The details of the disk model are described in
Toomre (1981); the main feature to notice here is the “lumpy” structure of
the mode, which is much more prominent in the right panel. This lumpy
structure is naturally explained as the result of interference between leading
and trailing waves of nearly equal amplitude, propagating through the disk
center. In the model on the left, which has a large growth rate, the swing-
amplified trailing waves have larger amplitude than the leading waves, so the
mode looks like a trailing spiral even though a weak leading wave is present.
In the model on the right, which has a much lower growth rate because of
the rigid halo, the amplitudes of the leading and trailing waves are nearly
equal, so the interference pattern is more pronounced. This interpretation
also predicts, correctly, that growing modes in a differentially rotating disk
are always trailing.

These arguments imply that any simple stability criterion based on the
global properties of the galaxy cannot accurately predict stability in all cases,
because stability depends on the efficiency of the trailing→leading feedback
through the center, which in turn depends sensitively on the properties of
the disk near the center. A disk can be stabilized by a small readjustment of
the inner mass distribution that increases the central angular speed and thus
creates an inner Lindblad resonance, cutting off the propagation of density
waves.
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6.3.3 The maximum-disk hypothesis

A major uncertainty in understanding the dynamics of disk galaxies is the
fractional contribution of the halo to the total mass within the outer radius
R? of the stellar disk (of course, the dark halo contributes most of the mass
at radii � R?). In particular, disks in which the fractional contribution of
the dark halo is small are far more susceptible to the bar instability. The
circular-speed curve strongly constrains the overall mass distribution, but the
relative contributions of the disk and halo to this mass are poorly determined,
because the mass-to-light ratio Υd of the disk is uncertain.

Some constraints on Υd can be obtained by fitting models of stellar
populations (see BM §5.4 and Bell & de Jong 2001) to the observed col-
ors or spectra of galaxy disks. However, these models depend on uncertain
assumptions about the distribution of stellar ages and masses—in particu-
lar, low-mass stars contribute little or no light but could have a substantial
contribution to Υd.

The circular-speed curves of most spiral galaxies out to ∼ R? can be
fitted rather well by simple models in which the mass-to-light ratio of the
disk is independent of radius and there is little or no dark mass (Palunas &
Williams 2000; Sancisi 2004). Dark matter is required only to fit HI rotation
curves, which extend to several times R?. Advocates of the maximum-
disk hypothesis argue that the success of these simple models would be an
improbable coincidence unless the disk contributed most of the mass inside
R?. This argument is appealing but far from rigorous, since (i) the radial
profile of the dark matter is unknown and may be similar to that of the disk,
and (ii) disks have radial color gradients, which suggest that the mass-to-light
ratio of the disk is likely to depend on radius.

It is worthwhile to define the maximum-disk hypothesis more precisely
(e.g., Sackett 1997). Assume that the disk and bulge have mass-to-light
ratios Υd and Υb that are independent of radius, so we can derive their
contribution to the circular-speed curve once we know these two parameters.
Assume that the dark halo has a given functional form such as an NFW
profile (§2.2.2g), which depends on two parameters ρ0 and a. Then find the
combination of Υd, Υb, ρ0 and a that fits the circular-speed curve while
minimizing the halo mass inside R?; the resulting disk parameters define the
“maximum disk.” The maximum-disk hypothesis is that most galaxies have
nearly maximum disks.

Since dark halos are required to fit the circular-speed curves outside
R?, and the density of the halo increases inwards, even maximum disks have
some halo contribution to the radial force inside R?. Typically, a maximum
disk contributes a fraction fd = 0.55–0.9 of the radial force at a radius of
2.2Rd (here Rd is the scale length of the exponential disk, eq. 1.7); since the
circular speed at a given radius is proportional to the square root of the force,
maximum disks contribute 75–95% of the circular speed. For comparison,
in the two models of the Milky Way described in §2.7, the disk contributes
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fd = 0.74 (Model I) and fd = 0.32 (Model II) of the force at 2.2Rd. Thus
Model I has close to a maximum disk, but Model II does not.

Many indirect arguments have been used to constrain the relative disk
and halo contributions to the gravitational field. These include:
(i) Fitting the two-dimensional velocity field in barred or unbarred spirals to

the gravitational field generated by the disk stars and dark halo (Weiner
et al. 2001; Kranz, Slyz, & Rix 2003); the basic assumptions here are that
the mass-to-light ratio of the stars is independent of position and that
the halo, in contrast to the stars, has no small-scale non-axisymmetric
structure that could perturb the velocities.

(ii) Modeling the mass distribution in the Galaxy as arising from stars and
a dark halo, where the distribution of stars is inferred from the near-
infrared light distribution (Englmaier & Gerhard 1999; Klypin, Zhao,
& Somerville 2002). These mass models must explain the kinematics of
HI and CO gas, including non-circular motions induced by the Galactic
bar, as well as the optical depth to gravitational microlensing in the
Galactic bulge (BM §10.2.2, Binney & Evans 2001; Sumi et al. 2003).

(iii) The pattern speed of a bar embedded in a massive halo is expected to
decay rapidly due to dynamical friction, as described in §8.1.1d. Ob-
servations show, however, that the pattern speeds of bars are generally
high, which limits the halo contribution to the mass in the inner galaxy
(see §6.5.2e).

(iv) The Tully–Fisher law (eq. 1.24) implies that the maximum rotation
speed in disk galaxies is tightly correlated with the luminosity of the
galaxy. If the halo contribution to the disk rotation is small and the
disk mass-to-light ratio Υd is independent of radius, then the maximum
rotation speed should be vc = 0.62(GΥdL/Rd)1/2 for an exponential
disk of scale length Rd (see Figure 2.17). Since disks of a given lu-
minosity L have a range in scale lengths, the residuals in vc from the
Tully–Fisher relation should be anti-correlated with the scale length if
the maximum-disk hypothesis is correct. No such correlation is observed
(Courteau & Rix 1999).

(v) In disks with a flat circular-speed curve, swing amplification is strongest
when the parameter X (eq. 6.77) is approximately 1.5 (Figure 6.21).
Given the circular-speed curve, which determines the epicycle frequency
κ(R), and an assumed disk mass-to-light ratio, which determines the sur-
face density Σ(R), we can therefore compute the azimuthal wavenumber
mmax that is likely to be subject to the strongest swing amplification at a
given radius. In grand-design spirals, where there is usually a prominent
two-armed spiral, mmax should be 2, and this requirement constrains the
mass-to-light ratio of the disk and hence the halo fraction (Athanassoula,
Bosma, & Papaioannou 1987).

These arguments have not yet provided clear and consistent evidence on
the dark halo contribution to the mass within the visible disk radius R?.
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Preliminary conclusions are that (i) high-luminosity spirals with large ro-
tation velocities appear to have near-maximum disks, while the dark halo
contributes half or more of the total mass within R? in low-luminosity spi-
rals (Kranz, Slyz, & Rix 2003); (ii) the disk contributes fd ' 0.5–0.9 of the
total radial force at the solar radius in the Milky Way, or at 2.2Rd in similar
spiral galaxies. Correspondingly, the halo contributes a fraction fh ≡ 1 − fd

of the local force in the range 0.1–0.5.
Maximum disks are difficult to reconcile with the standard cosmological

model of halo formation from cold dark matter (page 728), which produces
dark halos with strong central concentration (Navarro, Frenk, & White 1997).

6.3.4 Summary

Analyses based on the WKB approximation show that disks are stable to
short-wavelength perturbations if Toomre’s Q > 1 (eqs. 6.68 and 6.71). Nu-
merical experiments suggest that Q > 1 implies stability to long-wavelength
axisymmetric perturbations as well, but not to non-axisymmetric ones.

In many disks, the strongest non-axisymmetric instability is an m = 2
bar-like instability. The instability appears to be due to a feedback loop
in which trailing waves propagate through the galactic center, emerging as
leading waves that are swing amplified into stronger trailing waves.

The bar instability can be stabilized by the following mechanisms:
(i) Increase Q. Large random motions reduce the susceptibility of a disk

to gravitational instability and thus inhibit the swing amplifier. Fig-
ure 6.21 shows that Q ∼< 2 is necessary for strong swing amplification in
a disk with a flat circular-speed curve. This mechanism is unlikely to be
important for most galaxies, because the measured values of Q in the
solar neighborhood (Rafikov 2001) and in other disk galaxies (Bottema
1993) are too small to stabilize the disk.

(ii) Increase X (eq. 6.77). The presence of a halo or some other hot com-
ponent that does not respond to the perturbations will lead to more
tightly wound waves. For example, Figure 6.21 shows that X ∼< 3 is
needed for strong swing amplification in a disk with a flat circular-speed
curve. Equation (6.88) shows that in such a disk, an m = 2 wave has
X < 3 if more than 1

3 of the equilibrium radial force arises from the disk.
This is how Ostriker & Peebles (1973) were able to stabilize the disk by
adding a massive halo. However, massive halos may provide short-term
stability at the cost of long-term instability: resonant interactions with
halo stars can drain angular momentum from the bar, leading to slow
but steady growth of the bar over Gyr timescales (Athanassoula 2002).
Massive halos are probably responsible for stabilizing low-luminosity
disk galaxies, since their circular-speed curves imply that most of the
mass inside the outer disk radius R? is dark.

(iii) Cut off the feedback. The commonest feedback loop involves the prop-
agation of waves through the disk center, which requires that there is
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no inner Lindblad resonance. Thus a cool disk can be stabilized by a
readjustment of the mass distribution in the inner disk so as to increase
the central angular speed and thus create an inner Lindblad resonance
(see Sellwood & Moore 1999 and Sellwood & Evans 2001 for examples).
This is the mechanism that is likely responsible for the stability of most
luminous spiral galaxies; there may be help the from mechanism of (ii),
but a massive halo is not required for stability.

6.4 Damping and excitation of spiral structure

6.4.1 Response of the interstellar gas to a density wave

Only disk galaxies containing substantial quantities of cool interstellar gas
exhibit spiral structure. To explain this empirical fact, and to interpret the
rich phenomenology of spiral structure as seen in a variety of gas tracers (HI,
CO, magnetic fields, dust, etc.), we need to understand how interstellar gas
responds to the gravitational forces from a density wave.

In general, calculations of spiral structure in the interstellar gas must be
done numerically, since the linear theory we have used so far is invalid for the
strong density contrasts seen in the gas. However, with some approximations
we can reduce the problem to a simple analog that is easy to understand. The
interstellar gas generally contains only a small fraction of the total surface
density in a galactic disk—Table 1.1 states that in the solar neighborhood
this fraction is about 25%. Hence to a first approximation we can assume
that the gas responds to the potential of the stars alone. We write this
potential as the sum of the unperturbed axisymmetric potential Φ0(R) and
the perturbed potential due to a tightly wound stellar density wave,

Φ1(R,ϕ) = F cos(kR+mϕ), (6.92)

where ϕ is now the azimuthal angle in a frame rotating at the pattern speed
Ωp. We shall concentrate our attention on interstellar clouds (see BM §9.6)
since these contain the bulk of the atomic and molecular gas. In a first
approximation, the clouds can be regarded as test particles moving in the
potential of the stellar disk. Their motion can be obtained from the equations
of motion for a star in a weak non-axisymmetric field (§3.3.3). Adapting
equations (3.142) to this case, we find

R̈1 +

(
d2Φ0

dR2
− Ω2

)
R1 − 2R0Ωϕ̇1 = kF sin(kR+mϕ),

ϕ̈1 + 2Ω
Ṙ1

R0
=
mF

R2
0

sin(kR+mϕ),

(6.93)
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where Ω, R1, and ϕ1 are defined by equations (3.137) and (3.139).
We shall focus on clouds in a small patch of the galactic disk, and we

may choose the origin of time so that their unperturbed azimuthal trajectory
is ϕ0(t) = (Ω−Ωp)t. Since the perturbing force is weak, we can replace ϕ on
the right side by its unperturbed value ϕ0(t). However, we do not replace R
by its unperturbed value R0—the wavenumber k is large because the density
wave is tightly wound, and we want to include the possibility that kR1 is of
order unity, even though R1 is small.

Since the waves are tightly wound, the radial force, which is the right
side of the first of equations (6.93), is larger by a factor kR0/m than the
azimuthal force, which is R0 times the right side of the second of equations
(6.93). Hence the right side of the second equation can be dropped, and
the remainder of that equation integrates immediately to an approximate
statement of the conservation of angular momentum

ϕ̇1 +
2ΩR1

R0
= constant. (6.94)

Since a readjustment of R0 simply changes R1 by a constant, we can always
choose R0 so that the constant in (6.94) is zero; then, eliminating ϕ1 from
(6.93) and using equation (3.146b), we obtain

R̈1 + κ2R1 = kF sin[k(R0 +R1) +m(Ω − Ωp)t], (6.95)

where κ is the epicycle frequency.
There is a simple analog system that obeys equation (6.95). Consider the

endless row of identical pendulums shown in Figure 6.24. Each pendulum has
length L and therefore its natural oscillation frequency at small amplitude is
κ ≡ (g/L)1/2 where g is the acceleration due to gravity. Let the horizontal
position of the support at the top of a given pendulum be x0, and the position
of the bob at the bottom be x0 + x1(x0, t). Finally, suppose that each
pendulum is subjected to a horizontal force per unit mass kF sin(kx + ωt).
Then the equation of motion is

∂2x1

∂t2
+ κ2x1 = kF sin[k(x0 + x1) + ωt], (6.96)

which is the same as (6.95) if x replaces R and ω replaces m(Ω − Ωp).
If the forcing F is sufficiently strong, adjacent pendulums may col-

lide. A collision takes place if the bobs of two pendulums whose sup-
ports are separated by a small value ∆x0 cross, that is, if x0 + x1(x0, t) >
x0 + ∆x0 + x1(x0 + ∆x0, t). Letting ∆x0 shrink to zero, we find that the
condition for collision is ∂x1/∂x0 < −1. To obtain a crude estimate of the
level of forcing that leads to collisions, we revert for the moment to the linear
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approximation, where kx1 can be dropped from the argument of the sine. In
this approximation we find

x1 =
kF

κ2 − ω2
sin(kx0 + ωt). (6.97)

Hence in the linear approximation collisions occur if

f ≡ k2|F |
|κ2 − ω2| > 1. (6.98)

This condition has not been derived self-consistently, since it requires that
|kx1| > 1 at some point in the cycle, so the approximation of dropping kx1

from the argument of the sine is not valid. Nevertheless, numerical experi-
ments with the full nonlinear equation (6.95) show that in many cases the
crude criterion f ∼> 1 provides a fairly accurate prediction of when collisions
occur. Thus f proves to be a useful dimensionless parameter for describing
the effects of spiral waves on cold interstellar gas.

Figure 6.24, taken from Toomre (1977a), shows the results of numerical
integrations of equation (6.95) with ω = 0.75κ, assuming that any collisions
are completely inelastic. In the top panel, where f = 0.5, no collisions occur,
and the linear approximation is fairly accurate. As the forcing is increased,
collisions first occur at f = 0.98. The bottom panel shows the behavior of
the row of pendulums at even stronger forcing, f = 1.5. The most prominent
features are the “traffic jams” where several pendulums are in contact. Each
pendulum lingers for about 20% of the cycle in the traffic jam and then
swings away to the left until it enters the next jam.

The motion of this row of pendulums provides a simple model for the
motion of clouds in a spiral density wave. Each pendulum can be regarded
as a cloud. The traffic jams correspond to narrow regions of shocked high-
density gas. Equation (6.95) and Figure 6.24 show that dense, narrow fluid
arms are a natural consequence of the response of inelastic interstellar gas to
a tightly wound density wave. The figure also shows that the traffic jams are
located near the minima of the forcing potential; in the language of §6.1.2,
the gas arm coincides with the potential arm.

The picture we have just described is based on a grossly oversimplified
model of the interstellar gas. In reality, most of interstellar space is occupied
by a hot (T ≈ 106 K) ionized medium, which hardly responds at all to the
spiral gravitational field of the stars because its internal pressure is so high.
The interstellar clouds occupy only a few percent of the disk volume. An
additional complication is that the clouds have random velocities vrms ≈
6 km s−1; hence the cloud motion is not perfectly ordered and clouds can
collide even outside the traffic jams (the typical time between collisions is
tcoll ≈ 10 Myr). A better model would treat the clouds as atoms of an
imperfect fluid with mean free path vrmstcoll ≈ 100 pc. In these more realistic
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Figure 6.24 A simple model for the response of the interstellar gas. The diagram depicts
a row of pendulums exposed to a horizontal force field proportional to sin(kx+ωt). The si-
nusoids below the pendulums represent the forcing potential. The natural small-amplitude
frequency of the pendulums is κ, so the equation of motion is (6.96). The motion is shown
for ω = 0.75κ and forcing amplitudes of 0.5f (top) and 1.5f (bottom; see eq. 6.98). All
collisions are assumed to be inelastic. From Toomre (1977a), based on unpublished work
by A. J. Kalnajs. Reprinted, with permission, from the Annual Review of Astronomy and
Astrophysics, 15 c©1977 by Annual Reviews (www.annualreviews.org).

models the traffic jam is spread out into a high-density region of small but
finite width. An additional complication arises from the self-gravity of the
gas. Although it is reasonable to neglect the self-gravity of the gas in linear
theory, because the fractional surface density in gas is small, in the traffic
jams the gas and star densities may be comparable and the self-gravity of
the gas then plays an important role (Balbus 1988).

To sum up, interstellar clouds respond in a strongly nonlinear fashion
to the imposed spiral field from a density wave. The resulting high-density
traffic jams occur near the minima of the spiral potential, and can be iden-
tified with the gas arms seen in grand-design spiral galaxies. It is likely that
star formation will proceed much more rapidly in these high-density regions,
thus producing the young stars that delineate the bright-star arms. The dis-
placement of the bright-star arms inside the gas and dust arms reflects the
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time interval required for star formation (§6.1.3d).

6.4.2 Response of a density wave to the interstellar gas

The shocks or “traffic jams” induced by spiral arms in the interstellar gas
dissipate energy. The source of this energy is the spiral density wave in the
stars, and here we investigate whether and how this dissipation damps the
density wave. In particular, equations (6.82)–(6.86) show that waves with
pattern speed in the range 0 < Ωp < Ω have negative energy density, so one
might expect that such waves are actually amplified by energy dissipation—
but this expectation turns out to be incorrect (Kalnajs 1972c).

We consider a fluid disk orbiting in a tightly wrapped spiral potential.
The flow field and properties of the fluid, and the potential, are assumed
to be stationary as viewed in a frame rotating with some pattern speed Ωp.
The amplitude of the spiral is assumed sufficiently large to induce shocks in
the fluid, but sufficiently small that the fluid elements still travel on nearly
circular orbits. We assume that the fluid is cold, in the sense that its sound
speed is small compared to the circular speed. We allow for sources and
sinks of mass, energy, and angular momentum at the inner and outer edges
of the disk that may be required to maintain a steady state in the presence
of dissipation.

We assume for simplicity that the fluid is adiabatic (Appendix F.1.4),
so the specific entropy is conserved away from shocks, and increases discon-
tinuously when the fluid element crosses a shock. In a steady-state system
this means that the fluid streamlines cannot be closed, since the entropy
per unit mass of the fluid on any closed streamline that crosses a shock must
grow continually, and hence cannot be stationary. Thus the fluid must slowly
spiral in or out. This steady radial drift of the fluid leads to a mass current
CM(R), defined to be the rate of transfer of fluid mass outward across radius
R, which must be independent of radius in a steady state.

Since the fluid is cold, its internal energy is much smaller than its orbital
energy, and since the fluid orbits are nearly circular, the orbital energy per
unit mass is ε(R) = 1

2Ω2R2 + Φ(R). The radial drift of the fluid adds energy
to the annulus (R,R+dR) at a rate CM[ε(R)−ε(R+dR)] = −CM(dε/dR) dR.
Shocks dissipate energy, so their contribution to the energy balance in the
annulus is a negative quantity that we shall call Ės dR. Finally, gravitational
forces between the spiral wave and the fluid transfer energy from the wave
to the fluid. The energy density of the spiral wave, Ew, is given by equations
(6.83) and (6.86), and the rate at which energy is transferred from the wave

to the fluid in the annulus (R,R + dR) may thus be written −ĖwdR. In a
steady state, the sum of these three contributions must vanish, so we have

Ėw + CM
dε

dR
= Ės. (6.99)
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The equation for angular-momentum balance is similar, except that momen-
tum is conserved across a shock front so the analog to the dissipation rate
Ės is zero. Thus we have

L̇w + CM
d`

dR
= 0, (6.100)

where `(R) = ΩR2 is the angular momentum per unit mass in circular orbits.
The energy and angular-momentum density of the spiral wave in the

stellar disk are related by Ew = ΩpLw (eq. 6.86), so we may solve equations
(6.99) and (6.100) to find

Ėw =
Ωpd`/dR

Ωpd`/dR− dε/dR
Ės ; CM =

1

dε/dR− Ωpd`/dR
Ės. (6.101)

Using the relations dε/dR = 1
2Rκ

2 and d`/dR = 1
2Rκ

2/Ω (Problem 3.32),
we have

Ėw =
Ωp

Ωp − Ω
Ės ; CM =

2Ω

Rκ2(Ω − Ωp)
Ės. (6.102)

Since Ės, the rate of energy dissipation in shocks per unit radius, is negative,
we conclude that waves outside corotation (0 < Ω < Ωp) have Ėw < 0 and
therefore lose energy to the fluid. Since these waves have positive energy
density (from the discussion in §6.2.6), they are consequently damped. Waves

inside corotation (0 < Ωp < Ω) have Ėw > 0 and gain energy from the
fluid, but have negative energy density and therefore are also damped. In
short, tightly wound spiral density waves are always damped by shocks in the
interstellar fluid.

Equations (6.102) also show that the fluid inside corotation drifts inward
(CM < 0), while fluid outside corotation drifts outward. Thus, shocks in the
interstellar fluid repel the fluid from corotation.

These simple arguments lead to an apparent paradox: interactions be-
tween the density wave in the stars and the interstellar gas damp the density
wave, yet the observations show that disk galaxies exhibit spiral structure if
and only if they contain interstellar gas. The reason why galaxies without gas
have no spiral structure is straightforward. As packets of density waves in a
stellar disk wind up, they are absorbed at the Lindblad resonances (§6.2.5).
The energy contained in the waves is transferred to random motions of the
stars, causing the disk to heat and Toomre’s Q to grow (see §8.4.2 below for
more on this process). As the disk heats, the efficiency of the swing amplifier
declines, reducing the susceptibility of the disk to further spiral-making. In
gas-free disks, this process eventually leads to a hot, quiescent, axisymmetric
disk like those seen in lenticular galaxies. Thus the growth of strong spirals,
like the growth of ethanol-producing yeasts, is self-limiting because the heat-
ing produced by the spirals kills off the swing amplifier, just as fermentation
of wine and beer is terminated when the ethanol poisons the yeast cells.
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The reason why galaxy disks with gas always exhibit spiral structure is
less clear. A related, but even harder question is what determines the prop-
erties of the spiral structure in a given galaxy—amplitude, number of arms,
stationary or transient, grand-design or flocculent, etc. These issues are dis-
cussed in the next subsection, although many of the answers are tentative or
incomplete.

6.4.3 Excitation of spiral structure

The presence of some form of spiral structure in galaxy disks that contain
interstellar gas is not hard to understand. Star formation caused by any local
gravitational instability in the interstellar gas creates a patch of new stars,
which is sheared by differential rotation into an appearance of spirality. As
time passes, the arm is sheared more and more while the most luminous stars
die. Both effects lead to the gradual disappearance of the arm fragment.
Meanwhile new arms form elsewhere. Such processes are almost certainly
responsible for flocculent spirals such as M63 (Plate 9), in which the structure
is patchy, without any long-range order or any corresponding spiral pattern
in the old stellar disk (Elmegreen & Elmegreen 1984; Thornley 1996).

A more difficult and interesting question is the origin of intermediate-
scale and grand-design spiral structure. The distinction between flocculent
and grand-design spiral structure was concisely stated by Oort (1962): “In
systems with strong differential rotation . . . spiral features are quite natural.
Every structural irregularity is likely to be drawn out into part of a spi-
ral. But this is not the phenomenon we must consider. We must consider a
spiral structure extending over the whole galaxy, from the nucleus to its out-
ermost part, and consisting of two arms starting from diametrically opposite
points. Although this structure is often hopelessly irregular and broken up,
the general form . . . can be recognized in many [galaxies].” In the remainder
of this subsection we sketch some of the likely (and less likely) ways in which
intermediate-scale and grand-design spirals can be excited.

(a) Excitation by companion galaxies There are some cases in which
the cause of grand-design spiral structure is obvious. In particular, some of
the most beautiful grand-design spirals have nearby companion galaxies. The
best example is M51 (Plate 1), whose companion galaxy NGC 5195 is located
near the tip of one of its two main spiral arms. Another example is M81
(Plate 8), which is interacting with its companion galaxies M82 and NGC
3077 (Yun, Ho, & Lo 1994). In a classic paper, Toomre & Toomre (1972)
showed that the large-scale morphology of the spiral structure in M51 could
be explained as a result of a recent encounter with NGC 5195 (Figure 6.25).
The long HI spiral arm extending far beyond the stellar disk on the opposite
side from NGC 5195 (Plate 5) is almost certainly also a product of this
encounter. Other grand-design spirals with companions can be successfully
modeled as well (Figure 6.26). Even in cases where no obvious companion is
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present, it is possible that a grand-design spiral has been excited by a recent
encounter with substructure in the dark-matter halo.

(b) Excitation by bars Since grand-design spirals can be excited by
exterior gravitational perturbations from companions, it is natural to ask
whether they can also be excited by interior perturbations, in particular by
the bars that are found at the centers of many disks (§6.5). Here the chain
of cause and effect is less clear. The natural first impression from examining
images of barred spirals is that bars drive spiral structure, since the spiral
arms in galaxies such as NGC 1300 (Plate 10) appear to emerge from the
tips of the bar. Moreover the fraction of grand-design spirals appears to
be much larger among barred galaxies than unbarred ones (Kormendy &
Norman 1979; Elmegreen & Elmegreen 1982). However, this assumption
leads to a contradiction: as we described in §6.1.3d, the pattern speed of
the spiral structure in barred galaxies appears to be much smaller than the
pattern speed of the bar; thus the spiral cannot be driven directly by the
bar (Sellwood & Sparke 1988). If indeed the bar and the spiral are unrelated
dynamical phenomena, is the spiral transient or stationary? And why does
the bar appear to enhance the likelihood of a grand-design pattern? The
answers are unknown.

(c) Stationary spiral structure The Lin–Shu hypothesis states that spi-
ral structure consists of a stationary density wave, which remains unchanged
except for an overall rotation over many crossing times. This hypothesis does
not address the origin of the spiral structure, but it is natural to assume the
following sequence of events: the stellar disk is unstable, and a growing spiral
pattern forms, dominated by the most unstable mode; as the wave ampli-
tude builds, the interstellar gas begins to shock, damping the density wave
in the stars; eventually the wave reaches a stable, finite amplitude at which
the damping and growth rates are equal, and this is the state in which the
galaxy is found today. If this sequence is correct, the shape of a grand-design
spiral wave should be similar to that of the most unstable mode.

This scenario successfully explains—and indeed predicted—several fea-
tures seen in real galaxies:
• Spirals are trailing because unstable modes are usually trailing (§6.3.2c).

The anti-spiral theorem (§6.1.4) does not apply because the steady state
is established through dissipative shocks in the interstellar gas.

• As we have seen, grand-design spiral galaxies exhibit smooth, broad
arms in infrared light, with relative amplitudes of up to 60% (§6.1.3a).
Since the old disk stars that dominate the light in this waveband are
also the dominant contributors to the mass of the disk, the presence of
a spiral pattern in red light is direct evidence that a real density wave is
present—the whole mass of the disk participates in the spiral wave—as
predicted by the Lin–Shu hypothesis.

• The Lin–Shu hypothesis successfully explains why the interstellar gas
defines narrower and stronger arms than the old stars (§6.3.4); why the
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luminous young stars define narrow arms (the high density in the nar-
row gas arms triggers rapid star formation, and the lifetimes of the most
luminous stars are so short that they cannot drift far from their forma-
tion sites before they die); and why the bright-star arms are downstream
from the gas arms (the displacement represents the time required for the
compressed gas clouds to collapse).

These observations provide persuasive evidence that grand-design spiral
galaxies contain density waves, and that the behavior of the interstellar gas
is roughly consistent with the assumption that the pattern is a stationary
density wave. However, they do not establish that the Lin–Shu hypothesis
is correct. Other mechanisms can excite transient trailing spirals in a stellar
disk, including encounters with companion galaxies and swing amplification
of generic initial disturbances (Figure 6.19). The compression of the inter-
stellar gas and consequent star formation in a spiral arm occur on a timescale
that is short compared to the rotation period of the galaxy, and thus transi-
tory density waves with lifetimes of less than a rotation period can produce
equally good agreement with the observations of gas and bright-star arms.

Indeed, there is strong circumstantial evidence that most spiral structure
is not stationary, at least in unbarred galaxies:
• Even though the most regular and well-formed grand-design spirals are

generally chosen for testing the Lin–Shu hypothesis, it has proved to be
frustratingly difficult to determine the basic parameters of steady-state
models, such as the location of the Lindblad and corotation resonances.

• N-body simulations of galactic disks do not generally develop stationary,
grand-design spiral structure, so if the Lin–Shu hypothesis is correct,
some fundamental physics must be missing from these simulations.

• The high rates of angular-momentum transport in strong, open grand-
design spirals that we found in §6.1.5 rearrange the galaxy’s angular-
momentum distribution on a timescale considerably less than 10 Gyr,
and hence suggest that the strongest spiral patterns last for much less
than that time.

• Scattering of disk stars by transient, rather than stationary, spirals pro-
vides promising explanations of the relation between age and velocity
dispersion (§8.4.2) and age and metallicity (Sellwood & Binney 2002) in
the solar neighborhood.

(d) Excitation of intermediate-scale structure The swing amplifier
causes stellar disks to respond vigorously to a wide variety of gravitational
disturbances, and in particular to the clumpy mass distribution in the gas
disk (Julian & Toomre 1966). Moreover the characteristic scale of this pre-
dominantly trailing response, determined by the critical wavelength λcrit of
the stars (eq. 6.65), is much larger than the scale of the gas disturbances
that excited it—using the parameters from §6.2.3, λcrit ' 4.5 kpc in the so-
lar neighborhood—so the stars enhance both the amplitude and the scale of
the noise in the gas disk. In more picturesque language, “[the stellar disk] is
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Figure 6.25 Model of the encounter between M51 and NGC 5195, shown in three orthog-
onal views. The lower left view can be compared with Figure 6.1 or Plate 1. Note that the
low-density tidal tail at the 2 o’clock position relative to the center of M51 is similar to
a low surface-brightness feature in Figure 6.1. In this pioneering experiment the galaxies
were represented as point masses (the filled circles) surrounded by disks of orbiting test
particles. From Toomre & Toomre (1972), reproduced by permission of the AAS.

to disk galaxies what a soundboard is to a piano. It organizes and augments
the chaotic aspects of spiral galaxies . . .whenever the stellar disk is presented
with a relatively flat spectrum of gravitational noise from the gas clouds, it
picks out and augments the spatial frequencies which it prefers. And . . . it is
this bias which leads to pictures that human astronomers happen to prefer
as well” (Toomre & Kalnajs 1991).

At best, this is an appealing scenario for intermediate-scale spiral struc-
ture, rather than a real theory. Many questions remain unanswered: what de-
termines whether a galaxy has flocculent, intermediate-scale or grand-design
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Figure 6.26 Model of the interacting galaxy pair NGC 7753, a large grand-design Sb
spiral, and NGC 7752 (the small compact companion at lower right). The left panel shows
a negative V -band image and the right panel shows an N-body simulation. The orbit of
the companion is marked with a solid line above the disk plane and a dashed line below.
The two galaxies are separated by 60 kpc. From Salo & Laurikainen (1993), reproduced
by permission of the AAS.

structure? What are the relative roles played by inhomogeneities in the gas
disk and substructure in the dark halo? Can nonlinear interactions between
waves help to organize or generate spiral structure on intermediate scales?
And what, if anything, does understanding such spiral structure teach us
about the structure and evolution of galaxies?

6.5 Bars

6.5.1 Observations

Reviews of the properties of bars in disk galaxies are given in BM (§4.4.7),
Sellwood & Wilkinson (1993) and Buta et al. (1996). Images of barred
galaxies are shown in Plate 10 and Figures 6.27 and 6.28. Here we focus on
those properties that are most relevant to interpreting the dynamics.

Bars vary from those that dominate the appearance of the disk, such
as the ones shown in the images, to weak oval distortions that are visible
only in careful Fourier decompositions of the light distribution. Thus the
fraction of disk galaxies that are barred depends on the selection criterion.
Classification by eye—still the most reliable method—shows that about 30%
of spiral galaxies are strongly barred in optical light; the fraction rises to 50%
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Figure 6.27 NGC 5383, a barred spiral (Hubble classification SBb). Note the two nearly
straight dust lanes parallel to the bar, which appear as light streaks in this negative image.
From Sandage & Bedke (1994), courtesy of the Observatories of the Carnegie Institution
of Washington.

or more if weak bars are included. Bars appear even more prominent in near-
infrared images (Eskridge et al. 2000). Since the near-infrared light traces
the disk mass (§6.1.2), strong bars represent a substantial non-axisymmetric
distortion of the mass distribution of the disk.

Our Galaxy is the nearest barred spiral (see §2.7e), although this is
far from obvious because the characteristic non-axisymmetric structure of
a bar cannot be seen in any edge-on galaxy. The presence of a bar at the
center of our Galaxy was suggested long ago (Johnson 1957; de Vaucouleurs
1964), but this insight was not widely accepted for several decades, until
overwhelming evidence had accumulated from several lines of investigation.
Modern observational probes of the Galactic bar include the kinematics of HI
and molecular gas in the central few kpc, near-infrared surface photometry,
gravitational microlensing, and star counts (Gerhard 2002; Merrifield 2003).

Two of the Galaxy’s satellites, the Large and Small Magellanic Clouds,
are barred irregular galaxies. The nearest giant spiral galaxy, M31, contains
an oval distortion which can be interpreted as a bar (Stark 1977), although
most observers still classify M31 as a normal rather than a barred spiral.
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Figure 6.28 NGC 2523, an SBb spiral with a prominent ring. Note the narrowness of
the spiral arms and how one forks into two branches just outside the ring. From Sandage
& Bedke (1994), courtesy of the Observatories of the Carnegie Institution of Washington.

Bar properties depend on the Hubble type of the host galaxy (see
Elmegreen 1996 for a review). Bars in galaxies with early Hubble types
(SBa–SBbc; see page 29) are not centrally condensed—the surface bright-
ness along the major axis is nearly flat with a sharp cutoff at the end of the
bar—while later Hubble types (SBbc–SBm) contain bars with exponential
surface-brightness profiles similar to that of the disk. The bars in early-type
galaxies are also larger relative to the size of the disk. The bar contains up
to a third of the galaxy’s total luminosity in early-type disk galaxies, and a
smaller fraction in late-type galaxies. Since the bar is concentrated towards
the center of the galaxy, it makes an even larger relative contribution to the
luminosity and mass of the inner region. In contrast to elliptical galaxies,
the isophotes of bars are not even approximately elliptical—typically they
have shapes that are intermediate between ellipses and rectangles.

Bars are generally quite elongated. For SB galaxies, the median axis
ratio in the equatorial plane is about 2:1, and for the Galaxy this ratio is
3:1. The strength of the bar can be characterized by the bar-interbar contrast
ratio (see eq. 6.2 for the analogous quantity for spiral arms) which is typically
K ' 3–6, comparable to the arm-interarm contrast of the strongest spirals
(Elmegreen et al. 1996). The thickness of bars is hard to measure since it
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Figure 6.29 A boxy bulge in the edge-on galaxy NGC 1381. The top panel shows a near-
infrared image and the bottom panel shows the isophotal contours for this image, spaced
by 0.5 mag arcsec−2. From Bureau et al. (2006), by permission of Blackwell Publishing.

is difficult to recognize an edge-on barred galaxy. However, there is good
evidence that the bulges with boxy or “peanut-shaped” isophotes that are
seen in ∼ 40% of disk galaxies that are viewed nearly edge-on (see Figure 6.29
or Plate 15) are really bars whose long axis is perpendicular to the line of sight
(BM §§4.4.7 and 11.3; Kuijken & Merrifield 1995; Bureau & Freeman 1999),
while the bulges with elliptical isophotes that are seen in the remainder of
edge-on galaxies represent either unbarred galaxies or bars whose long axis
is along the line of sight. We shall amplify this point in §6.5.2c.

Prominent dust lanes are found in many bars. The lanes are displaced
towards the leading side of the bar, i.e., they are displaced from the center
line of the bar in the direction of rotation (this conclusion is based on the
assumption that the spiral arms are trailing; see §6.1.3b). Often the lanes
are remarkably straight, as in NGC 1300 and NGC 5383 (Plate 10 and Fig-
ure 6.27). At small radii the straight, offset lanes often appear to curl around
to form an inner or nuclear ring. It is natural to assume that these dust lanes,
like the ones in spirals, are regions of highly compressed or shocked gas. This
conjecture is supported by the detection of radio emission from some of these
dust lanes, just as is seen in spirals (§6.1.2).

Many barred spirals exhibit clusters of young stars and HII regions near
the tips of the bars, which presumably arise from rapid star formation in high-
density gas compressed by the bar potential, just as rapid star formation is
seen in the dense gas in spiral arms.

Apart from the presence of the bar and its associated effects, there are
few systematic differences between barred disk galaxies and their unbarred
counterparts.

The pattern speed We have seen that there is little direct evidence to
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support the Lin–Shu hypothesis that spiral structure is a stationary density
wave with a well-defined pattern speed (§6.4.3). In contrast, there are strong
reasons to believe that bars do have a well-defined pattern speed—most ob-
viously, bars are straight rather than trailing, so it is most unlikely that they
are transitory structures that are being wound up by differential rotation.
The bar pattern speed Ωb is usually parametrized by the ratio

R = RCR/ab (6.103)

of the corotation radius (§6.1.3d) to the bar semi-major axis.15

Dynamical arguments show that weak bars, at least, must have R > 1;
that is, weak bars cannot extend beyond corotation (§6.5.2a). Thus, bars
are often said to be “fast” if R ≈ 1 and “slow” if R � 1.

The most straightforward way to measure the pattern speed is from the
flow pattern of a tracer population that obeys the continuity equation, such
as old disk stars; in this case Ωb is given by equation (6.13). This approach
has been used to measure the bar pattern speed in over a dozen lenticular
and early-type spiral galaxies, with a typical uncertainty of about 30%. The
method works less well for late-type spirals, in which the kinematic and
photometric data are contaminated by young stars that may be formed in
shocks associated with the bar: these do not satisfy the continuity equation
and therefore violate the fundamental premise on which equation (6.13) rests.
Figure 6.30 shows the bar semi-major axis ab and corotation radius RCR for
19 barred galaxies examined by this and other methods. The ratio R =
RCR/ab is constant along the dashed lines. Within the errors, all bars have
0.9 ∼< R ∼< 1.3 and thus are “fast.”

Two other lines of evidence also indicate that bars are fast:
(i) Numerical models of gas flow in barred galaxies show that R ' 1.2±0.2

is required to reproduce the straight, offset dust lanes found in many
bars (see §6.5.2d).

(ii) By assuming a constant mass-to-light ratio for the stars, one can de-
termine the gravitational field of a barred galaxy from optical or near-
infrared photometry. One then finds the steady-state flow pattern of
cold gas in this field for a range of pattern speeds, and matches this flow
to the observed gas kinematics and density field to estimate the pattern
speed. This procedure has been applied with varying success to about
ten barred galaxies, and the more reliable results, shown in Figure 6.30,
are consistent with R ' 1.

A less reliable way to estimate the pattern speed is to assign specific features
in the photometry and kinematics (e.g., rings, reversals in the relative phase

15 The parameter R is somewhat imprecise, both because the bar does not have a sharp
edge and because the corotation radius is difficult to determine observationally, even if the
pattern speed is known. Furthermore, associating a single radius with corotation is valid
only when the non-axisymmetric forces from the bar are weak.
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Figure 6.30 Measurements of bar semi-major axes ab (horizontal axis) and corotation
radii RCR (vertical axes). Uncertainties of ±10% are assigned when errors are not quoted
in the original papers. The Hubble constant is assumed to be 70 km s−1 Mpc−1. The
ratio R = RCR/ab is constant on the dashed lines. Filled circles denote measurements
using equation (6.13) (Merrifield & Kuijken 1995; Gerssen, Kuijken, & Merrifield 1999;
Debattista & Williams 2001; Debattista, Corsini, & Aguerri 2002; Gerssen, Kuijken, &
Merrifield 2003; Aguerri, Debattista, & Corsini 2003); open circles are derived by fitting gas
kinematics to dynamical models (Hunter et al. 1988; England, Gottesman, & Hunter 1990;
Lindblad, Lindblad, & Athanassoula 1996; Laine, Shlosman, & Heller 1998; Weiner et al.
2001; Weiner & Sellwood 1999; Debattista, Gerhard, & Sevenster 2002). All measured
bar pattern speeds lie near R = 1.

of gas and potential arms, etc.) to the Lindblad or corotation resonances
(Patsis, Skokos, & Athanassoula 2003). An example of a prominent ring is
seen in NGC 2523 in Figure 6.28.

In summary, most bar pattern speeds appear to lie in the range 0.9 ∼<
R ∼< 1.3 and thus bars are fast. This is a striking result, since we shall find
that galaxies in which the mass within the disk radius is dominated by a
dark halo are expected to have slow bars (see §8.1.1d).

6.5.2 Dynamics of bars

Bars, like many elliptical galaxies, are triaxial stellar systems. However, the
dynamical structures of these two types of triaxial system are quite different,
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since the pattern speeds of ellipticals are believed to be small or zero, R � 1,
whereas the pattern speeds of bars are high, R ' 1. Bars are easier to study
observationally than triaxial elliptical galaxies, both because the directions
of the principal axes are known (two of the axes lie in the surrounding disk)
and because the flow pattern of cold gas can be used to map the gravitational
field.

Like some spiral structure, a bar can be thought of as a density wave.
Most bars are so strong that the linear perturbation theory that we used to
study spiral structure must be supplemented by other tools for describing
bar dynamics, but the artificial case of weak bars provides an introduction
to many of the dynamical phenomena seen in their stronger cousins.

(a) Weak bars In a nearly axisymmetric potential, almost all of the
stars are on loop orbits parented by the nearly circular, closed, loop orbit
described by equation (3.148a) with C1 = 0, or, in a continuum description,
by equations (6.43) with ha = 0. Equations (6.43) can be combined with
Poisson’s equation and the linearized continuity equation (6.49) to construct
self-consistent weak bars. However, we can obtain some insight by a simpler
route. The long axis of the bar lies along ϕ = 0, π (see eq. 3.143 and the
subsequent discussion), so the closed loop orbit is elongated along the bar
whenever the quantity C2 defined by equation (3.148b) is positive. Stars
on orbits that are elongated along the bar generally contribute to the bar-
like nature of the overall gravitational field, whereas stars on orbits that
are elongated perpendicular to the bar tend to cancel the gravitational field
of the bar. Hence any self-consistent weak bar must be composed mainly of
orbits with C2 > 0.16 Let us examine the behavior of C2 as a function of
radius, considering first the region inside corotation, R < RCR. Since the
angular speed decreases outward in almost all galaxies, inside corotation we
have Ω > Ωb so the coefficient of the term Φb/R in C2 is 2Ω/(Ω − Ωb) > 2.
For most reasonable bar potentials, the term proportional to Φb swamps the
term proportional to dΦb/dR. Since Φb < 0 by definition (see the discussion
following eq. 3.143), we find that C2 > 0 if and only if ∆ > 0 or Ωb > Ω− 1

2κ.
Outside corotation, Ω < Ωb so the term 2ΩΦb/[R(Ω−Ωb)] has the opposite
sign to Φb, as does the term dΦb/dR since the amplitude of the bar potential
|Φb| normally decreases outward. Since Φb < 0, we conclude that C2 > 0 if
and only if ∆ < 0, which in turn requires Ωb > Ω+ 1

2κ. We conclude that self-
consistent weak bars can exist only between the inner Lindblad resonance and
corotation, or outside the outer Lindblad resonance. Bars of the second kind
are not relevant since they cannot extend continuously from the origin, as the
observations require. Thus (i) weak bars must rotate sufficiently rapidly to
avoid the inner Lindblad resonance, and (ii) they must end before corotation,
that is, R > 1 (Contopoulos 1980).

16 In the notation of §3.3.2, most of the bar orbits must be parented by the long-axis
orbits, a statement that remains valid even for strong bars.
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Figure 6.31 This plot shows Ω and Ω ± 1
2
κ for Model I of the Galaxy described in §2.7

(cf. Figure 6.11). The shading denotes the regions in which a self-consistent weak bar
cannot exist. The points mark the semi-major axis and pattern speed for the Galactic bar
derived by Englmaier & Gerhard (1999) and Weiner & Sellwood (1999).

The corresponding constraints on the pattern speed of the Galactic bar
are shown in Figure 6.31. These constraints are approximate, because they
are based on both linear perturbation theory and a crude treatment of the
relation between orbit shape and the gravitational field. In particular, they
apply only to the main body of the bar, containing the bulk of its mass, and
do not exclude the presence of an inner Lindblad resonance near the center
of the bar, which is often required to match the gas flow—see part (d) below.

(b) Strong bars Constructing self-consistent dynamical models for strong
bars is a difficult task, which has been approached with a variety of theoret-
ical tools. Each of these tools has helped to illuminate different aspects of
bar structure.

The only exact, self-consistent models of bars were constructed by Free-
man (1966) (Box 4.2). Unfortunately, the gravitational potential in the Free-
man bars is quadratic in the coordinates, so the potential and the properties
of the orbits are rather different from real bars.

Numerical integrations of orbits in realistic barred potentials suggest
that most of the stars in the bar must be on prograde orbits parented by the
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closed long-axis orbits (the sequence x1 of §3.3.2), since this is the only major
orbit family that is elongated in the same sense as the potential (Contopoulos
& Papayannopoulos 1980; Teuben & Sanders 1985; Athanassoula 1992a).17

The simplest way to construct self-consistent bar models is by N-body
simulations of disks that are susceptible to the bar instability (Sparke & Sell-
wood 1987; O’Neill & Dubinski 2003). These simulations confirm that bars
are composed mainly of orbits associated with the x1 sequence; in addition,
they find that the bar shape is intermediate between an ellipse and a rect-
angle and the end of the bar is close to corotation, just as in real bars. Of
course, there is no guarantee that bars are formed from an initially axisym-
metric disk through the bar instability (Sellwood 2000b), so bars constructed
in this way may be only a subset of the bar models that could be constructed
by more general procedures such as Schwarzschild’s method (Pfenniger 1984;
Zhao 1996). Nevertheless, the properties of bars formed by the bar instability
agree remarkably well with observed bars (O’Neill & Dubinski 2003).

(c) The vertical structure of bars Much of our understanding of disk
and bar dynamics has been developed through the study of razor-thin an-
alytic and numerical models of stellar systems. Three-dimensional models
of axisymmetric disks generally behave in about the same way as their two-
dimensional analogs. Thus it was surprising when three-dimensional simula-
tions of bar-unstable disks showed that newly formed bars often bend out of
the disk plane. The vertical bending motion rapidly loses coherence and is
transformed into random vertical motions, leaving a bar that is substantially
thicker than the surrounding disk (Raha et al. 1991). When viewed from
the side (i.e., from a line of sight in the disk plane that is perpendicular to
the long axis of the bar), the thickened bar appears boxy or peanut-shaped
(Combes & Sanders 1981; Combes et al. 1990), and thus it is likely that
the boxy bulges seen in some edge-on disk galaxies are really edge-on bars.
The structure of the orbit families of three-dimensional bars is considerably
more complicated than that of planar bars (Pfenniger & Friedli 1991; Skokos,
Patsis, & Athanassoula 2002).

The dynamics of the buckling instability in simplified stellar systems is
described in §6.6.2.

(d) Gas flow in bars Numerical models of gas flow through a rotating
bar can be compared with observations to constrain the pattern speed and
other properties of bars in real galaxies. The straight, offset dust lanes seen
in barred galaxies such as NGC 1300 (Plate 10) and NGC 5383 (Figure 6.27),
like the dust lanes in spiral galaxies, presumably mark the location of traffic
jams containing a greatly enhanced density of interstellar material, which
arise when the trajectories of interstellar clouds intersect. In hydrodynamic
models, the traffic jams appear as shock waves in the fluid.

17 Our earlier finding that most of the stars in weak bars must be on orbits with C2 > 0
is the restriction of this statement to weakly non-axisymmetric potentials.
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Figure 6.32 A simulation of gas flow in a barred spiral. The brightness is proportional
to the local gas density. The bar (not shown) is oriented at 45◦ to the horizontal, and
rotates clockwise. The bar is 10 kpc long, in comparison to the box size of 16 kpc. The
thin, straight, bright lines mark shocks, which are offset from the leading edge of the bar
and angled by 20◦ to the bar major axis. The rotation parameter R = 1.2 (eq. 6.103).
From Athanassoula (1992b), by permission of Blackwell Publishing.

Athanassoula (1992b) finds that reproducing these shocks requires that
the rotation parameter defined by equation (6.103) satisfies R ' 1.2±0.2: for
smaller values of R the dust lanes are straight but centered on the bar’s major
axis, not offset, while for larger values of R the shocks are not straight (see
Figure 6.32). Offset shocks appear if and only if the potential supports two
families of periodic orbits, the x1 family at larger radii elongated parallel to
the bar’s long axis and the x2 family at smaller radii elongated perpendicular
to the long axis (§3.3.2), and this in turn requires that the bar pattern has
at least one inner Lindblad resonance (Sanders & Tubbs 1980; Athanassoula
1992b). Loosely speaking, the offset shocks arise as the gas attempts to make
the transition from one family to the other without orbit crossing.

The dust lanes along the bar are not sites of rapid star formation, pos-
sibly because the velocity shear downstream is so large that the gas remains
gravitationally stable. Rapid star formation is observed only at the ends of
the bar, and it is encouraging that numerical simulations exhibit strong den-
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sity enhancements with low shear near the end of the bar, suggesting that
these are fertile sites for star formation.

Gas-flow models such as the one shown in Figure 6.32 exhibit strong
non-circular motions, even for rather weak bars. For example, the strongly
perturbed velocity field in Figure 6.32 results from a non-axisymmetric force
that is nowhere greater than about 20% of the axisymmetric force. This
strong response arises because most of the gas is close to a Lindblad resonance
and hence responds strongly to even a weak imposed force. These non-
circular motions give rise to characteristic kinematic features that can be
used to identify edge-on barred galaxies (see BM Figure 4.60, and Bureau &
Freeman 1999).

The net mass-inflow rate, given by the mass-weighted azimuthally av-
eraged radial velocity, is much smaller than the rms radial velocity, but not
zero—typically it is ∼< 1 km s−1. Even this small average velocity leads to
substantial inflow over the age of the galaxy, since 1 km s−1 is equivalent to
10 kpc in 10 Gyr. Thus strong bars can transport most of the gas in a galaxy
to its center within the lifetime of the galaxy.

The gas is transported inward until it reaches radii where the shocks
peter out, inside the outermost inner Lindblad resonance, and gathers on
nearly circular orbits of the x2 sequence. There it forms a ring, which prob-
ably can be identified with the nuclear rings seen in many barred galaxies
(Knapen 1999; Pérez–Ramı́rez et al. 2000). These typically have radii of a
few hundred pc and are often sites of vigorous star formation. Nuclear rings
are promising reservoirs for the gas that feeds the accretion disks in active
galactic nuclei and builds the massive black holes that are present in the cen-
ters of most galaxies; unfortunately, the dynamical processes by which the
gas migrates from the nuclear ring (r ∼ 100 pc) inward by five orders of mag-
nitude in radius to the accretion disk (r ∼ 10−3 pc) remain unclear (Phinney
1994). Possible mechanisms include nested bars and spirals, mergers with
galaxy satellites, magnetic fields, or gravitational instability.

Other ring structures are also present in barred galaxies. Many barred
galaxies contain elliptical inner rings that are aligned with the bar and
touch its end (see Figure 6.28 for a particularly clear example). A smaller
fraction of barred galaxies contain an outer ring with radius of about
2.2 ± 0.5 times that of the inner ring (see BM §§4.1.1 and 4.4.7, and Buta
1995). Rings of gas and young stars form naturally at resonances, where
distinct families of periodic orbits intersect, leading to orbit crossing. It is
tempting to identify outer rings with the outer Lindblad resonance of the
bar (Schwarz 1981; Kalnajs 1991), just as nuclear rings are identified with
the inner Lindblad resonance. Inner rings are sometimes identified with ei-
ther the corotation resonance, or the m = 4 inner Lindblad resonance, or
the m = 2 ultraharmonic resonance which is caused by nonlinear effects
from the m = 2 perturbing potential (Patsis, Skokos, & Athanassoula 2003).
Such claims must be regarded as plausible speculations, since there is little
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direct observational confirmation.

(e) Slow evolution of bars N-body simulations of bars usually focus on
their formation from an axisymmetric disk by the bar instability, which takes
only a few crossing times. However, most bars are ∼> 102 crossing times old,
and slow evolutionary processes over this much longer time can thus change
the properties of bars, or even destroy them.

Bars can be destroyed by the growth of relatively small central mass
concentrations, such as massive black holes or nuclear star clusters. The
growth of a central mass reduces the volume of phase space occupied by
the orbits parented by the x1 family of periodic orbits, which provides the
main support for the bar, leading to the dissolution of the bar when the
central mass exceeds a few percent of the bar mass (Hasan & Norman 1990;
Norman, Sellwood, & Hasan 1996).18 The central mass concentration may
arise from the inward transport of gas by the bar, as outlined in topic (d)
above; just as with humans, the dissipative lifestyle of a bar can lead to its
early demise. However, it remains unclear how effective such processes are
in practice: massive black holes are probably too small to destroy bars, and
central gas concentrations may be too diffuse (Shen & Sellwood 2004).

Other important evolutionary processes involving bars include (i) trans-
fer of angular momentum between the bar and dark halo by dynamical fric-
tion, described in §8.1.1d, or between the bar and the disk; (ii) the modifica-
tion or destruction of bars by mergers with small galaxies or halo substruc-
ture, and (iii) the role of bars in forming bulges, lenses, and other apparently
distinct components of disk galaxies (Kormendy & Kennicutt 2004).

6.6 Warping and buckling of disks

6.6.1 Warps

In visible light, disk galaxies are remarkably thin and flat. However, the HI
disk, which usually extends to larger radii than the visible disk, frequently
shows a noticeable warp. Warps are most clearly visible in edge-on disk
galaxies (BM Figure 8.30) but can often be detected in—or inferred from
the velocity fields of—galaxies that are inclined to the line of sight (Plate 6
and BM §8.2.4). There is also a pronounced warp in the HI disk of our own
Galaxy (BM §9.2.6). Warped disks are common: for example, all of the spiral
galaxies in the Local Group (our own Galaxy, M31, and M33) are warped.
Usually, a warped galaxy is twisted upward at one side and downward at

18 A similar process was discussed in §3.8.3: central mass concentrations in non-rotating
triaxial potentials can destroy the triaxiality, in this case by eroding the population of box
orbits that supports the triaxiality.
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the other; these are sometimes called “integral sign” warps since such a disk
resembles an integral sign when viewed edge-on.

Explanations of the origin of warps can be divided into two broad classes:
(i) those in which the warp is generated by hydrodynamic or magnetohydro-
dynamic forces on the HI gas; in this case the modest warps seen in some
stellar disks arise from the response of the stars to the gravitational field
from the warped gas; (ii) those in which the warp arises from gravitational
forces that affect the stars and gas equally; in this case the warp is more
prominent in the gas because it extends to larger radii. We shall concentrate
on theories of the second kind mainly because they appear to be simpler and
more plausible. For general reviews of warps, see Binney (1992) and Nelson
& Tremaine (1996).

(a) Kinematics of warps Warps in a stellar disk can be regarded as
vertical oscillations or bending waves of the disk, analogous to the horizontal
oscillations or density waves that we examined earlier in this chapter. In the
usual cylindrical coordinates (R, φ, z), a warped but razor-thin disk can be
described by its height z(R, φ, t) above the galactic plane at position (R, φ)
and time t. Suppose that initially the warp has the form

zd(R, φ, t = 0) = z0(R) cosmφ (m ≥ 0), (6.104)

and the vertical velocity at every point is zero. An integral-sign warp like
those seen in most warped galaxies has m = 1. We assume for the moment
that the outer disk has negligible mass, so its motion is determined by a fixed,
azimuthally symmetric potential Φ(R, z) due to the halo and the massive,
flat, inner disk. We now ask how the warp evolves with time. We shall use
the epicycle approximation, but neglect the epicycle motion in R and φ, an
approximation that is valid if the horizontal scale of the warp is much larger
than a typical epicycle amplitude X (eq. 3.91), as is usually the case. Thus
by equation (3.90) a particle labeled by i has coordinates

Ri = constant ; φi(t) = Ω(Ri)t+ φ0i ; zi(t) = Zi cos[ν(Ri)t+ ζi],
(6.105)

where Ω is the circular frequency and the vertical frequency ν is defined by
equation (3.79b).

In order to match the assumed initial conditions—vertical displacement
(6.104) and zero vertical speed at t = 0—we must have ζi = 0 and Zi =
z0(Ri) cosmφ0i. Therefore the disk height at time t is given by

zd[Ri, φi(t), t] = z0(Ri) cos(mφ0i) cos[ν(Ri)t]. (6.106)

Replacing φ0i by φi − Ω(Ri)t and dropping the subscripts, we have

zd(R, φ, t) = z0(R) cos[m(φ− Ωt)] cos(νt), (6.107)
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where Ω and ν are evaluated at R. Using the identity cosa cos b = 1
2 cos(a+

b) + 1
2 cos(a− b), we find

z(R, φ, t) = 1
2z0(R)

{
cos[mφ− (mΩ− ν)t] + cos[mφ− (mΩ + ν)t]

}
. (6.108)

We see that the warp runs around the circle R = constant as two waves.
These are analogous to the kinematic density waves discussed in §6.2.1a, and
are called kinematic bending waves. The angular phase velocity or pattern
speed Ωp of the two waves is

Ωp =

{
Ω(R) − ν(R)/m (“slow” wave),

Ω(R) + ν(R)/m (“fast” wave).
(6.109)

In a flattened galaxy ν > Ω, so the pattern speed of the m = 1 slow wave
is retrograde, Ωp < 0. From now on, we consider only the slow wave, since
the fast wave will disappear rapidly through the winding process discussed
below.

If only the slow m = 1 wave is present, the warped disk attains its
maximum height at φ(R, t) = [Ω(R) − ν(R)]t. Because Ω − ν is not exactly
constant with radius, the warp will tend to wind up. Physically, the winding
occurs because each ring in the warped disk precesses at a different rate. Our
analysis of the winding problem in spiral arms from §6.1.3c can be applied
without change, and we find that the pitch angle of the line of maximum
height is (cf. eq. 6.6)

cotα = Rt

∣∣∣∣
d

dR
(Ω − ν)

∣∣∣∣ . (6.110)

Thus kinematic warps suffer from the same winding problem as kinematic
density waves.19

The severity of the winding problem depends on the circular and vertical
frequencies Ω and ν and their dependence on radius. In a spherical galaxy,
in which Φ = Φ(

√
R2 + z2), Ω = ν (Problem 3.14) so no winding occurs.

Physically, the warp does not wind up because an inclined ring does not
precess in a spherical field.

To examine the winding rate in a more realistic flattened galaxy, let us
continue to neglect the gravitational field from the disk, and consider the
halo to be described by the logarithmic potential of equation (2.71a),

ΦL = 1
2v

2
0 ln

(
R2

c +R2 +
z2

q2
Φ

)
, (6.111)

19 One difference is that in the usual case where ν > Ω and both frequencies decrease
outward, bending waves wind up in the opposite sense to density waves, that is, trailing
bending waves wind into leading ones.
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where we shall set the core radius Rc to zero for simplicity. Then

Ω =
v0

R
; ν =

v0

qΦR
, (6.112)

and hence equation (6.110) yields

cotα =
v0t

R

∣∣∣∣
1

qΦ
− 1

∣∣∣∣ . (6.113)

To model the implications of this result for our own Galaxy, we use v0 =
220 km s−1, R = 12 kpc, and t = 10 Gyr. Maps of Galactic HI show no
observable twist in the warp, suggesting that conservatively we may assume
that the pitch angle α ∼> 45◦. Then equation (6.113) yields |q−1

Φ −1| < 0.005.
It is highly improbable that the Galactic halo is so accurately spherical.
Moreover, accounting for the disk potential will only increase the winding
rate for a kinematic bending wave. Thus we require a mechanism either to
excite fresh warps or to maintain a warp against winding.

(b) Bending waves with self-gravity In light of the analogy between
bending and density waves, it is natural to ask whether the winding problem
could be solved by the self-gravity of the disk. As a first step, it is useful to
examine the behavior of tightly wound bending waves, even though observed
warps show little or no sign of spirality in their inner parts.

Once the disk has non-zero mass, the definition of the circular and ver-
tical frequencies, Ω(R) and ν(R), must be made more precise. We write

Ω2 =
1

R

∂(Φh + Φd)

∂R

∣∣∣∣
z=0

; ν2 =
∂2Φh

∂z2

∣∣∣∣
z=0

. (6.114)

Here Φh(R, z) is the potential due to all components of the galaxy other
than the disk and Φd(R, z) is the potential due to the unperturbed flat disk.
The reason for this distinction is that the vertical restoring force due to the
self-gravity of the disk depends entirely on the shape of the bending wave
(as we shall see below) and hence cannot be included in the unperturbed
potential.

We consider first the behavior of bending waves in an infinite, self-
gravitating thin sheet of constant surface density Σ. The sheet initially
occupies the plane z = 0, at the minimum of a “halo” potential 1

2ν
2z2. The

sheet is uniform in the x- and y-directions, and we neglect the effects of
rotation. Assume that the height of the sheet zs(x, t) oscillates according to

zs(x, t) = z0ei(kx−ωt). (6.115)

When we neglect any horizontal motions, the equation of motion is simply

∂2zs(x, t)

∂t2
= gz(x, t) − ν2zs(x, t), (6.116)
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where gz is the vertical acceleration due to the self-gravity of the sheet. We
now evaluate gz.

Consider an infinite straight wire with mass per unit length ζ. The gravi-
tational potential at a distance R from the wire is Φ(R), and Gauss’s theorem
(2.12) implies that 4πGζ = 2π dΦ/dR, so Φ(R) = 2Gζ lnR+constant . Thus,
if we consider the sheet as a collection of such wires, the potential due to the
sheet is

Φ(x, z, t) = 2GΣ

∫ ∞

−∞
dx′ ln

√
(x− x′)2 + [z − zs(x′, t)]2+constant. (6.117)

The vertical acceleration is

gz(x, t) = −∂Φ

∂z

∣∣∣∣
z=zs

= −2GΣ℘

∫ ∞

−∞
dx′

zs(x, t) − zs(x
′, t)

(x− x′)2 + [zs(x, t) − zs(x′, t)]2
,

(6.118)
where ℘ denotes the Cauchy principal value (eq. C.6). If the amplitude of
the bending waves is small in the sense that |kz0| � 1, we can drop the term
involving zs(x, t)−zs(x

′, t) in the denominator. Substituting equation (6.115)
for the bending wave and replacing the dummy variable x′ by u ≡ x′−x, we
have

gz(x, t) = −2GΣz0ei(kx−ωt)℘

∫ ∞

−∞
du

1 − eiku

u2

= −2πGΣ|k|zs(x, t).

(6.119)

Finally, substituting this result and equation (6.115) into the equation of
motion (6.116) we obtain the dispersion relation

ω2 = ν2 + 2πGΣ|k|. (6.120)

Notice that ω2 is positive definite, so bending waves in the infinite sheet are
always stable.

This result can be applied to tightly wound bending waves of the form

z(R, φ, t) = Re[za(R)eim(φ−Ωpt)], where za(R) = Z(R)ei
∫
k dR, (6.121)

m ≥ 0, and |kR| � 1. Just as in the case of tightly wound density waves,
the effect of self-gravity can be determined by noting that the tightly wound
bending waves locally resemble the planar bending waves in the infinite
sheet. Thus the vertical restoring force due to self-gravity is given by equa-
tion (6.119) as gz = −2πGΣ|k|z. This extra force increases the total restoring
force from −ν2z to −(ν2 + 2πGΣ|k|)z and raises the vertical frequency from
ν to (ν2 + 2πGΣ|k|)1/2. It follows that the pattern speeds Ωp of the fast and

slow waves (eq. 6.109) change from Ω ± ν/m to Ω ± (ν2 + 2πGΣ|k|)1/2/m.
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Figure 6.33 Stippling marks the regions where tightly wound m = 2 density waves (left)
and m = 1 bending waves (right) exist in a flattened logarithmic potential. The potential
has the form (6.111) with v0 = Rc = 1 and qΦ = 0.9. The solid curves mark the Lindblad
resonances on the left panel and the vertical resonances on the right panel, and the dashed
curve marks the corotation resonance. For density waves, we assume that Q = 1 so there
is no forbidden region around corotation (cf. Figure 6.14).

Using the relation ω = mΩp that connects the frequency of a wave to its
pattern speed, this result can be expressed as the dispersion relation

(ω −mΩ)2 = ν2 + 2πGΣ|k|. (6.122)

There are vertical resonances at m(Ω − Ωp) = ±ν, which are analogous
to the Lindblad resonances at m(Ω − Ωp) = ±κ.

Note the similarity to the dispersion relation for tightly wound density
waves in a cold disk (eq. 6.64). The only differences are that (i) the epicycle
frequency κ is replaced by the vertical frequency ν, and (ii) the minus sign in
front of the term 2πGΣ|k| in the density-wave dispersion relation is replaced
by a plus sign. The physical origin of this change of sign is that self-gravity
increases the stiffness of the disk to bending waves, while it decreases the
stiffness to density waves. The sign change implies that the regions in which
tightly wound bending and density waves can propagate are quite different
(see Figure 6.33).

Since the right side of equation (6.122) is always positive, ω is always
real, and we conclude that tightly wound bending waves in a cold disk are
always stable. This behavior is in sharp contrast to tightly wound density
waves in a cold disk, which are violently unstable (page 495).

(c) The origin of warps There are many theories for the origin of warps:
Could galaxies be susceptible to a bending instability analogous to the

bar instability which we have found to be so common? The answer seems
to be “no.” A razor-thin, cold, self-gravitating disk embedded in an axisym-
metric halo is stable to all m = 0 and m = 1 vertical perturbations, at least
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Figure 6.34 The Laplacian surface for a disk embedded in a halo. The dots mark the
distribution of stars in a Miyamoto–Nagai disk (eq. 2.69) with mass M = 1, scale length
a = 1, and b/a = 0.2. The disk is inclined by 45◦ to a dark halo having a logarithmic
potential (eq. 2.71a) with axis ratio qΦ = 0.9, core radius Rc = 1, and asymptotic circular
speed v0 = 0.5. At small radii the Laplacian surface almost coincides with the midplane
of the disk, while at large radii it follows the equatorial plane of the halo. The insert at
bottom right shows the circular-speed curve that would obtain if the disk and halo were
aligned: the short- and long-dashed curves show the circular speed due to the disk and
halo potentials, and the solid curve shows the circular speed in the combined potential.

if the halo is spherical or flattened (Hunter & Toomre 1969). Since observed
warps have m = 1 they should be stable.

Do warps represent a stable m = 1 bending mode, perhaps excited early
in the lifetime of the galaxy? Numerical calculations of bending modes of
galactic disks (Hunter & Toomre 1969; Sparke 1984) show that in most cases
they damp out in a few rotation times, essentially because bending waves,
like density waves, have a group velocity that carries them to the edge of the
disk, where they are absorbed.20 Just as in the case of density waves, the
effects of self-gravity do not solve the winding problem for bending waves.

Consider next a disk that is embedded in a flattened axisymmetric halo,
and imagine that the symmetry axis of the disk is tilted with respect to
the symmetry axis of the halo. Let us assume for the moment that the
halo is rigid. The inner part of the disk is so tightly coupled gravitationally
that it also acts like a rigid body, so the inner disk remains flat, and its

20 More precisely, the retrograde m = 1 waves propagate inward to the inner vertical
resonance, where they reflect into leading waves, which then propagate out to the disk
edge. See Problem 6.7.
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Box 6.2: The Laplacian surface

Here we determine the shape of a cold gas disk orbiting in the combined
gravitational field of a disk galaxy and a dark halo with misaligned sym-
metry axes. We approximate the disk galaxy and the dark halo as rigid
bodies, and replace the gas disk by a system of concentric circular rings
of negligible mass. The plane of the ring at radius r is inclined to the disk
plane by an angle i(r). Thus if ê(r) and êd are unit vectors pointing along
the symmetry axes of the ring and the disk, we have cos i(r) = ê(r) · êd.
The disk galaxy exerts a torque per unit mass Nd(r) on each ring, the
magnitude of which depends on the radius r of the ring and the inclina-
tion i(r), and the direction of which must be normal to both symmetry
axes ê(r) and êd. Thus we can write

Nd = wd(r, ê · êd)ê× êd, (1)

where wd(r, ê · êd) is straightforward to compute if we know the disk
potential Φd(R, z). Similarly, the torque per unit mass from the dark
halo on the ring at radius r has the form

Nh = wh(r, ê · êh)ê× êh. (2)

The ring rotates with angular speed equal to the circular frequency at
that radius, Ω(r), so its angular momentum per unit mass is L(r) =
Ω(r)r2ê(r). The disk and halo torques cause it to precess at a rate

dL

dt
= L

dê

dt
= Nd + Nh = ê × [êdwd(r, ê · êd) + êhwh(r, ê · êh)]. (3)

A coherent cold disk can survive only if all the rings precess at the same
rate. This goal can be achieved if the net torque on each ring vanishes,
Nd + Nh = 0. It is straightforward to show that this requires that ê,
êd, and êh all lie in the same plane, and equation (3) can then be solved
numerically for the orientation of the ring at radius r. The superposi-
tion of these rings at various radii yields the Laplacian surface (see
Figure 6.34 and Problem 6.6). At small radii the gravitational field from
the disk dominates, so |wd| � |wh| and the Laplacian surface almost
coincides with the disk midplane, while at large radii |wh| � |wd| so the
surface lies in the equatorial plane of the halo.

This simple derivation neglects several complicating factors. (i) We
have also neglected the precession of the disk galaxy due to torques from
the halo. (ii) The behavior of a fluid element is not the same as a rigid
ring, although this approximation appears to work so long as the halo
torques are not too strong. (iii) The most serious concern, as described
in the text, is our approximation that the halo is a rigid body.
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symmetry axis simply precesses around the symmetry axis of the halo at
fixed inclination. The outer part of the disk, however, is only weakly coupled
to the inner part, and therefore tends to settle into the symmetry plane of
the halo (see Figure 6.34). The resulting surface, called the Laplacian surface
(Box 6.2), can closely resemble observed warps (Toomre 1983; Sparke 1984).

A misaligned disk of this kind can be regarded as a special case of a
bending wave, in the following sense. An isolated disk, or a disk embedded
in a spherical halo, always has a trivial bending wave (the “tilt” mode), in
which the symmetry axis of the disk is perturbed but the disk remains planar
(in eq. 6.121, za ∝ R, m = 1, Ωp = 0). If the halo is then slowly flattened,
the tilt mode acquires a non-zero pattern speed and a warped shape, which
is simply the Laplacian surface shown in Figure 6.34. In contrast to other
bending modes, the tilt mode can survive indefinitely in a rigid halo.

The survival of the tilt mode in a realistic dark halo is a much more com-
plicated issue. A halo composed of collisionless particles responds strongly
to an embedded precessing disk. In particular, if the plane of the disk is ini-
tially inclined with respect to the equatorial plane of the halo, the inner halo
quickly realigns itself so that its equatorial plane coincides with the disk.
This rearrangement dramatically reduces the torques that the halo exerts
on each ring of the disk, with the result that the disk warp associated with
the tilt mode in a rigid halo is no longer a mode—the warp exhibits strong
differential precession and rapidly winds up (Binney, Jiang, & Dutta 1998).
On the other hand, if the tilt mode is driven by the torque that a misaligned
outer halo exerts on the combined disk plus inner halo, the mode will only
gradually decay by a combination of phase mixing and energy transfer to the
halo (Shen & Sellwood 2006).

We conclude that the survival of warps depends strongly on the unknown
properties of the surrounding halo, and that in many cases warps will damp
or wind up rapidly. Although warps are likely to be short-lived, they are
also relatively easy to excite: for a disk embedded in a spherical halo the
tilt mode is neutrally stable, so this mode is likely to be nearly neutral—
and hence excited to a large amplitude by small perturbations—even in a
moderately flattened halo. This argument suggests that warps can be excited
by almost any large-scale gravitational field that continually or repeatedly
perturbs the disk, even if it is relatively weak.

Some warps might represent the response of the disk to a recent close
encounter with a companion galaxy. For our Galaxy the natural candidates
are the Large Magellanic Cloud (LMC) and the Sagittarius galaxy (§1.1.3).
The orbits of both galaxies are known reasonably well from the kinematics of
their tidal streamers (see BM §8.4.1 and §8.1.1c for the LMC, and §8.3.3 for
Sagittarius). The LMC is more massive, but Sagittarius is closer, so their
tidal fields are comparable in strength. The tidal fields may be amplified
by collective effects within the Milky Way’s dark halo (Weinberg 1998). A
traditional concern with this mechanism is that many warped galaxies do



548 Chapter 6: Disk Dynamics and Spiral Structure

not have nearby companions, but substructure in the dark halo could also
be responsible.

An alternative model is that warps arise from the changing orientation
of the dark halo (Ostriker & Binney 1989; Debattista & Sellwood 1999).
Simulations of halo formation show that most halos are triaxial (§9.3.3).
The stellar disk may be assumed to lie in one of the principal planes of the
triaxial halo, normally the one perpendicular to the smallest axis, which we
denote by êz. The orientation of the principal axes is continually changing
in response to the tidal torques and the infall of new halo material (§9.3.3).
If the angular speed of the principal-axis frame relative to an inertial frame
is Ω, then in the principal-axis frame the disk is subject to a Coriolis force
−2Ω × v (eq. 3.117). The z-component of this force, −2vc(R)(Ω · êR)êz,
distorts the disk into an m = 1 warp. The amplitude of the warp depends
on the restoring force from the disk and halo, and thus on the location in
the disk and the flattening of the halo. For plausible rotation rates |Ω| of a
radian or so per 10 Gyr, warps are produced with properties similar to those
observed (Jiang & Binney 1999).

The distinction between these mechanisms of damping and excitation
is blurry: the dark halo of a galaxy is a complex, time-dependent system,
containing both baryonic substructure (satellite galaxies) and dark-matter
substructure, which is continually being erased by tidal disruption and re-
plenished by new infalling substructure (§9.3.3c), while the orientation of the
large-scale principal axes of the halo is continuously changing in response to
infall and external torques. We know that the halo is a noisy environment
and that a warp is the dominant response of a galaxy disk to a wide va-
riety of gravitational excitations; but determining which particular source
of gravitational noise is responsible for a given warp may be a difficult and
unrewarding task.

6.6.2 Buckling instability

We stated in the last subsection that razor-thin, cold, self-gravitating disks
are stable to all m = 0 and m = 1 bending waves, and to tightly wound
bending waves with any m. Nevertheless, an out-of-plane or buckling insta-
bility can arise in some disks, and this instability is worth investigating both
for insight into disk dynamics and as a possible explanation for the vertical
structure of bars (§6.5.2c). The buckling instability can be analyzed exactly
in the Kalnajs disks (Polyachenko 1977), but we shall take a more physical
approach.

As a first step, we examine the behavior of an infinite razor-thin plane
sheet of surface density Σ, which we take to be located initially in the plane
z = 0 at the minimum of an external “halo” potential 1

2ν
2z2. The system is

similar to the one analyzed in §6.6.1b, except that now we shall assume that
the stars have a Maxwellian distribution of velocities in the plane z = 0, that
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is, the velocity df is f(vx, vy) ∝ exp[ 1
2 (v2

x+v2
y)/σ2]. We now distort the sheet

into a planar bending wave traveling in the x direction, of the form (6.115).
We shall assume that the cohesive forces in the sheet are sufficiently strong
that all of the stars, whatever their velocity, remain confined to the warped
sheet, i.e., they have the same coordinate zs(x, t). In practice this vertical
cohesion is provided by the self-gravity of the sheet, and requires that the
frequency at which the stars rattle vertically within the sheet, ∼ (4πGρ)1/2

where ρ is the mass density within the sheet, exceed the frequency at which
the stars encounter the bending oscillations, ω − kvx. If the thickness h of
the sheet is small enough, this condition is satisfied for the overwhelming
majority of stars, since ρ ∼ Σ/h.

The velocity vy has no effect on the interaction of the star with a wave
traveling in the x-direction, so we can neglect motion in the y-direction. Stars
with different velocities vx will experience different histories of vertical accel-
eration as they traverse the corrugations caused by the wave. The equation
of motion of a star in this system is the same as equation (6.116), except
that the Eulerian derivative ∂/∂t is replaced by the convective derivative
d/dt = ∂/∂t+ vx∂/∂x (eq. F.8); thus,

(
∂2

∂t2
+ 2vx

∂2

∂x∂t
+ v2

x

∂2

∂x2

)
zs(x, t) = gz(x, t) + gi − ν2zs(x, t), (6.123)

where gi is the internal cohesive acceleration felt by each star due to the
gravity of the others. Newton’s third law tells us that the sum over stars of
the accelerations gi must vanish, so we can eliminate this term by averaging
the equation over all of the stars at a given location; denoting this average
by 〈·〉, we have 〈gi〉 = 0, 〈vx〉 = 0, 〈v2

x〉 = σ2, so

(
∂2

∂t2
+ σ2 ∂

2

∂x2

)
zs(x, t) = gz(x, t) − ν2zs(x, t). (6.124)

Substituting from equations (6.115) and (6.119), we obtain the dispersion
relation (Toomre 1966; Kulsrud, Mark, & Caruso 1971; Fridman & Poly-
achenko 1984)

ω2 = ν2 + 2πGΣ|k| − σ2k2. (6.125)

This dispersion relation is an interesting contrast to the WKB dispersion
relation for axisymmetric density waves (eq. 6.66), which reads

ω2 = κ2 − 2πGΣ|k| + v2
s k

2. (6.126)

The vertical frequency due to the halo ν replaces the epicycle frequency κ,
and the signs in front to the remaining two terms are reversed. Consequently
the self-gravity of the disk tends to destabilize density waves but stabilizes
bending waves, while horizontal dispersion or sound speed stabilizes density
waves but destabilizes bending waves!
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The dispersion relation (6.125) implies that bending waves are always
unstable if the wavelength is sufficiently short (|k| sufficiently large). The
instability sets in when the centrifugal force that arises as stars pass over the
corrugations exceeds the gravitational restoring force. This buckling in-
stability is closely related to the fire-hose instability, in which a hanging
hose begins to oscillate when a strong flow of water passes through it, and to
the Kelvin–Helmholtz instability, which arises when two incompressible
fluids, one floating atop the other, are in relative horizontal motion. For an
isolated disk (ν2 = 0), all wavelengths λ < λb ≡ σ2/(GΣ) are unstable to
bending oscillations. However, our analysis is valid only for wavelengths that
are long compared to the actual thickness of the sheet that we have approx-
imated as razor-thin. Thus an instability is present only if kbz0 ∼< 1 where
kb = 2π/λb and z0 is a measure of the thickness. For an isothermal stellar
disk with vertical velocity dispersion σz we may take z0 = σ2

z/(2πGΣ) from
equation (4.302c), so kbz0 = (σz/σ)2. Thus we expect that isolated disks are
unstable to buckling if the ratio σz/σ is small enough, that is, if the random
velocities within the plane are much larger than those in the perpendicular
direction.

This expectation can be tested by generalizing the analysis above from
an infinite sheet of zero thickness to an infinite slab of stars with non-zero
thickness. To be specific, we consider the system with equilibrium df

f(z,v) =
ρ0

(2π)3/2σσ
1/2
z

exp

[
−
v2
x + v2

y

2σ2
− v2

z

2σ2
z

− Φ(z)

σ2
z

]
. (6.127)

It is easy to see that the df (6.127) is a function only of the integrals of
motion—vx, vy, and Ez = 1

2v
2
z + Φ(z)—and thus, by the Jeans theorem,

the df is a stationary solution of the collisionless Boltzmann equation. The
corresponding density distribution ρ(z) is derived in Problem 4.21. The
stability of a stellar system with this df has been determined by Toomre
(1966) and by Araki (1987), who find that the system is stable to buckling
modes if and only if σz/σ > 0.293.

Merritt & Sellwood (1994) suggest that this stability criterion is not
stringent enough when applied to realistic axisymmetric disks rather than
infinite slabs, because the vertical restoring force due to self-gravity is smaller
for long wavelengths. They argue that σz/σ ∼> 0.6 is a more accurate require-
ment for isolated disks. A disk embedded in a massive halo will be more
stable than an isolated disk.

Is the solar neighborhood stable against buckling? The simple models
we have discussed neglect rotation and assume that the velocity-dispersion
tensor is isotropic in the disk plane, and neither assumption is valid in the
solar neighborhood. However, if we simply take the rms value of the dis-
persions in the radial and azimuthal directions to represent the horizontal
dispersion σ, then the ratio σz/σ ' 0.6 in the solar neighborhood (BM Table
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Figure 6.35 The buckling instability in a differentially rotating disk. This is the same
simulation as in Figure 6.18, but shown at later times since the buckling instability develops
after the bar instability. Each image has been rotated to align the bar with the x axis.
Compare the boxy shape of the thickened disk in the edge-on views at late times with the
boxy bulge of NGC 1381 in Figure 6.29. Courtesy of J. Sellwood.

10.2), close to the value that Merritt & Sellwood (1994) estimate is required
for stability in an isolated disk. Since the (uncertain) halo contribution to
the solar neighborhood dynamics (§6.3.4) also helps to stabilize the disk, it
is likely that the solar neighborhood is safely stable to buckling.

The buckling instability does appear to play a role in the evolution of
other stellar systems:
(i) Bars formed in thin disks rapidly evolve into thick structures that appear

boxy when viewed edge on (Figure 6.35 and §6.5.2c), probably because
they are unstable to buckling. The rapid streaming motion along the
major axis of a bar increases the effective horizontal dispersion σ and
thus makes the bar more susceptible to the buckling instability than the
axisymmetric disk from which it arose.

(ii) Hot stellar systems are unstable to buckling if they are too flat. Since
luminous elliptical galaxies are supported mainly by random motions
rather than by rotation (§4.4.2c and BM §11.2.1) the buckling instability
limits the flattening of these galaxies. Observations show that few, if
any, elliptical galaxies have isophotal axis ratios less than 0.4 (i.e., there
are almost no ellipticals flatter than E6 in Hubble’s classification scheme;
see BM §4.1.1), and this limit probably arises because flatter galaxies
are unstable to buckling (Fridman & Polyachenko 1984).
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Problems

6.1 [2] Show that the mass arm (the maximum of the surface density) in a tightly wound
spiral leads the potential arm (the minimum of the gravitational potential) at a given
radius by an angle

∆φ =
1

km

d

dR
lnR1/2|Φ(R)|, (6.128)

where |Φ(R)| is the amplitude of the spiral potential and the result has fractional error
O(|kR|−1). Thus the mass arm can either lead or lag the potential arm, depending on the
radial dependence of the strength of the spiral. Hint: use equation (6.33).

6.2 [2] Consider a razor-thin disk containing some tracer population that satisfies the
continuity equation. Assume that the surface density and mean line-of-sight velocity of
the tracers are known at every point, that the inclination of the disk to the line of sight is
known, and that the disk has a well-defined pattern speed Ωp. Then Ωp can be determined
from equation (6.13). Show that the mean velocity of the tracers normal to the line of
sight can also be determined at every point (Sridhar & Sambhus 2003).

6.3 [2] A useful model for exploring the properties of differentially rotating disks employs
the softened point-mass potential (eq. 2.226). In this model the usual gravitational poten-
tial due to a particle of mass m at distance d, −Gm/d, is replaced by −Gm/(d2 + ε2)1/2,
where ε is the softening length (Miller 1971).

(a) Consider a surface-density distribution in the z = 0 plane,

Σ1(R, φ) = Σae
i[mφ+f(R)]. (6.129)

Argue that the softened potential at z = 0 due to this surface density distribution is equal
to the usual Newtonian potential created by the same density distribution at a height
z = ε. Hence, if the density distribution is tightly wound, |R∂f/∂R| � 1, show by an
extension of the arguments given in §6.2.2b that the softened potential due to the surface
density (6.129) is

Φε(R, φ, z = 0) = −2πGe−|k|ε

|k|
Σae

i[mφ+f(R)], where k =
∂f

∂R
. (6.130)

(b) Show that the WKB dispersion relation for a cold disk with softened gravity is

(mΩ − ω)2 = κ2 − 2πGΣ|k|F , where F = e−|k|ε. (6.131)

The reduction factor F due to softened gravity mimics the reduction factor due to velocity
dispersion (eq. 6.61). Thus, cold disks with softened gravity provide close analogs to stellar
disks that are much easier to investigate numerically.

(c) Show that a cold disk is stable to short-wavelength axisymmetric disturbances if

ε >
2πGΣ

κ2e
. (6.132)

6.4 [1] Show that the group velocity of tightly wound density waves in a fluid disk with
Q = 1 is equal (within a sign) to the sound speed.

6.5 [2] For theoretical analyses, it is useful to modify the definition (6.7) of the pitch angle
α to

cotα =
kR

m
; (6.133)

thus trailing waves have pitch angle in the range 0 < α < 90◦ and leading waves have
90◦ < α < 180◦. The rate of change of pitch angle in a wave packet is determined by the
equation

d

dt
cotα =

∂ cotα

∂R

˛̨
˛̨
ω

vg =
∂(kR)

∂R

˛̨
˛̨
ω

vg

m
, (6.134)
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where vg is the group velocity. For a fluid Mestel disk with Q = constant , show that

d

dt
(cotα) = Ωp. (6.135)

6.6 [3] The goal of this problem is to compute the shape of the Laplacian surface for a
simple model of a disk-halo system.

(a) We model the halo potential Φh by the logarithmic potential of equation (2.71) in the
limit of large core radius Rc; thus

Φh =
v20

2R2
c

„
R2 +

z2

q2Φ

«
+ constant. (6.136)

Show that the torque per unit mass from the halo on a ring of radius r with symmetry
axis ê is given by equation (2) of Box 6.2, with

wh(r, ê · êh) =
v20r

2

2R2
c

„
1

q2Φ
− 1

«
ê · êh. (6.137)

(b) We model the disk galaxy as an exponential disk, having mass M and scale length Rd.
At distances exceeding a few scale lengths, the disk potential can be approximated by its
monopole and quadrupole terms, given in equation (2.255). In this approximation, show
that the torque from the disk on the ring is given by equation (1) of Box 6.2, with

wd(r, ê · êd) =
9GMR2

d

2r3
ê · êd. (6.138)

(c) Assume that the disk symmetry axis is tipped relative to the halo symmetry axis by
an inclination I. Show that the inclination i of the Laplacian surface at radius r, relative
to the disk, is given by

v20r
5

9GMR2
cR

2
d

„
1

q2Φ
− 1

«
=

sin 2i

sin 2(I − i)
. (6.139)

(d) Draw the Laplacian surface or a cross-section of it.

6.7 [1] Show from equation (6.122) that the group velocity of bending waves with pattern
speed Ωp is

vg = −sgn(k)
πGΣ

m(Ω − Ωp)
. (6.140)

Hence show that m = 1 retrograde bending waves propagate inward when they are trailing,
and outward when they are leading.



7
Kinetic Theory

So far we have concentrated on collisionless systems, in which the constituent
particles move under the influence of the smoothed-out gravitational field
generated by all the other particles. This approximation is not completely ac-
curate. As described in §1.2, individual stellar encounters1 gradually perturb
stars away from the trajectories they would have taken if the gravitational
field were perfectly smooth; in effect the stars diffuse in phase space away
from their original orbits. After many such encounters the star eventually
loses its memory of the original orbit, and finds itself on a wholly unrelated
one. The characteristic time over which this loss of memory occurs is called
the relaxation time trelax; over timescales exceeding trelax the approximation
of a smooth gravitational potential is incorrect.

The collisionless Boltzmann equation, which has been our main tool so
far, is not valid when encounters are important. Thus we begin this chapter
by reviewing general results about stellar systems that hold in the presence
of encounters (§7.2 and §7.3). The equations that describe the behavior of
stellar systems in the presence of encounters are derived in §7.4, and these
are used to investigate the evolution of spherical stellar systems in §7.5.

1 We generally use the term “encounter” to denote the gravitational perturbation
of the orbit of one star by another, and “collision” to denote actual physical contact
between stars. However, to conform with common use, we use the terms “collisional” or
“collisionless” to describe stellar systems in which encounters do or do not play a role.



7.1 Relaxation processes 555

For other discussions of the topics in this chapter, see Hénon (1973b),
Spitzer (1987), and Heggie & Hut (2003).

7.1 Relaxation processes

The relaxation time is of order

trelax ≈ 0.1N

lnN
tcross, (7.1)

where tcross is the crossing time and N is the number of stars in the system
(eq. 1.38). The relaxation time exceeds the crossing time if N ∼> 40. Galaxies
typically have N ≈ 1011 and tcross ≈ 100 Myr, so the effects of stellar encoun-
ters can be ignored over a galaxy’s lifetime of 10 Gyr. However, encounters
have played a central role in determining the present structure of many other
stellar systems, such as globular clusters (N ≈ 105, tcross ≈ 105 yr, lifetime
10 Gyr), open clusters (N ≈ 102, tcross ≈ 1 Myr, lifetime 100 Myr), the cen-
tral parsec of galaxies (N ≈ 106, tcross ≈ 104 yr, lifetime 10 Gyr), and the
centers of clusters of galaxies (N ≈ 103, tcross ≈ 1 Gyr, lifetime 10 Gyr).

The fundamental equations describing motion in a collisionless system
of N stars of mass m are the collisionless Boltzmann and Poisson equations
(eqs. 4.7 and 2.10),

∂f

∂t
+ [f,H ] = 0 ; ∇2Φ(x, t) = 4πGmN

∫
d3v f(x,v, t). (7.2)

Here the Hamiltonian H(x,v, t) = 1
2v

2 + Φ(x,v, t) and the df f(x,v, t) rep-
resents the probability that a given star is found in unit phase-space volume
near the phase-space position (x,v). In Chapter 4 we developed models of
stellar systems by solving these equations exactly. For example, in spheri-
cal models such as the Hernquist model, the gravitational field is precisely
time-independent and spherical, so each star conserves its energy and angu-
lar momentum. However, in any stellar system with finite N , the energy and
angular momentum of individual stars are not precisely conserved, because
each star is subject to fluctuating forces from encounters with its neighbors.
Therefore the collisionless Boltzmann equation does not provide a complete
description of the dynamics of stellar systems with finite N .

Encounters drive the evolution of a stellar system by several distinct
mechanisms:

(a) Relaxation Each star slowly wanders away from its initial orbit.
As a result of this phase-space diffusion, the entropy of the stellar system
increases, and its structure becomes less sensitive to its initial conditions. We
have seen in §4.10.1 that the high-entropy states of a self-gravitating gas are
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very inhomogeneous, with a dense central core and an extended halo. Thus
we expect that relaxation will drive stellar systems towards configurations
having small, dense cores and large, low-density halos.

(b) Equipartition A typical stellar system contains stars with a wide
range of masses. From elementary kinetic theory we know that encounters
tend to produce equipartition of kinetic energy: on average, particles with
large kinetic energy 1

2mv
2 lose energy to particles with less kinetic energy.

In an ordinary gas, this process leads to a state in which the mean-square
velocity of a population of particles is inversely proportional to mass. By
contrast, in a stellar system, massive stars that lose kinetic energy fall deeper
into the gravitational potential well, and may even increase their kinetic
energy as a result, just as an Earth satellite speeds up as it loses energy
from atmospheric drag. Conversely, less massive stars preferentially diffuse
towards the outer parts of the stellar system, where the velocity dispersion
may be smaller.

(c) Escape From time to time an encounter gives a star enough energy
to escape from the stellar system. Thus there is a slow but irreversible
leakage of stars from the system, so stellar systems gradually evolve towards
a final state consisting of only two stars in a Keplerian orbit, all the others
having escaped to infinity. The timescale over which the stars “evaporate”
in this way can be related to the relaxation timescale by the following simple
argument (Ambarzumian 1938; Spitzer 1940). From equation (2.31) the
escape speed ve at x is given by v2

e (x) = −2Φ(x). The mean-square escape
speed in a system whose density is ρ(x) is therefore

〈v2
e 〉 =

∫
d3x ρ(x)v2

e (x)∫
d3x ρ(x)

= −2

∫
d3x ρ(x)Φ(x)

M
= −4W

M
, (7.3)

where M and W are the total mass and potential energy of the system
(eq. 2.18). According to the virial theorem (4.250), −W = 2K, where K =
1
2M〈v2〉 is the total kinetic energy. Hence

〈v2
e 〉1/2 = 2〈v2〉1/2; (7.4)

in words, the rms escape speed is just twice the rms speed. The fraction of
particles in a Maxwellian distribution that have speeds exceeding twice the
rms speed is γ = 7.38 × 10−3 (Problem 4.18). We can crudely assume that
evaporation removes a fraction γ of the stars every relaxation time. Then
the rate of loss is

dN

dt
= − γN

trelax
≡ − N

tevap
, (7.5)

where the evaporation time, the characteristic time in which the system’s
stars are lost, is tevap = trelax/γ ' 140 trelax. Thus we expect that any
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stellar system will lose a substantial fraction of its stars in about 102trelax

(see §7.5.2).

(d) Inelastic encounters So far we have treated stars as point masses,
but in dense stellar systems we must consider the possibility that two stars
occasionally pass so close that they raise powerful tides on one another or
even suffer a physical collision. Energy dissipation in near-collisions reduces
the total kinetic energy of the system and can lead to the formation of binary
stars. Head-on or nearly head-on collisions can result in the coalescence of
the colliding stars, leading to the otherwise unexpected presence of massive,
short-lived stars in an old stellar system.

The characteristic timescale on which a star suffers a collision is given
approximately by

tcoll ≈ (nΣv)−1, (7.6)

where n is the number density of stars, Σ is the collision cross-section, and
v is the rms stellar velocity. We may write n ≈ N/r3, where r is the radius
of the system, and Σ ≈ π(2r?)

2, where r? is the stellar radius (neglecting
gravitational focusing; a more precise result is given in eq. 7.194). In terms
of the crossing time tcross ≈ r/v,

tcoll

tcross
≈ r2

4πNr2
?

. (7.7)

From the virial theorem we have v2 ≈ GNm/r where m is the stellar mass;
it proves convenient to use this relation to eliminate r in favor of v. We
also eliminate r? in favor of the escape speed from the stellar surface, v? =√

2Gm/r? (v? = 618 km s−1 for the Sun). Then

tcoll

tcross
≈ 0.02N

(v?
v

)4

. (7.8)

In terms of the relaxation time (eq. 7.1),

tcoll

trelax
≈ 0.2

(v?
v

)4

lnN. (7.9)

For systems in which the escape speed from individual objects is much larger
than the rms orbital velocity (such as open and globular clusters, and most
galaxies), we have tcoll � trelax, so inelastic encounters play only a minor
role in determining the overall structure of the stellar system. However,
such encounters can occasionally produce exotic single or binary stars, which
provide direct evidence of recent non-gravitational interactions.

(e) Binary formation by triple encounters A binary star cannot form
in an isolated encounter of two point masses, because the relative motion is
always along a hyperbola. However, an encounter involving three stars can
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leave two of the participants in a bound Keplerian orbit. It is simple to
estimate the rate of formation of binaries by this process. We showed in
equation (1.30) that the velocity perturbation in an encounter of two stars
of mass m and relative velocity v is δv ≈ Gm/bv, where b is the distance of
closest approach. We may rewrite this as

δv

v
≈ b90

b
, where b90 ≈ Gm

v2
(7.10)

is the impact parameter at which the relative velocity is deflected by 90◦ in
the encounter (see eq. 3.51 for a precise definition). If three stars approach
one another within a distance b, we expect the velocity perturbations to be
of similar magnitude. Thus, to form a binary by a triple encounter, we must
have δv ≈ v, which requires b ≈ b90. For a given star, the time interval
between encounters with other stars at separation b90 or less is of order
(nb290v)−1 (eq. 7.6). In each such encounter, there is a probability nb3

90 that
a third star will also lie within a distance b90. Hence the time t3 required
for a given star to suffer a triple encounter at separation less than b90 is
t3 ≈ (n2b590v)−1. Substituting for b90 from equation (7.10), we find the time
required for a given star to become part of a binary by a triple encounter to
be (Goodman & Hut 1993)

t3 ≈ v9

n2G5m5
. (7.11)

Using the virial theorem, v2 ≈ GNm/r, we may express t3 in terms of the
relaxation time (eq. 7.1):

t3
trelax

≈ 10N2 lnN. (7.12)

Hence the total number of binaries formed per relaxation time is only

Ntrelax

t3
≈ 0.1

N lnN
. (7.13)

Since the system dissolves after the evaporation time of about 102trelax, the
rate of binary formation by triple encounters is negligible if N is much larger
than 10. We discuss binary formation and evolution further in §7.5.7.

(f) Interactions with primordial binaries The many binary stars
found in the solar neighborhood were produced when their component stars
were formed, rather than by subsequent triple or inelastic encounters. It
is likely that binary stars are similarly produced during the formation of
globular and open clusters. These are called primordial binary stars to
distinguish them from binaries formed by dynamical processes long after
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their constituent stars. Gravitational forces during encounters transfer en-
ergy between the orbits of primordial binaries and other cluster stars. Such
energy exchange can dramatically alter the energy balance in the cluster,
even if binaries are rare, because the binding energy in the binary orbit
can be much larger than the kinetic energy of a typical cluster star. Con-
sider, for example, a globular cluster with mass M = 105 M� and rms

velocity 〈v2〉1/2 = 10 km s−1. From the virial theorem, its binding energy
is − 1

2M〈v2〉 = 1050 erg. A binary star consisting of two 1M� stars with
a separation of 2R� has a binding energy of 1 × 1048 erg. Thus, 100 such
binaries contain as much binding energy as the whole cluster of 105 stars.

7.2 General results

7.2.1 Virial theorem

In Chapter 4 we used the collisionless Boltzmann equation to prove the tensor
virial theorem (eqs. 4.241 and 4.247),

1
2

d2Ijk
dt2

= 2Kjk +Wjk , (7.14)

which relates the tensor Ijk of an isolated stellar system to the kinetic-
and potential-energy tensors, Kjk and Wjk . We now show that with slight
modifications this result also holds for collisional systems.
Proof: Consider a system of particles with masses mα and positions xα, α =
1, . . . , N . We define the tensor (cf. eq. 4.243)

Ijk ≡
N∑

α=1

mαxαjxαk, (7.15)

where xαj is the jth Cartesian component of the vector xα. The second time
derivative of Ijk is

d2Ijk
dt2

=

N∑

α=1

mα (xαj ẍαk + 2ẋαj ẋαk + ẍαjxαk) . (7.16)

The acceleration of particle α is

ẍαj =

N∑

β=1
β 6=α

Gmβ

(
xβj − xαj

)

|xβ − xα|3
; (7.17)



560 Chapter 7: Kinetic Theory

substituting this result and a similar formula for ẍαk into equation (7.16) we
find

d2Ijk
dt2

= 2
N∑

α=1

mαẋαj ẋαk

+

N∑

α,β=1
β 6=α

Gmαmβ

|xα − xβ |3
[
xαj
(
xβk − xαk

)
+ xαk

(
xβj − xαj

)]
.

(7.18)
By analogy with equation (4.240b), we define the kinetic-energy tensor for a
system of point particles to be

Kjk ≡ 1
2

N∑

α=1

mαẋαj ẋαk. (7.19)

By analogy with equations (2.21a) and (2.22), we define the potential-energy
tensor for a system of point particles as2

Wjk = G

N∑

α,β=1
β 6=α

mαmβ
xαj(xβk − xαk)

|xα − xβ |3

= − 1
2G

N∑

α,β=1
β 6=α

mαmβ
(xαj − xβj)(xαk − xβk)

|xα − xβ |3
,

(7.20)

where the second line is obtained by interchanging the indices α and β in the
first line and averaging this result with the first line. From the second line
we conclude that W is symmetric, that is, Wjk = Wkj . The second term
on the right side of equation (7.18) is just Wjk +Wkj = 2Wjk , and the first
term is 4Kjk, so we have successfully arrived at equation (7.14)./

The most useful form of the virial theorem is obtained by taking the
trace of the tensor I, I ≡ trace (I) ≡∑3

j=1 Ijj . Furthermore, we assume that

the system is in a steady state, so d2I/dt2 = 0. The trace of equation (7.18)
then becomes the scalar virial theorem 2K +W = 0 (eq. 4.248), where now

K = trace (K) = 1
2

N∑

α=1

mαv
2
α ; W = trace (W) = − 1

2

N∑

α,β=1
α6=β

Gmαmβ

|xα − xβ |

(7.21)

2 We can justify these analogies, at least formally, by replacing the continuous density
ρ(x) in (2.21a) and (2.22) by a sum of delta functions: ρ(x) =

PN
α=1mαδ(x − xα).
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are the total kinetic and potential energies.

The only approximation involved in deriving the scalar virial theorem
is that I is time-independent. This is a good approximation for equilibrium
stellar systems with N � 1, but in a system with a small number of particles
there are statistical fluctuations in I , so the scalar virial theorem holds only
for the time-averaged values of K and W .

7.2.2 Liouville’s theorem

We have argued that the collisionless Boltzmann equation cannot provide
a complete description of the dynamics of a stellar system with finite N .
We now discuss a generalization of the collisionless Boltzmann equation that
remedies this shortcoming, at least formally. We represent the state of a
system of N stars by a point in a 6N -dimensional space, called Γ-space,
whose coordinates are the positions and velocities of all the stars. This state
is sometimes called a microstate and its representative point a Γ-point. In
practice, we do not have—and do not want—the detailed information that is
required to specify a microstate. We are concerned only with the “average”
behavior of the macroscopic properties of the system (density distribution,
velocity distribution at a given position, fraction of binary stars, etc.). Thus
it is useful to imagine that at some initial time we are given the probability
that a system is found in each small volume in Γ-space, and to follow the
evolution of this probability distribution, rather than the evolution of a single
Γ-point. There is an obvious analogy to the methods of Chapter 4, where
we found it simpler to follow the evolution of the probability density in six-
dimensional phase space, rather than the orbits of individual stars.

Denote the position and velocity of the αth particle by the canonical
coordinates qα,pα, where α = 1, . . . , N (normally qα and pα are the position
and velocity, but they could be any canonical coordinates and momenta).
Then the six-dimensional vector wα ≡ (qα,pα) denotes the location of a
particle in phase space. The Γ-point of a system in the 6N -dimensional
Γ-space is determined by the collection of N six-vectors w1, . . . ,wN . The
probability that a Γ-point is found in a unit volume of Γ-space at time t is
denoted by f (N)(w1, . . . ,wN , t); since the probability density integrates to
unity we have

∫
d6w1 · · · d6wN f

(N)(w1, . . . ,wN , t) = 1, where d6wα ≡ d3qα d3pα.

(7.22)
The function f (N) is the N-body distribution function or N-body df.

For the sake of simplicity, we shall usually assume that all the particles
are identical (same mass, composition, etc.)—it is straightforward to modify
the derivations below when several different kinds of particle are present.
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Since the particles are identical, the N-body df can be taken to be a sym-
metric function of w1, . . . ,wN . In other words,

f (N)(. . . ,wα, . . . ,wβ , . . .) = f (N)(. . . ,wβ, . . . ,wα, . . .) for all α, β.
(7.23)

The equation governing the evolution of f (N) is analogous to the col-
lisionless Boltzmann equation governing the evolution of the phase-space
density f (§4.1). In fact, to derive the equation for f (N) we need only rein-
terpret the 3-dimensional vectors q and p in that section as 3N -dimensional
vectors (q1, . . . ,qN ), (p1, . . . ,pN ). Then the analogs of equations (4.7)–
(4.10) are

∂f (N)

∂t
+

N∑

α=1

(
q̇α · ∂f

(N)

∂qα
+ ṗα · ∂f

(N)

∂pα

)
= 0; (7.24)

∂f (N)

∂t
+
[
f (N), HN

]
= 0; (7.25)

df (N)

dt
= 0; (7.26)

where d/dt is the convective derivative in Γ-space, and [·, ·] denotes the Pois-
son bracket in Γ-space. In other words the flow of Γ-points through Γ-space is
incompressible: the probability density of Γ-points f (N) around the Γ-point
of a given system always remains constant. This is Liouville’s theorem,
and equations (7.24)–(7.26) are Liouville’s equation.3

If (i) we work in an inertial frame, (ii) we choose our canonical coordi-
nates and momenta to be the positions xα and velocities vα, and (iii) our
particles have mass m and interact only through their mutual gravitation,
then Liouville’s equation can be written in the form

∂f (N)

∂t
+

N∑

α=1

(
vα · ∂f

(N)

∂xα
−

N∑

β=1
β 6=α

∂Φαβ
∂xα

· ∂f
(N)

∂vα

)
= 0, (7.27)

where Φαβ = −Gm/|xα − xβ |.
Any N-body df of the form

f (N)(w1, . . . ,wN ) = f [HN(w1, . . . ,wN )] (7.28)

3 We adopt the convention that the collisionless Boltzmann equation applies to 6-
dimensional phase space and Liouville’s equation applies to 6N-dimensional Γ-space, al-
though some authors use the term Liouville’s equation in both cases. With our convention,
Liouville’s equation is actually not due to Liouville. It was first explicitly derived by Gibbs
(1884), two years after Liouville’s death. Gibbs was also the first to recognize its impor-
tance in astronomy. It might therefore be better called the Gibbs equation.
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is a solution of Liouville’s equation. The proof is an obvious extension of the
Jeans theorem (§4.2). In thermal equilibrium, we would have

f (N)(w1, . . . ,wN ) = C exp[−βHN (w1, . . . ,wN )], (7.29)

where C and β are positive constants. Thermal equilibrium cannot be
achieved in a gravitational N-body system because the normalization condi-
tion (7.22) cannot be satisfied for a df of the form (7.29).4

7.2.3 Reduced distribution functions

We now investigate how the N-body df f (N)(w1, . . . ,wN , t) is related to
the usual df in six-dimensional phase space, f(w, t) (§4.1). We introduce
first the reduced or K-body distribution function, which is obtained by
integrating the N-body df over N −K of the six-vectors wα. Since f (N) is a
symmetric function of the wα (eq. 7.23), without loss of generality we may
choose the integration variables to be wK+1, . . . ,wN . Thus we define

f (K)(w1, . . . ,wK , t) ≡
∫

d6wK+1 · · · d6wN f
(N)(w1, . . . ,wN , t). (7.30)

From equation (7.22), the normalization of the K-body df is simply

∫
d6w1 · · ·d6wK f

(K)(w1, . . . ,wK , t) = 1. (7.31)

The one-body df is

f (1)(w1, t) ≡
∫

d6w2 · · · d6wN f
(N)(w1, . . . ,wN , t). (7.32)

The one-body df describes the probability of finding a particular star in
a unit volume of phase space centered on w1. This is the same as the
definition of the phase-space df in §4.1, and therefore we are free to simplify
our notation by writing

f(w, t) = f (1)(w, t). (7.33)

In many situations, it is useful to write the two-body df in the form

f (2)(w1,w2, t) = f(w1, t)f(w2, t) + g(w1,w2, t). (7.34)

4 The integral diverges at both large and small scales. When the particles are separated
by large distances, f (N) depends on velocity but is independent of position, so the spatial
integral diverges. When two particles α and β approach one another, Φαβ diverges so
exp(−βHN ) becomes extremely large.
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The function g is called the two-body correlation function; the termi-
nology is borrowed from probability theory, where the variables x and y are
said to be uncorrelated if the joint probability p(x, y) can be factored into a
product of the form px(x)py(y). Loosely speaking, the two-body correlation
function measures the excess probability of finding a particle at w1 due to
the presence of a particle at w2. A more precise statement can be derived
from the laws of conditional probability (eq. B.85), which state that the
probability that a star is located in a unit volume of phase space centered
on w1, given that a star is known to be located at w2, is

f(w1|w2) =
f (2)(w1,w2)∫

d6w′
1f

(2)(w′
1,w2)

=
f(w1)f(w2) + g(w1,w2)

f(w2) +
∫

d6w′
1 g(w′

1,w2)
. (7.35)

In particular, if the correlation function g(w1,w2) = 0, then f(w1|w2) =
f(w1); in other words, the presence of a star at w2 has no effect on the
probability of finding a star near w1.

The use of reduced dfs can be illustrated by computing the expectation
value of the kinetic and potential energy for a stellar system. From equation
(7.21), the expectation of the kinetic energy is

〈K〉 = 1
2m

∫
d6w1 · · ·d6wN f

(N)(w1, . . . ,wN , t)

N∑

α=1

v2
α; (7.36)

since the stars are identical, this simplifies to

〈K〉 = 1
2Nm

∫
d6w1 f(w1, t)v

2
1 . (7.37)

Similarly, any observable that involves only quantities that depend additively
on the phase-space coordinates of single stars can be expressed in terms of
the one-body df. Such observables include density, surface brightness, line-
of-sight velocity distribution, metallicity distribution, etc.

The expectation of the potential energy is

〈W 〉 = − 1
2

∫
d6w1 · · · d6wN f

(N)(w1, . . . ,wN , t)

N∑

α,β=1
α6=β

Gm2

|xα − xβ |
. (7.38)

Since the stars are identical, and there are N(N − 1) ways in which we can
choose two distinct stars α and β from N , this simplifies to

〈W 〉 = − 1
2Gm

2N(N − 1)

∫
d6w1d6w2

f (2)(w1,w2, t)

|x2 − x1|
. (7.39)
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Thus the potential energy depends only on the two-body df. If the cor-
relation function is small, that is, if |g(w1,w2, t)| � f(w1)f(w2), then for
N � 1 the potential energy simplifies to

W = − 1
2Gm

2N2

∫
d6w1d6w2

f(w1, t)f(w2, t)

|x2 − x1|
= 1

2

∫
d3x ρ(x)Φ(x),

(7.40)
which is the expression we have used in prior chapters (eq. 2.18).

7.2.4 Relation of Liouville’s equation to the collisionless

Boltzmann equation

The N-body df is said to be separable if it is simply the product of one-body
dfs, that is, if

f (N)(w1, . . . ,wN , t) =

N∏

β=1

f(wβ, t). (7.41)

As we have seen, this assumption implies that the positions of stars are
uncorrelated, in the sense that the probability of finding a star near any
phase-space position w1 is unaffected by the presence or absence of stars
at nearby points. We now assume that the N-body df is separable, and
ask for the equation governing the evolution of the one-body df f . To
find this, we integrate Liouville’s equation (7.27) over d6w2 · · · d6wN . The
term involving ∂f (N)/∂t simply yields ∂f(w1, t)/∂t. The term involving
∂f (N)/∂xα yields zero if α = 2, . . . , N because

∫
d3xα ∂f

(N)/∂xα = 0 so

long as f (N) → 0 sufficiently fast as |xα| → ∞. The integration of the term
involving ∂f (N)/∂vα yields zero if α = 2, . . . , N for a similar reason. Thus
we obtain

∂f(w1, t)

∂t
+ v1 ·

∂f(w1, t)

∂x1

− ∂f(w1, t)

∂v1
·
N∑

β=2

∫
d6w2 · · · d6wN

∂Φ1β

∂x1

N∏

α=2

f(wα, t) = 0.

(7.42)

Each term in the sum is identical, and
∫

d6w f(w, t) = 1, so this becomes

∂f(w1, t)

∂t
+ v1 ·

∂f(w1, t)

∂x1
− (N − 1)

∂f(w1, t)

∂v1
·
∫

d6w2
∂Φ12

∂x1
f(w2, t) = 0.

(7.43)
The expectation value of the gravitational potential at x1 is

Φ(x1, t) = N

∫
d6w2 Φ12f(w2, t), (7.44)
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so equation (7.43) simplifies to

∂f(w, t)

∂t
+ v · ∂f(w, t)

∂x
− N − 1

N

∂Φ(x, t)

∂x

∂f(w, t)

∂v
= 0. (7.45)

In the limit N → ∞ this becomes the collisionless Boltzmann equation (4.11).
Thus we have shown that the collisionless Boltzmann equation results from
the Liouville equation when N � 1 and the N-body df is separable.

If the df is not separable and N � 1, it is straightforward to show that
equation (7.45) must be replaced by

df

dt
= Γ[f ], (7.46)

where Γ[f ] is the encounter operator, given by

Γ[f(w1, t)] ≡ N

∫
d6w2

∂Φ12

∂x1
· ∂g(w1,w2, t)

∂v1
, (7.47)

and g is the two-body correlation function (eq. 7.34). Thus the correlations
between particles in phase space, as measured by g(w1,w2, t), drive the rate
of change of the phase-space density around a given star, given by Γ[f ].

We can determine the encounter operator Γ[f ] in two ways. The first ap-
proach is through the correlation function. Just as we derived equation (7.46)
for the one-body df by integrating Liouville’s equation over d6w2 · · · d6wN ,
we can derive an equation for the correlation function—or, what is equiv-
alent, the two-body df f (2)(w1,w2, t)—by integrating Liouville’s equation
over d6w3 · · ·d6wN . Unfortunately, just as equation (7.46) for the one-body
df depends on the two-body df through the appearance of g(w1,w2, t) on
the right side, the equation for the two-body df depends on the three-body
df.5 However, in the limit where the number of stars N → ∞, while the
total mass mN remains constant, we can neglect the contribution of the
three-body correlation function to the equation governing the two-body df.
The resulting equation can be solved to determine the two-body correlation
function, and this can be substituted into equation (7.47) to determine the
encounter operator (Gilbert 1968; Lifshitz & Pitaevskii 1981).

A more physical approach, which we take in §7.4, is to ask how encoun-
ters between stars modify the one-body df. This approach is only practical
when the encounters can be approximated as localized in both time and
space; fortunately, we shall see that this approximation is remarkably accu-
rate for most stellar systems.

5 Continuing in this way, we would obtain a sequence of equations of rapidly increasing
complexity, each expressing the rate of change of f (n) in terms of f (n+1). This sequence
is known as the BBGKY hierarchy, after N. N. Bogoliubov, M. Born and H. S. Green,
J. G. Kirkwood, and J. Yvon, who all discovered the equations independently between
1935 and 1946.
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7.3 The thermodynamics of self-gravitating systems

7.3.1 Negative heat capacity

By analogy with an ideal gas, we can define the temperature T of a self-
gravitating system at position x through the relation (eq. F.33)

1
2mv

2 = 3
2kBT , (7.48)

where m is the stellar mass and kB is Boltzmann’s constant. In general
the mean-square velocity v2 and hence the temperature depend on position.
The mass-weighted mean temperature is T ≡

∫
d3x ρ(x)T/

∫
d3x ρ(x), where

ρ(x) is the density, and the total kinetic energy of a system of N identical
stars is therefore

K = 3
2NkBT . (7.49)

If the system is stationary, then the virial theorem (4.250) states that the
total energy including gravitational potential energy is E = −K, so

E = − 3
2NkBT . (7.50)

The heat capacity of the system is

C ≡ dE

dT
= − 3

2NkB, (7.51)

which is negative: by losing energy the system grows hotter (Lynden–Bell &
Wood 1968; Lynden–Bell 1999).

This apparently paradoxical result is not restricted to stellar dynamics.
Any bound, finite system in which the dominant forces are gravitational
has negative heat capacity. In fact, the stability of nuclear burning in the
cores of stars like the Sun is a consequence of this property: the reaction
rates are strongly increasing functions of density and temperature, so if the
reactions proceed so fast that the heat generated cannot be conducted away,
thermal energy accumulates in the core, which expands and cools, bringing
the reaction rates back towards equilibrium.

The thermodynamics of a system with negative heat capacity is quite
different from that of normal laboratory systems. For example, suppose that
we place a self-gravitating fluid or stellar system in contact with a heat bath
(ignoring the practical difficulties of doing this). Assume that initially the
bath and the system have the same temperature T . If a small amount of heat
dQ > 0 is transferred to the bath, the temperature of the system will change
to T − dQ/C > T . The self-gravitating system is now hotter than the bath,
and heat continues to flow from hot to cold, that is, from the system to the
bath. Therefore, the temperature of the system rises without limit. Similarly,
if heat begins to flow from the bath to the system, the temperature of the
system will decrease to zero. Thus any system with negative heat capacity
in contact with a heat bath is thermodynamically unstable.
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Box 7.1: Statistical mechanics of stellar systems

Many familiar results from statistical mechanics do not apply to systems
with long-range forces such as stellar systems (for reviews see Padman-
abhan 1990; Lynden–Bell 1999; Katz 2003). For example:

Energy is not extensive. In most laboratory systems, the total energy
is an extensive property; that is, if the system is divided into parts then its
energy is the sum of the energies of the parts. However, in a gravitating
system of particles with mass m and number density n the potential
energy between a particle and its neighbors within a sphere of radius

R is W = −Gm2n
∫

d3x/r = −4πGm2n
∫ R

0
dr r = −2πGm2nR2. Thus

most of the contribution to the potential comes from distant particles,
so the energy is not extensive.

The microcanonical ensemble does not exist. The probability dis-
tribution of configurations of a closed system at fixed energy is derived
by assuming that all states on the energy hypersurface in phase space
have equal probability. However, the energy hypersurface of an isolated
self-gravitating system is unbounded (except for N = 2, E < 0), so the
microcanonical probability distribution cannot be defined.

The canonical ensemble does not exist. The probability distribution
of states of a system that is in contact with a heat bath at temperature
T is derived by maximizing the entropy at fixed mean energy. However,
we have shown in §4.10.1 that an isolated self-gravitating system has no
maximum-entropy state.

The heat capacity at constant volume is not positive. The usual
“proof” of this result relies on the relation 〈(∆T )2〉 = T 2/CV (Landau &
Lifshitz 1980) between the mean-square fluctuations in temperature and
the heat capacity at constant volume; this formula relies on the canonical
distribution and so cannot be applied to stellar systems.

7.3.2 The gravothermal catastrophe

To investigate the thermodynamic behavior of self-gravitating systems more
rigorously, we consider a self-gravitating ideal gas of N point particles6 of
mass m, having total mass M = Nm. The gas is enclosed by a spherical
container of radius rb. The gas is assumed to be thermally conducting, so
heat can flow from one part of the gas to another in response to temperature
gradients. The equilibrium state of this system is therefore isothermal, and
in fact is precisely the isothermal sphere described in §4.3.3b, truncated at
the radius of the wall rb.7 Hence the density distribution of the gas in the

6 We assume that the particles have no internal degrees of freedom, and that binary
systems and other short-range correlations between the particles are unimportant.

7 By Newton’s first theorem the absence of material outside the container does not
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container, ρ(r), is given by Figure 4.6 for r < rb, while the pressure is related
to the density by the ideal gas law (F.31),

p(r) =
ρ(r)kBT

m
=
ρ(r)

mβ
, where β ≡ 1

kBT
(7.52)

is called the inverse temperature (though it has dimensions of inverse
energy).

This system provides a highly idealized model of a stellar system; its
principal advantage, in addition to mathematical simplicity, is that it does
not contain most of the processes that drive the evolution of stellar systems—
there is no equipartition, escape, inelastic encounters, binary formation,
etc.—so we can isolate the effects of relaxation.

We choose the arbitrary constant in the definition of the gravitational
potential Φ(r) so that Φ(rb) = −GM/rb; thus if the container has negligible
mass, Φ → 0 as r → ∞. The total energy of the gas is E = K+W , where the
kinetic energy K = 3

2NkBT = 3
2M/(mβ) (eq. 7.49) and the potential energy

W = 2π
∫ rb

0
dr r2ρ(r)Φ(r) (eq. 2.23). We could determine W by evaluating

this integral using the density distribution of the isothermal sphere, but this
task can be simplified by a trick. In Problem 4.33 we derived a form of
the virial theorem valid for a collisionless system confined to a spherical
container. The same theorem holds for a gaseous system and reads

2K +W = E +K = 4πr3
bp(rb). (7.53)

Hence

E = 4πr3
bp(rb) −K =

4πr3
bρ(rb)

mβ
− 3M

2mβ
. (7.54)

We eliminate the inverse temperature β in favor of the King radius r0 and
central density ρ0 of the isothermal sphere, using equations (4.100) and
(4.106), which yield

β =
9

4πGmρ0r2
0

. (7.55)

We then eliminate the central density in favor of the mass M by the relation

M = 4πρ0r
3
0

∫ r̃b

0

dr̃ r̃2ρ̃(r̃) ≡ 4πρ0r
3
0M̃(r̃b), (7.56)

where r̃ ≡ r/r0, r̃b ≡ rb/r0, ρ̃ ≡ ρ/ρ0, and the second equality in equation

(7.56) defines a dimensionless mass M̃ . We can therefore rewrite the inverse
temperature in the form

β =
9r0
Gm

M̃(r̃b)

M
= 9

rb
GMm

M̃(r̃b)

r̃b
. (7.57)

affect the gravitational field inside the container.
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Figure 7.1 The dimensionless temperature rb/(GMmβ) = kBTrb/(GMm) and dimen-
sionless energy Erb/GM

2 for a mass M of isothermal gas in a spherical container of radius
rb. The points A–E are labeled by the dimensionless box radius erb = rb/r0 and by the
density contrast R = ρ0/ρ(rb) (see Problem 7.6). The curve spirals inward to the point
( 1
2
,− 1

4
) corresponding to the singular isothermal sphere.

Using this result to eliminate β from equation (7.54), we have

E =
GM2

rb

[
r̃4
bρ̃(r̃b)

9M̃2(r̃b)
− r̃b

6M̃(r̃b)

]
, (7.58)

where ρ̃(r̃) is determined by the differential equation (4.107a).
For a container of a given radius rb containing a given mass M , we

can use equations (7.57) and (7.58) to determine the inverse temperature β
and the energy E as functions of the parameter r̃b and hence as functions
of one another. The result is shown in Figure 7.1. We have plotted the
dimensionless ratios rb/(GMmβ) and Erb/GM

2 so the graph can be used
for containers of any radius rb containing any gas mass M . The numbers by
the labels A–E give the dimensionless box radius r̃b as well as

R ≡ ρ0

ρ(rb)
=

1

ρ̃(r̃b)
, (7.59)

which measures the density contrast between the center and the edge of the
container.
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We now perform a thought experiment. Suppose that the walls of the
container conduct heat, and that the container is surrounded by a heat bath
at very high temperature, so the gravitational potential energy of the gas
is small compared with the kinetic energy in random motions (far above
point A on the curve in Figure 7.1). Under these conditions, the gas behaves
almost like an ideal gas with no self-gravity: the energy E ' 3

2M/(mβ) =
3
2MkBT/m, the heat capacity C = dE/dT ' 3

2MkB/m is positive, and the
gas is nearly homogeneous, so the density contrast R is near unity. We now
slowly reduce the temperature of the heat bath. The gas remains isothermal,
energy flows from the gas to the bath, and the system moves down along the
curve in Figure 7.1 to lower temperature and energy. As it passes point
B (R = 6.8) its total energy passes through zero and becomes negative,
although its heat capacity, measured by the slope of the curve in Figure 7.1,
remains positive. As we continue to reduce the temperature of the heat bath,
the system continues to lose energy and cool, its heat capacity C = dE/dT
becoming larger and larger, and finally at point C (R = 32.125) the heat
capacity becomes infinite. There is no equilibrium state cooler than T (C) =
0.40GMm/(kBrb). Systems between points C and D (32.125 < R < 708.61)
have negative heat capacity and are unstable for the reasons given at the
end of §7.3.1: if at any instant the gas is hotter than the heat bath, energy
flows from the gas to the bath; because of its negative heat capacity the gas
becomes hotter as it loses energy; the increased temperature difference leads
to even faster energy loss to the heat bath; and the gas is heated without
limit. Similarly, if the gas is momentarily cooler than the bath, then energy
flows into the gas, which cools without limit as a result.

In systems between points D and E (708.61 < R < 5221.5) the heat
capacity is once again positive. Nevertheless, it turns out that these systems
are also unstable when in contact with a heat bath (Horwitz & Katz 1978;
Katz 1978, 1979). In fact, an isothermal gas in a conducting spherical con-
tainer in contact with a heat bath is unstable whenever the density contrast
between center and edge exceeds R = 32.125.

Now perform a second thought experiment. Suppose that our container
is surrounded by a thermally insulating wall (i.e., the stars bounce off the
wall without loss or gain of energy). Initially the gas has energy E, mass
M , and radius rb0. Suddenly the container is expanded to a radius rb.
Since the expansion is sudden, the gas does no work on the container, and
thus E is constant. After the expansion, when the gas has again settled
into equilibrium, its temperature can be determined from Figure 7.1. If
the energy of the gas is positive, then the value of the vertical coordinate
Erb/GM

2 is increased by a factor rb/rb0, so the system moves along the
curve towards the upper right. The value of R decreases towards unity and
the gas is therefore more homogeneous. However, if the energy is negative,
then Erb/GM

2 becomes more negative by a factor of rb/rb0. If the final
value of Erb/GM

2 is more negative than −0.335 (the value at point D in
Figure 7.1), then no equilibrium is possible after the expansion.
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Point D has an even deeper significance than this. Stability analysis
shows that a thermally isolated (E = constant) sphere is unstable at all
points in the equilibrium sequence of Figure 7.1 beyond point D (Antonov
1962a; Lynden–Bell & Wood 1968; Horwitz & Katz 1978; Katz 1978, 1979).
In other words, an isothermal gas in an insulating spherical container is
unstable if the density contrast between center and edge exceeds R = 708.61.
It can be shown that this instability, named the gravothermal catastrophe
by Lynden–Bell & Wood (1968), arises because the isothermal sphere with
R > 708.61 is a local entropy extremum (i.e., a saddle point) but not a
maximum at fixed E, M , and rb. Thus the unstable system can reach states
of higher entropy by evolving away from isothermality.

The onset of instability can be heuristically explained in terms of the
virial theorem. The halo has positive heat capacity Ch since it is not strongly
influenced by self-gravity, while the core, which is confined primarily by self-
gravity, has negative heat capacity Cc. If the core momentarily becomes
hotter than the halo, heat flows from the core to the halo, and the tempera-
tures of both the core and halo rise. If Ch < |Cc|, the halo temperature rises
more than the core temperature and the heat flow is shut off. If Ch > |Cc|,
the halo has so much thermal inertia that it cannot heat up as fast as the core,
and the temperature difference between core and halo grows. Of course, the
division into a separate core and halo is artificial, but this argument captures
the essence of the instability that sets in at R = 708.61.8

Is there a gravothermal catastrophe in isothermal stellar systems as well
as in gaseous ones? The answer is yes. The velocity distribution in an
isothermal stellar system is the same as in an isothermal gas (§4.3.3b), and
hence the entropy of an isothermal stellar system is the same as that of an
isothermal gas with the same temperature and density distribution. If we
can approximate the stellar encounters as local and instantaneous (see §7.4.2
for a discussion of the validity of this approximation), then Boltzmann’s
H-theorem tells us that the entropy of the stellar system cannot decrease
with time (Lifshitz & Pitaevskii 1981). Hence instability will arise when the
equilibrium state becomes a local entropy extremum other than a maximum,
just as it does for a gaseous system. The gravothermal catastrophe in a gas
develops through heat conduction and hence the growth time is comparable
to the thermal diffusion time. The analog of the diffusion time in a stellar
system is the relaxation time trelax, so the gravothermal catastrophe in stel-
lar systems should develop on a timescale of order trelax. These arguments
have been confirmed by numerical calculations of the normal modes of an
isothermal stellar system (Inagaki 1980; Ipser & Kandrup 1980).

8 A crude version of this argument was given already by Landau (1932), who argued
that quantum-mechanical effects led eventually to the existence of a stable equilibrium,
and in this way derived the maximum mass limit for a degenerate star (the Chandrasekhar
limit). Toy models that illustrate many features of the gravothermal catastrophe are de-
scribed by Aronson & Hansen (1972), Lynden–Bell & Lynden–Bell (1977), and Padman-
abhan (1990).
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To investigate the relevance of these thermodynamic considerations to
stellar systems, we must first develop tools that enable us to follow the
evolution of a stellar system over timescales longer than the relaxation time.

7.4 The Fokker–Planck approximation

7.4.1 The master equation

Under the influence of the smooth potential Φ(x), the df f(x,v, t) obeys
the collisionless Boltzmann equation df/dt = 0, where the derivative is
taken along the phase-space path of a given star (eq. 4.10); in words, the
phase-space probability density of stars around a given star always remains
the same. When encounters are taken into account, the phase-space density
around a star changes with time, at a rate determined by the encounter oper-
ator Γ[f ] (eq. 7.46). A mathematically precise—but complicated—expression
for the encounter operator is given by equation (7.47); in this section we use
physical arguments to derive simpler expressions that are more powerful tools
for studying the evolution of stellar systems.

Let Ψ(w,∆w)d6(∆w)∆t be the probability that a star with the phase-
space coordinates w = (q,p) is scattered to the volume of phase space
d6(∆w) around w + ∆w during the short time interval ∆t. The transition
probability Ψ includes the effects of encounters with other stars but not
acceleration by the smooth potential of the stellar system, since the latter is
accounted for already in the collisionless Boltzmann equation. To distinguish
the star whose trajectory we are following from the stars doing the scattering,
we follow the convention of §1.2.1 and call the former the subject star and
the latter the field stars.

As a result of encounters, subject stars are scattered out of a unit volume
of phase space centered on w at a rate

∂f(w)

∂t

∣∣∣∣
−

= −f(w)

∫
d6(∆w) Ψ(w,∆w). (7.60)

Encounters also scatter subject stars into this volume, at a rate

∂f(w)

∂t

∣∣∣∣
+

=

∫
d6(∆w) Ψ(w − ∆w,∆w)f(w − ∆w). (7.61)

The sum (∂f/∂t)− + (∂f/∂t)+ equals the encounter operator Γ[f ]. Hence
we arrive at the master equation

df

dt
= Γ[f ] =

∫
d6(∆w)

[
Ψ(w − ∆w,∆w)f(w − ∆w) − Ψ(w,∆w)f(w)

]
.

(7.62)
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This simple derivation masks a subtle point. The master equation is not
time-reversible: a df that is localized near a single point in phase space
spreads outward under the influence of the encounter operator, but an ex-
tended distribution cannot shrink to a point. On the other hand, Liouville’s
equation (7.26), which provides an exact description of the stellar system,
is time-reversible. Irreversibility sneaks into our derivation through Boltz-
mann’s celebrated assumption of “molecular chaos”—the assumption that
the distributions of subject and field stars are statistically independent. This
is equivalent to the assumption that the transition probability Ψ(w,∆w) and
the df f(w) are statistically independent, so the scattering rates in equations
(7.60) and (7.61) can be written as products of Ψ and f .

7.4.2 Fokker–Planck equation

In the crude estimate of the relaxation time presented in §1.2.1, we found
that, per crossing time, encounters give rise to a mean-square velocity per-
turbation (eq. 1.36)

∆v2 ≈ 8v2

N
ln Λ, where Λ ≈ R

b90
. (7.63)

Here N is the number of stars in the system and v is the star’s velocity.
This result arose from integrating over all impact parameters between the
90◦ deflection radius b90 ≈ Gm/v2 (eq. 7.10) and the system’s characteristic
radius R. The contribution to ∆v2 from impact parameters in any interval
(b1, b2) can be obtained by simply replacing ln(R/b90) in (7.63) by ln(b2/b1).
Thus equal octaves of impact parameter contribute equally to ∆v2; in other
words, encounters with impact parameters in the range b90 to 2b90, 2b90

to 4b90, and so forth, right up to the interval 1
2R to R, are all of equal

importance for the relaxation process.

The virial theorem implies that v2 ≈ GmN/R where m is the stellar
mass; thus R/b90 ≈ N . For the systems considered in this book, N is
generally large—105 for a globular cluster and 1010 for an elliptical galaxy,
corresponding to 17 to 33 octaves in R/b90. This large number enables us to
make several critical approximations that dramatically simplify the study of
the evolution of stellar systems due to encounters:

(a) Weak encounters The fractional velocity change in an encounter
is δv/v ≈ b90/b (eq. 7.10). Since equal octaves contribute equally to the
scattering, and most octaves between b90 and R have b� b90, it follows that
most of the scattering is due to weak encounters, that is, ones with δv � v.

The dominance of weak encounters allows us to simplify the encounter
operator. For weak encounters, |∆w| is small, and we can expand the first
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term of equation (7.62) in a Taylor series

Ψ(w − ∆w,∆w)f(w − ∆w) = Ψ(w,∆w)f(w)

−
6∑

i=1

∆wi
∂

∂wi
[Ψ(w,∆w)f(w)]

+ 1
2

6∑

i,j=1

∆wi∆wj
∂2

∂wi∂wj
[Ψ(w,∆w)f(w)] + O(∆w3).

(7.64)

The Fokker–Planck approximation consists of truncating this series after
the second-order terms, so (7.62) becomes

Γ[f ] = −
6∑

i=1

∂

∂wi

{
D[∆wi]f(w)

}
+ 1

2

6∑

i,j=1

∂2

∂wi∂wj

{
D[∆wi∆wj ]f(w)

}
,

(7.65)
where D[∆wi] denotes the expectation of the change in wi per unit time,

D[∆wi] ≡
∫

d6(∆w) Ψ(w,∆w)∆wi . (7.66)

Similarly,

D[∆wi∆wj ] ≡
∫

d6(∆w) Ψ(w,∆w)∆wi∆wj . (7.67)

The quantities D[∆wi] and D[∆wi∆wj ] are known as diffusion coeffi-
cients since they characterize the rate at which stars diffuse through phase
space as a result of encounters. The use of square brackets in the notation
is a reminder that the diffusion coefficient D[∆wi∆wj ] is not a function of
the variable ∆wi∆wj . Rather, it is an average of ∆wi∆wj over ∆w, and a
function of the position in phase space where the average is taken.9

Equation (7.65) can be extended to a higher order of approximation by
including diffusion coefficients arising from the third- and higher-order terms
of the Taylor series (7.64), but these are generally smaller, by the factor ln Λ
defined in equation (7.63), and may be neglected (see Appendix L for more
detail). It might also be thought that D[∆wi∆wj ] is much less than D[∆wi],
but ∆wi fluctuates in sign, whereas (∆wi)

2 is always positive, and in fact
these two coefficients are generally comparable in size (§7.4.3).

The second-order diffusion coefficient D[∆wi∆wj ] governs the rate at
which the subject star executes a random walk in phase space, analogous
to the Brownian motion of microscopic particles. The first-order diffusion

9 Note also that D[(∆w)2] is not the same as D[∆(w2)]. Since ∆(w2) = (w +
∆w)2 −w2 = 2w ·∆w+ (∆w)2, the two diffusion coefficients are related by D[∆(w2)] =
2w ·D[∆w] +D[(∆w)2].
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coefficient D[∆wi] represents a steady drift through phase space, rather than
a random walk.

Equations (7.46) and (7.65) together constitute the Fokker–Planck
equation. The Fokker–Planck equation has the virtue that all of the de-
pendence on the field-star df is contained in the diffusion coefficients, which
are functions only of the phase-space coordinates of the subject star. Thus
the Fokker–Planck equation is a differential equation, rather than an integro-
differential equation like the master equation, and hence is much easier to
solve. For this reason, the Fokker–Planck equation has become the principal
tool for the study of encounters in stellar systems.10

The Fokker–Planck equation is reminiscent of, but distinct from, the
diffusion equation in phase space, which reads

∂f

∂t
=

6∑

i,j=1

∂

∂wi

(
Cij

∂

∂wj
f(w)

)
, (7.68)

where the tensor Cij(w) is also usually called the diffusion coefficient.

(b) Local encounters Equation (7.63) shows that equal octaves in im-
pact parameter contribute equally to gravitational scattering. Since most
octaves between b90 and R have b� R, it follows that most of the scattering
is due to short-range or local encounters, that is, ones with b� R.

The dominance of local encounters helps to justify the assumption of
molecular chaos discussed in the preceding subsection: two stars that have
suffered a local encounter with impact parameter b� R are unlikely to have
another encounter with b � R in the lifetime of the stellar system. Even if
they do have another local encounter, this will occur only after many orbits
and perturbations by many other stars, and all memory of their previous
encounter will have been erased.

Other important consequences follow from the dominance of local en-
counters: (i) since the encounter time ∼ b/v is short—much less than the
crossing time—the encounter affects the velocity only, not the position, of
the interacting stars; (ii) during the encounter the stars may be assumed to
move on Keplerian hyperbolae, unaffected by the large-scale potential of the
stellar system; (iii) the effects of stellar encounters on a star at x can be
calculated as if the star were embedded in an infinite homogeneous medium
in which the df is everywhere equal to the df at x.

Because local encounters affect velocity only, the Fokker–Planck en-
counter operator (7.65) is simplified if we choose the canonical phase-space
coordinates w to be Cartesian coordinates (x,v). Then Ψ(w,∆w) is zero
unless ∆x = 0, and as a consequence any diffusion coefficient of the form

10 Studies that do not rely on the Fokker–Planck approximation are described in Good-
man (1983) and references therein.
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D[∆xi], D[∆xi∆xj ] or D[∆xi∆vj ] is zero. Thus the encounter operator
simplifies to

Γ[f ] = −
3∑

i=1

∂

∂vi

{
D[∆vi]f(w)

}
+ 1

2

3∑

i,j=1

∂2

∂vi∂vj

{
D[∆vi∆vj ]f(w)

}
. (7.69)

Notice that D[∆vi] is a component of a vector and D[∆vi∆vj ] is a component
of a tensor.

(c) Orbit-averaging For N � 1 the relaxation time in stellar systems
is much larger than the crossing time. Thus, changes in the df caused by
encounters are expected to be small over a single orbital period. Hence it
is useful to separate the slow changes in the phase-space coordinates caused
by encounters from the rapid changes associated with orbital motion in the
smooth potential; in effect, we orbit-average the Fokker–Planck equation.

Orbit averaging is most easily understood by working in angle-action
variables. The Fokker–Planck equation in angle-action coordinates can be
written as

∂f

∂t
+ J̇i

∂f

∂Ji
+ θ̇i

∂f

∂θi
= Γ[f ]; (7.70)

here, and henceforth, we adopt the summation convention (page 772). The

time derivatives J̇i and θ̇i refer to motion in the smooth potential (that is,
neglecting encounters), and the encounter operator Γ[f ] is given by equa-
tion (7.65), where we have chosen as phase-space coordinates w = (θ,J).

Since the evolution due to encounters is slow (i.e., since trelax � tcross),
the df is always approximately in a steady state, so the smooth potential
of the stellar system evolves slowly with time. In most cases of interest
(e.g., spherical systems) the potential at any instant will be integrable, so
the corresponding Hamiltonian depends on the actions only, not the angles,
H(θ,J, t) ' H(J, t). Similarly, the strong Jeans theorem tells us that the
df depends only on the actions, f(θ,J, t) ' f(J, t). Since the Hamiltonian

depends only on the actions, J̇i = −∂H/∂θi vanishes, and θ̇i = ∂H/∂Ji =
constant .

We now orbit average, by operating on (7.70) with (2π)−3
∫

d3θ. Since
all quantities are periodic in θ, all terms involving ∂/∂θi in the encounter

operator vanish, as does the term θ̇i(∂f/∂θi). Thus equation (7.70) can be
written as

∂f

∂t
=

1

(2π)3

∫
d3θ Γ[f ]

= − ∂

∂Ji

{
f D[∆Ji]

}
+ 1

2

∂2

∂Ji∂Jj

{
f D[∆Ji∆Jj ]

} (7.71a)

where the orbit-averaged diffusion coefficients are

D[∆Ji] =
1

(2π)3

∫
d3θD[∆Ji], (7.71b)
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with a similar definition for D[∆Ji∆Jj ].
An alternative form of equation (7.71) provides additional insight. Let

V be some volume in action space, and S its surface. The number of stars
in V is NV(t) = N

∫
V d3J

∫
d3θ f(J, t) = (2π)3N

∫
V d3J f(J, t), and we have

dNV
dt

= (2π)3

∫

V
d3J

∂f

∂t
= −

∫

V
d3J

∂Fi
∂Ji

, (7.72)

where

Fi ≡ (2π)3

(
fD[∆Ji] − 1

2

∂

∂Jj

{
fD[∆Ji∆Jj ]

})
. (7.73)

The physical meaning of Fi is seen by applying the divergence theorem—
equation (B.43), except in action space rather than real space—to equa-
tion (7.72):

dNV
dt

= −
∮

S
d2SiFi, (7.74)

where d2S is an element of the surface S in action space and d2Si is one of
its components. Thus Fi a component of a vector that represents the flux of
stars in action space due to encounters.

The principal advantage of orbit averaging is that the domain of the
Fokker–Planck equation is reduced from six phase-space coordinates plus
time to three actions plus time.

7.4.3 Fluctuation-dissipation theorems

Although we have shown that isolated stellar systems in thermal equilibrium
do not exist, many galaxies and star clusters have dfs that are not far from
the Maxwellian df that is characteristic of thermodynamic equilibrium. Thus
it is useful to examine the properties that the diffusion coefficients would have
in this state.

Consider a stellar system containing two types of star: subject stars
of mass m and field stars of mass ma. In thermodynamic equilibrium, the
velocity dispersions σ and σa of the two types of stars are related by energy
equipartition; thus

mσ2 = maσ
2
a ≡ β−1, (7.75)

where β is the inverse temperature (eq. 7.52). In thermodynamic equilibrium,
the one-body df of the subject stars is Maxwellian,

f(w) ∝ e−βmH(J), (7.76)

where H is the Hamiltonian for a particle of unit mass, and the system does
not evolve, so the flux of stars through action space due to encounters must
vanish. Thus equation (7.73) yields

fD[∆Ji] = 1
2

∂

∂Jj

(
fD[∆Ji∆Jj ]

)
; (7.77)
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as usual, there is an implicit summation over the index j from 1 to 3. After
substituting equation (7.76) for the df, we have

D[∆Ji] = 1
2

∂

∂Jj
D[∆Ji∆Jj ] − 1

2mβΩjD[∆Ji∆Jj ], (7.78)

where Ω(J) ≡ ∂H/∂J (eq. 3.190).
Since the diffusion coefficients depend on the actions of the subject star

and the df of the field stars, but not the df of the subject stars, this re-
lation must hold whether or not the subject stars are actually in thermal
equilibrium, so long as the field stars have a Maxwellian df with inverse
temperature β.

The relation (7.78) is an example of a fluctuation-dissipation theo-
rem; these theorems can take a wide variety of forms and are a powerful tool
in statistical mechanics (see, for example, Pathria 1972; Landau & Lifshitz
1980; Nelson & Tremaine 1999). Such relations are useful in part because
D[∆Ji∆Jj ] can often be calculated using only first-order perturbation the-

ory, while D[∆Ji] can require analyzing the dynamics to second-order.
In the limit where the subject star has zero mass, equation (7.78) sim-

plifies to

D[∆Ji] = 1
2

∂

∂Jj
D[∆Ji∆Jj ]. (7.79)

Note that this result is independent of the inverse temperature β. Since the
diffusion coefficients are linear functions of the field star df, we can superim-
pose the diffusion coefficients for Maxwellian dfs with different temperatures
β to determine the diffusion coefficient for any ergodic df, that is, any df of
the form f(H). Since the relation (7.79) holds for each of the Maxwellians,
it must hold for their sum. Thus equation (7.79) relates the orbit-averaged
diffusion coefficients for a zero-mass particle in any stellar system with an er-
godic df. Moreover, in this case the orbit-averaged Fokker–Planck equation
(7.71) simplifies to

∂f

∂t
= 1

2

∂

∂Ji

(
D[∆Ji∆Jj ]

∂f

∂Jj

)
, (7.80)

which is simply the diffusion equation (7.68) in action space.
In an infinite homogeneous system, the Jeans swindle (§5.2.2) allows us

to assume that the unperturbed orbits of stars have constant velocity. In
this case the Hamiltonian H = 1

2v
2 and the velocity vector v behaves like an

action vector J in a general potential, in that both are constant on unper-
turbed orbits. Moreover orbit-averaging is not needed because the medium is
homogeneous. Thus the analog of the fluctuation-dissipation theorem (7.78)
for a Maxwellian distribution of field stars is

D[∆vi] = 1
2

∂

∂vj
D[∆vi∆vj ] − 1

2mβvjD[∆vi∆vj ]; (7.81)
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and the analog of (7.79) for zero-mass subject stars is

D[∆vi] = 1
2

∂

∂vj
D[∆vi∆vj ], (7.82)

which holds for any field-star df that is isotropic in velocity space.

7.4.4 Diffusion coefficients

We now evaluate the diffusion coefficients D[∆vi] and D[∆vi∆vj ] in the
approximation that encounters are local. The diffusion coefficients represent
mean changes per unit time due to a large number of encounters of the subject
star with the field stars. Each encounter is assumed to be independent of all
the others, and to involve only a single pair of stars (i.e., triple and multiple
encounters are neglected). The effect of the overall gravitational potential
of the stellar system is neglected, so the relative orbit of the two stars is a
hyperbola, whose shape is determined by the relative velocity V0 at large
separations and the impact parameter b. All of these approximations are
justified because the scattering is dominated by local encounters, as discussed
in §7.4.2.

The diffusion coefficients are functions of the position x and velocity v
of the subject star. In Appendix L we show that they can be written as

D[∆vi] = 4πG2ma(m+ma) ln Λ
∂

∂vi
h(x,v),

D[∆vi∆vj ] = 4πG2m2
a ln Λ

∂2

∂vi∂vj
g(x,v).

(7.83a)

Here m and ma are the masses of the subject star and field stars, and the
field-star df fa(xa,va) is normalized so that

∫
d3va f(xa,va) = n, where

n is the number density of field stars. The functions g(x,v), h(x,v) are
Rosenbluth potentials (Rosenbluth, MacDonald, & Judd 1957),

h(x,v) =

∫
d3va

fa(x,va)

|v − va|
; g(x,v) =

∫
d3va fa(x,va)|v − va|.

(7.83b)
The factor ln Λ, called the Coulomb logarithm, is often found in formulae

for scattering rates from 1/r potentials, such as the gravitational potential of
a point mass or the electrostatic potential of a point charge. In the present
context we have (eq. L.15)

Λ =
bmaxv

2
typ

G(m+ma)
(7.84)
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where vtyp is a typical velocity of stars in the system, and bmax is the max-
imum impact parameter considered. Numerical experiments show that the
appropriate value for bmax is roughly the orbital radius R (Farouki & Salpeter
1994; Theuns 1996). The lack of a precise definition for bmax is a blemish
on the derivation of the diffusion coefficients, but only a minor one: we have
already shown in §7.4.2 that Λ ≈ N in typical systems containing N stars, so
the fractional uncertainty in the Coulomb logarithm caused by, for example,
a factor of two uncertainty in bmax is only ∼ ln 2/ lnN , which is 0.06 for
a globular cluster (N ≈ 105) and only 0.03 for a galaxy (N ≈ 1011). For
more discussion of these issues, see Weinberg (1989, 1993). For numerical
evaluation of the diffusion coefficients, a useful rule is that Λ = λN with
λ ' 0.1 for clusters composed of stars of a single mass (see page 588 and
Giersz & Heggie 1994).

It is important to remember that this approach does not properly rep-
resent the effects of either very close or very distant encounters. Close en-
counters, those with impact parameter less than the 90◦ deflection radius
b90 ≈ Gm/v2, have δv/v of order unity and hence violate the Fokker–Planck
approximation. Distant encounters, with impact parameters of order the
system size R, cannot be treated using the local approximation, which is
valid only for b � R. Nevertheless, the Fokker–Planck plus local approxi-
mations yield satisfactory results whenever ln Λ is significantly larger than
unity. This is because, as we saw at the beginning of §7.4.2, equal octaves
of impact parameter contribute equally to the relaxation process. When
ln Λ ≈ ln(R/b90) is large, there are many octaves in impact parameter that
contribute to the relaxation, and failure of the approximations for an octave
or two at each end of this range does not lead to significant error.

When the mass m of the subject star is zero, the expressions (7.83) for
the diffusion coefficients can be shown to be consistent with the fluctuation-
dissipation theorem (7.82) (the proof uses the identity ∇2|x| = 2/|x|).

The diffusion coefficients are simplified if the field star df fa(x,va)
is isotropic, that is, if it depends on velocity only through va ≡ |va|. In
a spherical system this condition is satisfied if fa is ergodic, that is, if it
depends only on the Hamiltonian H and not the angular momentum L. If
fa is isotropic, the only preferred direction in velocity space is defined by
the velocity of the subject star v, and therefore it is natural to choose a
coordinate system in which êz is parallel to v, and êx, êy are perpendicular
to v. Then the symmetry of the problem demands that

D[(∆vx)2] = D[(∆vy)2], (7.85)

and that

D[∆vx] = D[∆vy ] = D[∆vx∆vy] = D[∆vx∆vz ] = D[∆vy∆vz ] = 0. (7.86)
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Hence there are only three independent diffusion coefficients, which we may
write as

D[∆v‖] ≡ D[∆vz ],

D[(∆v‖)2] ≡ D[(∆vz)
2],

D[(∆v⊥)2] ≡ 2D[(∆vx)2] = 2D[(∆vy)2].

(7.87)

Here ∆v‖ ≡ ∆v · v̂, where v̂ ≡ v/|v| is a unit vector pointing along v, and
∆v⊥ ≡ ∆v−∆v‖v̂ is the component of ∆v that is perpendicular to v. The
evaluation of these diffusion coefficients, described in Appendix L, yields:

D[∆v‖] = −16π2G2ma(m+ma) ln Λ

v2

∫ v

0

dva v
2
afa(x, va),

D[(∆v‖)2] =
32π2G2m2

a ln Λ

3

[ ∫ v

0

dva
v4
a

v3
fa(x, va) +

∫ ∞

v

dva vafa(x, va)

]
,

D[(∆v⊥)2] =
32π2G2m2

a ln Λ

3

×
[∫ v

0

dva

(3v2
a

v
− v4

a

v3

)
fa(x, va) + 2

∫ ∞

v

dva vafa(x, va)

]
.

(7.88)
The relation of these coefficients to the diffusion coefficients in an arbitrary
Cartesian coordinate system is given by equation (L.24):

D[∆vi] =
vi
v
D[∆v‖],

D[∆vi∆vj ] =
vivj
v2

{
D[(∆v‖)2] − 1

2D[(∆v⊥)2]
}

+ 1
2δijD[(∆v⊥)2],

(7.89)

where δij = 1 if i = j, and 0 otherwise.
The rate of change of the kinetic energy of the subject star is

D[∆E] = m

3∑

i=1

(
viD[∆vi] + 1

2D[∆vi∆vi]
)

= m
(
vD[∆v‖] + 1

2D[(∆v‖)2] + 1
2D[(∆v⊥)2]

)

= 16π2G2mma ln Λ

[
ma

∫ ∞

v

dva vafa(va) −m

∫ v

0

dva
v2
a

v
fa(va)

]
.

(7.90)

The first of the integrals in the last line describes the growth of the kinetic
energy of the subject star due to gravitational encounters with the field stars
(“heating”), while the second describes the cooling effect of the first-order
diffusion coefficient D[∆v‖]. Only field stars moving faster than the subject
star (va > v) contribute to the heating, while only stars moving slower that
the subject star contribute to the cooling. The ratio of heating to cooling at a
given speed v is proportional to ma/m. The energy of a subject star reaches
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equilibrium when the two terms balance—this is the classical phenomenon
of equipartition of energy.

When the subject star is much more massive than the field stars (m�
ma), the first-order diffusion coefficient D[∆v‖] is larger than the second-

order coefficients D[(∆v‖)2]/v and D[(∆v⊥)2]/v by a factor of order m/ma.
In an isotropic field-star distribution, the effect of this diffusion coefficient
on the subject star is identical to that of a force per unit mass equal in
magnitude to |D[∆v‖]| and directed opposite to the subject star’s velocity.
The frictional forces on a body such as a ball flying through the air are also
directed opposite to the velocity, so the force exerted on a massive subject
star as a result of encounters with field stars is known as dynamical friction
(Chandrasekhar 1943a). See §8.1 for a thorough discussion of dynamical
friction and its astrophysical applications.

The diffusion coefficients can be explicitly evaluated if the field star df

fa(va) is known. The most important case is when the df is Maxwellian,

fa(va) =
n

(2πσ2)3/2
e−v

2
a/2σ

2

, (7.91)

where n is the number density and σ is the one-dimensional velocity disper-
sion of the field stars. Evaluating the integrals of equation (7.88) we find

D[∆v‖] = −4πG2ρ(m+ma) ln Λ

σ2
G(X),

D[(∆v‖)2] =
4
√

2πG2ρma ln Λ

σ

G(X)

X
,

D[(∆v⊥)2] =
4
√

2πG2ρma ln Λ

σ

[
erf(X) − G(X)

X

]
,

(7.92)

where ρ = man is the density of field stars, X ≡ v/(
√

2σ), erf(X) is the
error function (Appendix C.3), and

G(X) ≡ 1

2X2

[
erf(X) −X

d erf(X)

dX

]
=

1

2X2

[
erf(X) − 2X√

π
e−X

2

]
. (7.93)

The behavior of G(X) and the related functions occurring in equations (7.92)
is shown in Figure 7.2.

It is straightforward to verify that the diffusion coefficients defined by
equations (7.89) and (7.92) satisfy the fluctuation-dissipation theorem in the
form (7.81), with the inverse temperature β = 1/(maσ

2).

Heating of the Galactic disk by MACHOs We may use these results
to estimate the rate at which the velocity dispersion of stars in the solar
neighborhood grows from interactions with a hypothetical population of non-
luminous, compact objects such as black holes (machos) in the dark halo
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Figure 7.2 The function G(X)
(eq. 7.93) that appears in the
diffusion coefficients (7.92) for
a Maxwellian field-star df. The
functions G(X)/X and [erf(X) −
G(X)]/X are also shown.

(page 16). The gradual growth of the random velocities of disk stars—a
process called “disk heating”—can be caused by a number of mechanisms
that are investigated in much more detail in §8.4. Heating by machos is the
simplest of these mechanisms (though probably far from the dominant one)
and thus provides a good illustration of the use of the diffusion coefficients.

We begin by constructing a simple model for the df of machos in the
dark halo. We shall assume that the df is Maxwellian. The circular speed of
the Galaxy is approximately constant near the solar radius, at vc = (220 ±
20) km s−1 (Table 1.2). If the Galaxy were spherical with a flat circular-
speed curve, its density would be ρ(r) = v2

c/(4πGr
2) (eq. 4.103), which is

the singular isothermal sphere generated by a Maxwellian df with dispersion
σ = vc/

√
2 (eq. 4.104). If a fraction fh of this density were contributed by

machos, their density at the solar radius R0 would be

ρ = fh
v2

c

4πGR2
0

= 0.014fhM� pc−3

(
vc

220 km s−1

8 kpc

R0

)2

. (7.94)

Dynamical models of the Galaxy suggest that fh ' 0.1–0.5 if the dark halo
is made entirely of machos (see §1.1.2 and §6.3.3); this is an upper limit to
the actual value of fh since part or all of the dark halo could be in some
other form such as wimps (page 16).

Now we examine the evolution of the dispersion of the disk stars in the
direction normal to the Galactic plane, which we label by z. The energy
per unit mass arising from motion in this direction is Ez ≡ 1

2v
2
z + Φz(z)

(eq. 3.74). Encounters with machos cause this energy to increase at a rate

D[∆Ez ] = D[∆( 1
2v

2
z)] = vzD[∆vz ] + 1

2D[(∆vz)
2]

=
v2
z

v
D[∆v‖] +

v2
z

2v2

{
D[(∆v‖)2] − 1

2D[(∆v⊥)2]
}

+ 1
4D[(∆v⊥)2],

(7.95)
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where we have used equation (7.89). Since the disk stars travel on nearly
circular orbits, we may replace v by the circular speed vc, and neglect terms
that are smaller than the dominant terms by a factor of (vz/vc)

2; thus all
terms except the last one in the second line of equation (7.95) can be dropped.
Then from equation (7.92) we have

D[∆Ez ] = 1
4D[(∆v⊥)2] =

√
2πG2ρma ln Λ

σ

[
erf(X) − G(X)

X

]
, (7.96)

where X = v/(
√

2σ). Since v ' vc and we have argued above that σ =
vc/

√
2, we have X = 1 so the quantity in square brackets is 0.6289. Then by

inserting equation (7.94) we have

D[∆Ez ] = 0.314
Gfhmavc ln Λ

R2
0

. (7.97)

In a self-gravitating disk, the virial theorem implies that Ez = 3Kz = 3
2σ

2
z ,

where Kz is the kinetic energy per unit mass in z-motions (Problem 7.3) and
σz is the rms z-velocity in the disk. Thus dσ2

z/dt = 2
3D[∆Ez]; we integrate

this equation to obtain

σz(t) = 0.46

(
Gfhmavct ln Λ

R2
0

)1/2

= 13 km s−1 8 kpc

R0

(
fh

0.5

ma

106 M�

vc

220 km s−1

ln Λ

10

t

10 Gyr

)1/2

.

(7.98)

To estimate the size of the Coulomb logarithm, we may use equation (7.84)
with vtyp ' 200 km s−1, bmax ' 5 kpc, m + ma ' 106 M�, which yields
ln Λ ' 10.7; as usual, the results are insensitive to the precise parameter
choices since they enter only in the argument of the logarithm.

Before discussing the implications of this result, we examine the evolu-
tion of the velocities parallel to the plane. Replacing the radial Hamiltonian
in the epicycle approximation, equation (3.102), by the radial energy ER, and
writing the radial velocity as vR = ẋ, the corresponding diffusion coefficient
can be written as

D[∆ER] = vRD[∆vR] + 1
2D[(∆vR)2]

+ 1
2γ

2
{

2(vφ − vc)D[∆vφ] +D[(∆vφ)2]
}
.

(7.99)

Using equation (7.89) and observing that in a thin, cold disk |vR|, |vφ−vc| �
v and v ' vc, this result simplifies to

D[∆ER] = 1
4D[(∆v⊥)2] + 1

2γ
2D[(∆v‖)2]. (7.100)
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With the same assumptions about the df of the machos that we used to
derive equation (7.97), we find

D[∆ER] =
Gfhmavc ln Λ

R2
0

(
0.314 + 0.855 Ω2/κ2

)
. (7.101)

To find the rate of growth of the dispersions, we note that ER is the energy
of a harmonic oscillator, which is twice the mean value of the kinetic energy
of the oscillator. The mean value of ER in an ensemble of oscillators is thus
〈ER〉 = 〈ẋ2〉 = σ2

R, since ẋ is the radial velocity. Thus dσ2
R/dt = D[∆ER],

so

σR(t) =

(
Gfhmavct ln Λ

R2
0

)1/2 (
0.314 + 0.855 Ω2/κ2

)1/2
. (7.102)

Combining this result with equation (7.98), we find that in a galaxy
with a flat circular-speed curve, in which κ =

√
2Ω,

σz
σR

= 0.53 (7.103)

if the disk heating is due to machos. This result is consistent with the
observed ratio, σz/σR ' 0.5 (Figure 8.11 or BM Table 10.2). However, if
machos are the only heat source, both σR and σz should grow as t0.5; the
data in Figure 8.11 show that although this relation is approximately correct
for σz , σR grows more slowly, as t0.3. Thus it is unlikely that machos are
the dominant cause of disk heating, especially since we shall show in §8.4
that the effects of molecular clouds and spiral arms can explain the observed
age-velocity dispersion relation without any contribution from machos.

We can use these results to set an upper limit to the macho mass: since
other mechanisms also heat the disk, and the dispersion of the oldest stars
in the solar neighborhood is σz ∼< 30 km s−1, equation (7.98) implies that the
macho mass is (Lacey & Ostriker 1985)

m ∼< 6 × 106 M�
0.5

fh
. (7.104)

Other constraints on the macho mass are discussed in §8.2.2e.

7.4.5 Relaxation time

We can use the diffusion coefficients to improve the crude estimate of the re-
laxation time that we made in §1.2. We shall base our estimate on D[(∆v‖)2],
and define the relaxation time of a subject star to be

trelax ≡ v2

D[(∆v‖)2]
. (7.105)
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To measure the characteristic relaxation time for a population of identi-
cal stars, we set ma = m and assume that the velocity distribution of the field
stars is Maxwellian with dispersion σ (eq. 7.91). If the speed of the subject
star were equal to the rms speed of the field stars, v =

√
3σ, the value of X

in equation (7.92) would be ( 3
2 )1/2 = 1.225. Since G(X)/X is not a rapidly

varying function of X (Figure 7.2), we simply set X = 1.225 in D[(∆v‖)2]

and replace the factor v2 in (7.105) by σ2, which is the mean-square velocity
in any one direction. We find

trelax = 0.34
σ3

G2mρ ln Λ

=
18 Gyr

ln Λ

1M�
m

103 M� pc−3

ρ

( σ

10 km s−1

)3

.

(7.106)

This definition is somewhat arbitrary, but the main role of our definition is
simply to provide a fiducial timescale for parametrizing the speed of relax-
ation processes.

A natural first application of this formula is to estimate the relaxation
time in the solar neighborhood. We take ρ = 0.041M� pc−3 from Table 1.1.
The velocity df in the solar neighborhood is not isotropic, but we neglect
this complication and simply identify the rms velocity of nearby old stars,
50 km s−1 according to Table 1.2, with

√
3σ, which yields σ ' 30 km s−1. We

set Λ ' hσ2/(GM�) (eq. 7.84), where h ' 500 pc is a measure of the disk
thickness, so ln Λ ' 18.5. If the typical stellar mass is m = 1M�, we find
trelax ' 6×1014 yr, almost five orders of magnitude longer than the age of the
Galaxy. We conclude that relaxation due to stellar encounters is completely
unimportant in the solar neighborhood.

One shortcoming of equation (7.106) for other applications is that the
density ρ is often not directly observable. To derive a more convenient—but
more approximate—formula for spherical stellar systems, we may assume
that the stellar system is a singular isothermal sphere (§4.3.3b), consistent
with our assumption that the df is Maxwellian. Then equation (4.103)
relates the density and velocity dispersion, so equation (7.106) becomes

trelax(r) = 2.1
σr2

Gm ln Λ

=
5 Gyr

ln Λ

1M�
m

σ

10 km s−1

(
r

1 pc

)2

.

(7.107)

This result is strictly valid only for a singular isothermal sphere, but provides
a useful first approximation to the relaxation time in many equilibrium stellar
systems, so long as the system is not highly flattened or rapidly rotating.

The relaxation time can vary by several orders of magnitude in dif-
ferent regions of a single system. For reference purposes it is often useful
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to characterize a system by a single measure of the relaxation time. To
this end, we replace the density ρ in equation (7.106) by the mean density
inside the system’s half-mass radius rh, which is just 1

2M/( 4
3πr

3
h), and re-

place 3σ2 by the mean-square speed of the system’s stars 〈v2〉. By equation
(4.249b), 〈v2〉 ' 0.45GM/rh. To evaluate the Coulomb logarithm ln Λ, we
take equation (7.84), replace v2

typ by 〈v2〉, and replace the maximum im-
pact parameter bmax by the half-mass radius rh. These substitutions give
Λ = rh〈v2〉/(2Gm) = λN , with λ ' 0.2. Comparison of the relaxation rates
in systems with different N suggests that λ ' 0.1 provides a better fit (Giersz
& Heggie 1994), and this is the value we shall adopt. Then equation (7.106)
yields the half-mass relaxation time (Spitzer 1969)

trh =
0.17N

ln(λN)

√
r3
h

GM

=
0.78 Gyr

ln(λN)

1M�
m

(
M

105 M�

)1/2(
rh

1 pc

)3/2

.

(7.108)

The unshaded histogram in Figure 7.3 shows the distribution of trh for Galac-
tic globular clusters; in almost all cases trh ∼< 10 Gyr, confirming that sub-
stantial relaxation has occurred in these systems. The unshaded histogram
shows the relaxation times for nearby galaxies, at the smallest radii that can
be resolved by optical telescopes. Almost all of the relaxation times are much
longer than 10 Gyr, so relaxation due to stellar encounters plays little or no
role in determining the observable structure of galaxies.

7.4.6 Numerical methods

(a) Fluid models Throughout this book, we have often used fluids as
analogs of stellar systems satisfying the collisionless Boltzmann equation. We
can stretch this analogy even further, by using thermal conduction in fluids
as an analog of relaxation. The basis for this analogy is that both are slow
diffusive processes that cause entropy to increase. An obvious limitation of
the analogy is that in fluids the mean free path is short, so conduction is
a local process, while stars in stellar systems travel many times the system
radius during a relaxation time.

The heat flux in a fluid is q = −κ∇T (eq. F.24), where T is the tem-
perature and κ is the thermal conductivity. We can make a simple order-of-
magnitude estimate of the thermal conductivity of a fluid. Let us suppose
that the mean free path between collisions is λ and the mean time between
collisions is τ . Now assume that there is a temperature gradient dT/dx in
the x-direction only. The flow of particles from right to left across a unit area
in the y-z plane at x = 0 is ≈ nλ/τ , where n is the number density (there
are ∼ nλ particles per unit area within one mean free path of x = 0, and
roughly half of these will cross x = 0 within one collision time). On average,
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Figure 7.3 The distribution of relaxation times for 141 Galactic globular clusters (un-
shaded histogram) and 53 nearby galaxies (shaded histogram). The results for globular
clusters are based on the half-mass relaxation time (eq. 7.108), and the catalog of Harris
(1996), assuming a stellar mass m = 0.7M� and mass-to-light ratio Υ = 2Υ�. The
results for galaxies are based on equation (7.106) and the galaxy sample of Faber et al.
(1997); the relaxation times are evaluated at a radius corresponding to 0.1 arcsec, about
the limiting resolution of the best telescopes. The two galaxies with the shortest relaxation
times are M32 and M31 in the Local Group.

each molecule carries an energy ≈ kBT+, where T+ is the temperature at
the location of its last collision and kB is Boltzmann’s constant. Roughly,
the last collision occurred one mean free path to the right of the wall, so
T+ ≈ T + λ(dT/dx), where T is the temperature at x = 0. The correspond-
ing heat flux—energy per unit time crossing unit area at x = 0 from right to
left—is

q+ ≈ −nλkBT+

τ
≈ −nλkBT

τ
− nλ2kB

τ

dT

dx
. (7.109)

Similarly, particles crossing x = 0 from left to right carry an energy of order
kBT− ≈ kB(T − λ dT/dx), and yield a heat flux

q− ≈ +
nλkBT−

τ
≈ nλkBT

τ
− nλ2kB

τ

dT

dx
. (7.110)
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The net heat flux is q = q+ + q−, and this must equal −κ(dT/dx). Thus

κ ≈ nλ2kB

τ
. (7.111)

In fluids, the mean free path and collision time are related by λ/τ ≈ vtyp,
where vtyp is the typical velocity of a molecule. Thus we can eliminate λ to
obtain

κ ≈ nv2
typkBτ. (7.112)

Now let us pretend that a spherical stellar system like a globular cluster
has a thermal conductivity κ, and use similar arguments to estimate what
it would be. The “collision time” is simply the relaxation time, since stel-
lar encounters change the stellar orbits substantially on this timescale. In
spherical systems, we are interested in heat transport only in the radial di-
rection; in typical spherical stellar systems, most stars oscillate in and out
by a significant fraction of their mean orbital radius on a timescale much
shorter than the relaxation time, so the appropriate “mean free path” is
approximately the orbital radius r. (Note that in contrast to fluid systems
the mean free path is not the total distance traveled between collisions, that
is, the relation λ/τ ≈ vtyp does not hold.) Then from equation (7.111) the
thermal conductivity is (Lynden–Bell & Eggleton 1980)

κ ≈ nr2kB

trelax
. (7.113)

Notice the curious fact that the thermal conductivity of a fluid increases
with increasing collision time (eq. 7.112), while the thermal conductivity of
a stellar system decreases with increasing relaxation time (eq. 7.113). The
reason for the difference is that in a stellar system the mean free path in the
radial direction is λ ≈ r and therefore is independent of the collision time,
while in a fluid the mean free path grows with the collision time, λ ≈ vtypτ .

We now derive the equations that govern the slow evolution of a spher-
ical fluid as heat flows through it. Because the system evolves slowly, it is
close to static at all times. Thus it must satisfy the equation of hydrostatic
equilibrium (F.12),

∂p

∂r
= −ρ∂Φ

∂r
, (7.114)

where p(r, t) is the pressure, Φ(r, t) is the gravitational potential, and we
have used partial derivatives since the variables depend on both radius and
time in an evolving system. The system must also satisfy Poisson’s equation
in the form

∂Φ

∂r
=
GM

r2
;

∂M

∂r
= 4πr2ρ. (7.115)
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The heat flux is related to the change in specific entropy by equations (F.8),
(F.21) and (B.53),

T
ds

dt
= T

(
∂s

∂t
+ v

∂s

∂r

)

= − 1

ρr2

∂

∂r
(r2q) + ε,

(7.116)

where ε is the rate of energy production per unit mass (for example, by binary
stars; see eq. 7.182), d/dt = ∂/∂t+ v∂/∂r is a convective derivative, which
measures the time derivative following a given mass shell rather than one at
constant radius, and v(r, t) is the (small) radial velocity associated with the
slow evolution of the mass distribution through the continuity equation (F.3),

∂ρ

∂t
+

1

r2

∂

∂r

(
r2ρv

)
= 0. (7.117)

In practice, it is often simpler to use the mass M(r) rather than the radius r
as an independent variable; in this case the convective derivative and partial
derivative are the same, d/dt = (∂/∂t)M .

To relate the fluid system governed by these equations to a stellar sys-
tem, we replace the temperature T by the one-dimensional velocity dispersion
σ, using the relation kBT = mσ2, where m is the mass of the stars. The
radial heat flux q = −κ ∂T/∂r, so with equation (7.113) we have

q = −c1r
2ρ

trelax

∂σ2

∂r
, (7.118)

where ρ = mn is the mass density and c1 is a constant of order unity. Using
equation (7.106) for the relaxation time, this result can be restated as

q = −c2r
2G2ρ2m ln Λ

σ3

∂σ2

∂r
, (7.119)

where ln Λ is the usual Coulomb logarithm and c2 is also of order unity. A
simpler form is obtained if we use equation (7.107) for the relaxation time,

q = −c3Gmρ ln Λ
∂σ

∂r
. (7.120)

Finally, the pressure and entropy of our “ideal gas” of stars are related to
the density and velocity dispersion by equations (F.31) and (F.43),

p = ρσ2 ; s =
kB

m
ln

(
σ3

ρ

)
+ constant. (7.121)

Equations (7.114)–(7.121), together with a prescription for the rate of
internal energy generation ε, constitute a complete set of partial differential
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equations in two variables (r or M(r), and t) that can be solved to follow
the evolution of a stellar system due to relaxation. Notice that so long as the
energy generation rate ε is negligible, the uncertain coefficients c2 and c3 in
equations (7.119) and (7.120) affect only the timescale, not the outcome, of
the evolution, since they can be removed by rescaling the time variable t to
c2t or c3t. Fluid models of this kind are described by Hachisu et al. (1978),
Lynden–Bell & Eggleton (1980), and Giersz & Spurzem (1994).

Fluid models are much simpler than models based on the Fokker–Planck
approximation. They provide extremely valuable insights into the evolution
of N-body systems but these should be used with caution and confirmed
using the more accurate methods described below.

A closely related approach is to take moments of the Fokker–Planck
equation over velocity space, thereby deriving collisional analogs of the Jeans
equations (§4.8). For example, Larson (1970a) investigated the evolution of a
spherically symmetric stellar system by assuming that the df can be written
as a Maxwellian times a power series in vr and v2

θ + v2
φ. By truncating the

power series at terms of order v4, he was able to obtain a closed set of dif-
ferential equations for the moments of the df. With this code he carried out
some of the first numerical simulations of the gravothermal catastrophe and
the evolution of star clusters (Larson 1970b, 1970a). Thorough treatments
of the relation of moment equations to fluid models are given by Bettwieser
(1983) and Louis (1990).

(b) Monte Carlo methods This approach can be regarded as a hybrid
between direct N-body integrations and numerical solutions of the Fokker–
Planck equation. In any stellar system with N � 1, there is a range of time
intervals ∆t that are short compared to the crossing time, but long enough
that a subject star experiences a large number of encounters with passing
stars. We do not care about the details of the velocity kicks associated
with each encounter, but only about the statistical properties of the total
velocity kick ∆v at the end of the interval ∆t. Fortunately, these are easy
to determine: by the central limit theorem (Appendix B.10), the probability
distribution of ∆v is Gaussian, and hence is determined entirely by the mean
µi = 〈∆vi〉 and the covariance matrix Cij = 〈∆vi∆vj〉 (cf. eqs. B.98 and
B.99). These can be computed from the diffusion coefficients (7.83) since

µi = D[∆vi]∆t ; Cij = D[∆vi∆vj ]∆t. (7.122)

In Monte Carlo solutions of the Fokker–Planck equations, we choose
a random sample of p � N subject stars from the stellar system. The
orbit of each subject star is integrated in the gravitational potential of the
system, and in addition it is perturbed by velocity kicks at time intervals
∆t, chosen by the prescription in the preceding paragraph. In the case
of a spherical star cluster, it is convenient to think of each subject star as
representing N/p real stars, each with the same pericenter and apocenter but
randomly distributed orbital planes. The introduction of these shells of stars,
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sometimes called “superstars,” forces the calculation to maintain spherical
symmetry and thus greatly simplifies the calculation of the gravitational
potential (see Problem 2.24).

A method of this kind is sometimes called an “orbit-following” Monte
Carlo solution of the Fokker–Planck equation. An alternative approach is
to use an “orbit-averaged” Monte Carlo method. These are based on the
observation that encounters affect the orbit only over a time trelax that is
much longer than the crossing time tcross. Thus there is little to be gained
by integrating the orbits of the superstars. Rather, it is sufficient to monitor
only the energy E and angular momentum L (or apocenter and pericenter,
or radial and azimuthal action) of each superstar and not its instantaneous
radius. At each timestep—which can now be much longer than tcross—the
superstar is assigned to a randomly chosen phase of its orbit and E and L
are perturbed by random kicks, whose probability distribution is determined
using the central limit theorem and the diffusion coefficients at the current
radius.

Orbit-averaged methods are much faster than orbit-following methods,
since the timestep is a fraction of the relaxation time rather than the cross-
ing time. However, despite their greater computational cost, orbit-following
methods are useful because they provide a more accurate treatment of the
evaporation process (see §7.5.2), and they can be used to follow processes
such as violent relaxation and tidal shocks that occur on a crossing time
or less. Orbit-following methods were pioneered by Spitzer and his collab-
orators (Spitzer 1987). Orbit-averaged methods were introduced by Hénon
(1972, 1973b) and have been employed by a number of groups to study the
evolution of globular clusters and the dense centers of galaxies (Stodó lkiewicz
1986; Giersz 1998; Freitag, Rasio, & Baumgardt 2006).

A drawback of Monte Carlo methods is that properties such as the
density distribution must be estimated by counting particles, and thus are
subject to statistical fluctuations that obscure small-scale features.

(c) Numerical solution of the Fokker–Planck equation For a spheri-
cal system, the orbit-averaged Fokker–Planck equation is a partial differential
equation in three variables: time t, radial action Jr, and angular momentum
L. The solution is complicated by the fact that the density and thus the
potential of the system are slowly changing as the system evolves; thus each
time the df f(Jr, L, t) is updated, we must recompute the potential using
Poisson’s equation, and in turn the change in potential affects the df. One
attractive feature of writing the df in terms of the actions Jr and L is that
they are adiabatic invariants (§3.6); thus the df f(Jr, L, t) is invariant under
slow changes in the potential.

Direct solution of the Fokker–Planck equation yields an estimate of the
df that is free from the statistical noise inherent in Monte Carlo methods.
However, it is generally easier to incorporate additional effects such as stellar
evolution, stellar collisions, external tidal fields, binary formation, rotation,
large-angle scattering, etc. into a Monte Carlo simulation.
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Figure 7.4 The evolution of an ergodic Plummer model, according to an orbit-averaged
Monte-Carlo solution of the Fokker–Planck equation with N = 3 × 105 superstars (heavy
solid lines) and an N-body simulation with N = 65 536 (dots, connected by light solid
lines). The radii containing a given fraction of the total mass (1%, 2%, 5%, . . . , 90%) are
shown as a function of time. The plot is based on N-body units, in which G = 1 and the
mass and total energy of the initial system are given by M = 1 and −4E = 1. In N-body
units, the units of length and time are L0 = GM2/(−4E) and T0 = GM5/2(−4E)−3/2,
and the scale length of the initial Plummer model is b = 3πL0/16. In the figure, the radii
are shown in units of L0 and the time in units of TR ≡ T0N/ ln(λN), λ ' 0.1, so TR is
comparable to the relaxation time (eq. 7.108). From Freitag, Rasio, & Baumgardt (2006).

The details of the numerical methods used to solve the orbit-averaged
Fokker–Planck equation (7.71) are described by Cohn (1979, 1980), Taka-
hashi (1995) and Drukier et al. (1999).

(d) N-body integrations The most accurate, and most expensive, way
to follow the evolution of a star cluster is through direct N-body integrations
(Aarseth 2003; Heggie & Hut 2003).

Simulations of a massive globular cluster with N ≈ 106 are still not
practical. The largest calculations done so far have N ≈ 105, and these
can require months of time on a special-purpose computer (Baumgardt &
Makino 2003). Extrapolating the behavior seen in small-N simulations to
larger N requires great care, because, as we have seen in §7.1, many physical
processes contribute to the evolution of globular clusters—relaxation, ejec-
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tion, evaporation, mass loss from stellar evolution, formation of binary stars,
etc.—and these depend on N in different ways (e.g., Aarseth & Heggie 1998;
Fukushige & Heggie 2000).

Although N-body simulations are simple in principle, many sophisti-
cated techniques are needed to make them efficient enough to be useful.
(i) The central core of the cluster is much denser than its outer parts, so
the timestep required for stars in the core must be much shorter than the
timestep for most other stars. This problem is solved by assigning each star
its own timestep (§3.4.6). (ii) Binary and triple stars can be formed with
orbital periods far shorter than the crossing time. These require special
treatment, by a combination of analytical solutions of the Kepler problem
(§3.1b) and other techniques (Mikkola & Aarseth 1996, 1998). (iii) The
computation of the force by direct summation (§2.9.1) requires of order N 2

operations, while advancing the orbits requires only of order N operations.
Thus the force computation takes far more time than the orbit calculation.
This problem can be addressed in either hardware or software. The hardware
solution is to develop special-purpose computers that parallelize and pipeline
the force calculation, leaving the much easier task of advancing the orbits
to a general-purpose host computer (Makino 2001). The software solution
is to separate the rapidly varying forces from the small number of nearby
particles and the slowly varying forces from the large number of distant ones,
using a neighbor scheme (Ahmad & Cohen 1973) or a tree code (§2.9.2). (iv)
Regularization (§3.4.7) dramatically reduces the numerical errors that arise
in following close encounters between two stars.

(e) Checks and comparisons It is extremely important to compare the
results given by the four different methods described in this section. Many
such comparisons have been made, and the agreement has steadily improved
as the codes have become more sophisticated (e.g., Giersz & Spurzem 1994;
Spurzem & Takahashi 1995; Heggie et al. 1998).

Figure 7.4 shows the results of one such comparison. The initial state
was an isolated Plummer model with an ergodic df (§4.3.3a). All of the stars
had equal masses. The radii containing various fractions of the total mass are
plotted as a function of time. The results from an N-body integration with
N = 65 536 particles (Baumgardt et al. 2003) and an orbit-averaged Monte
Carlo simulation (Freitag, Rasio, & Baumgardt 2006) are quite similar.

In addition to checking numerical methods, such comparisons confirm
the validity of the basic assumptions of the Fokker–Planck and local ap-
proximations, that diffusion due to weak, local, two-body encounters is the
principal source of relaxation in stellar systems.
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7.5 The evolution of spherical stellar systems

In this section we describe the evolution of a spherical stellar system due to
encounters between stars. For concreteness we shall usually assume that the
system in question is a globular cluster, although applications to the centers
of galaxies are discussed briefly in §7.5.9.

The formation of globular clusters is not well understood, and thus we
have only a crude idea of their typical states just after they have settled into
dynamical equilibrium. Fortunately for our purposes here, relaxation tends
to erase a cluster’s memory of its initial state, so the numerical experiments
described below give very similar results for a wide range of initial conditions.

Since the relaxation time is inversely proportional to density, evolution
due to relaxation proceeds most rapidly in the dense central regions of the
cluster. Within the relaxed central region, the df f(E,L) and the density
distribution n(r) should approximate the isothermal distribution of §4.3.3b,
i.e., the df should be approximately Maxwellian at energies well below the
escape energy.

In the outer parts of the cluster (the “halo”) the relaxation time is
long, and encounters have relatively little effect. However, as relaxation
proceeds, the halo population is augmented by stars that were originally
in the relaxed central region but have now diffused to higher energies as
a result of encounters. Although the apocenters of such orbits may lie far
out in the halo, their pericenters must still lie in the relaxed center—an
orbit that remains bound can never be expelled completely from the relaxed
region by encounters, since encounters are effective only in this region. These
nouveau riche halo members, who have risen in the world in consequence of a
series of profitable encounters with their less fortunate neighbors, ultimately
overwhelm the original halo members, who acquired their wealth at birth.
Thus after a few central relaxation times, the properties of the halo are
determined by relaxation, rather than by the initial conditions.

Many of the properties of this halo can be derived analytically (Spitzer
& Shapiro 1972). Let n(E, t) dE be the number of halo stars with energy
between E and E+dE at time t; as argued above, these will have pericenters
in the relaxed central region and apocenters in the halo. The Fokker–Planck
equation for n(E, t) is derived from a master equation by arguments precisely
analogous to those used in §7.4.2, and reads

∂n(E, t)

∂t
= − ∂

∂E
{n(E, t)D[∆E]} + 1

2

∂2

∂E2

{
n(E, t)D[(∆E)2]

}
, (7.123)

where D[∆E] and D[(∆E)2] are the mean and mean-square changes in en-
ergy per unit time. This equation can be rewritten as a continuity equa-
tion for the flux FE(E, t), which is the rate at which stars diffuse across a
constant-energy surface in phase space,

∂n

∂t
+
∂FE
∂E

= 0 (7.124a)
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where

FE(E, t) = n(E, t)D[∆E] − 1
2

∂

∂E

{
n(E, t)D[(∆E)2]

}
. (7.124b)

Now let Φc be a typical value of the potential in the central region.
Halo stars have energy |E| � |Φc|, that is, they are much closer to the
escape energy E = 0 than stars in the relaxed center. Thus the speed
of a halo star passing through the relaxed center is v = [2(E − Φ)]1/2 '
(−2Φc)

1/2, approximately independent of the energy. This means that the
mean and mean-square energy changes during one pericenter passage through
the relaxed region should not depend strongly on the energy. However, the
radial period does depend strongly on the energy: since the halo stars spend
most of their time outside most of the cluster mass, their orbital period is
given approximately by the Kepler formula

Tr(E) =
2πGM

(−2E)3/2
, (7.125)

where M is the cluster mass (eqs. 3.31 and 3.32). Thus the diffusion coeffi-
cients, which characterize the orbit-averaged energy changes per unit time,
must have the form

D[∆E] =
c′1

Tr(E)
= c1(−E)3/2 ; D[(∆E)2] =

c′2
Tr(E)

= c2(−E)3/2,

(7.126)
where the c’s are constants. The flux (7.124b) becomes

FE(E, t) = c1(−E)3/2n(E, t) − 1
2c2

∂

∂E

[
(−E)3/2n(E, t)

]
. (7.127)

In a steady state, the flux is independent of E and t, and determined by
the rate at which the relaxed region feeds stars into the halo. If we take FE
to be constant, and set y(E) = (−E)3/2n(E), we can solve the differential
equation (7.127) to obtain

y(E) =
FE
c1

(
1 − c3e2c1E/c2

)
, (7.128)

where c3 is an integration constant.
To proceed further, we need to specify the boundary condition on the

differential equation (7.127) at the outer edge of the cluster. For an isolated
cluster, we may assume that stars escape for E > 0, so the appropriate
boundary condition is y(0) = 0. When the cluster orbits within a galaxy,
stars at large radii may be torn off by the tidal field of the galaxy, even
though they have bound energies, E < 0. This process will be investigated
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in §8.3; for our present purposes, it is sufficient to assume that stars are lost
from the cluster if their energy exceeds Et ≡ −GM/rt, where rt is usually
called the “tidal radius.” Note that the outer radius of King models of stellar
systems has the same name (see §4.3.3 and eq. 4.113), as does the sharp outer
boundary of globular clusters seen by observers—the underlying assumption
behind this confusing practice is that all three measures of the maximum
radius of a cluster reflect the same underlying physics.

The appropriate boundary condition is then y(Et) = 0; applying this
boundary condition to eliminate the integration constant, we have

n(E) =
FE

c1(−E)3/2

[
1 − e2c1(E−Et)/c2

]
(E < Et), (7.129)

and zero otherwise. Since the constants c1 and c2 are determined by the
relaxation rate in the central region, their ratio c1/c2 = D[∆E]/D[(∆E)2]
must be of order Φ−1

c . Since our analysis is valid only for halo energies |E| �
|Φc|, we suffer no additional loss in accuracy if we replace the exponential ex

in equation (7.129) by 1 + x. Thus

n(E) =
2FE

c2(−E)3/2
(Et −E) (E < Et), (7.130)

and zero otherwise. At fixed angular momentum, the df is related to n(E)
by (see Problem 4.8)

f(E) ∝ n(E)

Tr
∝ Et −E; (7.131)

thus the df goes linearly to zero at the edge of the cluster.11

A simple argument now yields the halo density n(r). Since the eccentric-
ities of stars in the halo are large, we can approximate the orbits as radial.
Then the fraction of the time that a star of energy E spends in the interval
from r to r + dr is p(r|E)dr, where

p(r|E)dr =
2

Tr

dr

|vr|
=

2(−E)3/2dr

πGM
√
E +GM/r

; (7.132)

here vr = ±
√

2(E +GM/r) is the radial velocity, and we have used equa-
tion (7.125). Thus with equation (7.130) the density of halo stars is

n(r) =
1

4πr2

∫
dE p(r|E)n(E) =

FE
π2c2GMr2

∫ Et

−GM/r

dE
(Et −E)√
E +GM/r

.

(7.133)

11 This treatment fails when |E| ∼< ε, where ε is the rms energy change per orbit. See

Spitzer & Shapiro (1972) for a more accurate analysis.
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The integration is straightforward, and yields

n(r) =
4FE(GM)1/2

3π2c2r7/2

(
1 − r

rt

)3/2

, (7.134)

in which we have replaced the escape energy Et by the tidal radius rt =
−GM/Et. Thus, for example, the halo density in an isolated cluster with
Et = 0 is n(r) ∝ r−7/2.

This result does not hold at arbitrarily large radius, for at least three
reasons: (i) Close to the tidal radius rt, the approximation that the or-
bits are precisely radial fails, because the kinetic energy associated with the
tangential motion, 1

2L
2/r2, becomes comparable to the total kinetic energy

E − GM/r; in this region the density falls as n(r) ∝ (1 − r/rt)
5/2 (Prob-

lem 4.19). (ii) Escaping stars contribute a density n(r) ∝ r−2 (the veloc-
ity v of these stars is constant, and the total flux through a given radius,
4πr2n(r)v, must also be constant), which eventually dominates at sufficiently
large radii (§8.3.3). (iii) Stars with E > Et may remain close to the clus-
ter for many orbital periods. A more careful treatment of escaping stars in
tidally limited clusters is given by Fukushige & Heggie (2000).

The relatively simple analytic arguments given in this section yield a rich
harvest of constraints on the properties of globular clusters, which should
hold in the interval after a few central relaxation times and before the late
stages of core collapse (§7.5.3): (i) within the relaxed central region, the
df should be approximately isothermal, f(E,L) ∝ exp(−E/σ2), at energies
well below the escape energy; (ii) within the relaxed region, the density
distribution n(r) should be approximately that of an isothermal sphere; (iii)
there should be relatively few stars with angular momenta greater than a
cutoff L0 corresponding to the angular momentum of a nearly unbound orbit
that grazes the relaxed region; (iv) the df should tend to zero near the escape
energy as f ∝ Et − E (eq. 7.131); (v) there should be an extended region
in which the number density tends to zero as n(r) ∝ r−7/2 in an isolated
cluster, and as n(r) ∝ r−7/2(1 − r/rt)

3/2 in a cluster with tidal radius rt;
(vi) the radial and tangential velocity dispersions should be the same in the
relaxed central region (since the df is ergodic there), while in the halo the
velocity ellipsoid should become more and more radial, with the tangential
dispersion falling off as r−1 (since L = rvt ∼< L0 so vt ∼< L0/r) and the radial

dispersion in an isolated system falling off more slowly as r−1/2.
A df that satisfies all of these criteria is the Michie df of equation

(4.117). Thus, the Michie df provides a good empirical model for the dfs of
globular clusters and other partially relaxed stellar systems.

With this framework in place, we now review some of the most impor-
tant processes that determine the collisional evolution of a globular cluster.
The reader should bear in mind that in fact all of these processes occur si-
multaneously, and it may be difficult in practice—and sometimes even in
principle—to isolate the effects of any single process on cluster evolution.
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7.5.1 Mass loss from stellar evolution

Stars often eject mass from their surfaces near the ends of their lives. If the
mass-losing star is located in a globular cluster, the ejected gas is likely to
escape the cluster, either because the ejection velocity exceeds the escape
speed from the cluster or because intracluster gas is regularly swept out by
galactic gas when the cluster passes through the disk. Thus the cluster mass
declines as stars evolve.

The evolution timescale of a typical population of stars is usually much
longer than the crossing time in the cluster. Thus the adiabatic invariants of
the stellar orbits are conserved as the cluster loses mass (§3.6). For example,
consider a star orbiting in the outer parts of the cluster. Here the potential
is close to Keplerian, so the azimuthal and radial actions may be written as
J2 = (GMa)1/2(1 − e2)1/2 and J3 = (GMa)1/2[1 − (1 − e2)1/2], where M
is the total cluster mass, a is the semi-major axis and e is the eccentricity
(Table E.1). If the total mass changes by a factor ψ, conservation of J2 and
J3 requires that e remains constant and a ∝ 1/ψ. Thus the orbits expand,
but retain the same shape. Models of the stellar mass distribution and its
evolution suggest ψ ' 0.7 for an old globular cluster (Box 7.2).

This expansion has important consequences for the cluster, which we
may investigate using a simple model. Let us assume that the cluster has a
Plummer density profile, equation (2.44b). Then the mean density interior
to radius r is

ρ(r) =
M(r)
4
3πr

3
=

3M

4πb3
1

(1 + r2/b2)3/2
, (7.135a)

where M is the mass and b is the scale length of the Plummer model. If
the mass of the stars is slowly reduced by a factor ψ, all of the orbits will
expand adiabatically by a factor 1/ψ, so the density profile will be that of a
Plummer model with mass M ′ = ψM and scale length b′ = b/ψ. The mean
density will then be

ρ′(r) =
3M ′

4πb′3
1

(1 + r2/b′2)3/2
=

3ψ4M

4πb3
1

(1 + ψ2r2/b2)3/2
. (7.135b)

Note that when the mass falls by a factor ψ, the central density falls by the
much greater factor ψ4.

We shall show in §8.3.1 that tidal forces from the host galaxy impose an
outer limit to a globular cluster at a radius rJ such that ρ(rJ) ∼ ρh (eq. 8.92),
where ρh is the mean density of the host galaxy inside the orbital radius of
the cluster. If we make the crude approximations that (i) the tidal forces
simply cut off the cluster at rJ without affecting the density distribution
inside that radius, and (ii) the orbital radius and hence ρh remain constant,
then we can relate the limiting radii rJ and r′J before and after mass loss by
setting ρ(rJ) = ρ′(r′J) in equations (7.135). Thus we find

r′J
2

= ψ2/3r2
J + b2

(
ψ2/3 − 1

ψ2

)
. (7.136)



7.5 Evolution of spherical systems 601

Box 7.2: The initial mass function
and the initial-final mass function

The mass lost by a cluster through stellar evolution depends mainly on
two functions. The initial mass function or imf ξ(m) specifies the
distribution of masses of stars just after they have formed (BM §5.1.9);
thus, immediately after a burst of star formation in some region the
number of stars with masses in the range (m,m+ dm) is

dn ∝ ξ(m)dm, (1)

where for our purposes the normalization of ξ(m) is arbitrary. The his-
toric Salpeter (1955) imf is ξ(m) = m−2.35, which remains a reasonable
approximation for m ∼> 0.5M� but overestimates the number of stars
at lower masses. A better representation of the data is (Kroupa 2002)

ξ(m) =





m−0.3 0.01 < m/M� < 0.08
c1m

−1.3 0.08 < m/M� < 0.5
c2m

−2.3 0.5 < m/M� < 1
c3m

−2.7 1 < m/M�,

(2)

where the constants ci are chosen so that ξ(m) is continuous. The data
are generally consistent with the hypothesis that the imf is universal—
the same in any environment in which stars are formed.

The second important function is the initial-final mass function
µ(m, t): if a star’s initial mass is m, µ(m, t) is its mass after time t. For
old globular clusters, the time t can be taken to be the age of the universe
t0, and we write µ(m) ≡ µ(m, t0). This function can be estimated from
theoretical calculations of mass loss in the late stages of stellar evolution,
the distribution of masses of the nuclei of planetary nebulae, or the ages
of white dwarfs in clusters (Han, Podsiadlowski, & Eggleton 1994; Hurley,
Pols, & Tout 2000). A simple approximation is

µ(m) =




m m < 1 (main-sequence star)
0.5 + 0.13(m− 1) 1 < m < 8 (white dwarf)
1.3 + 0.025(m− 8) 8 < m (neutron star or black hole),

(3)
where m is in solar masses and the brackets indicate the type of remnant.

The ratio of the mass of the cluster at t0 to its initial mass is then

ψ =

∫
dmmξ(m)∫

dmµ(m)ξ(m)
. (4)

For the imf and initial-final mass function given in equations (2) and (3),
ψ = 0.72. This estimate is uncertain because of the uncertain shape of
the imf at large masses—half of the mass loss comes from m > 3M�.
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If the initial tidal radius is large, rJ � b, then r′J = ψ1/3rJ, so the shrinkage
in the limiting radius is modest, only a factor of 0.89 if ψ = 0.7. However,
if the tidal forces are stronger, so the initial limiting radius is smaller, the
effects of mass loss are more severe. In particular, if rJ/b < 1.26 then for
ψ ≤ 0.7 the cluster is completely disrupted (i.e., there is no solution for r′J).

These results suggest that clusters with low central concentration (low
ratio of central density to mean density; see page 30) are particularly suscep-
tible to disruption by tidal forces as their stars lose mass. This conclusion
is confirmed by more accurate models. For example, Chernoff & Weinberg
(1990) consider mass loss in King models, in which the concentration is spec-
ified by c = log10(rt/r0) where r0 and rt are the cluster’s King radius and
tidal radius (eq. 4.114). They find that models with c < 0.5 are completely
disrupted if 30% of the mass is lost (ψ < 0.7). Clusters with larger values of
the concentration can survive much larger fractional mass loss, although at
the expense of losing most of their extended envelopes.

The median concentration of Galactic globular clusters is c ' 1.5; with
this concentration, they are disrupted only if ψ ∼< 0.08 (Chernoff & Weinberg
1990), so mass loss due to stellar evolution plays only a minor role in their
dynamical evolution. Nevertheless, the fragility of low-concentration clus-
ters suggests that the initial cluster population may have been much larger
than the present one, containing many low-concentration clusters that are
no longer with us (see §7.5.6).

7.5.2 Evaporation and ejection

Stars can escape from a cluster by two conceptually distinct mechanisms:
(i) A single close encounter with another star can produce a velocity change
comparable with the initial velocities of the two stars, thereby leaving one of
the stars with a speed exceeding the local escape speed; we call this process
ejection. (ii) A series of weaker, more distant encounters can gradually
increase the energy of a star, until a final weak encounter gives the star
slightly positive energy and it escapes; we call this process evaporation to
suggest its more gradual nature.

Hénon (1960, 1969) has calculated the ejection rate for an isolated sys-
tem with a Plummer density distribution and an ergodic df. If all the stars
have the same mass—we shall call this a single-mass cluster—the ejection
rate is

dN

dt
= −1.05× 10−3 N

trh ln(λN)
, (7.137)

where we have expressed the result in units of the half-mass relaxation time
trh (eq. 7.108). The Coulomb logarithm ln(λN) is present only to cancel the
dependence of trh on ln(λN)—since the Coulomb logarithm arises from the
cumulative effect of distant encounters, it does not appear in the ejection
rate, which is due to close encounters.



7.5 Evolution of spherical systems 603

From equation (7.137) we can define an ejection time

tej = −
(

1

N

dN

dt

)−1

= 1 × 103 ln(λN)trh. (7.138)

For typical values of the Coulomb logarithm, ln(λN) ≈ 10, we shall find that
tej is much longer than the evaporation time due to weak encounters. Hence
for most purposes we can neglect ejection relative to evaporation.

Evaporation is a more complicated process than ejection: myriads of
weak encounters cause the star to diffuse at random through phase space,
and some of the most energetic stars wander into the unbound region of phase
space. Stars on high-energy orbits that lie entirely within the (low-density)
halo experience very few encounters. Thus the evaporation rate is dominated
by stars on highly elongated orbits, which are buffeted by encounters as they
plunge through the dense cluster center, as discussed at the beginning of this
section. As the energy of such a star approaches escape energy, the apocenter
grows and the orbital period becomes longer, but the pericenter tends to
remain at roughly the same distance. Thus the rms energy change per orbit is
approximately constant, and we denote this constant by ε2. When the energy
of the halo star is within ε2 of the escape energy Et, there is a substantial
chance that it will escape after its next passage through pericenter.

The behavior described above has important consequences for the orbit-
averaged Fokker–Planck equation. Orbit averaging is valid only so long as
the fractional changes in the orbital parameters are small in a single orbit.
However, a star can escape from an isolated cluster only when its binding
energy Et−E is comparable to the rms energy change per orbit ε2. Hence an
orbit-averaged calculation cannot accurately predict the rate of escape from
an isolated cluster. Hénon (1960, 1969) has given a striking example of the
problems that can arise in this way. Consider an isolated cluster, in which
the escape energy Et = 0. Let us calculate a lower limit to the escape time
by assuming that the energy change per orbit is always positive and equal to
the rms change ε2, rather than being positive or negative with nearly equal
probability. Then in the orbit-averaged approximation, the rate of change of
a star’s energy is

dE

dt
=
ε2
Tr

=

√
2ε2(−E)3/2

πGM
, (7.139)

where the radial period Tr is given by (7.125). Integrating this differential
equation with the initial condition E = E0 < 0 at t = 0, we find

E(t) =
E0(

1 +
|E0|1/2ε2t√

2πGM

)2 . (7.140)
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Thus the star achieves escape energy E = 0 only as t→ ∞; in words, a star
can never escape from an isolated cluster in the orbit-averaged approxima-
tion. This is Hénon’s paradox.12

More accurate Fokker–Planck calculations, which do not use orbit-
averaging, show that in an isolated single-mass cluster the evaporation rate
is given by

tevap = −N(dN/dt)−1 = ftrh, (7.141)

where trh is the half-mass relaxation time (eq. 7.108) and f ≈ 300 (Spitzer
1987). We shall find below that core collapse in such clusters occurs after
about 16 times the initial half-mass relaxation time trh,i; thus we expect that
only a few percent of the stars in a cluster will escape before core collapse.
After core collapse, an isolated cluster starts to expand, the relaxation rate
slows, and the rate of escape therefore slows as well. A completely isolated
globular cluster would require much longer than the age of the universe to
evaporate completely—isolated single-mass clusters lose about 75% of their
mass only after 107trh,i, almost independent ofN (Baumgardt, Hut, & Heggie
2002).

These considerations suggest that tidal forces from the host galaxy play
a central role in determining the evaporation rate from a cluster. Truncation
of the cluster at the tidal radius (§8.3.1) eliminates Hénon’s paradox, because
the period of an orbit at the escape energy is finite. Thus the evaporation
rate can be determined from orbit-averaged Fokker–Planck calculations: for
clusters with tidal radii and other properties similar to those observed in
Galactic globular clusters, the coefficient f in equation (7.141) lies in the
range (Spitzer 1987; Gnedin, Lee, & Ostriker 1999)

f ≈ 20–60. (7.142)

In contrast to isolated clusters, the expansion of the cluster following core
collapse accelerates evaporation, by spilling stars over the tidal radius. Thus
the evaporation is slowest at the start, so the timescale required for the
cluster to evaporate is given approximately by equations (7.141) and (7.142),
with trh replaced by the initial half-mass relaxation time.

These considerations are based on a simple model of tidal forces, in which
stars that wander outside the tidal radius are instantaneously lost from the
cluster. Greater accuracy requires the inclusion of tidal shocks (§7.5.6), as
well as a more careful treatment of the dynamical process by which stars
leak through the tidal boundary and then drift slowly away from the cluster
(Fukushige & Heggie 2000; Baumgardt 2001).

In the light of this discussion, it is interesting to re-examine Figure 7.3,
which shows the distribution of trh in Galactic globular clusters. There are
almost no globulars with trh less than about 100 Myr, or about 1% of the age

12 As Hénon says, “This paradox is somewhat reminiscent of Achilles and the tortoise;
unfortunately the conclusion is different.”
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of the Galaxy. This observation strongly suggests that there once were many
globulars with shorter relaxation times, which all evaporated after ≈ 102trh.
Once again, this explanation hints that the number of globular clusters that
existed shortly after the Galaxy formed may have been much larger than the
present population (see §7.5.6).

The maximum lifetime of a stellar system Galaxies often contain
concentrations of 106–109 M� of material in their central few parsecs. These
are sometimes called massive dark objects because they emit no radiation
and are detected only by their effects on the kinematics of nearby stars and
gas. Massive dark objects are usually assumed to be black holes, but we now
ask whether they could instead be clusters of low-luminosity stars (perhaps
brown dwarfs or neutron stars) or stellar-mass black holes.

We have argued in equation (7.141) that an isolated single-mass star
cluster will lose a substantial fraction of its mass by evaporation in roughly
300trh, where trh is the current half-mass relaxation time. This is an upper
limit to the lifetime of a cluster, since most of the effects neglected in this
calculation speed up the evaporation rate: systems with a range of stellar
masses or significant tidal forces have shorter evaporation times; physical col-
lisions and inelastic encounters between the stars (§7.5.8) dissipate energy
and hence accelerate cluster evolution; in the densest clusters gravitational
radiation is an additional drain on the cluster energy that accelerates the evo-
lution, etc. (Maoz 1991). Unless the cluster formed recently—an improbable
coincidence—we must have 300trh ∼> 10 Gyr, which together with equation
(7.108) implies

rh ∼> 0.01 pc (ln λM/m)2/3

(
m

M�

)2/3(
108 M�
M

)1/3

. (7.143)

Here M and rh are the mass and half-mass radius of the cluster, m is the
mass of a typical member, and λ ' 0.1.

The strongest constraint on the properties of a dark central cluster comes
from observations of stellar orbits in the Galactic center (Schödel et al. 2002),
which show that the central mass M = 4 × 106 M� is contained within a
radius of ∼< 0.001 pc. This is consistent with the constraint (7.143) only if
its constituents have mass m ∼< 2 × 10−4 M�. Normal objects of this mass
(brown dwarfs or planets) are not allowed, because their collision time would
be far shorter than the age of the Galaxy; black holes are allowed but low-
mass black holes of this kind are not formed by any known process. Similar
constraints can be derived for the massive dark objects in the galaxies NGC
4258 and M31 (Maoz 1995; Bender et al. 2005).

Arguments such as these strongly suggest that the massive dark objects
in galactic centers are single (or perhaps binary) black holes, a result that is
also implied by the demography of active galactic nuclei (§1.1.6).
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7.5.3 Core collapse

The evolution of the mass distribution in an isolated cluster that began as
a Plummer model is shown in Figure 7.4. The outer half of the cluster
expands, due to the gradual growth of the halo as core stars diffuse towards
the escape energy. At the same time, the center contracts; the central 1%
of the mass contracts by a factor k ∼> 30, corresponding to an increase
in the central density by a factor k3 ∼> 3 × 104. This contraction process,
known as core collapse, leads to such dramatic growth in the central density
that early calculations of the evolution of spherical star clusters, which did
not include energy exchange with binary stars (page 559), culminated in an
apparent singularity in the central density. This singularity—at which the
early numerical codes crashed—occurred at about 16trh,i, where trh,i denotes
the initial half-mass relaxation time.

A more accurate calculation of core collapse is shown in Figure 7.5 (Taka-
hashi 1995), based on solving the orbit-averaged Fokker–Planck equation for
an isolated, spherical, single-mass cluster without binaries, again starting
from a Plummer model. Direct solution of the Fokker–Planck equation al-
lows far greater dynamic range than Monte Carlo or N-body methods, and
Takahashi was able to follow the evolution of the central density over a factor
exceeding 1013.

The density profiles of these models are shown in the top panel of Fig-
ure 7.5. As the cluster evolves, the core radius shrinks and the central den-
sity grows. The density profile outside the core approaches a power law
ρ ∝ r−2.23; by the end of the computation this power law extends over more
than six orders of magnitude in radius.

The bottom panel shows the behavior of the anisotropy parameter β =

1− v2
θ/v

2
r . At large radii, β ' 1, indicating that the orbits are nearly radial,

as we expect from the model for the cluster halo developed at the start of
this section. At the smallest radii, inside the continually shrinking core, we
find β ' 0, indicating that the velocity distribution is isotropic. In the radius
range in which the density profile in the top panel is a power law, there is a

constant small radial anisotropy, β ' 0.08, or v2
θ/v

2
r ' 0.92.

To understand the dynamics of core collapse, we shall first investigate
the evolution of a system in which the density profile outside the core varies
as a power law in radius all the way to infinity. In this limit the density
profile evolves self-similarly, that is, profiles at different times differ only in
normalization and scale. A self-similar solution of this kind can be written
in the form

ρ(r, t) = ρ0(t)ρ?(r?), (7.144)

where

r? =
r

r0(t)
, (7.145)
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Figure 7.5 An orbit-averaged Fokker–Planck calculation of core collapse. The initial
state was an isolated, single-mass Plummer model. Top: evolution of the density profile
with time. The central density increases and the core radius decreases with time. Middle:
the logarithmic density gradient d ln ρ/d ln r ≡ −α. The region outside the core takes on a
power-law profile with α = 2.23. Bottom: evolution of the velocity anisotropy parameter,

β = 1 − v2θ/v
2
r (eq. 4.61). From Takahashi (1995), by permission of the Astronomical

Society of Japan.
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and ρ0(t) and r0(t) are the central density and some measure of core radius,
evaluated at time t. We shall choose r0 to be the King radius (eq. 4.106)

r0 ≡
√

9σ2

4πGρ0
, (7.146)

which is nearly equal to the core radius for the isothermal sphere and many
other stellar systems; here 3σ2 is the mean-square speed at the center.

The top panel of Figure 7.5 shows that the density is nearly independent
of time at radii that lie well outside the core, and hence

0 =
∂ρ(r, t)

∂t
=

dρ0

dt
ρ? − ρ0

dρ?
dr?

r

r2
0

dr0
dt

for r � r0. (7.147)

Thus
r0
ρ0

dt

dr0

dρ0

dt
=
r?
ρ?

dρ?
dr?

for r? � 1. (7.148)

Since the left side is a function only of t, and the right side is a function only
of r?, both must be equal to a constant, which we shall call −α. Hence

ρ?(r?) ∝ r−α? for r? � 1,

ρ0(t) ∝ r−α0 (t).
(7.149)

Fitting this form to the slope of the power law in Figure 7.5, we find

α = 2.23. (7.150)

Larson (1970a) first derived this behavior using fluid models, and found
α ' 2.4; Cohn (1980) found α = 2.23 from a solution of the isotropized
Fokker–Planck equation; and Lynden–Bell & Eggleton (1980) found α = 2.21
from fluid models.

Let us define the core mass to be M0(t) ≡ ρ0(t)r3
0(t). From the second of

equations (7.149) we find M0(t) ∝ r3−α
0 . According to equation (7.146) the

central velocity dispersion is σ ∝ ρ
1/2
0 r0 ∝ r

1−α/2
0 . From equation (7.106),

the relaxation time in the core is trelax ∝ σ3/ρ0 ∝ r
3−α/2
0 (neglecting vari-

ations in ln Λ). Since core collapse is driven by relaxation, we expect the
characteristic timescale for changes in the core to be comparable to the re-
laxation time in the core. Thus we may write

1

r0

dr0
dt

∝ 1

trelax
∝ r

α/2−3
0 . (7.151)

This equation is easily solved to yield

r0(t) ∝ (tcc − t)2/(6−α) ∝ τ0.53, (7.152)
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where tcc is a constant of integration representing the moment of collapse, τ =
tcc− t is the time remaining until collapse, and in the second proportionality
we have inserted the value of α from equation (7.150). Similarly,

ρ0(t) ∝ τ−2α/(6−α) ∝ τ−1.18 ; σ2(t) ∝ τ (4−2α)/(6−α) ∝ τ−0.12,

M0(t) ∝ τ (6−2α)/(6−α) ∝ τ0.41 ; trelax(r = 0) ∝ τ.
(7.153)

The last equation implies that the time to core collapse is always a fixed
multiple of the central relaxation time. The proportionality constant is

τ ' 300trelax(r = 0). (7.154)

For typical clusters, this simple relation holds only during the late stages of
core collapse, after the central density has grown by a factor 103 or more; at
earlier times τ/trelax(r = 0) is generally smaller (Quinlan 1996a).

Core collapse is a manifestation of the gravothermal catastrophe of
§7.3.2. In most clusters the velocity dispersion decreases outwards; that
is, the inner parts of the cluster are hotter than the outer parts. Therefore
star-star encounters transfer energy outwards. Since the cluster core has
negative heat capacity, it grows hotter as it loses energy. As it grows hotter,
the core shrinks in size and mass and grows in density; if no other process
intervenes, the core collapses to zero radius and infinite density in a finite
time.13

7.5.4 After core collapse

What eventually halts core collapse? We remark first that despite the formal
density singularity, core collapse is a relatively unspectacular process. To see
this, let us employ the similarity relations to follow core collapse in a typical
globular cluster. Eliminating the time τ between the relations for r0, M0,
and σ0 in equations (7.152) and (7.153), we have

r0 ∝M
1/(3−α)
0 ∝M1.30

0 ; σ0 ∝M
(2−α)/(6−2α)
0 ∝M−0.15

0 . (7.155)

Let us assume that core collapse starts when the cluster has parameters given
by Table 1.3. Thus, initially, the central density ρ0 ' 1 × 104 M� pc−3, the
velocity dispersion σ ' 6 km s−1, and the core or King radius r0 ' 1 pc. The
initial core mass is thus M0 = ρ0r

3
0 ' 1×104 M�; assuming a typical stellar

massm = 0.7M�, the initial number of stars in the core isM0/m ' 1.4×104.
Then equation (7.155) yields

r0 ' 4 × 10−6N1.30
0 pc ; σ ' 25N−0.15

0 km s−1, (7.156)

13 Models in which the inner parts are colder than the outer parts, such as the Hernquist
model shown in Figure 4.4, exhibit core expansion rather than core collapse (Hachisu et
al. 1978; Quinlan 1996a).
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whereN0 is the number of stars remaining in the core. Thus, even when there
is only a handful of stars left in the core (say, N0 = 10), r0 ' 2 × 109 km
(somewhat larger than the distance between the Sun and Saturn) and σ '
20 km s−1. Clearly, the statistical approximation that N � 1 fails long before
the density is high enough for stellar coalescence, relativistic effects, or other
exotic phenomena to become important.

It turns out that core collapse is eventually halted by binary stars. In
most clusters these will be primordial (§7.1f), but even if no primordial
binaries are present, we now show that binaries are formed by the core-
collapse process.14 We have seen that the number of binaries formed by three-
body encounters is about 0.1(N0 lnN0)−1 per relaxation time (eq. 7.13).
Since the characteristic evolution time during core collapse is ≈ 300trelax(N0)
(eq. 7.154), the interval in which the core has about N0 stars is roughly
300trelax(N0), and during this time we expect ≈ 30(N0 lnN0)−1 binary stars
to be formed. Thus the first binary forms by a three-body encounter when
N0 lnN0 ≈ 30, corresponding to N0 ≈ 12 stars left in the core. These results
suggest that core collapse is halted when the core contains only 10–20 stars,
or earlier if primordial binaries are present.

How does binary formation halt core collapse? Consider a three-body
interaction of stars with initial kinetic energies Ki, i = 1, 2, 3. We assume
that after the interaction, stars 1 and 2 form a binary; the kinetic energy of

the center of mass of the binary is K̃b, the internal energy of the binary is
Eb < 0, and the kinetic energy of the third star is K ′

3. Conservation of energy
requires that Kb +Eb +K ′

3 = K1 +K2 +K3, so Kb +K ′
3 > K1 +K2 +K3.

Thus the kinetic energy stored in the centers of mass of the single star and
the binary is larger than the initial kinetic energy of the three stars: in other
words, the formation of binary stars provides a heat source for the cluster.
Core collapse occurs because the inner parts of the cluster have negative
heat capacity, and evolve by losing energy to the halo and thereby growing
hotter; any heat source such as binary-star formation adds energy to the
core, cooling it until the temperature gradient declines to zero, thus halting
the collapse. Later, we shall derive a quantitative formula (7.184) for the
rate of energy generation per unit mass due to binary formation.

A second heat source is interactions of field stars with primordial bi-
naries. These interactions generate heat at a rate per unit mass given by
equation (7.182).

How does the cluster evolve after core collapse? The binaries formed in
core collapse reside close to the cluster center, and therefore pump kinetic
energy into single stars that pass near the center. This energy is then shared
among the other cluster stars through two-body relaxation. The resulting

14 Remarkably, two decades before the first reliable post-collapse simulations, Hénon
(1961) already recognized that the boundary conditions for cluster evolution required an
energy source at r = 0 and argued that the required energy might be produced by the
formation of binary and multiple stars.
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evolution of the cluster is self-similar, with the cluster radius, mass, mean
density, and velocity dispersion evolving as (Problem 7.12b)

R ∝ τ̃2/3 ; M ∝ constant ; ρ ∝ τ̃−2 ; v ∝ τ̃−1/3, (7.157)

where τ̃ is the time since core collapse (Goodman 1984).
The cluster energy grows during this expansion as E ≈ −GM 2/R ∝

−τ̃−2/3. On the other hand, the rate of heat generation by binaries depends
strongly on the density in the small central region where they are concen-
trated. Thus the central density adjusts itself so that the rate of energy
generation matches the demands of the similarity solution (Hénon 1961). A
similar situation occurs in stars, where the luminosity is determined by the
efficiency of radiative and convective energy transport to the photosphere,
and the core temperature rises or falls so that the rate of energy generation
by nuclear reactions matches this demand.

This simple picture is incomplete. It turns out that the self-similar
post-collapse evolution described by equations (7.157) is unstable, at least
for N ∼> 8000 in the case of a single-mass cluster. The instability leads to
gravothermal oscillations, in which the central density and core radius
oscillate, in some cases by several orders of magnitude. These oscillations
are shown in Figure 7.6, which was computed by solving the Fokker–Planck
equation including a heat source due to binaries. All of the panels show
identical evolution up to core collapse, which occurs at t/trh,i ' 16. After
core collapse, the model with N = 8000 displays the self-similar behavior
ρ0 ∝ τ̃−2 predicted by equation (7.157). However, all of the models with N ∼>
8000 exhibit dramatic gravothermal oscillations superimposed on this self-
similar decline in central density. The oscillations have sharp spikes in the
central density, suggesting that the core is re-collapsing at each oscillation.

As N increases, the character of gravothermal oscillations changes in
several ways: (i) their amplitude grows, to over four orders of magnitude in
central density by N = 105 and six orders of magnitude by N = 106; (ii) the
oscillations become increasingly chaotic, and (iii) the fraction of each oscilla-
tion that is spent in the high-density state becomes smaller and smaller. One
consequence of the last of these is that we are much more likely to observe
a post-collapse cluster in a low-density state than in a high-density state;
thus, although many of the globular clusters in the Galaxy have suffered
core collapse, the chance of finding one with near-zero core radius is small.

Gravothermal oscillations were first discovered and analyzed using fluid
models (Sugimoto & Bettwieser 1983; Goodman 1987), and by now have been
found in Monte Carlo simulations, numerical solutions of the Fokker–Planck
equation, and even N-body integrations (Makino 1996). The unstable os-
cillations set in at around N ' 8000 in Figure 7.6; however, in N-body
simulations the oscillations are present at somewhat smaller N because the
energy input from binaries is stochastic, leading to noise that drives oscil-
lations even when they are weakly stable. A more detailed description of
gravothermal oscillations is given by Heggie & Hut (2003).
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Figure 7.6 Gravothermal oscillations in a star cluster (Breeden & Cohn 1995). The
central density is plotted against time in units of the initial half-mass relaxation time trh,i
(eq. 7.108). Each panel is labeled by the number of stars in the cluster, which determines
the relative rates of relaxation and binary heating. The initial spike in the central density
represents core collapse. The post-collapse evolution of clusters with N ∼< 8000 is stable,
and follows the prediction of equation (7.157). The oscillations in unstable clusters become
stronger as N increases.

7.5.5 Equipartition

So far, our analysis has been based on idealized single-mass models. If a
range of stellar masses is present, encounters tend to establish equipartition
of energy. The more massive stars lose energy and sink towards the center,
while the lighter stars gain energy, so their orbits expand. The equipartition
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timescale is comparable to trh. Understanding the degree of segregation of
stars by mass is critical for the construction of any model of a globular cluster
that is to be compared to observations.

The familiar concept of “energy equipartition” must be applied with
care in self-gravitating systems. Consider two populations of stars, with
masses m1 and m2 > m1, in a star cluster with potential Φ(x). The mean
energy per star in population i may be written 〈E〉i = mi〈 1

2v
2 + Φ(x)〉i,

where the average is over the stars in population i. Encounters do not es-
tablish equipartition in the sense that 〈E〉1 → 〈E〉2; indeed, this relation is
physically meaningless since it can always be satisfied when m1 6= m2 by
adding an appropriate constant to Φ(x), a change that has no effect on the
dynamics. Encounters do tend to establish equipartition of kinetic energy
between the two populations at a given location, so if population 2 has a
larger value of mi〈v2〉 at a given location than population 1, then energy is
transferred from population 2 to population 1. However, as orbital energy is
shorn from the heavier stars they sink lower in the potential Φ(x), where the
orbital speeds are likely to be higher: thus equipartition can actually lead to
a growth in the kinetic energy of the more massive stars.

It is instructive to explore these arguments using a simplified analysis
of equipartition in a spherical cluster. The cluster is assumed to contain just
two types of stars, with masses m1 and m2 � m1. Moreover the total mass
of the heavy stars, M2, is assumed to be much smaller than the core mass
of the system of lighter stars, which we write as ρc1r

3
c1. Equipartition causes

the heavy stars to sink to the center of the core of light stars, where they
form a small, dense subsystem. The virial theorem for the heavy stars may
be written in the form (Problem 7.4)

2K2 +W2 − 4πG

∫ ∞

0

dr r2ρ2(r)
M1(r)

r
= 0. (7.158)

Here ρ1(r) and ρ2(r) are the densities of the light and heavy stars, and
M1(r) = 4π

∫ r
0 dr r2ρ1(r) is the mass of light stars interior to r. Since the

total mass in heavy stars is small, the heavy system will not strongly perturb
the core of light stars, and ρ1(r) will be approximately constant, ρ1(r) ≡ ρc1.
We may also write W2 = −fGM2

2/rh2, where rh2 is the half-mass radius of
the heavy stars and f is a dimensionless constant that is approximately 0.45
for many systems (see eq. 4.249b). Thus

〈v2〉2 = f
GM2

rh2
+

4πGρc1
3

〈r2〉2 = f
GM2

rh2
+

4π

3
g2Gρc1r

2
h2; (7.159)

here 〈·〉i denotes an average over population i, and 〈r2〉2, the mean-square
radius of the heavy stars, has been written as g2r2

h2 with g a dimensionless
constant of order unity.

In equipartition, the mean kinetic energy of the two populations must
be the same; thus m2〈v2〉2 = m1〈v2〉1 = 3m1σ

2, where σ represents the



614 Chapter 7: Kinetic Theory

one-dimensional dispersion in the core of light stars. Using equation (7.146)
to express σ in terms of the central density ρc1 and King radius rc1 of the
light stars, we find

4π

3

m1

m2
Gρc1r

2
c1 = f

GM2

rh2
+

4π

3
Gρc1g

2r2
h2. (7.160)

The right side, considered as a function of rh2, has a minimum value equal
to (9πf2g2G3M2

2 ρc1)1/3, which occurs at rh2 = (3fM2/8πρc1g
2)1/3. Hence

equipartition cannot be achieved unless the value of the left side exceeds this
minimum, which leads to the inequality

M2

ρc1r3
c1

≤ 1.61

fg

(
m1

m2

)3/2

. (7.161)

There is a simple physical explanation of why equipartition cannot be
achieved when this inequality is violated. If the mass in heavy stars is too
large, they form an independent self-gravitating system at the center of the
core of light stars. Encounters cause the system of heavy stars to lose energy
to the light stars. According to the virial theorem, this energy loss causes
the velocity dispersion of the heavies to increase, so they evolve away from,
not towards, equipartition, and the process of energy loss, heating, and con-
traction of the heavy system must continue indefinitely. This phenomenon
is sometimes called the equipartition instability (Spitzer 1969, 1987).

In realistic systems with a distribution of stellar masses, the effect of this
instability is to produce a dense central core of heavy stars, which contracts
independently from the rest of the core. As this core becomes denser and
denser, the gravothermal instability eventually dominates over the equipar-
tition instability, and the core collapses in much the same way as the core in
a single-component stellar system. The equipartition instability thus accel-
erates core collapse, so the time required for core collapse is much shorter in
a system with a distribution of stellar masses than in a single-mass system.
For typical mass distributions the time to core collapse is only 2–4trh,i, com-
pared to 16trh,i in a single-mass cluster, where trh,i is the initial half-mass
relaxation time of equation (7.108).

Equipartition also causes the lighter stars in the cluster to evaporate
more quickly. Consequently, relaxed globular clusters are expected to be
depleted in stars with masses less than a few tenths of a solar mass. Since
these stars have high mass-to-light ratios (see Table 3.13 or Figure 5.11 of
BM), their loss tends to lower the mass-to-light ratio of the remaining cluster.
This process may help to explain why the mass-to-light ratios of globular
clusters (Υ ' 2Υ�, see Table 1.3) are lower than those of other old stellar
systems (Υ ' 10Υ� in the centers of ellipticals and the bulges of spiral
galaxies).
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7.5.6 Tidal shocks and the survival of globular clusters

A tidal shock is a rapidly changing external gravitational field that acceler-
ates stars in the outer parts of the cluster, leading to the expansion of the
cluster and escape of some of its members. The dynamics of tidal shocks is
discussed in §8.2. Tidal shocks are important for a wide variety of satellite
stellar systems. In galaxies like our own, the strongest tidal shocks on glob-
ular clusters are generated as the cluster crosses the galactic disk or passes
through pericenter on a highly eccentric orbit (§8.2.2f).

Tidal shocks speed up core collapse and shorten cluster lifetimes (e.g.,
Aguilar, Hut & Ostriker 1988; Murali & Weinberg 1997a, 1997b; Gnedin,
Lee, & Ostriker 1999). To illustrate the effect of tidal shocks on the globular
cluster population, we may parametrize clusters by their total mass M , half-
mass radius rh, and orbital radius R, and examine their destruction by three
mechanisms: (i) evaporation, which occurs in a time ftrh,i, where trh,i is
the initial half-mass relaxation time and f ≈ 20–60 (eqs. 7.108 and 7.142);
(ii) disk and bulge shocks; (iii) dynamical friction, a process introduced on
page 583 and described fully in §8.1, which causes massive clusters to spiral
in towards the galactic center at a rate determined by their mass and orbital
radius (eq. 8.24).

Figure 7.7 shows the contours in the (rh,M) plane at which the lifetime
from the combined effects of all three destruction mechanisms equals 10 Gyr,
for several values of the orbital radius (Tremaine 1975; Fall & Rees 1977;
Gnedin & Ostriker 1997; Fall & Zhang 2001). Clusters inside the roughly
triangular survival area are expected to survive to the present time. The
figure also plots the locations of the Galactic globular clusters. Overall, the
survival area contains the observed clusters rather well. The presence of a
handful of clusters outside the survival area is not surprising, since we ex-
pect to find some clusters nearing the ends of their lives if destruction is
a continuous process. The figure also shows that the absence of clusters
with M ∼> 3 × 106 M� is not due to any known destruction process, and
hence presumably reflects the initial mass distribution of the clusters. The
fact that the bulk of the clusters are crowded near the bottom apex of the
survival area suggests that a much more extensive initial population of low-
mass globular clusters has gradually been whittled away by relaxation and
tidal shocks. Observational support for this view comes from the large num-
bers of short-lived young globular clusters found in interacting and merging
galaxies (Whitmore & Schweizer 1995; Goudfrooij et al. 2004; Larsen 2004);
presumably these clusters formed during the merger and have not yet been
destroyed by dynamical processes. Two corollaries are that the properties
of the observed cluster distribution are largely determined by the constraint
that clusters must survive for 10 Gyr, and that much of the stellar halo may
consist of debris from disrupted globular clusters.
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Figure 7.7 The distribution of Galactic globular clusters in mass M , half-mass radius
rh, and orbital radius R (kpc). The different cot sizes denote clusters in different radial
ranges. The contours represent locations at which the expected lifetime of a cluster is
10 Gyr at a given orbital radius. The destruction mechanisms are evaporation, dynamical
friction, and tidal shocks. From Gnedin & Ostriker (1997).

7.5.7 Binary stars

In this subsection we investigate the formation, evolution, and destruction of
binary stars as a result of gravitational encounters with other cluster stars.
Our principal interest is in the role played by binaries in the evolution of
stellar systems (Hut et al. 1992). For a more thorough analysis see Valtonen
& Karttunen (2006).

Let us consider a homogeneous stellar system consisting of single (or
“field” stars) and binary stars. The binaries form and dissolve through grav-
itational interactions with the field stars. For simplicity we shall assume
that all the stars have the same mass m. The field stars have density ρ and
velocity dispersion σ, with a Maxwellian velocity distribution (eq. 7.91). We
assume that the velocity distribution of the centers of mass of the binary
stars is also Maxwellian, with velocity dispersion σb. If there is equiparti-
tion of kinetic energy between the field stars and the binary centers of mass,
1
2mσ

2 = 1
2 (2m)σ2

b, then σb = σ/
√

2.
Let x ≡ x1−x2 be the separation vector between the components of a bi-
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nary, and let V = ẋ be their relative velocity. According to equation (D.34),
the internal energy of the binary (i.e., its total energy minus the kinetic
energy of the center-of-mass motion) is

Ẽ = 1
2µV

2 − Gm2

r
, (7.162)

where µ = 1
2m is the reduced mass. The tilde on Ẽ is a reminder that in this

section “energy” denotes a quantity having units mass × (velocity)2, rather
than the specific energy (energy per unit mass) with units (velocity)2 that
is common elsewhere in the book.

The separation vector x satisfies the equation of motion of a fictitious
“reduced particle” of mass µ orbiting in the potential −Gm2/r (Appendix
D.1). Hence it follows a Keplerian ellipse with semi-major axis a, where

Ẽ = −Gm
2

2a
. (7.163)

For a circular orbit the relative speed is V = (2Gm/a)1/2.

A binary is called soft if |Ẽ|/mσ2 < 1 and hard if |Ẽ|/mσ2 > 1.15

The behaviors of soft and hard binaries are quite different, and they will
be analyzed separately below. We shall often concentrate on the behaviors
of very soft or very hard binaries, which are simpler to understand, and

extrapolate our results to the transition region near |Ẽ| ≈ mσ2.
In §7.1 we made a rough estimate of the rate of binary formation by

three-body encounters (eq. 7.11). We shall now be more precise. Let us
assume that there is equipartition of kinetic energy between the field stars

and the binary centers of mass, and let C(Ẽ) dẼ be the rate per unit volume

at which binaries are created with energy in the range (Ẽ, Ẽ + dẼ), Ẽ < 0.

Since formation requires a three-body encounter, we expect that C(Ẽ) ∝ ρ3,

where ρ = mn is the density of field stars. Similarly, let B(Ẽ) be the

destruction rate for a binary of energy Ẽ; since binaries are destroyed by

encounters with field stars, we expect that B(Ẽ) ∝ ρ. We show in Appendix
M.4 that these rates are related by the principle of detailed balance, which
requires that

C(Ẽ) =
π3/2G3ρ2m5/2

4σ3|Ẽ|5/2
e|Ẽ|/mσ2

B(Ẽ). (7.164)

Encounters with field stars tend to make the distribution of binaries in
phase space uniform on a given constant-energy surface. If this uniformity

15 These definitions need to be modified if one or both of the binary components is
much more massive than the field stars. See Quinlan (1996b).
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is achieved, the probability that a binary star has eccentricity in the range
(e, e+ de) is equal to 2e de (Problem 4.8).

(a) Soft binaries The evolution of binaries is easiest to describe in the

limit in which they are very soft, |Ẽ| � mσ2. Consider an encounter of star
1 with a field star, at an impact parameter that is much less than the binary
separation. Then the encounter changes the velocity of star 2 much less
than the velocity of star 1. We may neglect the orbital motion of the binary
during the encounter—the binary is soft, so the relative speed of the binary
components is much less than their velocity relative to the field star—and
write the change of internal energy in the encounter as

∆Ẽ = 1
2µ∆(V 2) = 1

2m
[
∆v1 · (v1 − v2) + 1

2 (∆v1)2
]
. (7.165)

The mean value of ∆Ẽ per unit time can be obtained by replacing ∆v1 and
∆v2

1 by the diffusion coefficients (7.89). Thus we set

D[∆v1] =
v1

v1
D[∆v‖] ; D[(∆v1)2] = D[(∆v⊥)2] +D[(∆v‖)2]. (7.166)

Substituting into (7.165) and using equation (7.92), we find

D[∆Ẽ] =
2πG2m2ρ ln Λ

σ

[
− 2

v1·(v1 − v2)

v1σ
G(X1) +

1√
2

erf(X1)

X1

]
, (7.167)

where X1 = v1/(
√

2σ), ln Λ is the Coulomb logarithm, and the function
G(X1) is defined by equation (7.93). For a very soft binary |v1 − v2| � σ,
so the first term may be neglected in comparison with the second; moreover,
we can replace v1 by the speed of the binary center of mass vcm. Finally we

double the value of D[∆Ẽ] to account for encounters of field stars with star
2. Thus for very soft binaries

D[∆Ẽ] =
23/2πG2m2ρ ln Λ

σ

erf(Xcm)

Xcm
, (7.168)

where Xcm = vcm/
√

2σ. We now average over vcm, assuming for simplicity
that the binary center-of-mass motion is in equipartition with the field stars,
so σb = σ/

√
2. Using the relation

〈
erf Xcm

Xcm

〉
≡
∫

d3vcm exp(− 1
2v

2
cm/σ

2
b) erf Xcm/Xcm∫

d3vcm exp(− 1
2v

2
cm/σ

2
b)

=

∫∞
0
X erf(X)e−2X2

dX∫∞
0

dXX2e−2X2
=

√
8

3π
,

(7.169)
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we obtain 〈
D[∆Ẽ]

〉
= 8

√
π

3

G2m2ρ

σ
ln Λ. (7.170)

To ensure that our expressions for the diffusion coefficients are valid,
we must have 1 � Λ = bmaxv

2
typ/(2Gm) (eq. 7.84). For binary stars, we

set the maximum impact parameter equal to half the binary semi-major
axis, bmax = 1

2a, since our derivation is valid only for encounters that are
much closer to one star than the other (encounters with impact parameter
b � a affect the center-of-mass velocity of the binary much more strongly
than the relative velocity). We also replace vtyp by 2.1σ, the rms relative
velocity between the binary center of mass and the field stars. After these
approximations Λ ≈ 1.1aσ2/(Gm). Using equation (7.163) we can write

Λ ≈ 0.6mσ2/|Ẽ|; thus the condition that the binary is very soft guarantees
that Λ � 1.

Equation (7.170) implies that on average soft binaries gain energy from
encounters with field stars; in other words, soft binaries become softer. This
result can be interpreted in terms of energy equipartition. Since the binary
is very soft, its internal kinetic energy is much less than the kinetic energy
of the field stars. The growth of its internal energy is a manifestation of
the tendency of the system to evolve towards equipartition, although the
negative specific heat of the binary thwarts this tendency.

We now examine how soft binaries are disrupted. We argued in §7.5.2
that stars escape from a cluster by two distinct mechanisms, ejection and
evaporation. The same two processes describe the destruction of soft binaries
by encounters with field stars: in ejection—often called ionization in the
context of binary stars—a single close encounter with a field star leaves the
binary with positive internal energy, while in evaporation a series of more
distant encounters gradually increase the internal energy until it is positive.

The ejection or ionization rate for very soft binaries is (Heggie 1975)

B(Ẽ) =
40

√
π

3
√

3

G2m2ρ

σ|Ẽ|
, (7.171)

where once again we have assumed that all masses are equal and that the
binary center-of-mass motion is in equipartition with the field stars. The
expected lifetime before ejection is

tej =
1

B(Ẽ)
= 0.037

σ

Gρa
. (7.172)

The evaporation rate can be determined from the energy diffusion coefficient

D[∆Ẽ] (eq. 7.170); since this is independent of Ẽ except for a weak depen-
dence on the Coulomb logarithm, the lifetime of a very soft binary of energy

Ẽ before it evaporates is simply

tevap =
|Ẽ|

〈D[∆Ẽ]〉
=

√
3σ

16
√
πGρa ln Λ

= 0.061
σ

Gρa ln Λ
. (7.173)
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The evaporation time is shorter than the ejection time (7.172) by of order

the Coulomb logarithm ln Λ ≈ ln(0.6mσ2/|Ẽ|); thus evaporation dominates

for very soft binaries with |Ẽ| � mσ2, while ejection and evaporation occur

at comparable rates when |Ẽ| ∼ mσ2.
The evaporation time tevap is also much shorter than the local relaxation

time trelax (eq. 7.106) for very soft binaries, since the latter is the average
time required for changes in energy of order mσ2, while disruption of a very

soft binary requires only changes of order |Ẽ| � mσ2.
In relaxed clusters the rate of evaporation of soft binaries is balanced

by the rate of soft binary formation due to three-body encounters. It turns
out that the equilibrium number of very soft binaries resulting from these
processes is of order unity, independent of the number of stars in the cluster
(Appendix M). Thus, soft binaries play no significant role in the evolution of
stellar systems. Nevertheless, the process of disruption of soft binary stars
is important to understand in other contexts, for example to constrain the
properties of machos in the local dark halo (§8.2.2e).

The disruption of soft binaries by much more massive field objects is
discussed in §8.2.2d.

(b) Hard binaries The interaction of a hard binary with a field star can
be extremely complex. The reason for this complexity is that the binding

energy |Ẽ| of a hard binary is larger than the typical kinetic energy ∼ mσ2 of
the binary center of mass and the field star. Hence the three stars can tem-
porarily form a bound three-body system, a possibility that is not available
to soft binaries.

Figure 7.8 shows an interaction of a hard binary and a field star. This
encounter is an example of an exchange: the original binary containing stars
1 and 2 is dissociated, and stars 2 and 3 join to produce a new binary, while
star 1 escapes to infinity. The encounter is impossible to describe simply;
most of the time the system displays a hierarchy in which one star travels
in an elongated Keplerian ellipse with a tightly bound binary at one focus.
At each pericenter passage of the outermost star, the three stars interact
strongly, one of the three stars is flung into an elongated orbit, and the
process repeats. Ultimately one star escapes from the triple, and the three-
body interaction ends. It should be stressed that the trajectory in Figure 7.8
is actually less complicated than the typical interaction between a very hard

binary (|Ẽ| ∼ 50mσ2) and a field star (Hut & Bahcall 1983).
Another possibility is a flyby, in which the outgoing state is the same as

the incoming state; for example, a binary containing stars 1 and 2 approaches
a single star 3, and after the interaction stars 1 and 2 are still bound and
3 is still single, although with different kinetic energies. The third and final
possibility is ionization, in which all three stars leave the encounter as single
stars; ionization is negligible for very hard binaries since it requires that the
total center-of-mass energy of the hard binary plus the field star is positive
(see eq. 7.174 below).
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Figure 7.8 An interaction between a hard binary and a field star. All three stars have
equal mass and the orbits are plotted in the center-of-mass frame. The binary, containing
stars 1 and 2, enters from the left; the single star (labeled 3) enters from the right. After a
complicated interaction, star 1 escapes, leaving 2 and 3 behind as a newly formed binary.
After Hut & Bahcall (1983).

A heuristic argument can be used to determine the effect of encounters

on the internal energy Ẽ < 0 of hard binaries. The initial relative velocity
of the binary and the field star is of order the cluster dispersion σ, which
is much less than the orbital speed in a very hard binary. After a complex
exchange interaction like the one shown in Figure 7.8, the ejected star will
typically have a speed of order the orbital speed of the initial binary. Hence
the outgoing single star will have a higher speed than the incoming single star.

By energy conservation, the internal energy Ẽ of the binary must therefore

decrease, that is, |Ẽ| increases; in other words, hard binaries become harder.
Combining this result with our conclusions on soft binaries, we arrive

at Heggie’s law: on average, hard binaries get harder and soft binaries get
softer (Heggie 1975; Hills 1975). There is a “watershed” energy, near −mσ2,
at which the average rate of energy input from encounters is zero.

(c) Reaction rates Quantitative estimates of the rate of formation, evo-
lution, and destruction of hard binaries have been made by many authors
(Heggie 1975; Hut & Bahcall 1983; Sigurdsson & Phinney 1993; Valtonen &
Karttunen 2006). In most cases these are based on analytic formulae that
are empirically adjusted to match numerical experiments. We shall now list
some of these results; we continue to restrict ourselves to the case in which
all of the stars have a single mass m and the velocity dispersion of the center
of mass of the binaries has the equipartition value, 1/

√
2 times the dispersion

of the field stars.
We first consider the ionization rate, in which an encounter with a field
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star destroys the binary to leave three single stars. Hard binaries are much
more difficult to ionize than soft binaries: ionization requires that the total
energy of the binary plus the field star in the center-of-mass frame is positive,
and for very hard binaries this is true only for the very few field stars whose
speed is much larger than the velocity dispersion σ.

The probability per unit time that a given binary is ionized by a single
close encounter may be written as

B(Ẽ) =
8
√
πG2m3ρσ

33/2|Ẽ|2

(
1 +

mσ2

5|Ẽ|

)−1 [
1 + exp

( |Ẽ|
mσ2

)]−1

, (7.174)

where as usual we assume that all masses are equal and the velocity distri-
butions of the binary and field stars are Maxwellian and in equipartition.
This reduces to the ionization rate for soft binaries, equation (7.171), in the

limit |Ẽ| � mσ2. Equation (7.174) was obtained by Hut & Bahcall (1983)
from numerical experiments; the functional form is an interpolation based
on formulae derived by Heggie (1975) for very hard and very soft binaries.
In principle, the ionization rate depends on the initial eccentricity of the
binary, but the numerical experiments show that the formula is accurate to
within ±20% at all eccentricities. Equation (7.174) shows that the lifetime
of a hard binary against disruption becomes exponentially long as the binary
becomes very hard, and thus that primordial hard binaries, unlike soft ones,
can survive from the birth of a cluster to the present day.

The formation rate per unit volume is obtained from the principle of
detailed balance (7.164),

C(Ẽ) =
2π2G5m11/2ρ3

33/2σ2|Ẽ|9/2

(
1 +

mσ2

5|Ẽ|

)−1 [
1 + exp

(
− |Ẽ|
mσ2

)]−1

. (7.175)

The total formation rate of hard binaries is

Ch =

∫ ∞

mσ2

d|Ẽ|C(Ẽ) = 0.74
G5ρ3m2

σ9
, (7.176)

consistent with the rough estimate n/t3 obtained from equation (7.11).

The formation rate of soft binaries with binding energy exceeding |Ẽ| is

∫ mσ2

|Ẽ|
d|Ẽ|′ C(Ẽ′) → 3.8

G5ρ3m2

σ9

(
mσ2

|Ẽ|

)5/2

as |Ẽ| → 0. (7.177)

This creation rate diverges as |Ẽ| → 0, but such wide binaries remain bound
for only a fraction of a period before being disrupted by passing stars or tidal
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forces: they can be regarded as pairs of unassociated particles that simply
happen to have nearly the same velocity and position.

The rate at which hard binaries become harder is (Heggie 1975; Heggie
& Hut 1993)

〈 ˙̃
E〉 = −3.8

G2ρm2

σ
. (7.178)

Using equation (7.163), this result can be expressed in terms of the binary
semi-major axis, 〈

d

dt

1

a

〉
= 7.6

Gρ

σ
. (7.179)

Notice that the average rate of change of energy is independent of the energy;
in other words, the rate of hardening is independent of the hardness.

The following heuristic derivation of equation (7.178) illuminates the
physics of binary hardening. Consider a field star that is traveling towards
a hard binary with initial velocity V0 and impact parameter b, both taken
relative to the center of mass of the binary. Its initial angular momentum
is L = bV0 (eq. 3.46). The field star will interact strongly with the binary
only if it approaches to within a distance ∼ a of the binary’s center of mass.
At this point its velocity is similar to the orbital speed v ' (Gm/a)1/2 of
the binary, since it has fallen into the same potential well that governs the
orbital motion of the binary. Its angular momentum is of order av and this
cannot be very different from the initial angular momentum L; thus only
stars with impact parameter b ∼< b0 ≡ av/V0 can interact strongly with the
binary. The number of strongly interacting field stars per unit time is thus
F ∼ nV0b

2
0 ∼ na2v2/σ, where n is the number density of stars surrounding

the binary and we have replaced V0 by the velocity dispersion σ. Each of
these strongly interacting stars will follow a complicated trajectory like the
one in Figure 7.8, but ultimately will be ejected from the binary. The ejection
velocity is expected to be of order v, since this is the relative velocity of the
field star and the binary components when they are interacting strongly.
Thus, on average, each field star robs the binary of energy ∼ mv2. The rate
of energy loss is thus Fmv2 ∼ ρa2v4/σ ∼ G2ρm2/σ, where ρ = nm is the
mass density of field stars near the binary. This is an approximate statement
of equation (7.178).

The rate of energy loss (7.178) can be simply expressed in terms of the
local relaxation time (eq. 7.106): taking ln Λ ' 10, the average energy change
per relaxation time is

〈∆Ẽ〉 ' −0.13mσ2. (7.180)

As the binary hardens and its semi-major axis shrinks, close encounters
with field stars become rarer and more violent, even though the average
hardening rate remains constant. The recoil velocity given to the binary in a
close encounter also becomes larger and larger as it hardens, and eventually
the process terminates when the recoil from some encounter is so large that
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the binary is ejected from the cluster. For typical cluster potentials, a hard

binary survives until Ẽ ≈ −kmσ2 where k ≈ 100 (Goodman & Hut 1993;
Heggie & Hut 2003). Thus the lifetime of a typical hard binary is

thb ≈ k
mσ2

−〈 ˙̃
E〉

=
k

3.8

σ3

G2ρm
' k

0.13
trelax. (7.181)

After a few relaxation times, the distribution of soft and moderately hard
binaries approaches a steady state. The net energy released by interactions
between binaries and single stars then arises solely from the flux of hard

binaries towards larger and larger values of |Ẽ|, which continues until the
recoil of the binary from an encounter ejects it from the cluster. Thus the
rate of energy generation per unit mass due to encounters between binary
and single stars is just

ε = −〈 ˙̃
E〉nb

ρ
= 3.8

G2m2nb

σ
, (7.182)

where nb is the number density of hard binaries. This number density is
determined by the competition between the formation of moderately hard
binaries by three-body encounters (eq. 7.176) and the ejection of very hard
binaries from the cluster; thus nb ' Chthb where Ch is the hard-binary
formation rate of equation (7.176). We have

nb ' 0.20k
G3ρ2m

σ6
. (7.183)

Substituting this result into equation (7.182), we obtain the equilibrium en-
ergy generation rate per unit mass due to binaries,

ε ' Cb
G5ρ2m3

σ7
(7.184)

with Cb = 0.74k, or Cb ≈ 75 for the value k ≈ 100 estimated above. Nu-
merical experiments yield a similar value, Cb ' 80 (Goodman & Hut 1993;
Heggie & Hut 2003).

The initial evolution of globular clusters is strongly affected by the num-
ber of primordial binaries in the cluster. Spectroscopic observations suggest
that the fractional abundance of primordial hard binaries in globular clusters
is 10–20% (Hut et al. 1992; Rubenstein & Bailyn 1997; Albrow et al. 2001).
The heating of the cluster by primordial hard binaries delays core collapse,
just as the burning of nuclear fuel halts the collapse of stars. Eventually,
as we have described, each binary becomes so hard that an encounter ejects
it from the cluster. Once most of the hard binaries have fled, core collapse
proceeds just as in a cluster without primordial binaries.
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The results described here are restricted to single-mass clusters; more
comprehensive results for unequal masses are given in Sigurdsson & Phinney
(1993) and Valtonen & Karttunen (2006).

Encounters of binaries with single stars is not the only relevant dy-
namical process involving binaries: during the late stages of collapse of a
binary-rich core, binary-binary encounters are likely to predominate over
binary-single encounters (Valtonen & Mikkola 1991).

7.5.8 Inelastic encounters

So far we have approximated stars as point masses. However, in the densest
stellar systems, such as the center of a globular cluster in the late stages
of core collapse or the cusp of stars surrounding the central black hole in a
galaxy (§7.5.9), stars may pass so close to one another that they collide. Even
a near-miss can have important consequences, because the relative kinetic
energy of the passing stars is dissipated by the tides the stars raise in each
other. The loss of this energy hastens core collapse, and the close encounters
or collisions can form unusual objects such as blue stragglers (see page 628),
or close binary stars that are visible as cataclysmic variables or X-ray sources
(Pooley & Hut 2006).

To investigate these effects we compute the collision time tcoll, where
1/tcoll is the collision rate, that is, the average number of physical collisions
that a given star suffers per unit time. For simplicity we again restrict our-
selves to a cluster in which all stars have the same mass m. Consider an
encounter with initial relative velocity V0 and impact parameter b. The an-
gular momentum per unit mass of the reduced particle is L = bV0 (eq. 3.46).
At the distance of closest approach, which we denote by rcoll, the radial ve-
locity is zero, so the angular momentum is L = rcollVmax, where Vmax is the
relative speed at rcoll. From the energy equation (7.162), the energy in the

center-of-mass frame is Ẽ = 1
2µV

2 − Gm2/r, where µ = 1
2m is the reduced

mass (eq. D.32). Equating the energy at rcoll and r → ∞, we have

1
4mV

2
0 = 1

4mV
2

max − Gm2

rcoll
. (7.185)

Since L is conserved, we can eliminate Vmax to obtain

b2 = r2
coll +

4Gmrcoll

V 2
0

. (7.186)

If we set rcoll equal to the sum of the radii of the two stars, then a collision
will occur if and only if the impact parameter is less than the value of b
determined by equation (7.186).

Let f(va) d3va be the number of stars per unit volume with velocities
in the range va to va+d3va. The number of encounters with these stars per
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unit time with impact parameter less than b that are suffered by a given star
is just f(va) d3va times the volume of an annulus with radius b and length
V0 = |v − va|, where v is the velocity of the subject star. The collision rate
is then

Rcoll =

∫
d3va f(va)πb2|v − va|. (7.187)

We now average this rate over v by multiplying (7.187) by f(v)/n, where
n =

∫
d3v f(v) is the number density of stars, and integrating over d3v.

This gives an estimate of the collision time,

1

tcoll
≡ 〈Rcoll〉 =

π

n

∫
d3v d3va f(v)f(va)b2|v − va|. (7.188)

To evaluate the integrals we assume that the df is Maxwellian with dispersion
σ (eq. 7.91). Substituting for b2 from equation (7.186) we obtain

1

tcoll
=

n

8π2σ6

∫
d3v d3va e−(v2+v2a)/2σ2

(
r2
coll|v − va| +

4Gmrcoll

|v − va|

)
.

(7.189)
We now replace the dummy variables v and va by the relative velocity V =
v − va and the center-of-mass velocity vcm = 1

2 (v + va). We have

v = vcm + 1
2V ; va = vcm − 1

2V. (7.190)

The Jacobian determinant of the map between (v,va) and (V,vcm) satis-
fies ∂(v,va)/∂(vcm,V) = 1, and hence the velocity-space volume element
d3v d3va can be replaced by d3vcmd3V. In addition v2 + v2

a = 2v2
cm + 1

2V
2.

We find

1

tcoll
=

n

8π2σ6

∫
d3vcmd3V e−(v2cm+V 2/4)/σ2

(
r2
collV +

4Gmrcoll

V

)
. (7.191)

The integral over vcm is

∫
d3vcm e−v

2
cm/σ

2

= π3/2σ3. (7.192)

Substituting this result in equation (7.191) and integrating over all directions
of V, we have

1

tcoll
=
π1/2n

2σ3

∫ ∞

0

dV e−V
2/4σ2(

V 3r2
coll + 4GmV rcoll

)
. (7.193)

The remaining integrals are easy, and yield

1

tcoll
= 4

√
πnσ

(
r2
coll +

Gm

σ2
rcoll

)
. (7.194)
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The second term represents the enhancement in the collision rate due to
gravitational focusing, that is, the deflection of trajectories by the gravi-
tational attraction of the two stars.

If r? is the stellar radius, we may set rcoll = 2r?. It is convenient to
introduce the escape speed from the stellar surface, v? =

√
2Gm/r?, and to

write equation (7.194) as

1

tcoll
= 16

√
πnσr2

?

(
1 +

v2
?

4σ2

)
= 16

√
πnσr2

?(1 + Θ), (7.195a)

where we have introduced the Safronov number16

Θ ≡ v2
?

4σ2
=

Gm

2σ2r?
= 9.54

m

M�

R�
r?

(
100 km s−1

σ

)2

. (7.195b)

Numerically, we have

tcoll =





6.8 × 103 Gyr
105 pc−3

n

100 km s−1

σ

(
R�
r?

)2

Θ � 1;

7.1 × 102 Gyr
105 pc−3

n

σ

100 km s−1

R�
r?

M�
m

Θ � 1.

(7.196)

These formulae underestimate the collision rate in clusters with a substantial
population of hard binary stars, since the typical close encounter of a single
star with a hard binary (Figure 7.8) forms a temporary triple system, which
offers many possible opportunities for a collision.

The ratio of the collision time to the relaxation time (eq. 7.106) has the
simple form

tcoll

trelax
= 0.4 ln Λ

Θ2

1 + Θ
, (7.197)

in approximate agreement with our crude estimate (7.9) for Θ � 1. Core
collapse occurs in about 300 central relaxation times (eq. 7.154), and hence
collisions can have a substantial influence on core collapse if tcoll/trelax ∼< 300.
Let us now evaluate this ratio in some typical cases. The escape speed
from the Sun is v? = 618 km s−1. In a typical globular cluster, where σ '
10 km s−1, the Safronov number for solar-type stars is Θ ' 1 × 103. Hence
tcoll ' 4 × 103trelax for ln Λ ≈ 10. Thus, in the early stages of core collapse,
the effects of collisions of solar-type stars, or indeed of any type of stars,
are negligible compared to the effects of relaxation.17 However, collisions can

16 After V. S. Safronov, who introduced Θ in studies of the collision of planetesimals
in the early solar system.

17 Red giants have much larger radii (up to ≈ 30R�) but are less abundant by about
a factor of 100. Since the Safronov number is large in a globular cluster, the collision rate
is proportional to nrcoll, so a main-sequence star collides with giants even less often than
it collides with other main-sequence stars.
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be important in the late stages of core collapse, since the velocity dispersion
grows: equation (7.156) predicts that the dispersion grows by a factor of 4 or
so as the core mass falls by a factor 104, so the Safronov number may become
as small as Θ ≈ 60, in which case tcoll ' 20trelax for ln Λ ≈ 1. Collisions
also play an important role in the central parsec of a galaxy, where σ ≈ 100–
200 km s−1, so the Safronov number is Θ ≈ 2.4–10, and tcoll/trelax ≈ 10–50
for ln Λ ≈ 14.

A head-on collision of two main-sequence stars in a globular cluster pro-
duces a luminous, hot remnant (L ≈ 50L�, T ≈ 8000 K), which cools and
contracts to the main sequence in a few million years (Sills et al. 2002).
The product of an off-axis collision is less clear: the remnant has a large
spin, and as it contracts it spins up by conservation of angular momentum,
until eventually it reaches break-up speed. The fate of off-axis merger rem-
nants depends strongly on whether mechanisms such as a magnetic wind or
circumstellar disk allow the remnant to shed angular momentum.

The remnants of stellar collisions may be detectable as blue stragglers,
stars that are located in the globular-cluster color-magnitude diagram on the
main sequence but beyond the turnoff point (Figure 1.2; BM §6.1; Bailyn
1995). This location implies that blue stragglers have lifetimes shorter than
the cluster age. Collisions occurring long after the cluster formed provide
a natural way to create such stars, but there are alternative mechanisms
such as mass transfer between or the coalescence of the two components of a
close binary star, and the importance of collisions in forming blue stragglers
remains unclear.

Some process unique to high-density stellar systems is also likely to be
responsible for the formation of low-mass X-ray binaries in globular clusters,
since these binaries are ∼ 103 times more abundant in the densest globular
clusters than in the Galaxy as a whole (Pooley & Hut 2006). The most
promising candidate process is collisions between neutron stars and red-giant
stars (Ivanova et al. 2005). Similarly, millisecond pulsars are ∼ 102 times
more abundant in dense clusters. These are old, quiescent neutron stars
that have been spun up by an accretion disk, enabling them to shine again as
recycled pulsars. The source of the disk material could be residual material
left over after an off-center inelastic encounter, or a nearby companion star
(Bailyn 1995; Phinney 1996).

To close this discussion, we briefly mention the effects of near-collisions.
A close encounter of two stars raises violent tides on the surface of each
star. The energy that powers these disturbances comes from the relative
kinetic energy of the stars, and the loss of this energy in a close encounter
can leave the two stars with negative orbital energy—that is, as a bound
binary system. This effect is especially important in systems such as globular
clusters where the Safronov number Θ � 1, since to form a binary the stars
only need to lose their orbital energy (∼ mσ2), which is small compared to
their internal binding energies (∼ mv2

?). When tidal dissipation just manages
to bind two stars, the resulting binary is highly eccentric. The evolution of
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such binaries is still not well understood (Kochanek 1992; Mardling 1995;
Mardling & Aarseth 2001). It is unclear whether the tidal disturbances
excited in the first near-collision will damp by the time of the next pericenter
passage (Kumar & Goodman 1996): if so, then the binary orbit will steadily
decay and circularize; if not, the tidal forces on subsequent passages can
either add or remove energy from the orbit, depending on the phase of the
tidal oscillations at the time of each periastron passage. In the latter case,
the binary orbital energy will random walk, and the binary may even be
disrupted if the random walk achieves positive orbital energies. An additional
complication is that the energy dissipated in the stars by the tides will heat
and expand their outer parts, perhaps causing them to lose mass, merge, or
even be disrupted.

If the stars survive, and remain bound but do not merge, the binary will
eventually settle into a circular orbit as more and more energy is dissipated.
Since the initial orbital angular momentum was small, and total angular
momentum is conserved, the size of the resulting binary orbit will be only a
few stellar radii (Problem 7.16). Such binaries are sometimes called tidal-
capture binaries. The fraction of near-collisions that achieve this final
state remains quite uncertain.

7.5.9 Stellar systems with a central black hole

The power emitted by quasars and other active galactic nuclei is believed
to arise from the consumption of gas and stars by a black hole of mass
M• ≈ 106–109 M� (§1.1.6 and Krolik 1999). These black holes should nor-
mally be located at the center of the galaxy, since the galactic orbit of any
object of such large mass decays rapidly due to dynamical friction (§8.1.1a).
Observations of the centers of nearby galaxies show that most contain mas-
sive dark objects which are almost certainly black holes (page 605); these are
likely to have been active galactic nuclei early in the lifetime of the galaxy,
but are now dark because they are starved of fuel (Kormendy 2004).

Smaller black holes (M• ≈ 102–104 M�) might also be present at the
centers of some globular clusters.

(a) Consumption of stars by the black hole One obvious effect of
a black hole on the surrounding system is that it swallows any star whose
orbit carries it within the black-hole horizon. In the Schwarzschild metric,
the radial coordinate of the horizon of a non-rotating black hole is

r• =
2GM•
c2

= 2.95 km
M•
M�

= 9.57 × 10−8 pc
M•

106 M�
, (7.198)

where c is the speed of light. Now consider a test particle that approaches
the black hole from infinity on an orbit with angular momentum L and
zero energy. It can be shown that the orbit crosses the horizon if L < L• ≡
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4GM•/c (Novikov & Frolov 1989). It proves convenient to express this result
in terms of the pericenter qK of a parabolic Keplerian orbit with the same
angular momentum. Since L = (2GM•qK)1/2 for Keplerian motion, the star
crosses the horizon if qK < q• ≡ 4r• = 8GM•/c2.

Tidal forces from the black hole can also destroy stars, often at distances
much larger than the horizon. Let us consider a star on a parabolic orbit
around the black hole, with pericenter distance qK that is much larger than
q•, so the orbit is Keplerian. At the instant of pericenter passage, the force
per unit mass on a fluid element on the surface of the star facing the black hole
is F•,i = −GM•êr/(qK−r?)2, where êr is the unit vector pointing away from
the black hole and r? is the radius of the star. Similarly, the force on a surface
element facing away from the black hole is F•,o = −GM•êr/(qK + r?)

2. The
difference between these forces is

∆F• = F•,i − F•,o = −GM•êr

(
1

(qK − r?)2
− 1

(qK + r?)2

)
' −4GM•r?

q3
K

êr,

(7.199a)
where we have assumed that r? � qK. The force differential ∆F• tends to
pull the star apart, but this tendency is countered by the gravitational force
from the star itself, F?,i = Gmê/r2

? on the inner surface and F?,o = −F?,i
on the outer surface. Thus

∆F? = F?,i − F?,o =
2Gm

r2
?

êr. (7.199b)

The star is likely to be disrupted at pericenter if the magnitude of the force
differential in (7.199a) exceeds (7.199b), that is, if

qK < qdis ≡ gr?

(
M•
m

)1/3

, (7.200)

where g is of order unity. Numerical calculations of the disruption of stars
on parabolic orbits confirm that equation (7.200) yields the correct scaling
of the disruption radius with the properties of the black hole and the star,
and show that g varies between 0.9 and 1.7 for a plausible range of stellar
density distributions (Lai, Rasio, & Shapiro 1994; Diener et al. 1995).

This Newtonian analysis can be extended to parabolic orbits with peri-
center distances comparable to the horizon, using numerical models for rel-
ativistic tidal disruption. The results can still be expressed using equation
(7.200), but now qK must be interpreted as a function of the orbital angular
momentum L = (2GM•qK)1/2 rather than as the pericenter distance, and
the dimensionless coefficient g depends on both the stellar model and the
black-hole mass. If we define “tidal disruption” to mean the loss of half of
the stellar mass, then for stars of solar mass and radius, modeled as n = 1.5
polytropes, Ivanov & Chernyakova (2006) find that g varies from 1.1 to 2.4
as M• varies from 106 M� to 4 × 107 M�.
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If q• ∼> qdis stars are swallowed whole by the black hole, while if q• ∼< qdis

stars are disrupted by the tidal field of the hole before reaching the horizon.
Thus, stars are swallowed whole from nearly parabolic orbits if

M• ∼> 1.4 × 107 M� g
3/2

(
r?
R�

)3/2(M�
m

)1/2

. (7.201)

We shall say that a star has been “eaten” by the black hole if it is either
tidally disrupted or swallowed whole, and thus we define qeat to be the larger
of qdis and q•.

In a spherical system, orbits having pericenter distance qK < qeat occupy
a specific region in energy-angular momentum space, which is called the loss
cone.18 For highly eccentric orbits the loss cone consists of the region with
angular momentum L < Llc ≡ (2GM•qeat)

1/2.
If the gravitational potential from the black hole and the surrounding

stars were precisely spherical, then the loss cone at a given energy would be
emptied in one orbital period and no further stars would be eaten (except
for dwarf stars just outside the loss cone that begin ascending the giant
branch, thereby expanding in radius so the loss cone grows to engulf them).
In realistic systems, however, there is a steady supply of fresh stars into the
loss cone from two dynamical mechanisms:
(i) Through encounters with other stars, the star may diffuse in energy and

angular momentum until it enters the loss cone, at which point it is
disrupted or swallowed in less than an orbital time (Frank & Rees 1976;
Lightman & Shapiro 1977).

(ii) If the galaxy is non-spherical, torques from its overall mass distribution
can carry stars into the loss cone (Magorrian & Tremaine 1999).

As a result of these two mechanisms, a star will be disrupted every 104–
105 yr in a typical galaxy (Magorrian & Tremaine 1999). The gas released
by tidally disrupted stars may re-accrete onto the black hole over a timescale
of months to years, producing a characteristic X-ray flare that signals the
presence of a black hole (Komossa et al. 2004).

(b) The effect of a central black hole on the surrounding stellar
system Let us imagine that a black hole of mass M• sits at the center of
a spherical stellar system. At large radii, the gravitational field is dominated
by the stellar mass distribution and is approximately equal to −GM?(r)/r

2,
where M?(r) is the mass of stars inside radius r. At small radii, the gravi-
tational field is dominated by the contribution of the black hole, −GM•/r2.
The transition between these two limits, where the central force from the

18 The term “cone” reflects the geometry in velocity space, not action space or energy-
angular momentum space: at a given position, the stars with pericenter distance < qeat
have velocity vectors that fill a cone in velocity space, with the symmetry axis of the cone
pointing towards the black hole.
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black hole equals the force from the stars, occurs at the dynamical radius rg

of the black hole (page 353).
The formula for the dynamical radius depends on the density distribu-

tion in the galaxy. In a spherical galaxy with a constant-density central core,
such as a non-singular isothermal sphere or a King model (§4.3.3b,c), the field
due to the stars is − 4

3πGρ0r where ρ0 is the central density. Comparing this
to the field from the black hole, we have

rg =

(
3M•
4πρ0

)1/3

=

(
GM•r2

0

3σ2

)1/3

. (7.202)

Here r0 is the King radius (4.106).
Inside the dynamical radius the black hole dominates the dynamics,

while outside the self-gravity of the stars determines the dynamics. The
dynamical radius for Hernquist models with central black holes is shown in
Figure 4.20.

The effect of a central black hole on its host stellar system depends on
how it forms. If the black hole grows slowly—perhaps by accretion of gas
over Myr or longer timescales—it will compress the surrounding stellar orbits
to form a cusp, as described in §4.6.1a. On the other hand, if the hole grows
by merging with other black holes that spiral to the center by dynamical
friction, as described in §8.1.1a, the energy transferred to the stars from the
inspiraling black hole causes the stellar orbits to expand, thereby reducing
the central density of the host system (core scouring). Without knowing
the history of the black hole, we generally cannot predict its influence on the
surrounding stellar system.

However, there is one case in which the properties of the stellar system
surrounding a black hole can be predicted without knowledge of how the
system formed: if its age is much larger than the central relaxation time, a
steady-state distribution of stars is established in which there is a balance
between the tendency of the system to come into thermal equilibrium, with
f ∝ exp(−H/σ2), and the continuous depopulation of orbits with pericenters
smaller than qeat.

This steady-state density distribution can be determined by a simple but
rather subtle argument (see Problem 7.19, Bahcall & Wolf 1976, and Shapiro
& Lightman 1976). Let us assume that the density near the hole is a power
law, n(r) ∝ r−s. The Jeans equations dictate that the mean-square velocity
at any radius should be of order 〈v2〉 ' GM•/r. Hence the local relaxation
time (7.106) is trelax ≈ 〈v2〉3/2/(G2m2n) ∝ rs−3/2 (neglecting the Coulomb
logarithm). A star that is eaten by the hole from radius r• has energy of
order E(r) = −GM•m/r•, and in a steady state this loss of negative energy
implies a flow of positive energy out through the cusp. Relaxation among the
N(r) cusp stars interior to r can carry energy of order N(r)E(r) through
the shell at radius r per relaxation time; since N(r) ∝ r3−s the flow of
energy through radius r is N(r)E(r)/trelax ∝ r−2s+7/2. In a steady state the
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energy flow must be independent of radius and hence s = 7
4 . This scaling

law is verified by numerical solutions of the Fokker–Planck equation (Cohn
& Kulsrud 1978).

Fokker–Planck, N-body, and orbit-averaged Monte Carlo codes that fol-
low the evolution of dense stellar systems containing a black hole are de-
scribed by Cohn & Kulsrud (1978), Freitag & Benz (2001), and Baumgardt,
Makino, & Ebisuzaki (2004).

7.6 Summary

Several distinct processes drive the evolution of an isolated self-gravitating
system: (i) escape of stars to infinity; (ii) core collapse; (iii) equipartition;
(iv) formation of hard binaries; (v) gravitational interactions of hard binaries
with single stars and one another. Both escape and core collapse occur on a
timescale proportional to and somewhat larger than the relaxation time trh,
but core collapse is generally the faster process. In single-mass systems, the
timescale for core collapse is 16trh.

Hard binaries—both primordial binaries and binaries formed in the late
stages of core collapse—act as energy sources, much like the nuclear reactions
occurring in the center of a star, and halt core collapse. Remarkably, it
appears that even a single hard binary is able to halt the core collapse of a
cluster of 106 stars.

After core collapse, the inner parts of the cluster re-expand, and may
experience gravothermal oscillations in which the central density varies by
several orders of magnitude. It is likely that many globular clusters have
undergone core collapse, but as yet there is no clear observational signature
that distinguishes post-collapse from pre-collapse clusters.

Isolated post-collapse clusters expand and evolve more and more slowly.
In contrast, if the cluster is truncated by a tidal field the post-collapse ex-
pansion spills mass over the tidal radius, leading to rapid dissolution.

Stellar collisions are relatively rare in globular clusters because the es-
cape speed from the surface of the stars is much higher than the velocity dis-
persion in the cluster. So although collisions and near-collisions can produce
exotic stellar species (blue stragglers, cataclysmic variables, X-ray binaries,
recycled pulsars, etc.), they are unlikely to influence the evolution of the
cluster as a whole.
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Problems

7.1 [1] Consider a system in which the interparticle potential energy has the form Φαβ =
−C|xα − xβ |−p, where p and C are positive constants.

(a) Show that the scalar virial theorem has the form

2K + pW = 0, (7.203)

where K is the kinetic energy and W is the potential energy.

(b) For what values of p does the system have negative heat capacity, in the sense of
equation (7.51)?

7.2 [1] Prove that a system of N self-gravitating point masses with positive energy must
disrupt, in the sense that at least one star must escape. Hint: use the virial theorem, and
prove that the moment of inertia must increase without limit.

7.3 [2] A simple model for a galactic disk consists of N infinite, parallel sheets, each
having surface density σ. Let z be the coordinate perpendicular to the sheets and label
the position of the ith sheet by zi.

(a) Show that the equation of motion is

z̈i = 2πGσ(N+i −N−i), (7.204)

where N+i is the number of sheets with z > zi and N−i is the number with z < zi.

(b) Show that the Hamiltonian of the system can be written as

H =
1

2σ

NX

i=1

p2i + πGσ2
NX

i,j=1
i6=j

|zi − zj |, (7.205)

where pi is the momentum conjugate to zi.

(c) If the first and second terms in the Hamiltonian are identified with the kinetic energy
K and potential energy W per unit area, show that the virial theorem has the form

2K = W or E ≡ K +W = 3K. (7.206)

7.4 [1] Consider a stellar system composed of two types of stars, with density distributions
ρ1(x) and ρ2(x) and corresponding potentials Φ1(x) and Φ2(x). Show that in a steady
state, the scalar virial theorem for component 2 may be written in the form

2K2 +W2 −
Z

d3x ρ2(x)x · ∇Φ1(x) = 0, (7.207)

where K2 is the kinetic energy of component 2, and W2 is the potential energy due to the
mutual interaction of the stars of component 2. Hint: use Problem 4.38.

7.5 [2] The Klimontovich distribution function for an N-body system of identical
point masses m is

f(x,v, t) =
NX

α=1

δ[x − xα(t)]δ[v − vα(t)], (7.208)

where δ denotes the three-dimensional delta function (Appendix C.1). The functions
xα(t), vα(t) describe the trajectories of the N bodies, which satisfy the equations

ẋα = vα ; v̇α = Gm
X

β 6=α

xβ − xα

|xα − xβ |3
, (7.209)
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(a) Prove that the Klimontovich df is an exact solution of the collisionless Boltzmann
equation (4.11) for the one-body Hamiltonian

H(x,v, t) = 1
2
v2 −

NX

α=1

Gm

|xα(t) − x| . (7.210)

The Klimontovich df offers an exact formal description of the N-body stellar system, and
provides an alternative to the BBGKY hierarchy for the systematic derivation of kinetic
equations to describe stellar systems (Nishikawa & Wakatani 2000).

(b) We have argued that the collisionless Boltzmann equation cannot account for relaxation
due to encounters between individual stars. How is this consistent with our conclusion
that the Klimontovich df is an exact solution of the N-body equations of motion?

7.6 [2] The object of this problem is to determine the behavior of the curve in Figure 7.1
in the limit as the central concentration R → ∞.

(a) The density of an isothermal sphere satisfies equation (4.107a),

d

der

„
er2 d lneρ

der

«
= −9er2eρ. (7.211)

As the dimensionless radius er → ∞, the solutions of equation (7.211) approach the singular
isothermal sphere eρS(er) = 2/(9er2). To determine the asymptotic behavior more accurately,
define new variables u and z(u) by u = 1/er and eρ ≡ eρS(er) exp(z). Show that equation
(7.211) becomes

u2 d2z

du2
+ 2(ez − 1) = 0. (7.212)

(b) By linearizing equation (7.212) for small z, show that the asymptotic behavior of the
density eρ is described by the equation (Chandrasekhar 1939)

eρ(er) ' eρS(er)
h
1 +

A

er1/2
cos
`

1
2

√
7 lner + φ

´i
, (7.213)

where A and φ are constants determined by the boundary conditions at small radii. Thus,
at large er, the density of the isothermal sphere oscillates around the singular solution,
with fractional amplitude decreasing as er−1/2.

(c) Now consider an isothermal gas enclosed in a spherical box of radius rb, with inverse
temperature β (cf. eq. 7.55). As erb → ∞, show that the mass M of gas can be written in
the form

x ≡ rb

GMmβ
' 1

2
− A

8er1/2b

h
cos
`

1
2

√
7 lnerb + φ

´
+

√
7 sin

`
1
2

√
7 lnerb + φ

´i
. (7.214)

Hence, argue that when the central concentration R = 1/eρ(erb) is large, the curve in
Figure 7.1 becomes vertical at successive values of R that are in the ratio exp(4π/

√
7) =

115.54.

7.7 [1] A particle undergoes a one-dimensional random walk, defined as follows. If the
particle is at position x, then during any short time interval ∆t the mean-square change
in position is 〈(∆x)2〉 = D(x)∆t, while the mean change is 〈∆x〉 = 0. Let p(x, t)dx be
the probability that the particle is found in the interval (x, x+ dx) at time t. What is the
partial differential equation governing p(x, t)?

7.8 [2] Consider a D-dimensional stellar system containing N identical stars that interact
by inverse-square forces (D = 2, flat disk; D = 3, sphere, etc.). Show that the relaxation
time and the crossing time in such a system are related by

trelax ≈

8
<
:

tcross , D = 2,

N lnN tcross , D = 3,

Ntcross , D > 3.

(7.215)
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7.9 [2] A subject mass M is embedded in an infinite homogeneous sea of field stars, with
mass m �M and isotropic df f(v). Using the Fokker–Planck equation and the diffusion
coefficients (7.88), show that when the subject mass is in thermal equilibrium with the
field stars its df is Maxwellian, with velocity dispersion

σ2
M =

m

M

R∞
0

dv vf(v)

f(0)
. (7.216)

Show that when f(v) is Maxwellian, this condition reduces to the requirement of energy
equipartition between the subject mass and the field stars.

7.10 [2] A subject mass M is embedded in an infinite homogeneous sea of field stars with
number density n(m)dm in the mass range (m,m+dm). The field stars of all masses have
a Maxwellian df with dispersion σ. Thus the field stars are not in thermal equilibrium,
which would require that σ2 is inversely proportional to m. Let us assume, however,
that the subject star is in thermal equilibrium with the field stars (this could occur, for
example, if M � m).

(a) Show that the dispersion of the subject star is

σ2
M = σ2

R
dmm2n(m)

M
R

dmmn(m)
. (7.217)

(b) Show that the df of the subject star is Maxwellian.

7.11 [2] The diffusion coefficients for a Maxwellian field star distribution depend on the
functions G(X) and erf(X) − G(X), where G(X) is defined by equation (7.93) and X =
v/(

√
2σ). Show that

lim
X→0

erf(X)

X
=

2
√
π

; lim
X→0

G(X)

X
=

2

3
√
π
. (7.218)

Thus show that as the velocity of the subject star v → 0, the diffusion coefficients of
equation (7.92) satisfy D[(∆v‖)2] = 1

2
D[(∆v⊥)2]. Explain physically why this must be

so.

7.12 [2] Suppose that a spherical cluster evolves self-similarly as a result of relaxation.
In this case its evolution can be described by two functions M(t) and R(t), the mass and
characteristic radius as functions of time. Since the evolution is driven by relaxation, we
expect that

1

M

dM

dt
=

CM

trelax
;

1

R

dR

dt
=

CR

trelax
(7.219)

where CM and CR are constants of order unity. Neglecting changes in the Coulomb
logarithm, the relaxation time trelax ∝ R3/2M1/2 (eq. 7.108).

(a) If the evolution is dominated by evaporation, we expect that M(t) declines with time
while the cluster energy E ∝ GM2/R remains constant, since evaporating stars leave with
nearly zero energy. In this case show that

M(t) ∝ τ2/7 ; R(t) ∝ τ4/7, (7.220)

where τ is the time remaining until the cluster disappears.

(b) After core collapse, the evolution of a cluster is dominated by the energy input from
binary stars at the cluster center, so the cluster energy E grows but the mass M remains
approximately constant. In this case show that

R(t) ∝ τ2/3, (7.221)

where τ is the time elapsed since core collapse (Goodman 1984).
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7.13 [1] Using equation (7.173) for the evaporation time of soft binaries, estimate the
maximum semi-major axis of a primordial soft binary that could survive for 10 Gyr in
the solar neighborhood. Assume that the df in the solar neighborhood is isotropic and
Maxwellian, with rms velocity 50 km s−1, that all stars have mass 1M�, and that the
stellar density is ρ = 0.04M� pc−3 (from Tables 1.1 and 1.2).

7.14 [3] A population of very hard binaries, each with total mass mb and internal energy
eE, is embedded in a distribution of field stars of mass m. The velocity distributions of the
field stars and of the centers of mass of the binaries are Maxwellian, with dispersions σ
and σb respectively. Show that the disruption rate of the binaries contains an exponential
factor
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which reduces to the exponential factor in equation (7.174) when mb = 2m, σ2
b = 1

2
σ2,

and |eE| � mσ2.

7.15 [1] What is the closest approach that a star is likely to have made to the Sun during
its lifetime of 4.5 Gyr, assuming that the Sun’s environment has always been similar to
the present solar neighborhood? Use the same parameters for the solar neighborhood as
in Problem 7.13.

7.16 [1] A tidal-capture binary is formed as a result of a close encounter of two stars of
equal mass m. The minimum separation during the encounter is dmin, and the orbital
energy dissipated in the encounter is ∆E � Gm2/dmin. Once the binary has formed,
more energy is dissipated in each successive orbit, until eventually the binary orbit is
circularized. If the spin angular momentum of the stars is negligible compared to the
orbital angular momentum, show that the radius of the final circular orbit is 2dmin.

7.17 [2] This problem investigates the distribution of nearest neighbors of stars and the
forces from them. Consider an infinite, homogeneous system of stars of massm and number
density n, and assume that the df is separable, that is, that the two-body correlation
function is negligible (§7.2.4).
(a) Show that the probability that the nearest neighbor of a star lies within distance r is

1 − e−4πnr3/3. (7.223)

(b) Show that the probability that the force per unit mass exerted on a star by its nearest
neighbor lies in the range (F,F + dF ) is

dpF =
dF

F0
W (F/F0), where F0 = Gmn2/3 (7.224)
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(c) The probability distribution of the total force per unit mass exerted on a star by all

of its neighbors can be shown to be given by equation (7.224) with
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This is the Holtsmark distribution (Chandrasekhar 1943b). Using numerical or ana-
lytic methods, show that the expressions (7.225) and (7.226) agree for large ξ.

(d) The total force is the sum of a large number of random variables (the forces from
individual neighbor stars). Why then is the probability distribution (7.226) not Gaussian,
as implied by the central limit theorem (Appendix B.10)? See Feller (1971) for a thorough
discussion of the relation between the Holtsmark and Gaussian distributions.
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7.18 [2] A black hole of mass M• is embedded in the center of an infinite, homoge-
neous, three-dimensional sea of test particles. Far from the hole, the test particles have a
Maxwellian velocity distribution (7.91) with number density n0 and velocity dispersion σ.
Show that the density distribution of test particles that are not bound to the hole is

n(r) = n0
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where the error function erf(x) is defined in Appendix C.3, and rF = GM•/σ2. Show
that close to the hole, r � rF, n(r) ∝ r−1/2. Thus there is a weak density cusp around
the hole, similar in structure to the cusps seen in luminous elliptical galaxies (Nakano &
Makino 1999).

7.19 [3] In §7.5.9b we derived the steady-state density distribution of stars around a
central black hole, in the case where the relaxation time is shorter than the age of the
system. Consider the following alternate derivation. Assume that the density near the
hole is a power law, n(r) ∝ r−s. The mean-square velocity at any radius should be of
order 〈v2〉 ' GM•/r, so the local relaxation time is trelax ≈ 〈v2〉3/2/(G2m2n) ∝ rs−3/2.
Relaxation among the N(r) cusp stars interior to r can lead to a flow of stars through
the shell at radius r that is of order N(r)/trelax ∼ n(r)r3/trelax ∼ r−2s+9/2. In a steady
state, this flow must be independent of radius, so s = 9

4
. This differs from the (correct)

result s = 7
4

derived in §7.5.9b. What is wrong with the argument presented here?



8
Collisions and Encounters of Stellar

Systems

Our Galaxy and its nearest large neighbor, the spiral galaxy M31, are falling
towards one another and will probably collide in about 3 Gyr (see Plate 3
and Box 3.1).

A collision between our Galaxy and M31 would have devastating conse-
quences for the gas in both systems. If a gas cloud from M31 encountered a
Galactic cloud, shock waves would be driven into both clouds, heating and
compressing the gas. In the denser parts of the clouds, the compressed post-
shock gas would cool rapidly and fragment into new stars. The most massive
of these would heat and ionize much of the remaining gas and ultimately ex-
plode as supernovae, thereby shock-heating the gas still further. Depending
on the relative orientation of the velocity vectors of the colliding clouds, the
post-collision remnant might lose much of its orbital angular momentum,
and then fall towards the bottom of the potential well of the whole system,
thereby enhancing the cloud-collision and star-formation rates still further.
We do not yet have a good understanding of this complex chain of events, but
there is strong observational evidence that collisions between gas-rich galax-
ies like the Milky Way and M31 cause the extremely high star-formation
rates observed in starburst galaxies (§8.5.5).

In contrast to gas clouds, stars emerge unscathed from a galaxy collision.
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To see this, consider what would happen to the solar neighborhood in a
collision with the disk of M31. According to Table 1.1, the surface density of
visible stars in the solar neighborhood is ' 30M� pc−2. Assuming that most
of these are similar to the Sun, the number density of stars is N ' 30 pc−2

and the fraction of the area of the galactic disk that is filled by the disks of
these stars is of order NπR2

� ≈ 5 × 10−14. Thus even if M31 were to score
a direct hit on our Galaxy, the probability that even one of the 1011 stars in
M31 would collide with any star in our Galaxy is small.1

However, the distribution of the stars in the two galaxies would be rad-
ically changed by such a collision, because the gravitational field of M31
would deflect the stars of our Galaxy from their original orbits and vice
versa for the stars of M31. In this process, which is closely related to violent
relaxation (§4.10.2), energy is transferred from ordered motion (the relative
motion of the centers of mass of the two galaxies) to random motion. Thus
the collision of two galaxies is inelastic, just as the collision of two lead balls
is inelastic—in both cases, ordered motion is converted to random motion, of
the stars in one case and the molecules in the other (Holmberg 1941; Alladin
1965). Of course, since stars move according to Newton’s laws of motion, the
total energy of the galactic system is strictly conserved, in contrast to the
lead balls where the energy in random motion of the molecules (i.e., heat) is
eventually lost as infrared radiation.

A consequence of this inelasticity is that galaxy collisions often lead to
mergers, in which the final product of the collision is a single merged stellar
system. In fact, we believe that both galaxies and larger stellar systems such
as clusters of galaxies are created by a hierarchical or “bottom-up” process
in which small stellar systems collide and merge, over and over again, to form
ever larger systems (§9.2.2).

The most straightforward way to investigate what happens in galaxy en-
counters is to simulate the process using an N-body code. Figure 8.1 shows
an N-body simulation of the collision of the Galaxy and M31. This is an
example of a major merger, in which the merging galaxies have similar
masses, and the violently changing gravitational field leads to a merger rem-
nant that looks quite different from either of its progenitors. In contrast,
minor mergers, in which one of the merging galaxies is much smaller than
the other, leave the larger galaxy relatively unchanged.

Not every close encounter between galaxies leads to a merger. To see
this, let v∞ be the speed at which galaxy A initially approaches galaxy B and
consider how the energy that is gained by a star in galaxy A depends on v∞.
As we increase v∞, the time required for the two galaxies to pass through
one another decreases. Hence the velocity impulse ∆v =

∫
dtg(t) due to the

gravitational field g(t) from galaxy B decreases, and less and less energy is
transferred from the relative orbit of the two galaxies to the random motions

1 We have neglected gravitational focusing, which enhances the collision probability
by a factor of about five but does not alter this conclusion (eq. 7.194).
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Figure 8.1 An N-body simulation of the collision between the Galaxy (bottom) and M31
(top) which is expected to occur roughly 3 Gyr from now. The simulation follows only
the evolution of the stars in the two galaxies, not the gas. Each galaxy is represented by
roughly 108 stars and dark-matter particles. The viewpoint is from the north Galactic
pole. Each panel is 180 kpc across and the interval between frames is 180 Myr. After
the initial collision, a open spiral pattern is excited in both disks and long tidal tails are
formed. The galaxies move apart by more than 100 kpc and then fall back together for
a second collision, quickly forming a remnant surrounded by a complex pattern of shells.
The shells then gradually phase mix, eventually leaving a smooth elliptical galaxy. Image
provided by J. Dubinski (Dubinski, Mihos, & Hernquist 1996; Dubinski & Farah 2006).

of their stars; in fact, when v∞ is large, |∆v| ∝ 1/v∞. Thus, when v∞
exceeds some critical speed vf , the galaxies complete their interaction with

sufficient orbital energy to make good their escape to infinity. If v∞ < vf ,

the galaxies merge, while if v∞ � vf the encounter alters both the orbits and
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the internal structures of the galaxies only slightly.2 This simple argument
explains why most galaxies in rich clusters have not merged: although the
density of galaxies in the clusters is high, so collisions are frequent, the
random velocities of cluster galaxies are so high that the loss of orbital energy
in a collision is negligible—the galaxies simply pass through one another, like
ghosts.

Until the 1970s, most astronomers believed that collisions between
galaxies were negligible, except in high-density regions such as clusters. This
belief was based on the following argument. The velocities of galaxies are
the sum of the Hubble velocity (eq. 1.13) appropriate to that galaxy’s posi-
tion, and a residual, or peculiar velocity. Typical peculiar velocities are
vp ≈ 100 km s−1 (Willick et al. 1997). The number density of galaxies is de-
scribed by the Schechter law (eq. 1.18), so the density of luminous galaxies
(L ∼> L?) is n ≈ φ? ≈ 10−2 Mpc−3. Most of the stars in a typical luminous
galaxy are contained within a radius R ≈ 10 kpc, so the collision cross-section
between two such galaxies is Σ ≈ π(2R)2. If the positions and velocities of
the galaxies are uncorrelated, the rate at which an L? galaxy suffers collisions
with similar galaxies is then expected to be of order nΣvp ≈ 10−6 Gyr−1,
so only about one galaxy in 105 would suffer a collision during the age of
the universe. Such arguments led astronomers to think of galaxies as island
universes that formed and lived in isolation.

This estimate of the collision rate turns out to be far too low, for two
reasons. (i) The stars in a galaxy are embedded in a dark halo, which can
extend to radii of several hundred kpc. Once two dark halos start to merge,
their high-density centers, which contain the stars and other baryonic mat-
ter, experience a drag force from dynamical friction (§7.4.4) as they move
through the common halo. Dynamical friction causes the baryon-rich central
regions to spiral towards the center of the merged halo, where they in turn
merge. Thus the appropriate cross-section is proportional to the square of
the dark-halo radius rather than the square of the radius of the stellar distri-
bution. (ii) As we describe in §9.1, the departures of the matter distribution
in the universe from exact homogeneity arose through gravitational forces,
and in particular the peculiar velocities of galaxies relative to the Hubble
flow are caused by gravitational forces from nearby galaxies. Consequently,
the peculiar velocities of nearby galaxies are correlated—nearby galaxies are
falling towards one another, just like our Galaxy and M31—so the collision
rate is much higher than it would be if the peculiar velocities were ran-
domly oriented. In §8.5.6 we show that the merger rate for L? galaxies is
∼ 0.01 Gyr−1, 104 times larger than our näıve estimate.

When two dark halos of unequal size merge, the smaller halo orbits
within the larger one, on a trajectory that steadily decays through dynamical
friction. As the orbit decays, the satellite system is subjected to disruptive

2 Thus, galaxies behave somewhat like the toy putty that is elastic at high impact
speeds, but soft and inelastic at low speeds.
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processes of growing strength. These include steady tidal forces from the
host galaxy, and rapidly varying forces as the smaller halo passes through
the pericenter of its orbit. As stars are lost from the satellite, they spread
out in long, thin tidal streamers that can provide vivid evidence of ongoing
disruption. Eventually the satellite is completely disrupted, and its stars and
dark matter phase-mix with those of the host system.

These processes, which we examine in this chapter, are common to a
wide variety of astrophysical systems. Dynamical friction (§8.1) drives the
orbital evolution not only of satellite galaxies, but also black holes and glob-
ular clusters near the centers of galaxies, and bars in barred spiral galaxies.
Tidal forces erode satellite galaxies, globular clusters, and galaxies in clus-
ters, and also determine the lifetimes of star clusters and wide binary stars.
We shall focus on the effects of tidal forces in two extreme and analytically
tractable limits: §8.2 is devoted to impulsive tides, which last for only a
short time, while §8.3 examines the effects of static tides. §8.4 describes the
dynamics of encounters in galactic disks, and their effect on the kinematics
of stars in the solar neighborhood. Finally, in §8.5 we summarize and inter-
pret the observational evidence for ongoing mergers between galaxies, and
estimate the merger rate.

8.1 Dynamical friction

A characteristic feature of collisions of stellar systems is the systematic trans-
fer of energy from their relative orbital motion into random motions of their
constituent particles. This process is simplest to understand in the limiting
case of minor mergers, in which one system is much smaller than the other.

We consider a body of mass M traveling through a population of par-
ticles of individual mass ma � M . Following §1.2.1 we call M the subject
body and the particles of mass ma field stars. The subject body usually is
a small galaxy or other stellar system and thus has non-zero radius, but we
shall temporarily assume that it is a point mass. The field stars are mem-
bers of a much larger host system of mass M � M , which we assume to
be so large that it can be approximated as infinite and homogeneous. The
influence of encounters with the field stars on the subject body can then be
characterized using the diffusion coefficients derived in §7.4.4. Because the
test body is much more massive than the field stars, the first-order diffu-
sion coefficients D[∆vi] are much larger than the second-order coefficients
D[∆vi∆vj ]/v (cf. eqs. 7.83 with m � ma). Thus the dominant effect of the
encounters is to exert dynamical friction (page 583), which decelerates the
subject body at a rate

dvM
dt

= D[∆v] = −4πG2Mma ln Λ

∫
d3va f(va)

vM − va
|vM − va|3

, (8.1a)
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where

Λ ≈ bmax

b90
≈
bmaxv

2
typ

GM
� 1 (8.1b)

and b90 is the 90◦ deflection radius defined in equation (3.51). Here we
have used equations (7.83), assuming M � ma and adjusting the notation
appropriately. The field-star df f(x,va) is normalized so

∫
d3va f(x,va) =

n(x), where n is the number density of field stars in the vicinity of the subject
body.

We now estimate the typical value of the factor Λ in the Coulomb
logarithm. When a subject body of mass M orbits in a host system of
mass M � M and radius R, the typical relative velocity is given by
v2

typ ≈ GM/R. To within a factor of order unity, the maximum impact
parameter bmax ≈ R, where R is the orbital radius of the subject body.
Then Λ ≈ (M/M)(R/R), which is large whenever M � M, unless the
subject body is very close to the center of the host.

If the subject body has a non-zero radius, the appropriate value for the
Coulomb logarithm is modified to

ln Λ = ln

(
bmax

max(rh, GM/v2
typ)

)
, (8.2)

where rh is the half-mass radius of the subject system (see Problem 8.2).
If the field stars have an isotropic velocity distribution,3 equation (7.88)

yields a simpler expression for the dynamical friction,

dvM
dt

= −16π2G2Mma ln Λ

[∫ vM

0

dva v
2
af(va)

]
vM
v3
M

; (8.3)

thus, only stars moving slower than M contribute to the friction. Like an
ordinary frictional drag, the force described by equation (8.3) always opposes
the motion (dvM/dt is anti-parallel to vM ). Equation (8.3) is usually called
Chandrasekhar’s dynamical friction formula (Chandrasekhar 1943a).

If the subject mass is moving slowly, so vM is sufficiently small, we may
replace f(va) in the integral of equation (8.3) by f(0) to find

dvM
dt

' −16π2

3
G2Mma ln Λf(0) vM (vM small). (8.4)

Thus at low velocity the drag is proportional to vM—just as in Stokes’s law
for the drag on a marble falling through honey. On the other hand, for
sufficiently large vM , the integral in equation (8.3) converges to a definite
limit equal to the number density n divided by 4π:

dvM
dt

= −4πG2Mman ln Λ
vM
v3
M

(vM large). (8.5)

3 See Problem 8.3 for the case of an ellipsoidal velocity distribution.



8.1 Dynamical friction 645

Figure 8.2 A mass M travels from left to right at speed vM , through a homogeneous
Maxwellian distribution of stars with one-dimensional dispersion σ. Deflection of the stars
by the mass enhances the stellar density downstream, and the gravitational attraction of
this wake on M leads to dynamical friction. The contours show lines of equal stellar
density in a plane containing the mass M and the velocity vector vM ; the velocities are
vM = σ (left panel) and vM = 3σ (right panel). The fractional overdensities shown are
0.1, 0.2, . . . , 0.9, 1. The unit of length is chosen so that GM/σ2 = 1. The shaded circle has
unit radius and is centered at M . The overdensities are computed using equation (8.148),
which is based on linear response theory; for a nonlinear treatment see Mulder (1983).

Thus the frictional force falls like vM
−2—in contrast to the motion of solid

bodies through fluids, where the drag force grows as the velocity increases.
If f(va) is Maxwellian with dispersion σ, then equation (8.3) becomes

(cf. eqs. 7.91–7.93)

dvM
dt

= −4πG2Mnm ln Λ

v3
M

[
erf(X) − 2X√

π
e−X

2

]
vM , (8.6)

where X ≡ vM/(
√

2σ) and erf is the error function (Appendix C.3). This
important formula illustrates two features of dynamical friction:
(i) The frictional drag is proportional to the mass density nm of the stars

being scattered, but independent of the mass of each individual star. In
particular, if we replace nm in equation (8.6) by the overall background
density ρ, we obtain a formula that is equally valid for a host system
containing a spectrum of different stellar masses:

dvM
dt

= −4πG2Mρ ln Λ

v3
M

[
erf(X) − 2X√

π
e−X

2

]
vM . (8.7)

(ii) The frictional acceleration is proportional to M and thus the frictional
force must be proportional to M 2. It is instructive to consider why
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this is so. Stars are deflected by M in such a way that the density of
background stars behind M is greater than in front of it (see Figure 8.2
and Problem 8.4). The amplitude of this density enhancement or wake
is proportional to M and the gravitational force that it exerts on M is
proportional to M times its amplitude. Hence the force is proportional
to M2.

The validity of Chandrasekhar’s formula Although Chandrasekhar’s
formula (8.3) was derived for a mass moving through an infinite homogeneous
background, it can be (and usually is) employed to estimate the drag on a
small body traveling through a much larger host system. In such applications
we replace f(v) by the value of the df in the vicinity of the small body, vtyp

by the local velocity dispersion, and bmax by the distance of the subject body
from the center of the host. When employed in this way, Chandrasekhar’s
formula suffers from several internal inconsistencies:
(i) The choices of bmax and vtyp are rather arbitrary.

(ii) We have neglected the self-gravity of the wake. Thus equation (8.3) takes
into account the mutual attraction of M and the background stars, but
neglects the attraction of the background stars for each other.

(iii) We obtained equation (8.3) in the approximation that stars move past
M on Keplerian hyperbolae. Orbits in the combined gravitational fields
of M and the host system would be more complex.

These deficiencies become especially worrisome when M is so large as to be
comparable to the mass of the host system that lies interior to M ’s orbit.
Nevertheless, N-body simulations and linearized response calculations show
that Chandrasekhar’s formula provides a remarkably accurate description of
the drag experienced by a body orbiting in a stellar system, usually within
a factor of two and often considerably better (Weinberg 1989; Fujii, Funato,
& Makino 2006).

The fundamental reasons for this success were discussed in the derivation
of the Fokker–Planck equation in §7.4.2, and derive from the large ratio
between the maximum and minimum impact parameters that contribute to
the Coulomb logarithm ln Λ = ln(bmax/b90). Consider, for example, a black
hole of mass M = 106 M�, orbiting at radius 1 kpc in a galaxy with velocity
dispersion 200 km s−1. Then we may set bmax ≈ 1 kpc and V0 ≈ 200 km s−1,
so b90 = 0.1 pc and ln Λ = 9.2. To address the seriousness of problem (i)
above, suppose that we have overestimated bmax by a factor of two, so the
correct value is only half the orbital radius or 0.5 kpc; then ln Λ = 8.5, a
change of less than 10%. In words, the drag force is insensitive to changes
of order unity in bmax and vtyp, because ln Λ is large. To address problems
(ii) and (iii) we note the effects of self-gravity are important only on scales
comparable to the Jeans length, which in turn is comparable to bmax. Thus
the effects of self-gravity are negligible, and the approximation of a Keplerian
hyperbola should be valid, for encounters with impact parameter much less
than bmax. Suppose then that we consider only encounters with b < 100 pc
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or 10% of the orbital radius. The contribution to the Coulomb logarithm
from these encounters is ln(100 pc/b90) = 5.5, a difference of only 25% from
our original estimate. In words, most of the total contribution to the drag
comes from encounters with sufficiently small impact parameters that the
neglect of self-gravity and the approximation of Keplerian orbits introduce
negligible errors.

A more sophisticated treatment of dynamical friction that avoids the
inconsistencies of Chandrasekhar’s formula requires the machinery of linear
response theory that was developed in §5.3. The subject body is regarded as
an external potential Φe(x, t) that excites a response density in the host sys-
tem, governed by the response function R(x,x′, τ). We then solve Poisson’s
equation to determine the gravitational potential generated by the response
density, and the force exerted on the subject body by this response potential
is dynamical friction (Weinberg 1986, 1989).

Like Landau damping, dynamical friction illustrates the curious fact
that irreversible processes can occur in a system with reversible equations
of motion. We have seen in §5.5.3 that Landau damping in spherical stellar
systems arises from resonances between the oscillations of the system and
the orbital frequencies of individual stars. Similarly, dynamical friction can
be shown to arise from resonances between the orbital frequencies of the
subject body and the stars (Tremaine & Weinberg 1984b). The rich Fourier
spectrum of the gravitational potential from an orbiting point mass ensures
that many orbital resonances contribute to the drag force, and the cumulative
effect of these many weak resonances gives rise to the Coulomb logarithm in
Chandrasekhar’s formula.

8.1.1 Applications of dynamical friction

(a) Decay of black-hole orbits The centers of galaxies often contain
black holes with masses 106–109 M� (§1.1.6). It is natural to ask whether
such objects could be also be present at other locations in the galaxy, where
they would be even harder to find. To investigate this question, we imagine
a black hole of mass M on a circular orbit of radius r, and ask how long is
needed for dynamical friction to drag the black hole to the galaxy center.

The flatness of many observed rotation curves suggests that we approx-
imate the density distribution by a singular isothermal sphere (eq. 4.103),

ρ(r) =
v2

c

4πGr2
, (8.8)

where vc =
√

2σ is the constant circular speed (eq. 4.104). The df of the
isothermal sphere is Maxwellian, so equation (8.7) gives the frictional force
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F̃ = M |dvM/dt| on the black hole:

F̃ =
4πG2M2ρ(r) ln Λ

v2
c

[
erf(X) − 2X√

π
e−X

2

]

= 0.428 ln Λ
GM2

r2
,

(8.9)

where X = vc/(
√

2σ) = 1.
This force is tangential and directed opposite to the velocity of the black

hole, causing it to lose angular momentum L̃ at a rate

dL̃

dt
= −F̃ r ' −0.428 lnΛ

GM2

r
. (8.10)

Thus the black hole spirals towards the center of the galaxy, while remain-
ing on a nearly circular orbit. Since the circular-speed curve of the singular
isothermal sphere is flat, the black hole continues to orbit at speed vc as it

spirals inward, so its angular momentum at radius r is L̃ = Mrvc. Substi-
tuting the time derivative of this expression into equation (8.10), we obtain

r
dr

dt
= −0.428 ln Λ

GM

vc
= −0.302 lnΛ

GM

σ
. (8.11)

If we neglect the slow variation of ln Λ with radius, we can solve this differ-
ential equation subject to the initial condition that the radius is ri at zero
time. We find that the black hole reaches the center after a time4

tfric =
1.65

ln Λ

r2
i σ

GM
=

19 Gyr

ln Λ

(
ri

5 kpc

)2
σ

200 km s−1

108 M�
M

. (8.12)

This equation can be cast into a simpler form using the crossing time tcross =
ri/vc, the time required for the subject body to travel one radian,

tfric =
1.17

ln Λ

M(r)

M
tcross, (8.13)

where M(r) = v2
cr/G is the mass of the host galaxy contained within radius

r. This result is approximately correct even for mass distributions other
than the singular isothermal sphere; in words, if the ratio of the mass of the
subject body to the interior mass of the host is µ� 1, then the subject body
spirals to the center of the host in roughly 1/(µ ln Λ) initial crossing times.

For characteristic values bmax ≈ 5 kpc, M = 108 M�, and vtyp ≈ σ =
200 km s−1, we have by equation (8.1b) that ln Λ ' 6. Thus for the standard

4 Equation (8.8) overestimates the density inside the galaxy’s core, but this leads to a
negligible error in the inspiral time, since the decay is rapid at small radii anyway.
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parameters in equation (8.12), the inspiral time tfric is only 3 Gyr. Black holes
on eccentric orbits have even shorter inspiral times than those on circular
orbits with the same mean radius, since the eccentric orbit passes through
regions of higher density where the drag force is stronger. We conclude that
any 108 M� black hole that is formed within ∼ 10 kpc of the center of a
typical galaxy will spiral to the center within the age of the universe. Thus
massive black holes should normally be found at the center of the galaxy,
unless they are far out in the galactic halo.

(b) Galactic cannibalism Most large galaxies are accompanied by sev-
eral satellite galaxies, small companion galaxies that travel on bound orbits
in the gravitational potential of the larger host. The satellites of our own
Milky Way galaxy include the Sagittarius dwarf galaxy, the Large and Small
Magellanic Clouds (§1.1.3 and Plate 11), and several dozen even smaller
galaxies at distances of ∼ 100–300 kpc. Two satellite galaxies of the nearby
disk galaxy M31 appear in Plate 3.

Satellites orbiting within the extended dark halo of their host experience
dynamical friction, leading to orbital decay. As the satellite orbit decays,
tidal forces from the host galaxy (§8.3) strip stars from the outer parts of
the satellite, until eventually the entire satellite galaxy is disrupted—this
process, in which a galaxy consumes its smaller neighbors, is an example of
a minor merger, or, more colorfully, galactic cannibalism.

The rate of orbital decay for a satellite of fixed mass M is described
approximately by equation (8.12). This formula does not, however, allow for
mass loss due to tidal stripping as the satellite spirals inward. To account
crudely for this process, we shall refer forward to §8.3, in which we show that
the outer or tidal radius of a satellite is given approximately by its Jacobi
radius rJ, defined by equation (8.91). Once again we assume that the host
galaxy is a singular isothermal sphere, so its mass interior to radius r is
M(r) = v2

Mr/G = 2σ2
Mr/G, where vM and σM = vM/

√
2 are the circular

speed and velocity dispersion of the host; in this case equations (8.91) and
(8.108) yield

rJ =

(
M

2M(r)

)1/3

r =

(
GMr2

4σ2
M

)1/3

. (8.14)

We shall assume that the satellite galaxy is also a singular isothermal sphere,
but one that is sharply truncated at rJ. Thus the total mass of the satellite is
M = 2σ2

s rJ/G, where σs is its velocity dispersion. (A truncated isothermal
sphere is not a self-consistent solution of the collisionless Boltzmann and
Poisson equations, so this should be regarded as a fitting formula without
much dynamical significance.) Equation (8.14) then yields

rJ =
σs√
2σM

r which implies that M =

√
2σ3

s r

GσM
. (8.15)
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Substituting into equation (8.11), we obtain the rate of orbital decay,

dr

dt
= −0.428 lnΛ

σ3
s

σ2
M
, (8.16)

and neglecting the slow variation in ln Λ with radius, we find the inspiral
time from radius ri to be

tfric =
2.34

ln Λ

σ2
M
σ3

s

ri

=
2.7 Gyr

ln Λ

ri
30 kpc

( σM
200 km s−1

)2
(

100 km s−1

σs

)3

.

(8.17)

To evaluate the Coulomb logarithm, we use equation (8.2). The half-mass
radius rh of the satellite is half of its Jacobi radius, and the typical velocity
may be taken to be vtyp = σM. Then the two quantities in the denominator
of equation (8.2) are given by equations (8.15),

rh =
σs

23/2σM
r ;

GM

v2
typ

=

√
2σ3

s

σ3
M

r. (8.18)

The velocity dispersion of a galaxy is correlated with its mass through the
Faber–Jackson law (1.21). Satellite galaxies have smaller luminosities than
their hosts, and hence smaller dispersions. If σs ∼< 0.5σM, the first term in
equation (8.18) is larger than the second, so the argument of the Coulomb
logarithm is Λ = bmax/rh; setting bmax = r we have finally Λ = 23/2σM/σs.
Thus, for example, equation (8.17) implies that in a host galaxy with disper-
sion 200 km s−1, a satellite galaxy with dispersion σ ∼> 50 km s−1 will merge
from a circular orbit with radius 30 kpc within 10 Gyr.

(c) Orbital decay of the Magellanic Clouds In general, the orbits of
satellites of the Milky Way cannot be determined, because their velocities
perpendicular to the line of sight are either unknown or have large obser-
vational uncertainties. However, much more information is available for the
Large and Small Magellanic Clouds. Not only do we have good estimates for
their velocities perpendicular to the line of sight (Kallivayalil et al. 2006),
but the correct Cloud orbits must be able to reproduce the dynamics of the
Magellanic Stream, a narrow band of neutral hydrogen gas that extends over
120◦ in the sky and is believed to have been torn off the Small Cloud by the
gravitational field of the Galaxy about 1–1.5 Gyr ago. (See BM §8.4.1 and
Putman et al. 2003 for a description of the observations.)

Several groups have modeled the dynamics of the Magellanic Stream
and the resulting constraints on the Cloud orbits (Murai & Fujimoto 1980;
Lin & Lynden–Bell 1982; Gardiner, Sawa, & Fujimoto 1994; Connors et al.
2004). They find that the orbital plane of the Clouds is nearly perpendicular
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Figure 8.3 The decay of the orbits of the Magellanic Clouds around our Galaxy. The
upper curves show the radius of the Clouds from the Galactic center (thick line for the
Large Cloud and thin line for the Small Cloud), and the lower, dashed curve shows the
distance between the Large and Small Cloud. The Galaxy potential is that of a singular
isothermal sphere with circular speed vc = 220 km s−1, and the drag force is computed
using Chandrasekhar’s formula (8.7). The initial conditions at t = 0 are chosen to repro-
duce the observed distances and radial velocities of the Clouds and the kinematics of the
Magellanic Stream (Gardiner, Sawa, & Fujimoto 1994).

to the Galactic plane; the sense of the orbit is such that the Clouds are
approaching the Galactic plane with the Magellanic Stream trailing behind;
the orbit is eccentric (the apocenter/pericenter distance is ∼> 2); and the
Clouds are presently near pericenter (Figure 8.3). As seen in the figure, the
orbits of the Magellanic Clouds are decaying due to dynamical friction. The
ongoing mass loss from the Clouds that generates the Magellanic Stream
provides circumstantial evidence that the orbit is continuing to shrink.

In this model the Clouds merge with the Milky Way in about 6 Gyr,
although the model is unrealistic beyond about 3 Gyr in the future, when
the Galaxy experiences a much more violent merger with M31 (Box 3.1).

(d) Dynamical friction on bars Dynamical friction can be generated
by any time-varying large-scale gravitational field. An important example is
the interaction between a bar in a disk galaxy and the surrounding dark halo.
As a first approximation, let us think of the bar as a rigid body, consisting
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of two masses M at the ends of a rod of length 2r that revolves around
its center at the bar pattern speed Ωb. In a strong bar M would not be
much smaller than the mass of the galaxy interior to r. In this circumstance
equation (8.13) suggests that the bar should lose its angular momentum in a
few crossing times, which is much shorter than the age of the galaxy. Thus
we might expect that bars in disk galaxies with massive halos would have
zero angular momentum and zero pattern speed.

Improving on this crude model is a challenging analytic task, for sev-
eral reasons: first, the gravitational potential of a bar is more complicated
than the potential from a point mass; second, in contrast to most orbiting
bodies, bars are extended objects, so the friction is not dominated by local
encounters; third, dynamical friction exerts a torque on the bar but we do
not understand the reaction of the bar to that torque: does its pattern speed
increase or decrease? does the bar grow stronger or weaker? etc.

Accurate analytic determinations of the frictional torque on a bar from
the dark halo can be derived using perturbation theory (Weinberg 1985),
but N-body simulations can be more informative because they determine
both the torque on the bar and its resulting evolution. Simulations confirm
that the halo exerts a strong frictional torque on the bar, and show that in
response the bar pattern speed rapidly decays but the bar remains intact
(Sellwood 1980; Hernquist & Weinberg 1992; Debattista & Sellwood 1998,
2000).

These theoretical results imply that if massive dark halos are present in
the inner parts of barred galaxies, bars should rotate slowly. However, this
conclusion is inconsistent with observations: as we saw in §6.5.1a the ratio R
of the corotation radius to the bar semi-major axis (eq. 6.103) generally lies
in the range 0.9–1.3, where R ' 1 is the maximum allowed rotation rate for
a weak bar. This problem can be resolved if spiral galaxies have maximum
disks (§6.3.4), for then the halo mass is relatively small in the inner few kpc,
where interactions with the bar are strongest.

(e) Formation and evolution of binary black holes Since most galax-
ies contain black holes at their centers, it is natural to ask what happens to
the black holes when a satellite galaxy merges with a larger host.

As the satellite’s orbit decays, its stars are stripped by tidal forces that
become stronger and stronger as the orbit shrinks (eq. 8.15), until eventually
only its central black hole is left. The orbit of the black hole continues to
decay from dynamical friction, although at a slower rate since the mass of
the black hole is only a small fraction of the mass of the original satellite
galaxy. Assuming that the host galaxy also contains a central black hole, we
expect that eventually the two black holes will form a bound binary system.

After the black-hole binary is formed, its orbit continues to decay by dy-
namical friction. Equation (8.3) still describes the drag acting on each black
hole, with the maximum impact parameter bmax appearing in the Coulomb
logarithm now equal to the binary semi-major axis a.
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As the binary orbit shrinks, the relative orbital velocity v of the two
black holes grows. Eventually the orbital velocity greatly exceeds the velocity
dispersion σ of the stars in the galaxy. For a circular orbit, this occurs when
the binary semi-major axis a satisfies

G(M1 +M2)

a
� σ2 or a� 10 pc

M1 +M2

108 M�

(
200 km s−1

σ

)2

, (8.19)

where M1 and M2 are the masses of the black holes. Following the discussion
in §7.5.7, we shall say that the black-hole binary is hard when v > σ.

For hard binaries Chandrasekhar’s dynamical friction formula is no
longer valid, but an approximate formula for the rate of orbital decay can be
derived by arguments similar to those used to derive the hardening rate for
binary stars in equation (7.179). These yield (Quinlan 1996b)

d

dt

(
1

a

)
= −CGρ

σ
, C = 14.3, (8.20)

where ρ is the density of stars in the vicinity of the binary. This result is
almost independent of the eccentricity of the binary and depends only weakly
on the mass ratio M2/M1 so long as it is not too far from unity.5

Under the assumption that the galaxy has a constant-density core, we
can integrate equation (8.20) to obtain 1/a = constant −CGρt/σ. Choosing
the origin of time so that the constant is zero, we obtain a = σ/(CGρt).
The King radius of the galaxy, r0, is related to ρ and σ via 4πGρr2

0 = 9σ2

(eq. 4.106). Eliminating ρ with the help of this equation, we have finally

a(t) =
4πr2

0

9Cσt
= 0.005 pc

200 km s−1

σ

(
r0

100 pc

)2
Gyr

t
. (8.21)

Thus interactions with stars in the host galaxy can drive the black-hole
binary to semi-major axes as small as a few milliparsecs; the corresponding
relative speed for a circular orbit is

v =

√
G(M1 +M2)

a
= 2.1 × 104 km s−1

(
M1 +M2

108 M�

10−3 pc

a

)1/2

. (8.22)

There is an important case in which this analysis fails. Only stars with
angular momentum L ∼< [G(M1 +M2)a]1/2 interact strongly with the binary,
and if the binary semi-major axis a is much smaller than the King radius r0

then this is much smaller than the typical angular momentum L ∼ r0σ of

5 The numerical coefficient differs from the one in equation (7.179) because here the
binary components are much more massive than the field stars, while in equation (7.179)
the binary components and the field stars all have the same mass.
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stars in the core. Thus, only a small fraction of the stars in the core interact
strongly with the black holes. The region in phase space with such small
angular momentum is called the loss cone, by analogy with the loss cone
from which stars are consumed by a single black hole (§7.5.9). The mass of
stars in the loss cone shrinks as the binary semi-major axis decreases, and
eventually may become smaller than the black-hole mass. In this case the
binary can empty the loss cone, and the shrinkage of the semi-major axis will
stall. Once the loss cone has been emptied, the rate of continued evolution
is much less certain, being determined by the rate at which the loss cone is
slowly refilled by two processes: diffusion of angular momentum due to two-
body relaxation (Chapter 7), or torques from the host galaxy, if its overall
mass distribution is non-spherical (Yu 2002; Makino & Funato 2004).

If the binary semi-major axis shrinks far enough, gravitational radiation
takes over as the dominant cause of orbital decay. A binary black hole on
a circular orbit with semi-major axis a will coalesce under the influence of
gravitational radiation in a time (Peters 1964)

tgr =
5c5a4

256G3M1M2(M1 +M2)

= 5.81 Myr

(
a

0.01 pc

)4 (
108 M�
M1 +M2

)3
(M1 +M2)2

M1M2
.

(8.23)

The characteristic decay time due to gravitational radiation therefore scales
as a4. In contrast, the decay time (d ln a/dt)−1 due to dynamical friction
varies as 1/a. Consequently, the actual decay time, which is set by the more
efficient of the two processes, has a maximum at the semi-major axis where
the two decay times are equal (Begelman, Blandford & Rees 1980). This
radius is referred to as the bottleneck radius, and lies between 0.003 pc
and 3 pc depending on the galaxy density distribution and black-hole masses
(Yu 2002). The bottleneck radius is where binary black holes are most likely
to be found.

The decay time at the bottleneck is quite uncertain, since it depends
on both the extent to which the loss cone is depopulated, and the possible
contribution of gas drag. If the bottleneck decay time exceeds 10 Gyr, most
galaxies should contain binary black holes at their centers. If the decay
time is less than 10 Gyr, most black-hole binaries will eventually coalesce.
Coalescing black holes are of great interest because they generate strong
bursts of gravitational radiation that should ultimately be detectable, even
at cosmological distances, and thus provide a unique probe of both galaxy
evolution and general relativity.

(f) Globular clusters These systems may experience significant orbital
decay from dynamical friction. The rate of decay and inspiral time can be
described approximately by equations (8.11) and (8.12). For a typical cluster
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mass M = 2 × 105 M� (Table 1.3) the inspiral time from radius ri is

tfric = 64 Gyr
σ

200 km s−1

(
ri

1 kpc

)2

, (8.24)

where σ is the velocity dispersion of the host galaxy and we have assumed
ln Λ = 5.8, from equation (8.2) with bmax = 1 kpc and rh = 3 pc (Table 1.3).
Orbital decay is most important for low-luminosity host galaxies, which have
small radii and low velocity dispersions. Many dwarf elliptical galaxies ex-
hibit a deficit of clusters near their centers and compact stellar nuclei, which
may arise from the inspiral and merger of these clusters (Lotz et al. 2001).
A puzzling exception is the Fornax dwarf spheroidal galaxy, a satellite of the
Milky Way, which contains five globular clusters despite an estimated inspi-
ral time of only tfric ∼ 1 Gyr (Tremaine 1976a). Why these clusters have not
merged at the center of Fornax remains an unsolved problem.

8.2 High-speed encounters

One of the most important classes of interaction between stellar systems
is high-speed encounters. By “high-speed” we mean that the duration of
the encounter—the interval during which the mutual gravitational forces are
significant—is short compared to the crossing time within each system. A
typical example is the collision of two galaxies in a rich cluster of galaxies
(§1.1.5). The duration of the encounter is roughly the time it takes the two
galaxies to pass through one another; given a galaxy size r ∼ 10 kpc and the
typical encounter speed in a rich cluster, V ≈ 2000 km s−1, the duration is
r/V ≈ 5 Myr. For comparison the internal dispersion of a large galaxy is
σ ≈ 200 km s−1 so the crossing time is r/σ ≈ 50 Myr, a factor of ten larger.

As we saw at the beginning of this chapter, the effect of an encounter
on the internal structure of a stellar system decreases as the encounter speed
increases. Hence high-speed encounters can be treated as small perturbations
of otherwise steady-state systems.

We consider an encounter between a stellar system of mass Ms, the
subject system, and a passing perturber—a galaxy, gas cloud, dark halo,
black hole, etc.—of mass Mp. At the instant of closest approach, the centers
of the subject system and the perturber are separated by distance b and have
relative speed V . If the relative speed is high enough, then:
(i) The kinetic energy of relative motion of the two systems is much larger

than their mutual potential energy, so the centers travel at nearly uni-
form velocity throughout the encounter.

(ii) In the course of the encounter, the majority of stars will barely move
from their initial locations with respect to the system center. Thus the
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gravitational force from the perturber can be approximated as an im-
pulse of very short duration, which changes the velocity but not the po-
sition of each star. A variety of analytic arguments (see page 658) and
numerical experiments (Aguilar & White 1985) suggest that this im-
pulse approximation yields remarkably accurate results, even when
the duration of the encounter is almost as long as the crossing time.6

We now ask how the structure of the subject system is changed by the passage
of the perturber. We work in a frame that is centered on the center of mass
of the subject system before the encounter. Let mα be the mass of the αth
star of the subject system, and let v̇′

α be the rate of change in its velocity
due to the force from the perturber. We break v̇′

α into two components. The
component that reflects the rate of change of the center-of-mass velocity of
the subject system is

v̇cm ≡ 1

Ms

∑

β

mβv̇
′
β , where Ms ≡

∑

β

mβ (8.25a)

is the mass of the subject system. The component

v̇α ≡ v̇′
α − v̇cm (8.25b)

gives the acceleration of the αth star with respect to the center of mass.
Let Φ(x, t) be the gravitational potential due to the perturber. Then

v̇′
α = −∇Φ(xα, t), (8.26)

and equation (8.25b) can be written

v̇α = −∇Φ(xα, t) +
1

Ms

∑

β

mβ∇Φ(xβ , t). (8.27)

In the impulse approximation, xα is constant during an impulsive en-
counter, so

∆vα =

∫ ∞

−∞
dt v̇α =

∫ ∞

−∞
dt

[
−∇Φ(xα, t) +

1

Ms

∑

β

mβ∇Φ(xβ , t)

]
. (8.28)

The potential energy of the subject system does not change during the en-

counter, so in the center-of-mass frame the change in the energy, Ẽ, is simply

6 Condition (ii) almost always implies condition (i), but condition (i) need not imply
condition (ii): for example, a star passing by the Sun at a relative velocity v ' 50 km s−1

and an impact parameter b ' 0.01 pc will hardly be deflected at all and hence satisfies
condition (i). However, the encounter time b/v ' 200 yr is much larger than the orbital
period of most of the planets so the encounter is adiabatic, rather than impulsive.
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the change in the internal kinetic energy, K̃. Here tildes on the symbols are
a reminder that these quantities have units of mass×(velocity)2, in contrast
to the usual practice in this book where E and K denote energy per unit
mass. We have

∆Ẽ = ∆K̃ = 1
2

∑

α

mα

[
(vα + ∆vα)2 − v2

α

]

= 1
2

∑

α

mα

[
|∆vα|2 + 2vα · ∆vα

]
.

(8.29)

In any static axisymmetric system,
∑
αmαvα · ∆vα = 0 by symmetry (see

Problem 8.5). Thus the energy changes that are first-order in the small
quantity ∆v average to zero, and the change of internal energy is given by
the second-order quantity

∆Ẽ = ∆K̃ = 1
2

∑

α

mα|∆vα|2. (8.30)

This simple derivation masks several subtleties:

(a) Mass loss Equation (8.29) shows that the encounter redistributes a
portion of the system’s original energy stock: stars in which vα · ∆vα > 0
gain energy, while those with vα · ∆vα < 0 may lose energy. The energy
gained by some stars may be so large that they escape from the system,
and then the overall change in energy of the stars that remain bound can be
negative. Thus the energy per unit mass of the bound remnant system may
decrease (become more negative) as the result of the encounter, even though
the encounter always adds energy to the original system.

(b) Return to equilibrium After the increments (8.28) have been added
to the velocities of all the stars of the subject system, it no longer satisfies the
virial theorem (4.250). Hence the encounter initiates a period of readjust-
ment, lasting a few crossing times, during which the subject system settles
to a new equilibrium configuration.

If the perturbation is weak enough that no stars escape, some properties
of this new equilibrium can be deduced using the virial theorem. Let the

initial internal kinetic and total energies be K̃0 and Ẽ0, respectively. Then
the virial theorem implies that

K̃0 = −Ẽ0. (8.31)

Since the impulsive encounter increases the kinetic energy by ∆K̃ and leaves
the potential energy unchanged, the final energy is

Ẽ1 = Ẽ0 + ∆K̃. (8.32)
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Once the subject system has settled to a new equilibrium state, the final
kinetic energy is given by the virial theorem,

K̃1 = −Ẽ1 = −(Ẽ0 + ∆K̃) = K̃0 − ∆K̃. (8.33)

Thus if the impulsive encounter increases the kinetic energy by ∆K̃, the
subsequent relaxation back to dynamical equilibrium decreases the kinetic

energy by 2∆K̃!

(c) Adiabatic invariance The impulse approximation is valid only if
the encounter time is short compared to the crossing time. In most stellar
systems the crossing time is a strong function of energy or mean orbital
radius, so the impulse approximation is unlikely to hold for stars near the
center. Indeed, sufficiently close to the center, the crossing times of most
stars may be so short that their orbits deform adiabatically as the perturber
approaches (§3.6.2c). In this case, changes that occur in the structure of the
orbits as the perturber approaches will be reversed as it departs, and the
encounter will leave most orbits in the central region unchanged.

If we approximate the potential near the center of the stellar system
as that of a harmonic oscillator with frequency Ω, then the energy change
imparted to the stars in an encounter of duration τ is proportional to
exp(−αΩτ) for Ωτ � 1, where α is a constant of order unity (see §3.6.2a).
However, this strong exponential dependence does not generally hold in re-
alistic stellar systems. The reason is that some of the stars are in resonance
with the slowly varying perturbing force, in the sense that m·Ω ' 0 where the
components of Ω(J) are the fundamental frequencies of the orbit (eq. 3.190),
and m is an integer triple. At such a resonance, the response to a slow
external perturbation is large—in the language of Chapter 5, the polariza-
tion matrix diverges (eq. 5.95). A careful calculation of the contribution of
both resonant and non-resonant stars shows that the total energy change
in an encounter generally declines only as (Ωτ)−1 for Ωτ � 1, rather than
exponentially (Weinberg 1994a).

8.2.1 The distant-tide approximation

The calculation of the effects of an encounter simplifies considerably when
the size of the subject system is much less than the impact parameter.

Let Φ(x, t) be the gravitational potential of the perturber, in a frame in
which the center of mass of the subject system is at the origin. When the
distance to the perturber is much larger than the size of the subject system,
the perturbing potential will vary smoothly across it, and we may therefore
expand the field −∇Φ(x, t) in a Taylor series about the origin:

− ∂Φ

∂xj
(x, t) = −Φj(t) −

∑

k

Φjk(t)xk + O(|x|2), (8.34a)
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where x = (x1, x2, x3) and

Φj ≡
∂Φ

∂xj

∣∣∣∣
x=0

; Φjk ≡ ∂2Φ

∂xj∂xk

∣∣∣∣
x=0

. (8.34b)

Dropping the terms O(|x|2) constitutes the distant-tide approximation.
Encounters for which the both the distant-tide and impulse approximations
are valid are often called tidal shocks.

Substituting into equations (8.25a) and (8.26), we find that Φjk does
not contribute to the center-of-mass acceleration v̇cm, because the center of
mass is at the origin so

∑
βmβxβ = 0. Similarly, substituting (8.34a) into

(8.27), we find that Φj does not contribute to v̇α because
∑

βmβ = Ms.
Thus

v̇α = −
3∑

j,k=1

êjΦjkxαk . (8.35)

If the perturber is spherical and centered at X(t), we may write Φ(x, t) =
Φ (|x −X(t)|) and (cf. Box 2.3)

Φj = −Φ′Xj

X
; Φjk =

(
Φ′′ − Φ′

X

)
XjXk

X2
+

Φ′

X
δjk, (8.36)

where X = |X| and all derivatives of Φ are evaluated at X .
An important special case occurs when the impact parameter is large

enough that we may approximate the perturber as a point mass Mp. Then
Φ(X) = −GMp/X and we have

Φj = −GMp

X3
Xj ; Φjk =

GMp

X3
δjk −

3GMp

X5
XjXk. (8.37)

Thus the equation of motion (8.35) becomes

v̇α = −GMp

X3
xα +

3GMp

X5
(X · xα)X. (8.38)

We argued at the beginning of this section that in the impulse approxi-
mation, the orbit of the perturber can be assumed to have constant relative
velocity V. We align our coordinate axes so that V lies along the z axis, and
the perturber’s orbit lies in the yz plane, and choose the origin of time to
coincide with the point of closest approach. Then X(t) = (0, b, V t), where b
is the impact parameter, and we have

v̇α = − GMpxα
[b2 + (V t)2]3/2

+
3GMp(yαb+ zαV t)

[b2 + (V t)2]5/2
(bêy + V têz). (8.39)
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In the impulse approximation, xα is constant during the encounter, so

∆vα =

∫ ∞

−∞
dt v̇α

= GMp

∫ ∞

−∞
dt

{
− (xα, yα, zα)

[b2 + (V t)2]3/2
+ 3(0, b, V t)

yαb+ zαV t

[b2 + (V t)2]5/2

}

=
GMp

b2V

(
− xα

∫ ∞

−∞

du

(1 + u2)3/2
, yα

∫ ∞

−∞
du

2 − u2

(1 + u2)5/2
,

zα

∫ ∞

−∞
du

2u2 − 1

(1 + u2)5/2

)
,

(8.40)
where we have made the substitution u = V t/b. Evaluating the integrals in
equation (8.40), we obtain finally

∆vα =
2GMp

b2V
(−xα, yα, 0). (8.41)

The error introduced in this formula by the distant-tide approximation is of
order |x|/b � 1. The velocity increments tend to deform a sphere of stars
into an ellipsoid whose long axis lies in the direction of the perturber’s point
of closest approach. This distortion is reminiscent of the way in which the
Moon raises tides on the surface of the oceans.

By equations (8.30) and (8.41) the change in the energy per unit mass
in the distant-tide approximation is (Spitzer 1958)

∆Ẽ =
2G2M2

p

V 2b4

∑

α

mα(x2
α + y2

α). (8.42)

If the subject system is spherical, then
∑
mαx

2
α =

∑
mαy

2
α = 1

3Ms〈r2〉,
where 〈r2〉 is the mass-weighted mean-square radius of the stars in the subject
system. In this case equation (8.42) simplifies to

∆Ẽ =
4G2M2

pMs

3V 2b4
〈r2〉. (8.43)

Equation (8.43) shows that for large impact parameter b the energy in-
put in tidal shocks varies as b−4. Thus the encounters that have the strongest
effect on a stellar system are those with the smallest impact parameter b,
which unfortunately are also those for which the approximation of a point-
mass perturber is invalid. Fortunately, it is a straightforward numerical
task to generalize these calculations to a spherical perturber with an arbi-
trary mass distribution, using equations (8.30), (8.35), and (8.36) (Aguilar &
White 1985; Gnedin, Hernquist, & Ostriker 1999). Let U(b/rh) be the ratio
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Figure 8.4 Energy input in a tidal
shock due to a perturber with a
Plummer or Hernquist mass distribu-
tion (eqs. 2.44b and 2.67). Here b is
the impact parameter, rh is the half-
mass radius of the Plummer or Hern-
quist model, and U is the ratio of
the energy input to that caused by a
point mass perturber (eq. 8.44). The
integral W =

R
dxU(x)/x3 = 0.5675

for the Plummer model and 1.239 for
the Hernquist model (eq. 8.52).

of the impulsive energy change caused by a perturber of half-mass radius rh

to the input from a point of the same total mass, which is given by (8.43).
Then we have

∆Ẽ =
4G2M2

pMs

3V 2b4
U(b/rh)〈r2〉. (8.44)

Figure 8.4 shows U(x) for the Plummer and Hernquist mass distributions.

8.2.2 Disruption of stellar systems by high-speed encounters

In many cases we are interested in the cumulative effect of encounters on a
stellar system that is traveling through a sea of perturbers. Let us assume
that the perturbers have mass Mp and number density np, and a Maxwellian
df with velocity dispersion σp in one dimension. Similarly, we assume that
the subject system is a randomly chosen member of a population having a
Maxwellian velocity distribution with dispersion σs.

Consider the rate at which the subject system encounters perturbers
at relative speeds in the range (V, V + dV ) and impact parameters in the
range (b, b+ db). With our assumption of Maxwellian velocity distributions,
the distribution of relative velocities of encounters is also Maxwellian, with
dispersion (Problem 8.8)

σrel = (σ2
s + σ2

p)1/2. (8.45)

Thus the probability that the subject system and perturber have relative
speed in the given range is

dP =
4πV 2dV

(2πσ2
rel)

3/2
exp

(
− V 2

2σ2
rel

)
, (8.46)
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and the average rate at which a subject system encounters perturbers with
speed V and impact parameter b is

Ċ = np V 2πb db dP =
2
√

2πnpb db

σ3
rel

exp

(
− V 2

2σ2
rel

)
V 3dV. (8.47)

In the distant-tide approximation, the energy input to a star is propor-
tional to the square of its radius (eq. 8.42). So we focus on stars in the outer
parts of the subject system, for which we can assume that the gravitational
potential of the subject system is Keplerian. In a Keplerian potential, the
time averaged mean-square radius of an orbit with semi-major axis a and
eccentricity e is (1 + 3

2e
2)a2 (Problem 3.9). If the df of the subject sys-

tem is isotropic in velocity space, the average of e2 over all the stars with a
given semi-major axis or energy is 1

2 (Problem 4.8). Thus, if we average over
stars with different orbital phases and eccentricities but the same energy,
〈r2〉 = 7

4a
2, and equation (8.44) yields an average change in energy per unit

mass of

〈∆E〉 =
〈∆Ẽ〉
Ms

=
7G2M2

pa
2

3V 2b4
U(b/rh). (8.48)

From Figure 8.4 we see that for b � rh, U ' 1 so 〈∆E〉 ∝ b−4 is a steeply
declining function of impact parameter. The frequency of encounters with
impact parameters in the range (b, b+db) is proportional to b db so the rate at
which energy is injected by encounters in this range decreases with increasing
b as db/b3. On the other hand, U rapidly decreases with decreasing b once
b ∼< rh, with the result that encounters with impact parameters b ∼ rh inflict
the most damage.

If the damage from a single encounter with b ∼ rh is not fatal for the
system, we say that we are in the diffusive regime because the effects from
a whole sequence of encounters will accumulate, as in the diffusive relaxation
processes that we discussed in Chapter 7. If, by contrast, a single encounter
at impact parameter b ∼ rh will shatter the system, the damage sustained by
the system will be small until it is disrupted by a single, closest encounter,
and we say that we are in the catastrophic regime.

(a) The catastrophic regime We first determine the largest impact
parameter parameter b1 at which a single encounter can disrupt the system.
Since we are in the catastrophic regime, we may assume that b1 ∼> rh so
the energy per unit mass injected by an encounter at impact parameter b1

is given by equation (8.48) with U(b/rh) ' 1. Equating this to the absolute
value of the energy of an individual star E = −GMs/2a (eq. 3.32), we obtain

1 =
〈∆E〉
|E| =

14GM2
pa

3

3MsV 2b41
so b1(V ) = 1.5

(
GM2

pa
3

MsV 2

)1/4

. (8.49)
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The rate at which disruptive encounters occur is then given by equation
(8.47):

R ≡ 2
√

2πnp

σ3
rel

∫ ∞

0

dV V 3 exp

(
− V 2

2σ2
rel

)∫ b1(V )

0

b db

=

√
14

3
π
G1/2npMpa

3/2

M
1/2
s

.

(8.50)

The disruption time of a subject system with semi-major axis a is

td ' R−1 ' kcat
1

Gρp

(
GMs

a3

)1/2

, (8.51)

where ρp ≡Mpnp is the mass density of perturbers and kcat is of order unity.
Our analytic treatment yields kcat = 0.15 but Monte-Carlo simulations of
catastrophic disruption suggest that kcat ' 0.07 (Bahcall, Hut, & Tremaine
1985). It is remarkable that the disruption time in the catastrophic regime
is independent of both the velocity dispersion σrel and the mass of individual
perturbers, so long as their overall mass density ρp is fixed.

(b) The diffusive regime In this regime, each encounter imparts a ve-
locity impulse ∆v (eq. 8.28) that satisfies |∆v| � |v|. The corresponding
change in the energy per unit mass is ∆E = v ·∆v + 1

2 |∆v|2. Thus the dif-

fusion term v ·∆v is much larger than the heating term 1
2 |∆v|2. On the

other hand the direction of the velocity impulse, which depends on the rel-
ative orientation of the star and the perturber, is usually uncorrelated with
the direction of the velocity v of the star relative to the center of mass of the
subject system, which depends on the orbital phase of the star. Thus the
average of the diffusion term over many encounters is zero, while the heat-
ing term systematically increases the energy.7 An accurate description of the
evolution of the energy under the influence of many high-speed encounters
requires the inclusion of both terms, using the Fokker–Planck equation that
we described in §7.4.2. Nevertheless, for the sake of simplicity, and since our
estimates will be crude anyway, we focus our attention exclusively on the
heating term.

Combining equations (8.47) and (8.48), we find that the rate of energy
increase for stars with semi-major axis a is

Ė = Ċ 〈∆E〉

=
14

3

√
2π
G2M2

pnpa
2

σ3
rel

∫ ∞

0

dV V exp

(
− V 2

2σ2
rel

)∫
db

b3
U(b/rh)

=
14

3

√
2π
G2M2

pnpa
2

σrelr2
h

W, where W ≡
∫

dx

x3
U(x).

(8.52)

7 This argument is similar to, but distinct from, the argument leading from equa-
tion (8.29) to equation (8.30), which involved an average over the effects of a single col-
lision on many stars rather than an average over the effect of many collisions on a single
star.



664 Chapter 8: Collisions and Encounters of Stellar Systems

In general, W must be evaluated numerically for a given mass model. For
a Plummer model, W = 0.5675 and for a Hernquist model W = 1.239
(Figure 8.4).

For point-mass perturbers, U(x) = 1, and the heating rate is

Ė =
14

3

√
2π
G2M2

pnpa
2

σrel

∫
db

b3
. (8.53)

This integral over impact parameter diverges at small b. In practice, the
distant-tide approximation fails when the impact parameter is comparable
to the size of the subject system, so the integration should be cut off at this
point.

Comparing the heating rate (8.52) to the energy of an individual star
E = − 1

2GMs/a, we obtain the time required for the star to escape:

td ' |E|
Ė

' 0.043

W

σrelMsr
2
h

GM2
pnpa3

. (8.54)

For point-mass perturbers, we use equation (8.53), with the integration over
impact parameter cut off at bmin:

td ' |E|
Ė

' 0.085
σrelMsb

2
min

GM2
pnpa3

. (8.55)

These are only approximate estimates. A more accurate treatment would
employ the Fokker–Planck equation (7.123); in this equation the diffusion

coefficient D[∆E] is the quantity here called Ė, and the diffusion coefficient
D[(∆E)2] would be computed similarly as the rate of change of the mean-
square energy. Generally this treatment gives a half-life for a star with a
given semi-major axis that is a few times shorter than the estimate (8.54).

(c) Disruption of open clusters The masses of open clusters lie in the
range 102 M� ∼< Mc ∼< 104 M�, and their half-mass radii and internal veloc-
ity dispersions are rh,c ≈ 2 pc and σc ≈ 0.3 km s−1 (Table 1.3). The crossing
time at the half-mass radius is rh,c/σc ≈ 10 Myr. Much of the interstellar
gas in our Galaxy is concentrated into a few thousand giant molecular
clouds of mass Mgmc ∼> 105 M� and radius rh,gmc ≈ 10 pc. Both open
clusters and molecular clouds travel on nearly circular orbits through the
Galactic disk, with random velocities of order 7 km s−1; thus the dispersion
in relative velocity is σrel '

√
2 × 7 km s−1 ' 10 km s−1 (eq. 8.45). The du-

ration of a cluster-cloud encounter with impact parameter b > rgmc is then
b/σrel ' (b/10 pc) Myr, which is shorter than the cluster crossing time for
b ∼< 100 pc. Thus we may use the impulse approximation to study the effect
of close encounters with molecular clouds on open clusters.

The impact parameter at which a typical encounter with a point-mass
perturber would disrupt the cluster is given by equation (8.49); identifying
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Figure 8.5 The fraction of
nearby open clusters younger
than a given age. The cluster
sample is from Piskunov et al.
(2007). The curve is derived
from a simple theoretical model
in which clusters are born at
a constant rate and the prob-
ability that a cluster survives
for time t is exp(−t/τ) with
τ ' 300 Myr. A Kolmogorov–
Smirnov test (Press et al. 1986)
shows that the two distribu-
tions are statistically indistin-
guishable.

the open cluster with the subject system and the molecular cloud with the
perturber we obtain

b1(σrel) = 15 pc

(
Mgmc

105 M�

)1/2(
300M�
Mc

)1/4

×
(

a

2 pc

)3/4(
10 km s−1

σrel

)1/2

.

(8.56)

Since this distance is larger than the cloud size rh,gmc ≈ 10 pc, even when
the semi-major axis is as small as the typical cluster half-mass radius of 2 pc,
the encounters are in the catastrophic regime. Hence the disruption time is
given by equation (8.51):

td ' 250 Myr
kcat

0.07

0.025M� pc−3

ρgmc

(
Mc

300M�

)1/2(
2 pc

a

)3/2

, (8.57)

where the mean density of gas in molecular clouds is taken to be about half
of the total gas density in the solar neighborhood (see Table 1.1).

This result is quite uncertain, not only because the derivation of equa-
tion (8.57) is highly idealized, but also because of uncertainties in the molec-
ular cloud parameters and the large dispersion in open-cluster parameters.
Nevertheless, the available data suggest that the median lifetime of open
clusters is remarkably close to this simple estimate (Figure 8.5). In fact, it
was the observation that there are few open clusters with ages ∼> 500 Myr
that prompted Spitzer (1958) to argue that clusters might be dissolved by
the very clouds that bring them into the world.

(d) Disruption of binary stars Binary stars can be thought of as clus-
ters with just two members and, like clusters, they can be disrupted by



666 Chapter 8: Collisions and Encounters of Stellar Systems

encounters with passing perturbers. Obviously the vulnerability of a binary
to disruption is an increasing function of the semi-major axis a of its com-
ponents. Binary semi-major axes are usually measured in terms of the as-
tronomical unit, 1 AU = 1.496× 1011 m = 4.848× 10−6 pc (approximately
the mean Earth-Sun distance; see Appendix A).

First we consider disruption of binaries in the solar neighborhood by
passing stars. We focus on stars—both the binary components and their
perturbers—that have ages comparable to the age of the Galaxy and masses
comparable to that of the Sun, since these contain most of the stellar mass
in the solar neighborhood. The velocity distribution of such stars is triaxial,
but we may approximate this distribution by an isotropic Maxwellian with a
one-dimensional dispersion σ? ' 30 km s−1 (1/

√
3 of the rms velocity, from

Table 1.2). The velocity distribution is the same for single and binary stars,
so the relative dispersion is σrel =

√
2 × 30 km s−1 ' 40 km s−1 (eq. 8.45).

According to equation (8.49), the maximum impact parameter for a
catastrophic encounter between a binary star of total mass Mb and a passing
star of mass Mp is

b1(σrel) ' 1.5a

(
GM2

p

Mbσ2
rela

)1/4

' 0.11a

(
2M�
Mb

104 AU

a

)1/4(
Mp

1M�

40 km s−1

σrel

)1/2

.

(8.58)

Unless the semi-major axis is so small that the probability of a close en-
counter is negligible, this result shows that b1 ∼< a for solar-type stars in the
solar neighborhood, and thus that the encounters are in the diffusive regime.
The disruption time is given by equation (8.55), setting bmin ∼ a, where the

distant-tide approximation fails; thus (Öpik 1932; Heggie 1975)

td ' kdiff
σrelMb

GM2
pnpa

, (8.59)

where kdiff ≡ 0.085(bmin/a)2. We can refine this estimate by recalling the
discussion of the disruption of soft binaries in §7.5.7a; equation (7.173) in
that section describes the disruption time in the diffusive regime for the
case in which the component stars of the binary have the same mass as
the perturbing stars, so Mb = 2Mp, and the velocity dispersion σ of the

perturbers and the binaries is the same, so σrel =
√

2σ. Equating the two
expressions, we find kdiff ' 0.022/ ln Λ, where Λ ≈ σ2

rela/(GMp). For binaries
with a ∼ 104 AU in the solar neighborhood, this formula yields kdiff ' 0.002,
and Monte Carlo simulations yield a similar value (Bahcall, Hut, & Tremaine

1985). The rather small value of kdiff arises in part because Ė grows as
a2, so the heating rate accelerates as the binary gains energy, and in part
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because close encounters with either member of the binary contribute to the
disruption rate, an effect not accounted for in equation (8.53).

In the solar neighborhood, equation (8.59) yields

td ' 15 Gyr
kdiff

0.002

σrel

40 km s−1

Mb

2M�

(
1M�
Mp

)2
0.05 pc−3

np

104 AU

a
. (8.60)

Thus the upper limit to the semi-major axes of old binary stars in the solar
neighborhood is a ' 2 × 104 AU.

Now consider the effects of molecular clouds. Replacing the perturber
mass Mp in equation (8.58) by the typical cloud mass Mgmc ≈ 105 M�, we
find that the maximum impact parameter for impulsive disruption is

b1(σrel) ' 1.9 pc

(
2M�
Mb

)1/4 ( a

104 AU

)3/4
(
Mgmc

105 M�

30 km s−1

σrel

)1/2

.

(8.61)
We have used a fiducial value σrel = 30 km s−1, which is the sum in quadra-
ture of the dispersions of the stars, σ? ' 30 km s−1, and the clouds, σgmc '
7 km s−1. Since b1 is smaller than the cloud radius rh,gmc ≈ 10 pc, the en-
counters are in the diffusive regime. The disruption time can be estimated
from equation (8.54), using the value W = 0.5675 appropriate for a Plummer
model of the cloud’s density distribution:

td ' 0.075
σrelMbr

2
h,gmc

GM2
gmcngmca3

. (8.62)

The cloud parameters Mgmc, ngmc, and rh,gmc are all poorly known. For-
tunately, they enter this equation in terms of the observationally accessible
combinations Σgmc ≡ (M/πr2

h)gmc, the mean surface density of a cloud,
and ρgmc = (Mn)gmc, the mean density of molecular gas. We adopt
Σgmc ' 300M� pc−2 and ρgmc ' 0.025M� pc−3 (Hut & Tremaine 1985).
Thus

td ' 380 Gyr
Mb

2M�

(
104 AU

a

)3
σrel

30 km s−1
. (8.63)

Although this result is subject to substantial uncertainties, together with
equation (8.60) it implies that binaries with semi-major axes ∼> 2×104 AU '
0.1 pc cannot survive in the solar neighborhood for its lifetime of ∼ 10 Gyr,
due to the combined effects of high-speed encounters with molecular clouds
and other stars.

The widest known binary stars in the disk do indeed have separations
of about 0.1 pc (Chanamé & Gould 2004); however, there is little evidence
for or against the cutoff in the binary distribution that we have predicted at
this separation (Wasserman & Weinberg 1987). Binary stars in the stellar
halo appear to exist with even larger separations; such binaries can survive
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because their velocity σrel relative to the disk is much higher, and because
they spend only a fraction of their orbit in the disk, so the disruptive effects
from disk stars and molecular clouds are much weaker (Yoo, Chanamé, &
Gould 2004).

(e) Dynamical constraints on MACHOs One possible constituent
of the dark halo is machos, compact objects such as black holes or non-
luminous stars (§1.1.2). Suppose that machos contribute a fraction fh ∼> 0.5
of the radial force in the solar neighborhood; this is close to the maximum
allowed since the disk contributes a fraction fd = 1−fh ∼> 0.4 (§6.3.3). Then
limits on the optical depth of the dark halo to gravitational lensing (Alcock
et al. 2001; Tisserand et al. 2007) imply that the macho mass

m ∼< 10−7 M� or m ∼> 30M�. (8.64)

In §7.4.4 we showed that encounters between machos and disk stars add
kinetic energy to the disk stars and thereby increase both the velocity dis-
persion and the disk thickness; even if this is the only mechanism that heats
the disk—and we shall see in §8.4 that it is not—the observed dispersion
requires that m ∼< (5–10) × 106 M� (eq. 7.104). We now investigate what
additional constraints can be placed on the macho mass by the effect of
high-speed encounters of machos on binary stars.

We write the number density of machos as n = ρ/m. If the macho

mass is small enough, disruption is in the diffusive regime, and we can use
equation (8.59) to estimate the disruption time:

td,diff ' kdiff
σrelMb

Gmρa
(kdiff ≈ 0.002), (8.65a)

where Mb is the mass of the binary. In the catastrophic regime, the disrup-
tion time is given by equation (8.51):

td,cat ' kcat
M

1/2
b

G1/2ρa3/2
(kcat ≈ 0.07). (8.65b)

The transition between these two regimes occurs when the critical impact
parameter b1(σrel) (eq. 8.49) is of order the binary semi-major axis a; how-
ever, a more accurate way to determine the transition is to set the actual
disruption time to

td = min (td,diff , td,cat) (8.66)

and identify the transition with the macho mass mcrit at which td,diff =
td,cat. Thus we find

mcrit =
kdiff

kcat

(
σ2

relMba

G

)1/2

(kdiffkcat ≈ 0.03). (8.67)
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Notice that for m > mcrit, the disruption time td,cat depends on the overall
density contributed by the machos but not their individual masses. Thus the
survival of a given type of binary system either rules out all macho masses
above mcrit and some masses below mcrit (if the system’s age exceeds td,cat)
or does not rule out any masses (if its age is less than td,cat).

To plug in numbers for the solar neighborhood, we use the simple model
for the df of machos in the dark halo that we described on page 584. In
this model the local density of machos is given by equation (7.94), and the
relative dispersion between machos is σrel =

√
2σ = vc, where vc is the

circular speed (eq. 8.45)—this is also roughly the dispersion between the
machos and stars, whether they belong to the disk or the stellar halo. Then

mcrit ' 30M�
kdiff/kcat

0.03

(
Mb

2M�

a

104 AU

)1/2
vc

220 km s−1
. (8.68)

To evaluate the disruption time in the catastrophic regime, m > mcrit, we
use equation (8.65b), and take the local macho density from equation (7.94).
Assuming the solar radius R0 = 8 kpc and the solar circular speed vc = v0 =
220 km s−1, we have

td,cat ' 20 Gyr
0.5

fh

kcat

0.07

(
104 AU

a

)3/2

. (8.69)

For dark-halo fractions fh ' 0.5, the disruption time td,cat is larger than
10 Gyr for semi-major axes a ∼< 1.6 × 104 AU. In the diffusive regime, the
disruption time is even longer. Disk binaries with semi-major axes larger
than this limit are likely to be disrupted by encounters with other disk stars
(eq. 8.59) and so we cannot probe the macho mass with disk binaries. Halo
binaries are much less susceptible to other stars and molecular clouds, be-
cause they spend only a small fraction of their time in the disk, and therefore
might be present with semi-major axes large enough to provide useful con-
straints on the macho population. Thus, if a population of halo binaries with
a ∼> 2 × 104 AU were discovered, we could rule out a substantial contribu-
tion to the local gravitational field for all macho masses exceeding 30M�
(eq. 8.68). Yoo, Chanamé, & Gould (2004) offer evidence that halo bina-
ries exist with semi-major axes as large as a ∼ 105 AU. Together with the
microlensing constraint (8.64) this conclusion, if verified by larger samples,
would virtually rule out machos as a significant constituent of the dark halo
in the solar neighborhood.

(f) Disk and bulge shocks Globular clusters in disk galaxies pass
through the disk plane twice per orbit. As they cross the plane, the gravita-
tional field of the disk exerts a compressive gravitational force which is su-
perposed on the cluster’s own gravitational field, pinching the cluster briefly
along the normal to the disk plane. Repeated pinching at successive passages
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through the disk can eventually disrupt the cluster. This process is known
as disk shocking (Ostriker, Spitzer, & Chevalier 1972).

Let Z ≡ Zcm +z be the height above the disk midplane of a cluster star,
with Zcm(t) the height of the cluster’s center of mass. Then so long as the
cluster is small compared to the disk thickness, we may use the distant-tide
approximation, and equation (8.35) yields

v̇z = −
(
∂2Φd

∂Z2

)

cm

z, (8.70)

where vz = ż is the z-velocity of the star relative to the cluster center.
The gravitational potential arising from a thin disk of density ρd(R, z)

is Φd(R,Z), where (eq. 2.74)

d2Φd

dZ2
= 4πGρd. (8.71)

Thus
v̇z = −4πGρd(R,Zcm)z, (8.72)

where R is the radius at which the cluster crosses the disk.
If the passage of the cluster through the disk is sufficiently fast for the

impulse approximation to hold, z is constant during this passage, and the
velocity impulse is

∆vz =

∫
dt v̇z = −4πGz

∫
dt ρd[R,Zcm(t)]. (8.73)

To a good approximation we can assume that the velocity of the center of
mass of the cluster is constant as it flies through the disk, so Zcm(t) =
Vzt + constant , where Vz is the Z-velocity of the cluster; eliminating the
dummy variable t in favor of Zcm we have

∆vz = −4πGz

|Vz |

∫
dZcm ρd(R,Zcm) = −4πGΣd(R)z

|Vz |
, (8.74)

where Σd(R) ≡
∫

dZρd(R,Z) is the surface density of the disk.
From equation (8.30), the energy per unit mass gained by the cluster in

a single disk passage is

∆E = 1
2 〈(∆vz)2〉 =

8π2G2Σ2
d

V 2
z

〈z2〉. (8.75)

If the cluster is spherically symmetric, the average value of z2 for stars at a
given radius r is 1

3r
2. As shown on page 662, if the cluster has an ergodic df
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the average value of r2 for stars with a given semi-major axis is 7
4a

2. Thus
the energy gain is

∆E =
14π2G2Σ2

da
2

3V 2
z

. (8.76)

The cluster passes through the disk twice in each orbital period Tψ, so the
disruption time is

td ' 1
2Tψ

|E|
∆E

= 0.005
MgcV

2
z Tψ

GΣ2
da

3
, (8.77)

where we have set E = 1
2GMgc/a, since the potential is Keplerian in the

outer parts of the cluster, where the effect of disk shocking is strongest.8

In the solar neighborhood the Galactic disk has a midplane volume den-
sity ρ ' 0.10M� pc−3, and surface density Σd ' 50M� pc−2 (Table 1.1).
The effective thickness of the disk is h ≡ Σd/ρ ' 500 pc. If we approximate
the potential of the Milky Way as spherically symmetric, with circular speed
vc at all radii, then the mean-square speed of a collection of test particles
such as clusters is 〈V 2〉 = v2

c (Problem 4.35), so if the cluster distribution
is spherical, we expect that 〈V 2

z 〉 = 1
3v

2
c ; thus 〈V 2

z 〉1/2 ' 130 km s−1 for
vc ' 220 km s−1. Equation (8.77) can be rewritten

td ' 340 Gyr
Mgc

2 × 105 M�

Tψ
200 Myr

×
(

Vz
130 km s−1

)2(
50M� pc−2

Σd

)2(
10 pc

a

)3

.

(8.78)

This result is based on the impulse approximation, whose validity we must
check. The duration of the encounter of the cluster with the disk is τ ≈
h/Vz ' 4 Myr for Vz ' 130 km s−1 and h ' 500 pc. The crossing time in
the outer parts of the cluster is roughly the inverse of the orbital frequency,
(a3/GMgc)

1/2 ' 1 Myr (a/10 pc)3/2 for a cluster mass of 2 × 105 M�. Thus
the impulse approximation is valid only in the outer parts of the cluster,
a ∼> 30 pc, and at these semi-major axes the disruption time is ∼< 10 Gyr. We
conclude that disk shocks can lead to substantial erosion of the outermost
stars in a typical globular cluster orbiting at the solar radius. For clusters
orbiting at smaller radii, disk shocks are even more important, since the
orbital time is shorter and the disk surface density is larger.

Bulge shocking is a closely related process. Here the rapidly changing
external gravitational field arises as a cluster on a highly eccentric orbit

8 A subtle but important assumption in deriving this result is that the orbital phase
and thus the value of the height z is uncorrelated between successive disk passages. This
assumption is plausible because the interval between successive disk passages is likely to
vary considerably for an eccentric, inclined cluster orbit in a realistic disk galaxy potential.
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plunges through the bulge of a disk galaxy or the dense center of an elliptical
galaxy. In this case the use of the term “shock” is less apt, since the duration
of the encounter is not very short compared to the crossing time, even in the
outer parts of the cluster, and the impulse approximation is not strictly
valid. Nevertheless, the results are similar: the encounters systematically
pump energy into the stars in the outer cluster, leading to the escape of
stars and the eventual dissolution of the cluster.

The evolution of the globular-cluster population under the influence of
disk and bulge shocks is described in §7.5.6.

(g) High-speed interactions in clusters of galaxies The study of
galaxies in clusters provides unique insights into galaxy formation and evo-
lution, not only because many dynamical processes are stronger and more
obvious in the high-density cluster environment, but also because clusters can
be detected at high redshift, enabling the evolution of the galaxy population
to be studied directly.

The relative velocities between galaxies in a rich cluster, ∼ 2000 km s−1,
are so large that collisions of galaxies last only a few Myr, far less than the
crossing time in the galaxy, so they can be treated by the impulse approxi-
mation. We model the cluster as a singular isothermal sphere, with density
ρ(r) = σ2/(2πGr2) (eq. 4.103). In clusters the galaxies and dark matter have
a similar distribution, so it is reasonable to assume that the ratio M? ≡ ρ/n
of the mass density to the galaxy number density—in other words the mass
per galaxy—is constant. (Note that this is not necessarily the mass of the
galaxy, since most of the mass is probably spread uniformly through the
cluster and is not associated with any individual galaxies.) We focus on
galaxies with the characteristic luminosity L? = 2.9×1010L� in the R band
(eq. 1.18). The mass-to-light ratio in rich clusters is ΥR ≈ 200Υ� (eq. 1.25)
so the mass associated with each L? galaxy is

M? = ΥRL? ≈ 6 × 1012 M�. (8.79)

Consequently, the number density of L? galaxies is

n(r) =
ρ(r)

M?
=

σ2

2πGM?r2
. (8.80)

Now let us estimate the rate at which a given galaxy encounters other
galaxies. The velocity dispersion in clusters is so high that gravitational
focusing is negligible, so if galaxies are deemed to collide when their centers
come within a collision radius rcoll, then from equation (7.194) the collision
time is given by

1

tcoll
= 4

√
πnσr2

coll '
2√
π

σ3r2
coll

GM?r2
. (8.81)
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After replacing rcoll with 2rh, where rh is the galaxy radius, equation (8.81)
yields

tcoll ' 0.2
GM?r

2

σ3r2
h

' 6 Gyr

(
800 km s−1

σ

)3(
20 kpc

rh

r

0.5 Mpc

)2
M?

5 × 1012 M�
.

(8.82)
Thus the stellar component of a galaxy in the central 0.5 Mpc of a rich cluster
is likely to have suffered at least one close encounter with another galaxy.
What are the consequences of such encounters?

As we have seen, high-speed collisions between galaxies have only a
small effect on the distribution of stars, but if both galaxies contain gas disks
the gas will suffer a violent collision and be lost from the galaxies. Spitzer
& Baade (1951) suggested that collisions might transform spiral galaxies
into gas-free lenticular galaxies, thereby explaining the observation that spi-
rals are replaced by lenticulars in high-density environments such as clusters
(§1.1.3). An alternative and more likely explanation (Gunn & Gott 1972) is
that ram pressure, heating, and other interactions with hot intergalactic gas
in the cluster have gradually eroded the gas disks of spiral galaxies (see van
Gorkom 2004 for a review).

Isolated galaxies have dark halos that extend to several hundred kpc. In
clusters, encounters strip off the outer parts of these halos, so we expect that
cluster galaxies will have much smaller and less massive halos than galaxies
in low-density environments. We can make a crude estimate of this effect
using equation (8.54). For this purpose, we assume that the subject system
and the perturber are identical. Thus Ms = Mp = M and σrel =

√
2σ

where σ is the velocity dispersion in the cluster. We set the dimensionless
parameter W ≈ 1, and set rh = a to estimate the disruption time for stars
at the half-mass radius. Thus

td ' 0.06
σ

GMnrh
. (8.83)

We eliminate the number density n using equation (8.80), and write the mass
M of the galaxy in terms of rh and its velocity dispersion σ2

s = 1
3 〈v2〉, using

the virial theorem in the form (4.249b); the dispersion for an L? galaxy is
σs ' 200 km s−1 (eq. 1.21). Thus

td ' 0.056
GM?r

2

σσ2
s r

2
h

' 3.8 Gyr
M?

5 × 1012 M�

800 km s−1

σ

(
200 km s−1

σs

)2(
r

0.5 Mpc

50 kpc

rh

)2

.

(8.84)
Note that the disruption time is related to the collision time (eq. 8.82) by
the simple formula td/tcoll ' 0.25(σ/σs)

2; as the velocity dispersion σ of the
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cluster increases relative to the dispersion σs of the galaxies, gravitational
interactions become less and less important relative to physical collisions.

This result shows that encounters with other galaxies will erode the
dark halos of galaxies residing in the inner 0.5 Mpc of a rich cluster to a
radius rh ∼< 50 kpc. Most of the dark-halo mass has therefore been stripped
from the individual galaxies, and is now smoothly distributed throughout the
cluster (Richstone 1976). Since the disruption time is proportional to Ms/a

3

(eq. 8.54) and thus to the mean density of the subject system, low-density
galaxies are more severely affected by encounters, and can be completely
disrupted near the cluster center. The large-scale static tidal field of the
cluster also strips the outer halo of cluster galaxies, a process that we shall
investigate in the next section.

Clusters form hierarchically from smaller systems that resemble groups
of galaxies (§§1.1.5 and 9.2.2). Groups have velocity dispersions of only ∼
300 km s−1, so encounters in groups occur at lower speeds and have stronger
effects—they frequently lead to mergers—and dynamical friction is more
powerful. Most of the galaxy evolution that we see in the centers of rich
clusters may thus be due to “pre-processing” in the groups that later merged
to form the cluster. For example, the exceptionally luminous brightest cluster
galaxies or cD galaxies (§1.1.3) that are found at the centers of clusters
probably arise from the merger of galaxies in precursor groups (Dubinski
1998).

8.3 Tides

In the last section we examined how tidal shocks from high-speed encounters
heat stellar systems and erode their outer parts. We now consider the oppo-
site limiting case of a static tidal field. The simplest example of a static tide
occurs when a satellite travels on a circular orbit in the gravitational field of
a much larger spherical host system. In this case, the satellite experiences
no shocks—in fact, in the frame rotating with the satellite the external tidal
field is stationary—so in the absence of other relaxation effects, a sufficiently
small system could survive indefinitely. However, a static tidal field prunes
distant stars from the satellite system, thereby enforcing an upper limit on
its size. Observationally, globular clusters and other satellite systems often
show a fairly sharp outer boundary, which is called the tidal radius on the
assumption that it is caused by this process (see §4.3.3c, BM §6.1.10, and
King 1962).

In the following subsections, we analyze the effect of a tidal field on a
satellite in a circular orbit using two complementary approaches.
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8.3.1 The restricted three-body problem

Let us suppose that the host and satellite systems are point masses M and
m, traveling at separation R0 in a circular orbit around their mutual center
of mass. The restricted three-body problem is to find the trajectory
of a massless test particle that orbits in the combined gravitational field of
these two masses (Szebehely 1967; Hénon 1997; Valtonen & Karttunen 2006).
Solutions of this problem provide a good approximation to the motion of stars
in the outer parts of a satellite stellar system that is on a circular orbit near
or beyond the outer edge of a spherical host system.

The two masses orbit their common center of mass with angular speed

Ω =

√
G(M +m)

R3
0

, (8.85)

so the gravitational field is stationary when referred to a coordinate system
centered on the center of mass that rotates at speed Ω. We orient this
coordinate system so that the centers of the satellite and host systems are
at xm = [MR0/(M + m), 0, 0] and xM = [−mR0/(M + m), 0, 0], and the
angular speed is Ω = (0, 0,Ω). In §3.3.2 we showed that on any orbit in such
a system, the Jacobi integral

EJ = 1
2v

2 + Φ(x) − 1
2 |Ω × x|2

= 1
2v

2 + Φeff(x)
(8.86)

is conserved (eq. 3.113). Since v2 ≥ 0, a star with Jacobi integral EJ can
never trespass into a region where Φeff(x) > EJ. Consequently, the surface
Φeff(x) = EJ, the zero-velocity surface for stars of Jacobi integral EJ, forms
an impenetrable wall for such stars. Figure 8.6 shows contours of constant
Φeff in the equatorial plane of two orbiting point masses; the Lagrange points
are the extrema (maxima and saddle points) of this surface. It is instructive
to compare these contours to those in a bar-like potential, shown in Fig-
ure 3.14.9 The stability of orbits near the Lagrange points in the restricted
three-body problem is discussed in Problem 3.25.

From the figure we see that the zero-velocity surfaces near each body
are centered on it, but farther out the zero-velocity surfaces surround both
bodies. Hence, at the critical value of Φeff corresponding to the last zero-
velocity surface to enclose only one body, there is a discontinuous change
in the region confined by the Jacobi integral. The last closed zero-velocity
surface surrounding a single body is called its tidal or Roche surface; since
this surface touches the Lagrange point L3 that lies between the two masses

9 Note that different authors use different conventions for the numbering of the La-
grange points L1, L2, L3.
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Figure 8.6 Contours of equal effective potential Φeff defined by equation (8.88) for two
point masses in a circular orbit. The mass ratio m/M = 1

9
. The points L1, . . . , L5 are the

Lagrange points. The L4 and L5 points form an equilateral triangle with the two masses
(Problem 3.25).

on the line connecting them, it is natural to identify the outermost radius of
orbits bound to m as the distance rJ between m and L3.

We may evaluate rJ by noticing that at (xm − rJ, 0, 0) the effective
potential has a saddle point, so

(
∂Φeff

∂x

)

(xm−rJ,0,0)

= 0. (8.87)

For two point masses a distance R0 apart, equations (8.85) and (8.86) imply

Φeff(x) = −G
[

M

|x − xM | +
m

|x − xm| +
M +m

2R3
0

(x2 + y2)

]
. (8.88)

At a point between the two masses, (8.87) is satisfied if

0 =
1

G

(
∂Φeff

∂x

)

(xm−rJ,0,0)

=
M

(R0 − rJ)2
− m

r2
J

− M +m

R3
0

(
MR0

M +m
− rJ

)
.

(8.89)
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This equation leads to a fifth-order polynomial whose roots give rJ. In gen-
eral these roots must be found numerically. However, if the satellite is small,
m�M , then rJ � R0, and we can expand (R0 − rJ)−2 in powers of rJ/R0

to find

0 =
M

R2
0

(
1 +

2rJ
R0

+ · · ·
)
− m

r2
J

− M

R2
0

+
M +m

R3
0

rJ ' 3MrJ
R3

0

− m

r2
J

. (8.90)

Truncating the series in this way is none other than the distant-tide approx-
imation. Then to first order in rJ/R0,

rJ =
( m

3M

)1/3

R0. (8.91)

We call the radius rJ the Jacobi radius of the mass m; alternative
names are the Roche or Hill radius. The Jacobi radius of an orbiting
stellar system is expected to correspond to the observational tidal radius,
the maximum extent of the satellite system. However this correspondence is
only approximate, for several reasons:
(i) The Roche surface is not spherical (see Problem 8.11), so it cannot be

fully characterized by a single radius.
(ii) All we have established is that a test particle can never cross the Roche

surface if it lies inside the Roche surface and has a velocity (in the
rotating frame) small enough that EJ < Φeff(L3). Stars with larger
velocities may or may not escape from the satellite; conversely, stars
that lie outside the Roche surface can, in some cases, remain close to
the satellite for all future times (see Problem 8.13 and Hénon 1970).
The approximate correspondence between the Jacobi radius and the
observational tidal radius arises because the fraction of velocity space
occupied by orbits that remain close to the satellite diminishes rapidly
beyond rJ.

(iii) In most applications, the satellite system is not on a circular orbit.
When m is on an eccentric orbit, there is no reference frame in which
the potential experienced by a test particle is stationary, and no ana-
log of the Jacobi integral exists.10 Thus no direct generalization of our
derivation of the Jacobi radius to the case of non-circular satellite orbits
is possible. King (1962) and others have argued that if the satellite is on
a non-circular orbit, the tidal radius is still given by equation (8.91), but
with R0 replaced by the pericenter distance (we used an analogous ar-
gument to describe the tidal disruption of stars orbiting a massive black
hole; see eq. 7.200). A more accurate approach is to recognize that the
effect of tidal fields on satellites in non-circular orbits is intermediate
between tidal radii—a concept that applies to circular orbits—and tidal

10 Although analogs of the Lagrange points can exist (Szebehely 1967).
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Figure 8.7 The rotating (x, y) coordinate system
used in Hill’s approximation.

shocks—which apply to high-velocity or plunging orbits. The tidal ra-
dius limits the satellite at a fixed size, no matter how many orbits it
travels, while tidal shocks prune the satellite more and more at every
pericenter passage.

(iv) Stars are usually lost from the satellite as a result of weak perturbations,
such as two-body relaxation, that drive EJ slightly higher than Φeff(L3).
Such stars drift slowly away from the satellite and thus can remain close
to the satellite for many orbital periods, thereby contributing to the star
counts even though they are no longer bound to the satellite (Fukushige
& Heggie 2000).

(v) In many cases, the satellite orbits within the body of the host system,
so the point-mass approximation used in deriving equation (8.91) is not
accurate. This defect, at least, is easy to remedy—see equation (8.106)
below.

Tidal forces can be thought of as imposing a limit on the density of a satellite.
Let ρ ≡ m/( 4

3πr
3
J) be the mean density of the satellite within a distance rJ,

and ρh ≡M/( 4
3πR

3
0) be the mean density of the host inside the orbital radius

R0. Then equation (8.91) states that

ρ = 3ρh; (8.92)

to within a factor of order unity, a satellite is pruned by tidal forces until
its mean density equals the mean density of its host interior to its orbital
radius.

8.3.2 The sheared-sheet or Hill’s approximation

When the satellite is much smaller than the distance to the center of the host
system, we can use the distant-tide approximation for the host’s gravitational
field (§8.2.1). We consider a spherically symmetric host system with potential
Φ(R) at a distance R from its center; here we do not assume that the host
is a point mass, so Φ(R) is not necessarily the Keplerian potential −GM/R.
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We assume that the satellite travels on a circular orbit at distance R0 from
the center of the host. We work in a frame with origin at the center of mass
of the satellite, in which the x-y plane coincides with the orbital plane of the
satellite, êx points directly away from the center of the host system, and êy
points in the direction of the orbital motion of the satellite (see Figure 8.7).
This frame rotates with the circular frequency Ω0 ≡ Ω0êz, so the acceleration
of a particle in the satellite is given by equation (3.116),

d2x

dt2
= −∇Φ − 2Ω0 ×

dx

dt
−Ω0 × (Ω0 × x), (8.93)

where

∇Φ = ∇Φs +
3∑

k=1

Φjkxk. (8.94)

Here Φs(x) is the gravitational potential from the satellite, and the second
term arises from the distant-tide approximation (8.35). In our coordinate
system, the center of the host is located at X = (−R0, 0, 0) and from equa-
tion (8.36):

Φxx = Φ′′(R0) ; Φyy = Φzz =
Φ′(R0)

R0
; Φxy = Φxz = Φyz = 0.

(8.95)
The equations of motion (8.93) read

ẍ = 2Ω0ẏ +
[
Ω2

0 − Φ′′(R0)
]
x− ∂Φs

∂x
;

ÿ = −2Ω0ẋ+

[
Ω2

0 −
Φ′(R0)

R0

]
y − ∂Φs

∂y
;

z̈ = −Φ′(R0)

R0
z − ∂Φs

∂z
.

(8.96)

Using the relation Φ′(R0) = R0Ω2
0 we see that the term in square brack-

ets in the second line vanishes. Moreover we can rewrite Ω2
0 − Φ′′(R0) as

−2R0Ω0Ω′(R0) and this in turn can be rewritten as 4Ω0A0 where A0 =
A(R0) is given by equation (3.83). Thus

ẍ−2Ω0ẏ−4Ω0A0x = −∂Φs

∂x
; ÿ+2Ω0ẋ = −∂Φs

∂y
; z̈+Ω2

0z = −∂Φs

∂z
. (8.97)

These are the equations of motion in the sheared sheet or Hill’s approxi-
mation, named after the mathematician G. W. Hill, who used this approach
to study the motion of the Moon in the nineteenth century (Murray & Der-
mott 1999).

(a) The epicycle approximation and Hill’s approximation We first
consider the trajectories of test particles in the absence of a satellite, Φs(x) =
0. The simplest solutions of equations (8.97) have the form

x(t) = xg = constant ; y(t) = −2A0xgt+ constant ; z(t) = 0. (8.98)
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These are the analogs of circular orbits in the host system. The general
solution is

x(t) = xg +X cos(κ0t+ α),

y(t) = yg(t) − Y sin(κ0t+ α), where yg(t) = yg0 − 2A0xgt,

z(t) = Z cos(Ω0t+ αz),

(8.99)

where xg, yg0, X , Z, α and αz are arbitrary constants and

κ2
0 = 4Ω0(Ω0 −A0) = −4Ω0B0 ;

X

Y
=

κ0

2Ω0
. (8.100)

Here B0 = A0 −Ω0 (eq. 3.84). Thus we have re-derived the epicycle approx-
imation of §3.2.3, in particular the relation between the epicycle frequency
κ0 and Oort’s constants (eq. 3.84) and the ratio of the axes of the epicycle
(eq. 3.95). The difference between the two derivations is that §3.2.3 described
an approximate solution of the exact equations of motion for a particle on
a nearly circular orbit, while here we have found an exact solution of Hill’s
approximate equations of motion. Note that in Hill’s approximation all par-
ticles have the same epicycle frequency.

It is straightforward to verify that when Φs = 0, the following expres-
sions are integrals of the motion:

E‖ ≡ 1
2 (ẋ2 + ẏ2 − 4Ω0A0x

2) ; E⊥ ≡ 1
2 (ż2 + Ω2

0z
2) ; L ≡ ẏ + 2Ω0x;

(8.101)
E‖+E⊥ and R0L differ from the Jacobi integral and the angular momentum

by constant terms and terms of order O(x3, y3). These expressions are related
to the constants in the orbit solutions (8.99) by

E‖ = 2A0B0x
2
g + 1

2κ
2
0X

2 ; E⊥ = 1
2 Ω2

0Z
2 ; L = −2B0xg. (8.102)

A circular orbit has E‖ = 1
2A0L

2/B0; hence it is natural to define the epicy-
cle energy Ex as the difference

Ex ≡ E‖ −
A0L

2

2B0
,

= 1
2 [ẋ2 + κ2

0(x− xg)2],

= 1
2κ

2
0X

2,

= 1
2 ẋ

2 +
2Ω2

0

κ2
0

(ẏ + 2A0x)2.

(8.103)

Some of these results, derived in other ways and with slightly different nota-
tion, have already appeared as equations (3.86) and (3.102).

(b) The Jacobi radius in Hill’s approximation If a satellite is present,
with potential Φs(x), the integrals in equation (8.101) are no longer con-
served; the only remaining classical integral is (Problem 8.14)

E ≡ 1
2 (ẋ2 + ẏ2 + ż2 − 4Ω0A0x

2 + Ω2
0z

2) + Φs(x). (8.104)
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This integral is the analog of the Jacobi integral (8.86).
Now let us imagine that the satellite potential Φs arises from a mass m

that is located at x = 0. The equations of motion (8.97) become

ẍ = 2Ω0ẏ + 4Ω0A0x− Gmx

r3
; ÿ = −2Ω0ẋ− Gmy

r3
; z̈ = −Ω2

0z −
Gmz

r3
,

(8.105)
where r2 = x2 + y2 + z2. The test particle remains stationary (ẍ = ẋ = ÿ =
ẏ = z̈ = 0) if and only if y = z = 0 and 4Ω0A0 = Gm/|x|3. These conditions
are satisfied for the points on the x axis with

x = ±rJ, where rJ ≡
(

Gm

4Ω0A0

)1/3

. (8.106)

These stationary points are analogs to the Lagrange points L2 and L3 in
the restricted three-body problem (Figure 8.6). If the host is a point mass
M � m, then Ω(R) = (GM/R3)1/2 so A0 = 3

4Ω0 and

rJ =
( m

3M

)1/3

R0. (8.107)

Thus we recover expression (8.91) for the Jacobi radius. For a spherical host
with mass M(R) interior to radius R, it is straightforward to show that this
expression is modified by replacing M by M(R0) and multiplying the Jacobi
radius by a factor

f =

(
1 − 1

3

d lnM

d lnR

)−1/3

. (8.108)

The factor f is unity for a point mass and 1.145 for a singular isothermal
sphere (M ∝ R). For a homogeneous sphere (M ∝ R3) f diverges, so there
is no Jacobi radius: in this case the host potential Φ(R) = 1

2Ω2
0R

2 and
Oort’s constant A0 = 0, so the tidal field 4Ω0A0x in the equations of motion
(8.97) is absent. Physically, there is no Jacobi radius because all stars in
this potential have the same orbital period: thus, even if the satellite mass
were zero, stars in nearly circular orbits with similar radii and azimuths will
continue to have similar radii and azimuths at all future times.

8.3.3 Tidal tails and streamers

We now investigate what happens to stars after they are stripped from a
satellite by tidal forces, with the help of the angle-action variables described
in §3.5 (Helmi & White 1999; Tremaine 1999). Consider a satellite of mass
m orbiting a host that has mass M � m interior to the satellite orbit. At its
pericenter, a distance R from the center of the host, the satellite is pruned
by tidal forces to a radius r ≈ R(m/M)1/3. Its velocity at pericenter is V ≈
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(GM/R)1/2. To a first approximation, we may assume that stars lost from
the satellite no longer feel its gravitational field, and follow orbits determined
solely by the field of the host. On such orbits, the actions J are constant and
the angles θ increase linearly with time, at a rate θ̇ = Ω = ∂H/∂J where H
is the Hamiltonian corresponding to the host potential. The stripped stars
have a range of actions and angles, which we write as J0 ± ∆J, θ0 ± ∆θ.
The mean actions J0 and the mean angles θ0 at the time the satellite passes
through pericenter are very nearly the actions and angles of the satellite at
that time, since the tidal forces are symmetric about its center of mass. The
spread in actions and angles in the stripped stars arises from two effects: (i)
the stars are lost from both the inner and outer edge of the satellite (near
the Lagrange points L3 and L2), and (ii) the stars have a range of velocities,
roughly equal to the velocity dispersion σ of the satellite. These effects lead
to a fractional spread r/R ∼ (m/M)1/3 in position and σ/V in velocity.
Since σ ≈ (Gm/r)1/2 ∼ V (m/M)1/2(R/r)1/2 ∼ V (m/M)1/3 the two effects
yield approximately the same fractional spread. Thus, the stripped stars are
initially distributed through ranges in action and angle given by

∆Ji
Ji

,∆θi ∼
(m
M

)1/3

. (8.109)

The spread in actions leads to a spread in orbital frequencies

∆Ωi ∼
3∑

j=1

Hij∆Jj , where Dij ≡
∂2H

∂Ji∂Jj
(8.110)

is the Hessian of the Hamiltonian. The spread in angles grows linearly with
time, such that

∆θ(t) = ∆θ(0) + ∆Ωt, (8.111)

where t = 0 is the time at which the stars were stripped. At large times the
second term dominates, so we have

∆θ(t) ' tD · ∆J. (8.112)

Since the matrix D is symmetric, it is diagonalizable, that is, there exists an
orthogonal matrix A such that

ADAT = D̃, (8.113)

where AT = A−1 is the transpose of A (AT
jk = Akj), and D̃ is the diagonal

matrix formed by the eigenvalues λi of D. We now make a canonical trans-
formation to new angle-action variables (θ′,J′) using the generating function
S(θ,J′) = J′ · A · θ (eq. D.93); thus

θ′ =
∂S

∂J′ = A · θ ; J =
∂S

∂θ
= AT · J′. (8.114)



8.3 Tides 683

Figure 8.8 The ratio of the two
largest eigenvalues of D, the Hes-
sian of the Hamiltonian, for the
isochrone potential (see §3.1c and
Problem 3.41). The axes are the
radial action Jr and the angular mo-
mentum L. When this ratio is small
compared to unity, tidally stripped
stars form a one-dimensional filament
or tidal streamer.

In terms of the new variables, equation (8.112) becomes

∆θ′(t) ' t D̃ ·∆J′ or ∆θ′i(t) ' tλi∆J
′
i (no summation over i). (8.115)

This result shows that the cloud of escaped stars spreads into three of
the six phase-space dimensions, at rates determined by the initial spread in
actions and the eigenvalues λi of the matrix D. Small satellites have a smaller
spread in actions and so disperse more slowly. If one of the three eigenvalues
is zero, or at least much smaller than the other two, the cloud will expand
in two dimensions in phase space, creating a sheet; this is the situation for
tidal streamers in a spherical host galaxy. If two of the three eigenvalues
are zero, the cloud will expand in one dimension to produce a filament; this
is the situation in a Keplerian potential. Even when two or more of the
eigenvalues of D are non-zero, usually one is large enough compared to the
others that the disrupted stars form a relatively thin tail, which is called a
tidal streamer or tail (see Figure 8.8)—usually the term “tail” is reserved
for the long, prominent, massive streamers formed in major mergers of two
disk galaxies.

Known tidal streamers are associated with the Magellanic Clouds (the
Magellanic Stream, already described in §8.1.1c), the globular cluster Pal 5
(Figure 8.9), and the Sagittarius galaxy (Figure 8.10).

Unlike comet tails, tidal streamers are symmetrical structures that both
lead and lag the satellite along its orbit. For example, in Figure 8.9 the
upper streamer is made up of stars that have longer orbital periods than
the cluster, and hence trail behind it; conversely, the streamer at lower right
contains stars that are on shorter-period orbits, and race ahead of it.

In Chapter 9 we shall argue that galaxies form by hierarchical merging
of smaller subunits. In the merging process, these subunits are disrupted by
tidal forces, and the debris—both stars and dark matter—forms a vast web
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Figure 8.9 Tidal streamers emerging from the globular cluster Pal 5. The plot shows
the surface density of stars whose distances are consistent with the cluster distance. The
clump labeled “M5” is a residual feature from the unrelated cluster M5. The arrow from
Pal 5 indicates the direction of its motion on the sky, and the arrow labeled “b” shows the
direction of increasing Galactic latitude. The dotted lines mark the borders of the field.
See Grillmair & Dionatos (2006) for maps of the streamers at even larger distances from
the cluster. From Odenkirchen et al. (2003), by permission of the AAS.

of tidal streamers. The number of streamers per unit volume and the corre-
sponding degree of irregularity in the mass distribution of the halo depend
on the distance from the center of the galaxy: at small radii, the galaxy is
hundreds or thousands of crossing times old and the tidal streamers are thor-
oughly phase-mixed, while at large radii subunits are falling in for the first
time and the substructure will be much more prominent (Helmi, White, &
Springel 2003). At any given radius, the substructure is likely to be stronger
in the baryons (stars and gas) than in the dark matter, since the baryons
are concentrated in the dense centers of the dark-matter halos and thus are
less susceptible to tidal forces. Efforts to detect and disentangle this web are
still in their infancy.
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Figure 8.10 The distribution of M-giant stars lying within 7 kpc of the orbital plane of
the Sagittarius dwarf galaxy. The figure is a projection onto this orbital plane, which is
tipped by 77◦ from the Galactic plane. The Galactic disk lies along Y = 0, the Galactic
center is at the origin, and the Sun is at X ' −8 kpc, Y ' 0 (by coincidence, the
Sun lies nearly in the Sagittarius orbital plane). Stars that are highly reddened have
been removed, which creates the wedge-shaped gap stretching right from the Sun. The
Sagittarius galaxy is located at X ' 15 kpc, Y ' 5 kpc, and the arrow extending from it
indicates the direction of its velocity vector. Tidal debris from the galaxy is evident as
the prominent arc passing through (X, Y ) ' (25 kpc,−30 kpc) above the Galactic plane,
and through (X, Y ) ' (−15 kpc, 15 kpc) below the plane. Most of the width of the arcs is
probably due to errors in the stellar distances. From Majewski et al. (2003).

8.4 Encounters in stellar disks

The velocity distribution of stars in the solar neighborhood is approximately
described by the Schwarzschild distribution introduced in §4.4.3 (see also
Problem 8.16). In this df, the number of stars with velocity v in a small
range d3v is

f(v)d3v =
n0 d3v

(2π)3/2σRσφσz
exp

[
−
(
v2
R

2σ2
R

+
v2
φ

2σ2
φ

+
v2
z

2σ2
z

)]
. (8.116)

Here n0 is the number of stars per unit volume, σR, σφ, and σz are the
velocity dispersions along the three axes of a cylindrical coordinate system
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Figure 8.11 The velocity dispersion of stars in the solar neighborhood as a function
of age, from Nordström et al. (2004). From bottom to top, the plots show the vertical
dispersion σz , the azimuthal dispersion σφ, the radial dispersion σR, and the rms velocity

(σ2
R+σ2

φ+σ2
z)

1/2. The lines show fits of the form σi ∝ tα where t is the age; from bottom

to top the best-fit exponents α are 0.47, 0.34, 0.31, and 0.34.

centered on the center of the Galaxy, and v is the velocity relative to the
velocity of a circular orbit passing through the solar neighborhood (the Local
Standard of Rest or lsr; see §1.1.2). The radial and azimuthal dispersions
are approximately related by

σφ
σR

=
κ

2Ω
, (8.117)

where κ and Ω are the epicycle frequency and the azimuthal frequency for
nearly circular orbits in the solar neighborhood (see eq. 3.100 and Prob-
lem 4.43). Equation (8.116) states that the density of stars in velocity space
is constant on ellipsoids with principal axes σR, σφ and σz, called velocity
ellipsoids in §4.1.2.

Although the shape of the velocity ellipsoid is approximately the same
for different types of stars, its size is not: the dispersions σi (i = R, φ, z)
of cool, red stars are almost three times as large as those of hot, blue stars
(BM Figure 10.12 and Tables 10.2 and 10.3). Since blue stars are young,
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while red stars are a mixture of mostly old and a few young stars, this trend
suggests that stars are born on nearly circular or “cold” orbits, and as a
stellar population ages it “heats up” in the sense that the dispersions σi
increase. This hypothesis can be confirmed by measuring the age-velocity
dispersion relation for nearby stars (Figure 8.11). These observations show
that σi ∝ tα, where α ' 0.5 for σz and α ' 0.3 for both σR and σφ—the
exponent is necessarily the same for these two dispersions, because they are
related by equation (8.117).

We refer to the steady increase of these dispersions with time as disk
heating, and in this section we investigate the dynamics of this process.
A natural first step in this investigation is to wonder whether disk heating
can be due to the accumulation of small velocity kicks from passing stars.
This process was described briefly in §1.2.1 and more thoroughly in §7.4. In
particular, in the discussion following equation (7.106) we saw that encoun-
ters between stars in the solar neighborhood have a negligible effect on their
velocities over the age of the Galaxy. Thus we must seek other explanations.

The simplest mechanism for disk heating is encounters with hypothetical
massive objects in the dark halo, or machos. This process was investigated
in §7.4.4, where we found that the predicted time dependence of the velocity
dispersion σR is incorrect. Moreover, the required macho mass appears to
be incompatible with observations of wide binary stars in the halo (§8.2.2e).
We therefore examine other possibilities.

8.4.1 Scattering of disk stars by molecular clouds

Long before molecular clouds were detected, Spitzer & Schwarzschild (1951,
1953) suggested that encounters between disk stars and massive gas clouds
might be responsible for the random velocities of old disk stars. In Figure 8.12
we illustrate how a molecular cloud or other mass m on a circular orbit in a
disk affects the orbits of nearby stars. Since the cloud mass is ∼< 10−5 times
the mass of the Galaxy, we may use Hill’s approximation (§8.3.2), in which
the cloud is at rest at the origin of a rotating Cartesian coordinate system,
with the x axis pointing radially outward and the y axis in the direction of
rotation. For simplicity we neglect motion perpendicular to the x–y plane.
The stellar trajectories are given by the equations of motion (8.97), where
the cloud potential Φs = −Gm/(x2 + y2)1/2. In the figure, we write the
distances in terms of the Jacobi radius of the cloud (eq. 8.106),

rJ =

(
Gm

4Ω0A0

)1/3

= 52 pc

(
m

105 M�

Ω0

A0

)1/3(
220 km s−1

vc

R0

8 kpc

)2/3

.

(8.118)
In these units, the equations of motion are independent of m, so Figure 8.12
applies to clouds of any mass.

The figure shows only stars on initially circular orbits that are larger
than the cloud’s orbit. The behavior of orbits that are smaller than the
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Figure 8.12 The trajectories of stars near a mass point in a disk. The orbit of the mass
point is circular, as are the initial orbits of the stars. The coordinate frame co-rotates with
the mass point, which is therefore fixed at the origin; in this expanded view of the area
near the mass point, upwards is radially outward and the mass point is traveling to the left
in an inertial frame. All orbits are restricted to the z = 0 plane. Circular orbits appear
as straight horizontal lines. A sequence of seven orbits is shown, all initially circular with
radius slightly larger than that of the point mass, so it overtakes them. The behavior of
orbits inside the point mass is given by reflecting these orbits through the origin. The
trajectories of the stars are described by equations (8.97). The disk is assumed to have
a flat circular-speed curve, so Oort’s constant A0 = Ω0/2 and the epicycle frequency
κ0 =

√
2Ω0. Distances are measured in units of the Jacobi radius rJ of the mass point

(eq. 8.106), which is also the radius of the circle representing its location.

cloud’s can be deduced by reflecting the orbits shown through the origin of
the figure. The initial orbits shown have angular speeds that are smaller than
the cloud’s, so the cloud overtakes them (i.e., they move to the right in the
cloud frame of reference that is used in the figure). If the initial difference in
orbital radii ∆r ∼< rJ, the encounter simply reverses the direction of the orbit
relative to the cloud, without imparting any significant epicycle motion.11 If
∆r ∼ rJ, the encounter imparts significant epicycle motion—the epicycle
amplitude is comparable to ∆r and the encounter may or may not reverse
the overall direction of motion of the orbit relative to the cloud. For ∆r ∼> rJ,
the star passes the cloud and acquires a small epicyclic motion. It is this
excitation of epicycle motion by encounters with clouds that warms the disk.

We may estimate the efficiency of this process by using the impulse
approximation to find the radial velocity acquired by a star that is initially
on a circular orbit of radius R. If Rc is the radius of the cloud orbit, then
in the sheared sheet the star’s initial orbit is x = R − Rc ≡ b = constant ,

11 This is an example of the donkey effect, described in Box 3.3. No epicycle motion
is excited because the star approaches the cloud slowly, so its eccentricity is an adiabatic
invariant. For a comprehensive discussion of the trajectories in this problem, see Petit &
Hénon (1986).
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y(t) = constant − 2A0bt (eq. 8.99). Integrating the gravitational attraction
of the potential Φs(x) along this trajectory yields

ẋ = −
∫ ∞

−∞
dt

Gmb

[b2 + y2(t)]3/2
= − Gm

A0b2
. (8.119)

In the impulse approximation, immediately after the encounter we have

x = b ; ẋ = − Gm

A0b2
; ẏ = −2A0b, (8.120)

and the corresponding epicycle energy and amplitude are given by equations
(8.103),

∆Ex = 1
2 ẋ

2 =
f2

2

(
Gm

A0b2

)2

; X = f
Gm

A0κ0b2
, (8.121a)

where f = 1. We have introduced the correction factor f because the impulse
approximation is not accurate: since the radial velocity oscillates with the
epicycle frequency κ0, the impulse approximation requires that the duration
of the encounter is much less than the epicycle period. In fact, the duration
is ≈ b/ẏ = (2A)−1, which is comparable to the epicycle period 2π/κ0. Hence
the impulse approximation makes an error of order unity in the epicycle
energy. The correct derivation (Julian & Toomre 1966 and Problem 8.19)
yields

f =
Ω0

A0
K0

( κ0

2A0

)
+

κ0

2A0
K1

( κ0

2A0

)
, (8.121b)

where Kν is a modified Bessel function (Appendix C.7). For a flat circular-
speed curve, A = 1

2Ω, κ =
√

2Ω, and f = 0.923; for a Keplerian curve
f = 1.680.

This result is based on linear perturbation theory, and hence is valid only
when the epicycle amplitude X induced by the encounter is much smaller
than the impact parameter b. Requiring that X ∼< b implies that

b

rJ
∼>
(

4fΩ0

κ0

)1/3

≈ 1, (8.122)

where we have used equation (8.118) for the Jacobi radius. Thus, equa-
tions (8.121) are valid for encounters with impact parameters that are large
compared to the Jacobi radius, and they show that the epicycle energy ex-
cited in an encounter falls off as b−4. On the other hand, Figure 8.12 shows
that encounters at small impact parameters, b ∼< rJ, simply switch the star
from one circular orbit to another, with no sensible increase in the star’s
random velocity. These considerations imply that the strongest encounters
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have b ∼ rJ, and hence justify our treatment of the molecular cloud as a
point mass: since the typical cloud radius R ∼ 10 pc is much smaller than
its Jacobi radius (8.118), the non-zero cloud size has little influence on the
rate of disk heating.

The speeds with which the stars in Figure 8.12 approach the scatter-
ing cloud are due entirely to the differential rotation of the galactic disk,
ẏ = −2A0b. Once the stars have acquired non-zero epicycle energy, we have
to consider two types of encounter. For large impact parameters b or small
epicycle amplitudes X , the approach speed is still dominated by the con-
tribution from differential rotation (shear-dominated encounters), but at
impact parameters b ∼< κ0X/A0, the encounter geometry will be determined
mainly by the star’s epicyclic motion (dispersion-dominated encounters).

In contrast to shear-dominated encounters, dispersion-dominated en-
counters usually can be treated using the impulse approximation. In this
approximation, the magnitude of the velocity change ∆v in a single en-
counter is proportional to v−1 where v is the encounter velocity. Thus the
average change in epicycle energy Ex is proportional to v−2, and since the
number of encounters per unit time is proportional to v and v2 ∼ Ex we
expect (cf. Problem 8.20)

dEx
dt

∝ v−1 ∝ 1√
Ex

. (8.123)

Integrating this result we find that Ex ∝ t2/3 so the velocity dispersion
v ∝ tα with α = 1

3 . This simple calculation somewhat overestimates the
rate of growth of the dispersion, since the thickness of the stellar disk is
larger than the thickness of the cloud layer, so stars spend a smaller and
smaller fraction of their time in the cloud layer as the vertical dispersion, and
the resulting thickness of the stellar disk, continue to grow. The numerical
calculations described below are consistent with this argument, suggesting
that α ' 0.2–0.25 for heating by molecular clouds. This value is too low
to match the observations shown in Figure 8.11—just the opposite problem
from macho-dominated heating, which gives an exponent that is too large
(eq. 7.102).

We have shown that encounters with clouds “heat” the disk, in the sense
that the mean epicycle energy increases with time. It is instructive to ask
where this energy comes from, since the total energy or Jacobi integral of
the star (eq. 8.104) is conserved during each encounter. The first of equa-
tions (8.103) shows that in a razor-thin disk the difference in epicycle energy
Ex before and after the encounter is equal and opposite to the difference in
1
2A0L

2/B0; in most galactic potentials A0/B0 < 0 so we conclude that an
increase in Ex is accompanied by an increase in |L| or in |xg| (eq. 8.102),
where xg is the difference in radius between the guiding center of the stellar
orbit and the orbital radius of the molecular cloud. In words, the gravita-
tional interaction with the cloud repels the stars, in the sense that their mean
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orbital radius is shifted away from the cloud. Thus the energy to heat the
disk comes from a redistribution of the surface mass density of the stars in
the disk; the cloud acts as a catalyst to expedite this redistribution of energy
but does not contribute any of its own energy to the disk heating.

Numerous authors have estimated the rate at which star-cloud encoun-
ters heat disks (Spitzer & Schwarzschild 1951, 1953; Jenkins 1992; Hänninen
& Flynn 2002). The best estimate of the number density and masses of
molecular clouds in the solar neighborhood leads to a rate of velocity-
dispersion growth that is too small by a factor of two or more; but the
heating rate is likely to be enhanced by the swing-amplified response or
spiral wake induced in the stellar disk by the gravitational field from the
molecular cloud, which can be several times more massive than the cloud
itself (Julian & Toomre 1966; Julian 1967).

These studies also show that the predicted ratio σz/σR of the vertical
and radial dispersions is ' 0.6 (Ida, Kokubo, & Makino 1993), not far from
the observed ratio of 0.5. However, the predicted age-velocity dispersion
relation is approximately a power law, σi ∝ tα, with exponent α ' 0.2–
0.25. This is significantly lower than the observed exponent, which is 0.3 for
σR and σφ and even larger for σz (Figure 8.11). This result suggests that
molecular clouds are unlikely to be the primary cause of disk heating.

8.4.2 Scattering of disk stars by spiral arms

The disks of spiral galaxies are far from smooth. Gas, dust, and young stars
are always concentrated into spiral arms. Spiral features are also found in
the old stars that make up most of the mass of galactic disks (§6.1.2), so
it is natural to ask whether the gravitational fields of spiral features, like
the fields from molecular clouds, are able to heat galactic disks (Barbanis &
Woltjer 1967).

Consider a weak spiral potential with pattern speed Ωp,

Φs(R, φ, t) = εF (R) cos[f(R) +mφ− Ωpt], (8.124)

where ε � 1. To illustrate the effect of this potential on a stellar orbit, we
shall make two assumptions that simplify the algebra but still retain most
of the important dynamics: (i) we work in the sheared-sheet approximation
(§8.3.2); (ii) we consider only tightly wound spirals, for which the wavenum-
ber k ≡ df/dR is large compared to 1/R (eq. 6.4).

The sheared-sheet approximation is valid in a neighborhood of the disk
centered at a point [R0, φ0(t)] that rotates at the circular angular speed

φ̇0 = Ω0 = Ω(R0). We expand the spiral potential in a Taylor series around
this point, using the coordinates x = R cos(φ − φ0) − R0 ' R − R0 and
y = R sin(φ− φ0) ' R0(φ− φ0). In this neighborhood, we can approximate
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the shape function as f(R) ' f(R0) + kx. Since the amplitude F (R) varies
slowly, it can be replaced by a constant, F0 ≡ F (R0). Thus we have

Φs(x, y, t) = εF0 cos[f(R0) + kx+my/R0 +mφ0 − Ωpt]

= εF0 cos[kx+my/R0 +m(Ω0 − Ωp)t+ constant].
(8.125)

We now substitute this potential into the equations of motion (8.97) of
the sheared sheet, neglecting motion in the z-direction perpendicular to the
disk plane:

ẍ− 2Ω0ẏ − 4Ω0A0x = εkF0 sin[kx+my/R0 +m(Ω0 − Ωp)t+ constant];

ÿ + 2Ω0ẋ =
εm

R0
F0 sin[kx+my/R0 +m(Ω0 − Ωp)t+ constant].

Since the wave is assumed to be tightly wound, its pitch angle is small so
|k| � m/R0 (eq. 6.7). Thus the right side of the second equation is much
smaller than the corresponding term in the first, and can be neglected. The
second equation can then be integrated to yield ẏ + 2Ω0x = constant , and
this can be substituted into the first equation to give

ẍ+κ2
0x+constant = εkF0 sin[kx+my/R0+m(Ω0−Ωp)t+constant]; (8.126)

here κ0 is the epicycle frequency (8.100). The constant on the left side can be
dropped, since it can be absorbed by a shift in the origin of the x-coordinate.

In the absence of a spiral (F0 = 0) the solution to this equation is
given by equations (8.99); we shall assume that the unperturbed motion is
circular, so the trajectory is x0(t) = (xg, yg0 − 2A0xgt). Now consider how
this motion is modified by the weak spiral potential on the right side of
equation (8.126). We write the trajectory as x(t) = x0(t) + εx1(t), where
εx1(t) is the perturbation induced by the spiral. Then the terms of order ε
in equation (8.126) yield

ẍ1 + κ2
0x1 = kF0 sin[kxg +m(yg0 − 2A0xgt)/R0 +m(Ω0 − Ωp)t+ constant]

= kF0 sin(kxg + ωt+ c).
(8.127)

In the last expression we have absorbed yg0 in the constant c, and set ω =
m(Ω0 − 2A0xg/R0 − Ωp); this is the frequency at which the unperturbed
orbit encounters successive crests of the spiral potential.

This equation can be solved to yield

x1(t) =
kF0

κ2
0 − ω2

sin(kxg + ωt+ c). (8.128)

The solution diverges when ω = ±κ0. These points can be thought of as the
Lindblad resonances of the sheared sheet: at these locations, like the Lind-
blad resonances in a disk, the frequency of excitation by the spiral potential



8.4 Encounters in stellar disks 693

coincides with the frequency κ0 of the particle’s natural radial oscillation.
This result is a close analog of equation (3.148), which was derived in the
context of weak bars.

Equation (8.128) shows that the spiral potential imposes a forced radial
oscillation on the star but does not lead to any steady growth in the radial
oscillation x1(t). In other words, a spiral potential with a fixed pattern speed
cannot heat the disk, except perhaps at the Lindblad resonances where our
simple derivation fails.

This result implies that disk heating requires transitory rather than
steady spiral patterns. To illustrate this, let us multiply the potential (8.124)
or (8.125) by a Gaussian function of time, p(t) = (2πs2)−1/2 exp(− 1

2 t
2/s2).

Equation (8.127) is thereby modified to read

ẍ1 + κ2
0x1 = kF0p(t) sin(kxg + ωt+ c), (8.129)

which has the solution

x1(t) = X1 cos(κ0t+α1) +
kF0

κ0

∫ t

−∞
dt′ p(t′) sin(kxg +ωt′ + c) sin[κ0(t− t′)],

(8.130)
where X1 and α1 are arbitrary constants. Inserting the chosen form for p(t)
and setting the amplitude X1 of the free oscillation to zero, we obtain

x1(t → ∞) =
kF0

2κ0

[
cos(κ0t− kxg − c)e−s

2(ω+κ0)2/2

− cos(κ0t+ kxg + c)e−s
2(ω−κ0)2/2

]
.

(8.131)

Thus the transitory spiral pattern has induced a permanent epicyclic oscil-
lation. When the characteristic duration of the transient, s, is much greater
than the orbital period, the induced epicycle amplitude is strongly peaked
near the Lindblad resonances ω = ±κ0. On the other hand, when the du-
ration of the transient is short, the arguments of the exponential are small
and epicycle motion is induced over a wide range of radii in the disk.

This example shows that the ability of spiral structure to heat the disk
is strongly dependent on its temporal structure. According to the Lin–Shu
hypothesis (§6.1), in which spiral structure is a stationary wave with a single,
well-defined pattern speed, disk heating is negligible except at the Lindblad
resonances. In such models the disk can be heated over a wide range of radii
only if the pattern speed evolves with time, so the Lindblad resonances slowly
sweep across most of the disk. On the other hand, if the spiral structure is
transient, the whole disk can be heated—this situation is likely to occur in
flocculent spirals, intermediate-scale spirals, or grand-design spirals excited
by recent encounters.

Let us suppose that a given star is subjected to N independent tran-
sient perturbations. Each transient induces an epicyclic motion whose radial
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component can be written in the form x1(t) = ai cos(κ0t+αi), i = 1, . . . , N ,
where ai and αi are given by equations similar to (8.131). After N transients,

x1(t) =

N∑

i=1

ai cos(κ0t+ αi)

=
(∑

ai cosαi

)
cosκ0t−

(∑
ai sinαi

)
sinκ0t

≡ af cos(κ0t+ αf)

(8.132)

where

a2
f =

(∑
ai cosαi

)2

+
(∑

ai sinαi

)2

=
N∑

i,j=1

aiaj cos(αi − αj). (8.133)

Since the transients are uncorrelated, the phases of the epicyclic oscillations
that they induce are also uncorrelated. Hence on average cos(αi − αj) will
be zero when i 6= j, and the only terms in the sum that contribute to the
final amplitude af will be those with i = j. Thus a2

f ' N〈a2〉, where 〈a2〉
is the mean-square amplitude induced by a single transient. If the rate
of occurrence and the strength of new transients are independent of time,
we conclude that a2

f , and hence the squared velocity dispersion v2, should
grow linearly with time. In other words, v ∝ tα, where α = 0.5. This
behavior holds only so long as af is not too large: once the epicycle size
becomes comparable to the radial wavelength of the spiral arms, the effects
of the spiral tend to average out over the epicycle period, so the heating is
weaker—this is the same effect that leads to the reduction factor in the WKB
dispersion relation for spiral waves, as described in §6.2.2d. Estimates of the
heating rate at larger amplitudes can be obtained using the Fokker–Planck
equation (Jenkins & Binney 1990; Jenkins 1992) or numerical simulations
(De Simone, Wu, & Tremaine 2004); these calculations show that α can vary
between 0.25 and 0.5 depending on the properties of the spiral transients
(duration, strength, pitch angle, etc.). This range of α is nicely consistent
with the observed exponent for the growth of the radial dispersion, α ' 0.3,
and provides a substantially better fit than the values predicted for heating
by molecular clouds.

The radial and azimuthal velocity dispersions are related by equation
(8.117), so the exponent in the age-velocity dispersion relation must be the
same for these two axes of the velocity ellipsoid. However, spiral structure
cannot excite velocities in the z-direction effectively, since its spatial and
temporal scales are much larger than the amplitude or period of oscillations
perpendicular to the disk plane. Thus, scattering by spiral arms cannot ex-
plain the relation between age and the z-velocity dispersion σz. Probably
gravitational scattering by molecular clouds redistributes the radial and az-
imuthal velocities into the direction perpendicular to the plane (Carlberg
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1987; Jenkins & Binney 1990). Thus molecular clouds are responsible for
the shape, but not the size, of the velocity ellipsoid.

Transient spiral arms have other interesting consequences for the dis-
tribution of disk stars. Strong transients can produce long-lived clumps of
stars in velocity space, sometimes called star streams or moving groups (see
page 327 and De Simone, Wu, & Tremaine 2004). Spiral waves also re-
distribute the angular momenta of disk stars, leading to substantial inward
and outward migration of individual stars over the lifetime of the Galaxy
(Sellwood & Binney 2002).

8.4.3 Summary

There is little doubt that irregularities in the Galaxy’s gravitational field heat
the disk and thereby determine the velocity distribution of disk stars. It is
less clear which irregularities dominate this process. We have discussed the
influence of hypothetical massive objects in the dark halo (machos), molec-
ular clouds, and transient spiral arms. Other possibilities include merging
satellite galaxies (Walker, Mihos, & Hernquist 1996; Velázquez & White
1999), substructure in the dark halo (Benson et al. 2004), or the Galactic
bar (Kalnajs 1991; Dehnen 2000a). The simplest explanation that appears to
be consistent with most of the observations is the combined effects of spiral
transients and molecular clouds.

8.5 Mergers

So far we have investigated galaxy mergers and encounters through limiting
cases that are analytically tractable. For example, minor mergers occur
through dynamical friction (§8.1), which leads to gradual orbital decay, and
as the orbit shrinks tidal forces and tidal shocks (§§8.2 and 8.3) become
stronger and stronger, until either the small galaxy is completely disrupted
or its core comes to rest at the center of the larger galaxy.

In major mergers the physical processes are qualitatively similar, but
harder to quantify. The relative velocity of the centers of mass of the two
galaxies is converted into randomly directed velocities of their individual
stars—the same process as dynamical friction—but the conversion is so rapid
that the galaxies merge into a single steady-state system within a few crossing
times. Thus, numerical simulations such as the one shown in Figure 8.1,
rather than analytic arguments, are the primary tool for understanding major
mergers.

In this section we shall focus on features of major mergers that have
direct observational consequences; these are important because they provide
the “smoking gun” that enables us to identify galaxies that are participating
in ongoing mergers, and thus to explore the physics of mergers. Reviews
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of interacting and merging galaxies are given by Barnes & Hernquist (1992)
and Kennicutt, Schweizer, & Barnes (1998).

8.5.1 Peculiar galaxies

A small fraction of galaxies are found in a highly disturbed state. The
importance of these puzzling systems was emphasized by Arp (1966), who
compiled an Atlas of Peculiar Galaxies containing over 300 such objects (see
also Arp & Madore 1987). Arp argued that “if we could analyze a galaxy
in a laboratory, we would deform it, shock it, probe it, in order to discover
its properties” and that the peculiarities of the galaxies in his atlas offered a
range of experiments on galaxies furnished to us by nature, which we should
learn from. At one time it was widely believed that unusual systems of this
kind were exploding galaxies or galaxies with very strong magnetic fields, but
by the early 1970s it became clear that most are actually colliding systems,
and that many of these collisions will result in mergers.

Figure 8.13 shows the pair of galaxies NGC 4038/4039 from the Arp at-
las. This system consists of overlapping blobs of light from which two curved
tails of much lower surface brightness emerge, giving rise to its common
name “the Antennae.” From end to end, the tails span over 100 kpc. Can
this striking morphology be the signature of a merger? In a classic paper,
Toomre & Toomre (1972) showed that this is indeed the case. The Toomres
studied encounters between disks of massless particles orbiting around point
masses: even with this grossly oversimplified model of a galaxy—the disk has
no self-gravity, there is no massive halo, and the disk circular-speed curve
is Keplerian rather than flat—they were able to show that for a suitable
choice of initial conditions, it is possible to find a pair of colliding stellar
systems that is remarkably similar to Figure 8.13. We show their model in
Figure 8.14. More accurate models that include the self-gravity of the disk
and a massive halo largely confirm the Toomres’ conclusions (Barnes 1988;
Dubinski, Mihos, & Hernquist 1999).

The Toomres’ model predicted the line-of-sight velocity at each point in
the system. The observed velocities were found to be in complete agreement
with the model, and show that the point of closest approach of the two
galaxies, when the tails were launched, occurred 0.5 Gyr ago (Hibbard et al.
2001).

The tails seen in the Antennae differ in one important respect from the
tidal streamers discussed in §8.3.3. The streamers discussed in that section
are composed of stars stripped from small satellites of much larger stellar
systems; the streamers are narrow because the satellite is small. In contrast,
the two merging systems in the Antennae have comparable size; the tails
are narrow because the stars come from cold stellar systems—the disks of
the two merging spiral galaxies—so all the stars near a given location have
nearly the same initial velocity. Mergers of hot stellar systems of comparable
size do not generate narrow tidal tails.
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Figure 8.13 The interacting galaxies NGC 4038 and NGC 4039, the “Antennae.” This
is an overexposed image to emphasize the low surface-brightness tidal tails. The distance
from the overlapping blobs at the center to the bright star above and to the right of them
is 40 kpc. Courtesy of D. F. Malin and the Anglo–Australian Telescope Board.

Another route to the same conclusion is through the collisionless Boltz-
mann equation, which shows that the density of stars in phase space is con-
served (eq. 4.10). A long-lived tidal tail or streamer must have high phase-
space density, since the spatial density must be high if the tail is to be visible
against the background galaxy, and the velocity dispersion must be low if it
is not to disperse quickly. Thus the progenitor of the tidal tail or streamer
must have high phase-space density, a condition that is satisfied by both
satellite stellar systems (because their spatial densities are high and their
velocity dispersions are low compared to the larger host galaxy) and disks
(because the velocity dispersion is low).

Another galaxy with prominent tidal tails that is almost certainly an
ongoing merger is NGC 4676 (“the Mice”), shown in Figure 8.15.
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Figure 8.14 A model of the NGC 4038/4039 pair by Toomre & Toomre (1972). Repro-
duced by permission of The Astrophysical Journal.

8.5.2 Grand-design spirals

We have seen in Chapter 6 that grand-design spirals such as M51 (Plate 1)
or M81 (Plate 8) often have companion galaxies nearby, and that the gravi-
tational forces from an encounter with a companion can excite a strong but
transitory spiral pattern (Figure 6.26). In most cases the orbit of the com-
panion galaxy that excited the spiral will decay by dynamical friction, so
the two galaxies are likely to merge in the future. Thus many of the most
beautiful and striking spiral galaxies in the sky are likely to be the product
of major mergers.
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Figure 8.15 The Mice, NGC 4676, a pair of interacting galaxies at a distance of 95 Mpc.
Top: optical image from the Hubble Space Telescope. Bottom: an N-body model. Credit
for HST image: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M. Clampin (STScI),
G. Hartig (STScI), the ACS Science Team, and ESA. Credit for N-body model: J. Dubinski
(Dubinski & Farah 2006).

8.5.3 Ring galaxies

A handful of galaxies exhibit a distinctive morphology consisting of a lumi-
nous ring of young stars that is both rotating and expanding, usually with
one or more compact companion galaxies nearby. Figure 8.16 shows one
example, the “Cartwheel Galaxy.” These remarkable systems are known as
ring galaxies or sometimes collisional ring galaxies (Appleton & Struck–
Marcell 1996).12

Ring galaxies form when a disk galaxy collides head-on with another
system (Lynds & Toomre 1976). The collision excites a radially expanding

12 These are distinct from the prominent rings that are seen in some barred galaxies,
which are thought to arise from rapid star formation in gas that is in resonance with the
bar (see §6.5.2d and Buta 1995).
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Figure 8.16 The Cartwheel galaxy, the prototypical ring galaxy, at a distance of 125 Mpc.
The ring diameter is about 45 kpc. The lower of the two compact stellar systems to the left
of the ring—both members of the same group of galaxies as the Cartwheel—is probably
responsible for the ring structure. Credit: K. Borne (George Mason University) and
NASA.

density wave that triggers star formation in the disk as it passes. The com-
pact systems are the surviving central cores of the colliding galaxies. Ring
galaxies are rare—about one in 104 galaxies—because they are short-lived,
and because they are produced only in collisions with near-zero impact pa-
rameter.

We can use the impulse approximation to develop an instructive model
of this process, even though this approximation may not hold for all ring
galaxies. Consider a singular isothermal sphere that contains a rotating,
cold, disk of test particles in the plane z = 0, and suppose that it collides
with a second singular isothermal sphere having the same circular speed vc,
traveling along the z axis with relative speed V � vc. The gravitational
potential of each sphere is Φ(r) = v2

c ln r, and in Problem 8.7 it is shown
that the change ∆vR in the velocity of a disk star at initial radius R is then

∆vR = −2R
v2

c

V

∫ ∞

R

dr

r
√
r2 −R2

= −πv
2
c

V
. (8.134)

If V/vc is sufficiently large, the velocity impulse ∆vR/vc will be small, so
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Figure 8.17 The evolution of the
radii of particles in a disk after a
head-on encounter, as described by
equation (8.135), following Toomre
(1978). The ratio V/vc = 7.

(i) we may neglect the changes in the target’s potential that are generated
by the collision; (ii) we can describe the subsequent motion of the disk stars
using the epicycle approximation. If the collision is assumed to occur at
time t = 0, the radius of a star that is initially at R0 is given by the solution
of equation (3.78a) that satisfies the initial conditions x(0) = R − R0 = 0,
ẋ(0) = ∆vR:

R(R0, t) = R0 +
∆vR
κ0

sin(κ0t) (t > 0). (8.135)

Here κ0 is the epicycle frequency at R0, which is given by κ2
0 = 2v2

c/R
2
0

(eq. 3.79a).
The evolution of the radii of particles in the disk is shown in Figure 8.17.

The crowding of particle orbits gives rise to strong axisymmetric density
waves that propagate out through the disk. The point of maximum compres-
sion of the particle orbits is likely to be a region of enhanced star formation,
which we identify with the ring of luminous young stars. The outward prop-
agation of the density waves implies that the region inside the ring should
contain older, redder stars that were formed when the ring was smaller, and
such radial color gradients are indeed observed in several ring galaxies.

In practice, the collision of two galaxies is never precisely along the z axis
of the disk, as assumed in this simple model. However, numerical experiments
such as those shown in Figure 8.18 show that whenever an intruder passes
close to the center of the target disk on a trajectory that is angled by less than
about 30◦ from the symmetry axis of the disk, a striking ring is generated.
If the intruder misses the center of the target just slightly, the dense center
of the target galaxy is displaced from the center of the ring, as is observed
in the Cartwheel Galaxy.

8.5.4 Shells and other fine structure

Figure 8.19 shows images of NGC 3923 and NGC 1344, which exhibit arclike
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Figure 8.18 Six encounters between a disk of test particles orbiting a point mass and
an intruder of half the mass, marked by an open circle. The relative orbit is parabolic,
and the system is viewed from 45◦ above the disk. A ring is generated when the impact
parameter is small compared to the size of the disk (bottom three rows). From Toomre
(1978), with permission of Springer Science and Business Media.
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Figure 8.19 The giant elliptical galaxies NGC 3923 (top) and NGC 1344 (bottom) are
surrounded by faint shells. The images have been processed to accentuate the shells using
a high-pass spatial filter. Courtesy of David Malin, c© Anglo–Australian Observatory.

shells in the surface brightness on both sides of the galaxy; careful analysis
reveals over 20 such shells in this galaxy. The fraction of otherwise smooth
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Figure 8.20 The box and loop orbits shown in Figure 3.8. The upper figures show stars at
randomly chosen phases on the orbits to give a visual impression of the density distribution
in the orbit, and the lower figures show the number of stars as a function of horizontal
position within the boxes marked by dashed lines. Note the sharp cusps at the turning
points of the orbits.

galaxies (ellipticals and lenticulars) that exhibit shells can be as large as
30–50%, depending on how closely one looks. Shells may also be present in
spiral galaxies, but are camouflaged by spiral structure, dust, and irregular
star formation in the disk. Spectra show that the shells are composed of stars,
not gas. As is often the case in astronomy, the most famous examples of this
phenomenon are atypical. The shells in NGC 3923 are exceptionally sharp
and numerous, aligned with the major axis of the galaxy, and interleaved in
radius (the shells from one side alternate in radius with those from the other
side). In contrast, most shell galaxies contain ∼< 3 detectable shells, and
these are fainter, more diffuse, and have a less regular geometrical structure.

Other types of fine structure are also seen in elliptical galaxies (Kenni-
cutt, Schweizer, & Barnes 1998), and are given names such as “loops,” “rip-
ples,” “plumes,” “jets,” “X-structures,” etc. The tidal streamers described
in §8.3.3 are also a kind of fine structure.

Most fine structure in galaxies is formed by the same process that forms
tidal streamers, namely the disruption of a stellar system that has high phase-
space density—either a small, hot galaxy or a large, cold one.

For example, consider the fate of the stars in a small satellite that is
disrupted by a host galaxy. Initially the disrupted stars will form a tidal
streamer, but eventually the streamer will disperse. If the host potential
is regular, the stars will finally spread into a cloud of particles that have
similar actions but uniformly distributed angles. Such a cloud gives rise to
surface-density distributions such as those shown in Figure 8.20 for box and
loop orbits. A box orbit produces an X-shaped structure, while a loop orbit
produces an annulus with sharp edges at its inner and outer turning points.
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In projection, the edges of these particle distributions can appear as shells,
as indicated in the figure.

Another simple example is the disruption of a disk galaxy that is on a
radial orbit in a spherical potential (Quinn 1984). This process can be ex-
plored by releasing a cloud of test particles in a fixed potential (Figure 8.21).
Since the angular momentum of the test particles is nearly zero, the motion
can be followed in the two-dimensional (r, vr) plane. Shells are formed at the
turning points of the orbits, and they are interleaved in radius like the shells
observed in NGC 3923. The rather special circumstances of the encounter
(radial orbit, spherical host potential) are consistent with the observation
that most shell galaxies do not exhibit the regular geometrical structure
seen in this example.

The much more common case of the disruption of a galaxy on a non-
radial orbit can also produce shells, such as those shown in Figure 8.22, but
now the shells display the more complex geometry that is encountered in
most shell galaxies (Hernquist & Quinn 1988, 1989).

More generally, shells arise when stars are confined to a subspace of lower
dimensionality than the full six-dimensional phase space. The projection of
this smooth manifold onto the two-dimensional plane of the sky gives rise to
caustics, which can be classified using catastrophe theory (Tremaine 1999).

8.5.5 Starbursts

So far we have focused on the effects of mergers on a galaxy’s stars, but
the effects on its gas—if the galaxy has a gas disk—are even more dramatic.
As Toomre & Toomre (1972) wrote, “Would not the violent mechanical ag-
itation of a close tidal encounter—let alone an actual merger—already tend
to bring deep into a galaxy a fairly sudden supply of fresh fuel in the form
of interstellar material?” The Toomres’ prescient question was answered
by Larson & Tinsley (1978), who showed that many merger remnants had
anomalous blue colors consistent with young, massive stars formed in a re-
cent starburst—a short, intense period of rapid star formation at a rate
far exceeding that of a normal galaxy. Since that time a wide variety of
observations has confirmed that vigorous star formation occurs in merging
galaxies. Among the most striking of these observations is the discovery of
almost 103 blue objects in the Antennae (Figure 8.13), which appear to be
young globular clusters formed in the merger (Whitmore & Schweizer 1995).

The observational link between mergers and star formation was ce-
mented by the discovery of starburst galaxies. These are among the most
luminous galaxies known, emitting up to 1012.5 L�, mostly at infrared wave-
lengths. This intense emission comes from young stars shrouded in dust
and concentrated near the center of the galaxy. The emission is powered by
extremely high star-formation rates, as large as 103 M� yr−1, compared to
a few M� yr−1 in galaxies like the Milky Way. Starburst galaxies usually
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Figure 8.21 The disruption of a disk galaxy on a radial orbit in a spherical potential. The
host galaxy is represented by a rigid, fixed Plummer potential (2.44a) with mass M = 1
and scale length b = 1, and the satellite has mass m = 0.1 and is modeled by a rigid
Kuzmin-disk potential (2.68a) with scale length a = 0.5b, containing 10 000 test particles
on initially circular orbits. Top: The cross marks the center of the host galaxy and the
length of each arm of the cross is 5b. The evolution is viewed from a direction normal
to the plane of the disk galaxy (the x-y plane). The distribution of test particles is first
shown just before the satellite reaches the center of the host, falling in from infinity along
the positive x axis, and at intervals of 10 time units thereafter. Bottom: the projection of
the test particles onto the radius-radial velocity plane at time t = 50 (Quinn 1984).
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Figure 8.22 The formation of shells in the disruption of a small spherical galaxy on a
non-radial orbit. The small ellipse in the first frame represents the approximate location
and projected shape of the larger galaxy in the encounter. The simulation uses 20 000 test
particles. From Hernquist & Quinn (1989), reproduced by permission of the AAS.

exhibit tidal streamers or other optical features indicative of a recent col-
lision or merger (Sanders & Mirabel 1996; Kennicutt, Schweizer, & Barnes
1998; Kennicutt 1998). The presence of these short-lived features, and the
rapid consumption of gas required by the high star-formation rate, imply
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that starbursts last for only a few tens of Myr.
The reason for these very high star-formation rates is suggested by nu-

merical simulations of mergers of disk galaxies that contain both gas and
stars (Noguchi 1988; Mihos & Hernquist 1996). During the merger, both
the gas and stars form strong bars. The gas bar leads the stellar bar, so the
gravitational torque from the stars rapidly drains angular momentum from
the gas. Remarkably, in a typical major merger the gas can lose up to 90%
of its angular momentum in a fraction of an orbital period, thus settling into
a dense rotating disk ∼< 0.5 kpc across, in which star formation is likely to be
extremely rapid.

8.5.6 The merger rate

The rate at which galaxies merge is a fundamental point of comparison be-
tween observations and models of structure formation. The merger rate can
be determined from observations using two quite different methods.

The first method is to count the fraction of galaxies showing obvious
features of an ongoing or recent major merger, such as tidal tails or star-
bursts, and combine this fraction with an estimate of how long such features
last to determine the merger rate per galaxy. The first attempt of this kind
was made by Toomre (1977b), who pointed out that about 10 of the ∼ 4000
NGC galaxies13 show prominent tidal tails, and that these tails probably
last no more than ∼ 0.5 Gyr. Thus the rate of major mergers is probably
about 10/4000/0.5 Gyr ' 0.005 Gyr−1 for a luminous galaxy. This estimate
neglects two important biases, of opposite sign: first, not all major mergers
yield visible tidal tails; second, mergers enhance the star-formation rate, so
galaxies experiencing mergers are more luminous than quiescent galaxies,
and hence will be over-represented in a flux-limited catalog like the NGC. A
crude assumption is that these two biases cancel, leaving the original estimate
of 0.005 major mergers per Gyr approximately correct.

A second approach is to count the fraction of galaxies with companions
within a given radius, and combine this fraction with estimates of the rate
of decay of the companion orbit by dynamical friction to obtain the merger
rate (Tremaine 1981). The distribution of companions is described by the
galaxy-galaxy correlation function ξ(r), defined so that the probability
of finding two galaxies in the volumes d3r1 and d3r2 separated by r ≡ |r1−r2|
is

d2p = n2
0[1 + ξ(r)] d3r1d3r2, (8.136)

where n0 d3r is the probability of finding one galaxy in the volume d3r. Over
a wide range of separations and luminosities, the galaxy-galaxy correlation

13 NGC stands for “New General Catalog,” a catalog of galaxies, nebulae, and clusters
compiled by Dreyer in 1888, which was a revision and expansion of Herschel’s “General
Catalog” of 1864. See BM Appendix B.
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function can be described by a power law,

ξ(r) '
(r0
r

)γ
, (8.137)

where (Hawkins et al. 2003)

r0 = (7.2 ± 0.4)h−1
7 Mpc ; γ = 1.67 ± 0.03, (8.138)

over the range 1 ∼< ξ ∼< 103. Thus the number density of companions at
distance r � r0 from a primary galaxy is

n(r) = n0

(r0
r

)γ
. (8.139)

The rate of decay of the orbital radius of a companion due to dynam-
ical friction is given approximately by equation (8.16). Assuming that the
primary galaxy and the companion have similar luminosity and velocity dis-
persion, σ, we have

dr

dt
' −0.4fσ, (8.140)

where we have set the Coulomb logarithm ln Λ ' 1 according to the ar-
guments that follow equation (8.17), and f ∼> 1 is a correction factor that
arises because the relative orbit is likely to be elongated rather than circular,
which accelerates the decay. For each primary galaxy, the current of merging
companions through radius r is then

Ṅ(r) ' 1
2 × 4πr2n(r)

∣∣∣∣
dr

dt

∣∣∣∣ ' 0.8πfn0σr
γ
0 r

2−γ ; (8.141)

the factor 1
2 is needed to avoid counting each galaxy twice, once as a primary

galaxy and once as a companion. In a steady state, the current should be
independent of r, and this constant number would represent the merger rate;
the actual weak dependence on r seen in equation (8.141), Ṅ ∝ r2−γ ∝ r0.3,
probably arises because our approximation that both galaxies are isothermal
spheres is not very accurate. We shall equate the merger rate Ṅmerge to

Ṅ(rmin), where rmin = 20h−1
7 kpc is roughly the radius at which the stellar

distributions of two luminous galaxies begin to merge.
The derived merger rate depends on the minimum luminosity of the

companion galaxies that we consider—clearly, if we count minor mergers,
the merger rate will be higher than if we count only major mergers. For the
present estimate we shall consider only mergers of companions with luminos-
ity L > L?, where L? is the characteristic Schechter luminosity defined by
equation (1.18). Using that equation, the average number density of galaxies
more luminous than L? is

n0(L > L?) =

∫ ∞

L?

dLφ(L) = φ?

∫ ∞

1

dxxαe−x. (8.142)
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For the parameters given after equation (1.18), we find n0(L > L?) =
0.21φ? ' 1.0 × 10−3h3

7 Mpc−3. According to the Faber–Jackson law (1.21),
the dispersion of an L? galaxy is σ? ' 200 km s−1. Thus

Ṅmerge(L > L?) ' 0.8πfn0(L > L?)σ?r
γ
0 r

2−γ
min

≈ 0.008h7
f

2
Gyr−1.

(8.143)

The approximate agreement of this estimate with the rate 0.005 Gyr−1 ob-
tained by Toomre (1977b) provides encouraging evidence that our under-
standing of the merging process is sound. More recent determinations of the
merger rate (Conselice 2006) are also roughly consistent with these crude
estimates.

Problems

8.1 [1] Two identical galaxies are initially at rest, at a large distance from one another.
They are spherical, composed solely of identical stars, and their light distributions obey
the Sérsic law (1.17) with Sérsic index m and effective radius Re. The galaxies fall together
and merge. If the merger product also satisfies the Sérsic law with the same index, what
is its effective radius?

8.2 [1] The derivation of the dynamical friction formula (8.1) assumes that the subject
system is a point mass, but in many cases of interest the subject system is an extended
body, such as a star cluster or satellite galaxy, characterized by a half-mass radius rh. If
the point of closest approach of the field star to the center of the subject body is ∼< rh
then the deflection of the field-star orbit, and its contribution to the drag force, will be
smaller than if the subject body were a point of the same total mass.

(a) Argue that the total drag force is largely unaffected by the non-zero size of the subject
body if rh ∼< b90, where b90 is given by equation (3.51).

(b) If rh ∼> b90, argue that encounters with impact parameter ∼< rh make a negligible
contribution to the total drag force. Using the first of equations (L.11), argue that in this
case the argument of the Coulomb logarithm is given by Λ ' bmax/rh.

(c) Combine these conclusions to argue that the correct value of the argument of the
Coulomb logarithm for a subject body of half-mass radius rh is approximately

Λ =
bmax

max(rh,GM/v2typ)
, (8.144)

and that the fractional error in ln Λ that arises from using this expression is of order
(ln Λ)−1.

8.3 [3] In the core of a certain flattened elliptical galaxy, the mean stellar velocity van-
ishes and the velocity distribution is Gaussian, with dispersion σz parallel to the galaxy’s
symmetry axis êz , and dispersion σ⊥ = σz/

√
1 − e2 > σz in directions orthogonal to êz .

A massive body moves through the core at velocity v = vz êz + v⊥ê⊥, where ê⊥ · êz = 0.
Show that the frictional drag on the body may be written F = −γzvz êz−γ⊥v⊥ê⊥, where

1 <
γz

γ⊥
=
I(1, 3

2
)

I(2, 1
2
)

; I(µ, ν) ≡
Z ∞

1

dλ

λµ(λ − e2)ν
exp

h
− 1

2
σ−2
⊥

“v2⊥
λ

+
v2z

λ− e2

”i
. (8.145)

Hint: use the analogy between the Rosenbluth potential h(v) and the gravitational po-
tential (see discussion following eq. L.19) and equation (2.125).
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8.4 [3] Chandrasekhar’s dynamical friction formula can be derived using the linear re-
sponse theory developed in §5.2.4 (Marochnik 1967; Kalnajs 1972b).

(a) Consider a point mass M traveling on the straight-line trajectory xM (t) = vM t
through a uniform stellar system. Show that the spatial Fourier transform (eq. 5.26)
of the density response is given by

ρs1(k, t) = M

Z
dt′ R(k, t− t′) e−ik·vM t′ , (8.146)

where R(k, τ) is the response function (eq. 5.27).

(b) As we showed in §5.2.4, an infinite homogeneous stellar system is unstable, so to
avoid an infinite response we must suppress the self-gravity of the system when evaluating
equation (8.146). The justification for this neglect is that the instability arises on scales
comparable to the Jeans length, while the dominant contribution to dynamical friction
comes from encounters at much smaller distances (page 576), for which the effects of
self-gravity are small. To remove self-gravity, we simply replace the response function
R in equation (8.146) by the polarization function P , which measures the response to
a given total potential rather than a given external potential. With this substitution,
use equation (5.55) to show that if the stellar system has a Maxwellian df, the Fourier
transform of the density response is

ρs1(k, t) = 4πGMρ e−ik·vM t

Z ∞

0
dτ τeik·vM τ−(kστ)2/2, (8.147)

where ρ and σ are the density and velocity dispersion of the host system.

(c) Take the inverse Fourier transform of ρs1, and evaluate the resulting integrals to show
that the density response is

ρs1(x, t) =
GMρ

σ2r
exp

 
−v

2
M sin2 θ

2σ2

!»
1 − erf

„
vM cos θ√

2σ

«–
, (8.148)

where erf denotes the error function (Appendix C.3), r = x − xM , r = |r|, and θ is the
angle between vM and r. Hint: carry out the integral over k first, using polar coordinates
in k-space with the polar axis along the vector r + vMτ ; then evaluate the integral over
τ after transforming to the variable u = 1/τ .

(d) Show that the gravitational force exerted on M by this density distribution is

F = 2π
G2M2ρ

σ2

vM

vM

Z
dr

r

Z 1

−1
dµµ exp

"
−v

2
M (1 − µ2)

2σ2

# »
1 − erf

„
vMµ√

2σ

«–
, (8.149)

where µ = cos θ.

(e) The upper limit to the integral over radius should be of order the size R of the host
system, while the lower limit should be roughly the 90◦ deflection radius b90 ≈ GM/σ2

(eq. 3.51), since interior to this radius the perturbations to the orbits of passing stars are
so large that linear response theory is invalid. With these limits, show that evaluation
of the integrals in equation (8.149) yields the standard dynamical friction formula (8.7),
with Λ = R/b90 .

8.5 [1] At some initial time the stellar streaming velocity v(x) within an axisymmetric
galaxy of density ρ(R, z) constitutes circular rotation at angular frequency ω(R, z). The
galaxy is then perturbed by the high-speed passage of a massive system. Show that
within the impulse approximation the instantaneous change ∆v in v that is produced by
the encounter satisfies Z

d3x ρ(v · ∆v) = 0. (8.150)

Hint: write v = ωR êφ and exploit the fact that ∆v can be derived from a potential.

8.6 [2] Reproduce Figure 8.4.
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8.7 [2] Consider a high-speed head-on encounter at relative velocity V . Assume that the
perturber is spherical, with gravitational potential Φ(r), and let (R, z) be cylindrical coor-
dinates such that the z axis coincides with the perturber’s trajectory (i.e., the trajectory
is R = 0, z = V t).

(a) Show that the only non-zero component of the impulse to a star at (R, z) is

∆vR = −2R

V

Z ∞

R

dr√
r2 − R2

dΦ

dr
. (8.151)

(b) If the perturber is a Plummer model, Φ = −GM/
√
r2 + b2, of mass M and scale

length b (§2.2.2c), show that the impulse is

∆vR = − 2GMR

V (R2 + b2)
. (8.152)

(c) If the perturber and the perturbed system are identical Plummer models, show that
the energy per unit mass gained by each system in the encounter is

∆E =
G2M2

3V 2b2
. (8.153)

8.8 [1] Show that the probability P (V ) dV that two stars drawn from Maxwellian dis-
tributions with one-dimensional dispersions σ1 and σ2 have relative speed in the interval
(V, V + dV ) is

P (V ) dV = (2πσ2)−3/2 exp
“
− V 2

2σ2

”
V 2dV, σ2 = σ2

1 + σ2
2 . (8.154)

In words, the relative speed distribution is Maxwellian, with squared dispersion equal to
the sum of the squared dispersions of the two populations.

8.9 [1] Is there more angular momentum in the orbit of the Magellanic Clouds around
our Galaxy or in the spin of the disk of our Galaxy?

8.10 [3] A frictionless railroad crosses a valley that separates two flat plateaus of equal
height. At t = 0, two cars, each of mass m, are sent off with the same speed v and
separation d from the horizontal stretch of track on one side of the valley. Show that when
the cars emerge onto the horizontal stretch of track on the other side of the valley, they
have zero relative velocity and their separation is unchanged.

Discuss the relation between this system and disk shocking of globular clusters; in
particular, why does passage through the disk heat the cluster but leave the relative
velocity of the cars unchanged? Hint: consider adding a spring of rest length d and
stiffness ω2/m between the two cars.

8.11 [2] A satellite system of mass m is in a circular orbit around a point-mass host
M � m. Let (x, y, z) be Cartesian coordinates with êx pointing along the line joining
the two masses and êz normal to the orbital plane. The distance of the tidal surface from
m along the x axis is rJ (eq. 8.91). Show that the distance of this surface from m along
the y- and z-axes is 2

3
rJ and (32/3 − 31/3)rJ, respectively. Thus, the Roche surface is not

spherical.

8.12 [2] In the distant-tide approximation, the tidal field around a freely falling satellite
of a host galaxy can be written in the form −∇Φt = −

P3
i,j=1 êiΦijxj , where {xj} are

non-rotating Cartesian coordinates centered on the body (see §8.2.1). The tidal field is
said to be compressive along axis i if êi · ∇Φt > 0, that is, if the tidal force points
towards the center of the satellite.

(a) If the host galaxy is spherical with density ρh(R) at a distance R from its center, prove
that the tidal force is compressive along all three axes if and only if ρh >

2
3
ρh, where ρh

is the mean density of the host interior to R (cf. eq. 8.92).
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(b) If the density of the host is ρ(R) ∝ R−γ , prove that the tidal force is compressive in
all directions if and only if γ < 1. In a host with this property tidal disruption cannot
occur, no matter how small the mass of the satellite may be. How is this result consistent
with the discussion of tidal disruption in §8.3?
8.13 [3] This problem investigates how orbits that lie far beyond the Jacobi radius can
remain bound to a satellite. We consider a satellite on a circular orbit, using Hill’s ap-
proximation (§8.3.2) and restrict our attention to the orbital plane of the satellite, z = 0.
Since the orbits in question are much larger than the Jacobi radius, the gravitational field
of the satellite is weak. Thus we may assume that the orbit is described approximately by
the solution (8.99) over timescales of order the epicycle period Tr = 2π/κ0, with constants
of motion xg, yg0, X, Y , and ψ that change slowly due to perturbations from the satellite.

(a) Show that the guiding-center radius xg changes at a rate

ẋg =
1

2B0

∂Φs

∂y
, (8.155)

where Φs(x) = −Gm/(x2 + y2)1/2 is the potential from the satellite. Hint: use equations
(8.97), (8.101), and (8.102).

(b) If the perturbations from the satellite are weak, and |xg| � |yg| (assumptions we will
justify below) then the term ∂Φs/∂y in equation (8.155) can be replaced by its average
over an epicycle period at fixed values of the constants of motion; that is

∂Φs

∂y
⇒
fi
∂Φs

∂y

fl
≡ Gm

2π

Z 2π

0
dτ

yg − Y sin τ

[(xg +X cos τ)2 + (yg − Y sin τ)2]3/2
. (8.156)

In the limit where |xg| � |yg| � X, that is, where the distance of the guiding center from
the satellite is much less than the epicycle size, show that
fi
∂Φs

∂y

fl
= −Gmyg

X3
W

„
Ω0

κ0

«
, where W (u) ≡ 2

π

Z π/2

0
dτ

8u2 sin2 τ − cos2 τ

[cos2 τ + 4u2 sin2 τ ]5/2
.

(8.157)
Hint: expand equation (8.156) in a Taylor series, and use equation (8.100). The function
W (u) varies from 0.10032 for u = 1 (Keplerian orbits) to 0.22662 for u = 2−1/2 (flat
circular-speed curve) to 0.5 for u = 1

2
(harmonic oscillator).

(c) Differentiating the equation for yg(t) in (8.99) and using the assumption that the time
derivatives of the constants of motion are small yields ẏg = −2A0xg. Using this result
and equation (8.155) show that the equation of motion for the guiding center is

ÿg = −A0

B0

fi
∂Φs

∂y

fl
. (8.158)

Interpret this result in terms of the “effective mass” introduced in Box 3.3.

(d) Show that the motion of the guiding center is given by

xg(t) = Xg cos(ωt+ α) ; yg(t) = Yg sin(ωt + α), (8.159)

where Xg and α are arbitrary and

Xg

Yg
= − ω

2A0
; ω2 =

GmA0

−B0X3
W

„
Ω0

κ0

«
=

4Ω0A2
0

−B0

“ rJ
X

”3
W

„
Ω0

κ0

«
; (8.160)

the final form has been derived with the use of equation (8.106). In most galactic potentials
A0 > 0 and B0 < 0, so ω2 > 0 and ω is real. Thus the guiding center oscillates around
the satellite; if the orbit lies far outside the tidal radius (X � rJ) then (i) the oscillation
is slow in the sense that ω � Ω0, and (ii) the excursions in yg are much larger than the
excursions in xg, consistent with the assumptions we made in deriving this result. The
approximations we have used also require that Yg � Y , that is, the amplitude of the
guiding-center oscillations must be smaller than the epicycle amplitude.
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(e) In Problem 5.1, we showed that a solid ring orbiting a planet is unstable. This calcula-
tion neglected tidal forces. Would a solid ring that is much larger than the Jacobi radius
be stable?

8.14 [1] (a) Derive the energy integral (8.104) for the sheared sheet in two ways, first by
multiplying the equations of motion (8.97) by ẋ, ẏ, ż respectively, adding, and integrating;
second by finding the Lagrangian and Hamiltonian that yield the equations of motion.

(b) Assume that we impose periodic boundary conditions on the sheared sheet, by iden-
tifying y + 2πR with y. Find the angle-action variables for the case Φs = 0, and relate
these to the angle-action variables in the epicycle approximation (§3.5.3b).

8.15 [1] A spherical host galaxy contains two small satellites having masses m1 and m2.
The satellites travel on nearly circular orbits with nearly the same orbital radius and plane.

(a) Argue that their interactions can be described using Hill’s approximation (8.97) in the
form

ẍ1−2Ω0ẏ1−4Ω0A0x1 = −∂Φ12

∂x1
; ÿ1 +2Ω0ẋ1 = −∂Φ12

∂y1
; z̈1 +Ω2

0z1 = −∂Φ12

∂z1
, (8.161)

where Φ12 = −Gm2/|x1 − x2|. Here xi ≡ (xi, yi, zi) is the position of satellite i, i = 1, 2.
The equation of motion for satellite 2 is obtained by interchanging the indices 1 and 2.

(b) In this approximation, what is the trajectory of the center of mass of the two satellites,
xcm ≡ (m1x1 +m2x2)/(m1 +m2)?

(c) Show that determining the motion of the two satellites can be reduced to solving the
equation of motion for a single particle with position x ≡ x2 − x1.

8.16 [2] This problem analyzes the sheared sheet (§8.3.2) as a model for the kinematics
of the solar neighborhood or other stellar disks. For simplicity, we restrict ourselves to a
two-dimensional disk, ignoring motion in the z-coordinate, although the results are easily
generalized to three-dimensional disks.

(a) Show that in the absence of local mass concentrations (that is, if the satellite potential
Φs = 0) the equations of motion (8.97) are invariant under the transformation

x → x+ ∆x ; y → y − 2A0∆xt. (8.162)

Describe the physical meaning of this symmetry.

(b) According to the Jeans theorem, the equilibrium df f(x, y, ẋ, ẏ) can depend only on
the integrals of motion E‖ and L (eq. 8.101). Show that the only combination of these
integrals that is invariant under the transformation (8.162) is the epicycle energy defined
in equation (8.103). Thus argue that if the disk is smooth on small scales, the df must
have the form f(Ex).

(c) For a df of this form, show that the surface density is independent of position, the
mean radial velocity vanishes, the mean azimuthal or y-velocity is −2A0x, and the ratio
of the dispersions in the azimuthal and radial directions is

σ2
y

σ2
x

=

R
dẋdẏ f(Ex)(ẏ + 2A0x)2R

dẋdẏ f(Ex)ẋ2
=

κ2
0

4Ω2
0

, (8.163)

a result already derived by different methods in equation (3.100).

(d) Show that if f(Ex) ∝ exp(−E2
x/σ

2
0) then

f(x, y, ẋ, ẏ) =
Σ

πσ2
0

Ω0

κ0
exp

»
− ẋ2

2σ2
0

− 2Ω2
0(ẏ + 2A0x)2

κ2
0σ

2
0

–
. (8.164)

Show that this is the analog of the Schwarzschild df introduced in §4.4.3.
(e) Does this df exhibit asymmetric drift (§4.8.2a)?
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8.17 [2] Assume that the Sun travels in a circular orbit in the Galactic plane. Let (x, y, z)
be rotating Cartesian coordinates centered on the Sun, with êx pointing away from the
Galactic center and êz pointing to the north Galactic pole.

(a) Show that the zero-velocity surfaces in the combined gravitational field of the Sun and
the Galaxy are given by

2A(B − A)x2 + (A2 − B2 + 2πGρ0)z2 − GM�
r

= constant, (8.165)

where ρ0 is the density in the solar neighborhood, A and B are Oort’s constants, and
r2 = x2 + y2 + z2. Hint: see Problem 3.18.

(b) Let xJ, yJ, zJ be the intersections of the Sun’s Roche surface with the coordinate axes.
Evaluate these quantities in parsecs, using the parameters in Tables 1.1 and 1.2.

8.18 [2] Reproduce Figure 8.8.

8.19 [3] The goal of this problem is to determine the epicycle amplitude induced in a
star as it passes a molecular cloud, in the shear-dominated regime. We use the equations
of motion (8.97) and neglect motion perpendicular to the x–y plane. We assume that
the cloud is at the origin and that the star is initially on a circular orbit with impact
parameter b, so x(t) = (b,−2A0bt). If the cloud potential is φ(x) = −Gm/(x2 + y2)1/2

and its mass is sufficiently small that the right sides of the equations of motion can be
evaluated along the unperturbed stellar orbit, show that after the encounter the epicycle
amplitude is (Julian & Toomre 1966)

X =
GmΩ0

κ0A2
0b

2

»
K0

„
κ0

2A0

«
+

κ0

2Ω0
K1

„
κ0

2A0

«–
, (8.166)

where Kν is a modified Bessel function (Appendix C.7). Thus, derive the correction factor
f in equation (8.121b).

8.20 [2] In this problem we estimate the rate of growth of epicycle energy in the dispersion-
dominated regime. Consider a star traveling on a nearly circular orbit in the equatorial
plane of a razor-thin galaxy. At time zero, the star is instantaneously deflected by the
gravitational field from a nearby molecular cloud that is itself on a perfectly circular orbit.
The star is traveling at speed v with respect to the cloud, and the encounter deflects it
through an angle η onto a new, nearly circular orbit within the galactic plane. Show that
the deflection changes the star’s epicycle energy by an amount

∆Ex = Ex(γ
2 − 1)

ˆ
sin2 η(sin2 α− γ−2 cos2 α) − 1

2γ
sin 2η sin 2α

˜
, (8.167)

where γ = 2Ω/κ and α is the epicycle phase (see eqs. 3.91 and 3.93, or 8.99). At the
radius of the star’s orbit, there are n clouds per unit area, each having mass m. The mass
distribution in the clouds can be represented by a Plummer model with scale length b,
which is much smaller than the star’s epicycle radius. Using the impulse approximation,
assuming that the relative velocity is dominated by the velocity dispersion of the stars,
and assuming that the deflection angle η is small, show that the expectation value of the
rate of change of epicycle energy is

Ėx =

√
2G2m2n

b
√
Ex

(γ2 − 1)

Z π/2

0
dα

sin2 α− γ−2 cos2 α

(sin2 α+ γ−2 cos2 α)3/2
. (8.168)

Verify that Ėx > 0 for γ > 1. What happens to stars in a galaxy with γ < 1?



9
Galaxy Formation

Why is the universe populated by galaxies, rather than a uniform sea of
stars? Why are most stars in galaxies with luminosities near L? ' 3×1010L�
(eq. 1.18)? What is the physical origin of the fundamental plane of elliptical
galaxies (eq. 1.20) and the Tully–Fisher law for disk galaxies (eq. 1.24)?
These are the kinds of questions that a complete theory of galaxy formation
should answer. The answers to these questions are still incomplete, and what
answers we do have are based on a wide range of physics that extends well
beyond stellar dynamics. Nevertheless, stellar dynamics does play a central
role in the formation of galaxies and in determining their characteristics, and
that role is the subject of this chapter.

In §1.3 (eq. 1.73) we saw that only 15% of the cosmic matter density
is contributed by baryonic matter, the remaining ∼ 85% of the density be-
ing non-baryonic matter that has no strong or electromagnetic interactions.
Thus it is a useful first approximation to neglect the contribution of the
baryonic matter to the gravitational forces involved in galaxy formation. In
this approximation the dark matter is not affected by the baryons. Without
the complications of baryonic physics (radiation, fluid dynamics, star for-
mation, etc.) the dynamics of dark matter becomes a well-defined—though
difficult—stellar-dynamical problem that has been extensively studied, and
largely solved, by cosmologists over the last several decades. In this chapter
we review the results of this study.

The emergence of stars, galaxies, groups and clusters of galaxies, and
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even larger inhomogeneities from the nearly homogeneous early universe is
referred to as structure formation. In §9.1, which is concerned with the
earliest phase in the emergence of structure, we shall derive results that
apply to baryons and dark matter alike. In §§9.2 and 9.3 we shall restrict
ourselves to discussion of the dynamics of dark matter in order to avoid
the complexities of nonlinear gas dynamics. This restriction is unfortunate
since the sophisticated theoretical framework that emerges describes only the
distribution of matter that we cannot see, but the results are essential for
understanding the behavior of the baryons that we do see. Finally, in §9.4
we discuss in a speculative vein the complex dynamics of ordinary matter
that leads to the formation of visible stars and galaxies near the centers of
dark halos.

9.1 Linear structure formation

As we described in §1.3 the universe is homogeneous and isotropic on large
scales, and therefore described by the metric (1.44) with the evolution of the
scale factor a(t) given by the Friedmann–Robertson–Walker (FRW) equa-
tions (1.47)–(1.50). A fundamental assumption of modern cosmology is that
early in its history the universe was almost perfectly homogeneous, and that
stars, galaxies, clusters, and other large-scale structures developed by the
growth of gravitationally unstable fluctuations in the density ρ(x) of the
baryonic and non-baryonic matter. Rather than working directly with ρ(x),
we use the dimensionless overdensity

δ(x) ≡ ρ(x)

ρ0
− 1, (9.1)

where ρ0 denotes the average matter density over a volume V that is suf-
ficiently large that the universe can be considered homogeneous. We shall
usually assume that x is a comoving coordinate, so the physical distance
corresponding to the comoving distance x is a(t)x, where a(t) is the cosmic
scale factor (§1.3.1). In the linear regime |δ| � 1.

In the real universe δ has a well-defined value at each location x. How-
ever, we do not know what this value was early in the life of the universe,
and it is natural to imagine it to be the outcome of pure chance. That is,
we imagine δ(x) to be a random variable, and we say that the function δ
defines a random field. Thus we replace the concept of a homogeneous uni-
verse with that of a statistically homogeneous universe: one in which the
statistical properties of ρ(x) in any volume V of given size and shape are
independent of the location of its centroid.

If δ is to be a continuous function, the (random) values that it takes at
two nearby points x′ and x′ + x must be correlated: given that the field is
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continuous and we know the value of δ(x′), then the uncertainty in δ(x′ +x)
must become smaller and smaller as x → 0. The degree to which δ(x′)
and δ(x′ + x) are mutually dependent on one another is quantified by the
correlation function

ξ(x) ≡ 〈δ(x′)δ(x′ + x)〉. (9.2)

Here the angle brackets imply that the expectation value is to be taken.
The assumption of statistical homogeneity allows us to interpret this as the
average over all points x′. If the universe is statistically isotropic, ξ cannot
depend on the direction of the displacement x, but only on its magnitude
x = |x|. Thus we can assume that the correlation function has the form

ξ(x) ≡ 〈δ(x′)δ(x′ + x)〉. (9.3)

For simplicity, we restrict our averages to a large but finite volume V ,
which we take to be a cube of side V 1/3. We apply periodic boundary
conditions on this cube—since we can make V very large, this assumption
has no effect on the answer. Then the overdensity is periodic and can be
expanded as a Fourier series (Appendix B.4),

δ(x) =
1

V

∑

k

δkeik·x where δk =

∫

V

d3x δ(x) e−ik·x, (9.4)

k = 2πn/V 1/3 with n = (n1, n2, n3) a triple of integers, and the sum is over
all n. Note that δ0 = 0 because δ(x) has zero mean by definition. Like δ(x),
δk is a random variable with zero mean. The reality of δ(x) is assured by
including both k and −k in the sum, with

δ−k = δk
∗. (9.5)

When we insert the Fourier expansion (9.4) into the definition (9.3) of
the correlation function, we find

ξ(x) =
1

V 2

∑

k′k

〈δk′δk〉ei(k′+k)·x′

eik·x. (9.6)

Since the right side cannot depend on x′, we infer that

〈δk′δk〉 = 0 if k′ 6= −k. (9.7)

Hence equation (9.6) simplifies to

ξ(x) =
1

V 2

∑

k

〈δ−kδk〉eik·x =
1

V 2

∑

k

〈|δk|2〉eik·x ≡ 1

V

∑

k

P (k)eik·x, (9.8)

where P (k) ≡ 〈|δk|2〉/V is the power spectrum of the random field. Equa-
tion (9.8) states that the power spectrum is the Fourier transform of the
correlation function. Since the universe is isotropic, the power spectrum can
only depend on k = |k|. The variance of the overdensity is

〈δ2(x)〉 = ξ(0) =
1

V

∑

k

P (k). (9.9)
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9.1.1 Gaussian random fields

We say that δ(x) is a Gaussian random field if, except for the obvious
constraint implied by the reality condition (9.5), the δk are independent
random variables.1 Equation (9.4) can be written

δ(x) =
1

V

∑

k

′ (
δkeik·x + δ−ke−ik·x) , (9.10)

where
∑′ is the sum over only half of k-space.2 In a Gaussian field, each

term δk exp(ik · x)+δ−k exp(−ik · x) is an independent real random variable.
According to the central limit theorem (Appendix B.10), a sum of a large
number of independent random variables has a Gaussian distribution: that
is, the probability that δ(x) lies in the small interval (δ, δ + dδ) is

dp =
1

(2πσ2)1/2
exp

(
− δ2

2σ2

)
dδ, (9.11)

where σ2 = 〈δ2(x)〉 is the position-independent variance of the overdensity
field. It is from this property that Gaussian random fields derive their name.

Any quantity that is a linear function of the values taken by the overden-
sity field at several positions will also have a Gaussian distribution. For ex-
ample, the gradient of the overdensity field is ∇δ = iV −1

∑
k δkk exp(ik ·x),

and the central limit theorem can be applied to this sum to show that its
distribution is Gaussian.

The central limit theorem can also be used to establish a much more
powerful result on the joint distribution of the overdensities at several lo-
cations. Let u ≡ (δ1, . . . , δD) be the vector describing the overdensity
δi ≡ δ(xi) at the D positions x1, . . . ,xD. Then, by an extension of equa-
tion (9.10),

u =
1

V

∑

k

′ [
(eik·x1 , . . . , eik·xD)δk + (e−ik·x1 , . . . , e−ik·xD)δ−k

]
. (9.12)

Each term in the sum is an independent vector random variable, so by equa-
tion (B.99) the joint probability distribution of δ1, . . . , δD is given by

dp =
dδ1 · · · dδD

(2π)D/2|C|1/2 exp

(
− 1

2

D∑

i,j=1

δiC
−1
ij δj

)
, (9.13)

1 Mathematically we require that if δk = a + ib, with a, b real, and pk(δk) da db is
the probability that δk lies in the infinitesimal area of the complex plane da db, then the
probability that δk lies in this area and δk′ lies in da′db′ is pk(δk)pk′ (δk′ ) da db da′db′ so
long as k 6= ±k′.

2 For example the volume k1 > 0 plus the half-plane k1 = 0, k2 > 0, plus the half-line
k1 = k2 = 0, k3 > 0. Recall that δ0 = 0.
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where C−1 is the inverse of the matrix C defined by

Cij = 〈δ(xi)δ(xj)〉 = ξ(|xj − xi|), (9.14)

|C| is the determinant of this matrix, and ξ(x) is defined by equation (9.2).
Since the matrix C is determined by the correlation function ξ(x), which in
turn is determined by the power spectrum P (k) through equation (9.8), all
of the statistical properties of a Gaussian random field are determined by its
power spectrum (e.g., Bardeen et al. 1986).

(a) Filtering To understand the physical meaning of the power spectrum,
imagine smoothing the density field with a filter that averages out all density
fluctuations on scales less than the smoothing length L. More precisely,
we convolve the overdensity field δ(x) with a filter or window function
W (x) to generate a smoothed field δL(x):

δL(x) ≡
∫

d3x′W (x − x′)δ(x′), (9.15)

where
∫

d3xW (x) = 1 and W (x) ' 0 for |x| ∼> L. In terms of its Fourier
components, the smoothed overdensity is δL(x) = V −1

∑
k δL,k exp(ik · x).

It is straightforward to show that the relation between the smoothed and
unsmoothed Fourier components (eq. 9.4) is

δL,k = W̃ (k)δk where W̃ (k) ≡
∫

d3xW (x) e−ik·x. (9.16)

Thus smoothing reduces the Fourier amplitudes by a factor |W̃ (k)|, which
is unity for k = 0 and tends to zero for k ∼> K ≡ 2π/L. For brevity we shall
say that a filter of this kind has scale K−1 although the actual smoothing
length is closer to 2π/K.

Although several different filters are used in cosmology, we shall work
with fields that have been smoothed by simply setting to zero all amplitudes
with k greater thanK—that is, we shall work with the sharp k-space filter.
This filter’s window function WK(x) is determined by taking the inverse of

the filter’s Fourier transform, W̃K(k) = H(1 − k/K), where H is the step
function (Appendix C.1 and eq. B.68). Denoting x = |x| we find that

WK(x) =
1

2π2x3
(sinKx−Kx cosKx) . (9.17)

Any given smoothing filter defines a characteristic mass that is equal to
the mean density times the volume contained within one smoothing length.
One natural way to define this mass is

M ≡ ρ0

∫
d3x

W (x)

W (0)
=

ρ0

W (0)
. (9.18)
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For the sharp k-space filter WK(0) = K3/(6π2), so

MK =
6π2ρ0

K3
. (9.19)

By equations (9.9) and (9.16), the variance of an overdensity field that has
been smoothed with the filter WK is

σ2
K =

1

V

∑

k

W̃ 2
K(k)P (k) =

1

V

∑

|k|<K
P (k). (9.20)

If we now proceed to the limit V → ∞ of a large box, the interval between
values of ki = 2πni/V

1/3 over which we are summing becomes infinitesimal,
and we have

1

V

∑

k

→ 1

V

∫
d3n =

1

(2π)3

∫
d3k. (9.21)

Then equation (9.20) becomes

σ2
K =

1

2π2

∫ K

0

dk k2P (k). (9.22)

(b) The Harrison–Zeldovich power spectrum The simplest power
spectra are power laws,

P (k) ∝ kn. (9.23)

For a power spectrum of this form,

σ2
K ∝

∫ K

0

dk k2+n ∝ K3+n. (9.24)

For example, suppose that the density field consists of points laid down at
random, with average density n; in other words, the density field is a Poisson
process (see Appendix B.8). In a box of side K−1, the mean number of points
will be N = nK−3, the variance in this number will be σ2

N = N (eq. B.84),
the fractional standard deviation will be σN/N = N−1/2 ∝ K3/2, and this
is just σK . Comparing this result with equation (9.24) shows that the power
spectrum of a Poisson process has n = 0. Power spectra with n > 0 are
smoother than Poisson processes on large scales.

The most important power-law spectrum in cosmology is the Harrison–
Zeldovich or scale-invariant spectrum, which has n = 1. Different
theories of inflation predict spectra that deviate little from the Harrison–
Zeldovich spectrum but Zeldovich’s3 interest in this particular case was mo-
tivated by a much simpler argument. In general relativity, the fluctuations

3 Ya. B. Zeldovich (1914–1987) received his Ph.D. for work in chemistry, and then
made important contributions to the theory of combustion, detonation, nuclear chain
reactions and particle physics. From 1965 to the end of his life he worked on astrophysics,
including the cmb and galaxy formation. Prior to 1963 he was a key figure in the Soviet
nuclear-weapons program and he was never permitted to travel outside the Soviet bloc.
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in the metric tensor are of order Φ/c2, where Φ is the gravitational potential
arising from the density fluctuations. If the metric-tensor fluctuations are
too large on large scales, the universe will not be homogeneous and isotropic;
if too large on small scales, small structures will be relativistic. Therefore it
is natural to be interested in a spectrum for which the rms fluctuation in Φ
is independent of scale. From equation (9.24), the rms density fluctuation
on a scale K−1 is ρrms(K) ≈ ρ0σK ∝ K(3+n)/2. The rms mass fluctuation
is Mrms(K) ≈ ρrms(K)K−3 ∝ K(n−3)/2, and the corresponding fluctuation
in the gravitational potential is Φrms(K) ≈ GMrms(K)K ∝ K(n−1)/2. Thus
the rms potential fluctuation is independent of scale if and only if n = 1.

9.1.2 Gravitational instability in the expanding universe

At early times |δ(x)| � 1 everywhere and we can derive linear equations for
the evolution of the overdensity. For the moment we assume that the cosmic
material behaves like a fluid, so consider the form taken by the continuity
and Euler equations (eqs. F.3 and F.10) in comoving coordinates x. In
principle this can be found by use of the chain rule, but in practice it is
simpler to go back to the underlying physics. There are two limiting cases to
consider, depending on whether relativistic or non-relativistic fluid dominates
the inhomogeneities.

(a) Non-relativistic fluid Let V be a volume that is fixed in comoving
coordinates. With ρ the usual fluid density, the mass contained in V is
M = a3

∫
V d3x ρ. With v = ẋ the rate of change of the comoving coordinate

of the fluid element that is at x, the physical velocity of the fluid relative
to the boundary of V is av, so the rate at which mass flows out of V is
a2
∮
V

d2S · (av) ρ, where a2d2S is the vector whose magnitude is the area of
an element of the surface of V , and whose direction is the outward normal to
the surface. Equating this to minus the derivative of the integral that gives
M , and bearing in mind that V is arbitrary, we conclude that

∂

∂t
(a3ρ) + a3

∇ · (ρv) = 0, (9.25)

where ∇ = ∂/∂x. Expanding the derivative on the left and identifying
H(t) = ȧ/a as the Hubble parameter at time t, the continuity equation in
comoving coordinates becomes

∂ρ

∂t
+ 3Hρ+ ∇ · (ρv) = 0. (9.26)

Consider next the form of the Euler equation in comoving coordinates.
The kinetic energy per unit mass of a particle that is located at x and has
comoving velocity v ≡ dx/dt is 1

2 (ȧx + av)2, so the particle’s Lagrangian is

L = 1
2 (ȧx + av)2 − Φ. (9.27)



9.1 Structure formation 723

From equation (D.48) we deduce that its equation of motion is

d

dt
[(ȧx + av)a] − (ȧx + av)ȧ+ ∇Φ = 0. (9.28)

We can rearrange this to

dv

dt
+ 2Hv +

ä

a
x +

1

a2
∇Φ = 0. (9.29)

If we now consider the particle to be the element of fluid located at x, and
bear in mind that in addition to the gravitational force this element may
be subject to a pressure force, we see that in comoving coordinates Euler’s
equation (F.10) reads

∂v

∂t
+ (v · ∇)v + 2Hv +

ä

a
x = − 1

a2

(
1

ρ
∇p+ ∇Φ

)
. (9.30)

We now linearize the continuity equation (9.26) around the undisturbed
Hubble flow in which v = 0 and ρ is independent of x. Using subscripts 0
and 1 to denote the undisturbed and perturbed parts of quantities, we have

∂ρ0

∂t
+ 3Hρ0 = 0 ;

∂ρ1

∂t
+ 3Hρ1 + ρ0∇ · v = 0. (9.31)

The first of these simply implies that ρ0 ∝ a−3 (eq. 1.59 with w = 0).
Dividing the second equation by ρ0(t) yields

0 =
∂δ

∂t
+
∂ ln ρ0

∂t
δ + 3Hδ + ∇ · v

=
∂δ

∂t
+ ∇ · v,

(9.32)

where the second equality uses the first of equations (9.31).
Similarly linearizing equation (9.30) we obtain

äax = −∇Φ0 ;
∂v

∂t
+ 2Hv = − 1

a2

(
1

ρ0
∇p1 + ∇Φ1

)
. (9.33)

In the first equation, ∇Φ0 = −GMx/(a2x3), where M is the gravitational
mass within a sphere of comoving radius x, and this equation is equivalent
to equation (1.47). Taking the curl of the second equation, we find that
the vorticity ω ≡ ∇ × v satisfies ∂ω/∂t = −2Hω, so any vorticity initially
present decays with time. Hence we may assume that ω = 0. Since any
vector field that has vanishing curl can written as the gradient of a scalar
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field, we can write v = ∇ψ. When we use this expression to eliminate v
from (9.33) we obtain

∇

[
∂ψ

∂t
+ 2Hψ +

1

a2

(
p1

ρ0
+ Φ1

)]
= 0. (9.34)

Evidently the expression in square brackets is independent of x, so it can
only depend on t. Nothing of physical significance is changed if we add to ψ
any function of t only, and we exploit this freedom to ensure that the square
bracket always vanishes, so we have

∂ψ

∂t
+ 2Hψ +

1

a2

(
p1

ρ0
+ Φ1

)
= 0. (9.35)

Taking the Fourier transform of equation (9.32) yields ∂δk/∂t = k2ψk.
Similarly Fourier transforming equation (9.35) and eliminating ψk between
these equations we obtain

∂2δk
∂t2

+ 2H
∂δk
∂t

+
k2

a2

(
p1k

ρ0
+ Φ1k

)
= 0. (9.36)

To proceed further we require a relation between p1k and δk. Simple inflation-
ary theories predict that the cosmic fluid is everywhere on the same adiabat,
so p1k = v2

s ρ0δk (Peacock 1999), where vs is the sound speed (eq. F.50).
Poisson’s equation a−2∇2Φ1 = 4πGρ1 links Φ1 to the perturbed density.
Taking the Fourier transform of Poisson’s equation we eliminate Φ1k from
equation (9.36) and have finally

∂2δk
∂t2

+ 2H
∂δk
∂t

+

(
k2

a2
v2

s − 4πGρ0

)
δk = 0. (9.37)

In this equation ρ0 is the undisturbed value of the density of the non-
relativistic fluid, whose disturbed value is measured by δk. Our derivation
has excluded relativistic fluids, which can couple to the non-relativistic fluid,
either through Φ1 or through electromagnetic interactions such as Thomson
scattering. However, the derivation of equation (9.37) is valid in the presence
of vacuum energy, which does not cluster, if ρ0 is interpreted as the matter
density ρm rather than the total density ρm + ρΛ. In any given cosmolog-
ical model H , vs and ρ0 are known functions of time, so we can solve this
equation for the evolution of the overdensity.

We first examine the solution in the important case of large-scale, long-
wavelength perturbations, for which k is small. Then the term that is pro-
portional to k2 can be neglected. In this case the solutions are given in
Problem 9.1 for a universe that contains only non-relativistic matter and
vacuum energy. In the special case of matter domination, which holds over
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Figure 9.1 Full curve: (t/ti)
−2/3 times the growth factor gi(t) defined by equation (9.40)

with ti corresponding to 1 + z = 1000. The values of gi were obtained by numerical
evaluation of the integral (9.92) for a flat universe with Ωm0 = 1 − ΩΛ0 = 0.27 (eq. 1.73)
Dashed curve: (t/ti)

2/3a(ti)/a(t) for the same cosmology.

the interval 3100 ∼> z ∼> 0.5 (eqs. 1.70 and 1.74) in which most structure
forms, H = 2/(3t) and 4πGρ0 = 2/(3t2) (eq. 1.63). The solutions of (9.37)
are then linear combinations of the growing and decaying power laws,

δk ∝ t2/3 and δk ∝ t−1. (9.38)

After some time the growing solution will dominate, so we may neglect the
decaying one. In the current and future epoch of domination by vacuum
energy, H is a constant and 4πGρ0 = 3

2H
2Ωm (cf. eq. 1.65) rapidly becomes

negligible, so equation (9.37) with k = 0 may be approximated by

∂2δk
∂t2

+ 2H
∂δk
∂t

= 0. (9.39)

The general solution of this equation is δm(t) = α + β exp(−2Ht), where α
and β are constants; in words, δk is asymptotically constant. To summarize,
density fluctuations grow as t2/3 when the universe is matter-dominated,
but this growth freezes out once the universe becomes dominated by vacuum
energy at zmΛ ' 0.5.

Let ti be a time early in the era of matter domination, for example
the time of decoupling. Then we define the growth factor gi(t) to be the
growth in the amplitude of long-wavelength perturbations between ti and a
subsequent time t:

gi ≡
δ0(t)

δ0(ti)
. (9.40)
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The full curve in Figure 9.1 is a plot of (t/ti)
−2/3gi(t) for a flat universe sim-

ilar to our own (eq. 1.73), while the dashed curve shows (t/ti)
2/3a(ti)/a(t).

Throughout the matter-dominated era both plotted quantities are indis-
tinguishable from unity, attesting to the accuracy of the approximations
gi(t) ∝ t2/3 and a(t) ∝ t2/3. The curves turn below unity around z = 2, as gi

starts to grow more slowly, and a grows faster, than in a matter-dominated
cosmology. However, even at the present epoch gi is only 10% below the
value it would have in the absence of vacuum energy.

(b) Relativistic fluid Equation (9.37) is invalid during the radiation-
dominated era, z ∼> zγm ' 3100 (eq. 1.70), because the mass-energy density
of radiation does not satisfy the continuity equation (9.26): during expan-
sion the total energy of a body of radiation decreases. However there is a
different conservation law we can use. The mean free path of photons is
short, so each volume of the photon fluid conserves its entropy. Thus the
radiation’s entropy density does satisfy equation (9.26). The energy and en-
tropy densities of black-body radiation of temperature T are proportional to
T 4 and T 3, respectively (Problem 9.2), so from equation (9.26) we conclude
that conservation of entropy implies that

∂ρ3/4

∂t
+ 3Hρ3/4 + ∇ · (ρ3/4v) = 0. (9.41)

After multiplying through by 4
3ρ

1/4 this can be rewritten

∂ρ

∂t
+ 4Hρ+ v · ∇ρ+ 4

3ρ∇ · v = 0. (9.42)

Linearizing, we find that for radiation the analog of equation (9.32) is

∂δ

∂t
+ 4

3∇ · v = 0. (9.43)

Taking the Fourier transform of this equation we find that ∂δk/∂t = 4
3k

2ψk.
Before proceeding, we need to modify the analysis for non-relativistic matter
in two ways. First, the linearized Euler equation (9.35) is modified by special
relativity to (Problem 9.4)

∂ψ

∂t
+ 2Hψ +

1

a2

(
p1

ρ0 + p0/c2
+ Φ1

)
= 0. (9.44)

For radiation p = 1
3ρc

2, so p1k/(ρ0 + p0/c
2) = 1

4c
2δk. Second, according

to general relativity, in Poisson’s equation we must replace the density ρ
by ρ + 3p/c2 (Problem 9.5). For radiation this implies that (k/a)2Φ1k =
−8πGρ0δk. When these relations are used to eliminate ψk, p1k and Φ1k

from the Fourier transform of equation (9.44), we obtain

∂2δk
∂t2

+ 2H
∂δk
∂t

+

(
k2c2

3a2
− 32

3 πGρ0

)
δk = 0. (9.45)
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In the radiation-dominated era we have 2H = 1/t and 32
3 πGρ0 = 1/t2

(eq. 1.64), so equation (9.45) becomes

∂2δk
∂t2

+
1

t

∂δk
∂t

+

(
k2c2

3a2
− 1

t2

)
δk = 0. (9.46)

For k/a ∼> 1/ct the first term in the bracket dominates the second,
and causes δk to oscillate: radiation pressure stabilizes perturbations with
wavelengths 2πa/k smaller than the horizon size ∼ ct, just as pressure was
found to stabilize perturbations with wavelength less than the Jeans length
in §5.2: the short-wavelength fluctuations are simply sound waves. On the
other hand, when the wavelength is significantly larger than the horizon
size, we can neglect this term and the solutions are linear combinations of
the power laws

δk(t) ∝ t and δk(t) ∝ t−1. (9.47)

These results tell us how fluctuations in the radiation density evolve in
the radiation-dominated era. During this epoch a small fraction of the total
density is contributed by non-relativistic matter, in the form of baryons and
collisionless dark matter. This density is too small to affect the evolution of
perturbations in the relativistic fluid. However, we need to understand how
perturbations in these trace constituents evolve in the radiation-dominated
era.

The baryon fluid is fully ionized and its free electrons scatter radiation
efficiently. Consequently, the baryon fluid is forced to move with the same
velocity as the radiation fluid. From equations (9.32) and (9.43), it follows
that δ(matter) = 3

4δ(radiation), so δ(matter) ∝ t for wavelengths greater
than the horizon size.

Next consider the evolution of fluctuations in the collisionless dark mat-
ter. In a collisionless fluid, random particle velocities cause overdensities to
disperse, just as density perturbations in a stellar system with wavelength
shorter than the Jeans wavelength are damped (§5.2.4). This process erases
fluctuations on scales ∼< σt where σ is the velocity dispersion of the parti-
cles at time t. At early times most candidate particles for the dark matter
are relativistic,4 so σ ∼ c and the fluctuations are damped on all scales less
than the horizon a(t)xh(t) ∼ ct (eq. 1.68). Once the dark-matter particles
become non-relativistic, their velocity dispersion declines and the damping
scale becomes smaller than the current horizon. Comparison with observa-
tions shows no evidence of suppression of the density fluctuations on small
scales, which implies that the unknown dark-matter particles must have mass

∼> 1 keV (Blumenthal et al. 1984). Such particles become non-relativistic at

4 It has been conjectured that there is a field whose excitations, axions, would be
non-relativistic from their instant of formation, when the background temperature was
∼ 100 MeV (Bond, Szalay, & Turner 1982).
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z ∼> 5× 106 and their random velocities at decoupling are ∼< 50 km s−1; dark
matter satisfying these constraints is known as cold dark matter (CDM).

Precise calculations analogous to the simple ones that we have done can
be carried out for a realistic universe that contains baryons, radiation and
collisionless dark matter. The results of these calculations are encapsulated
in the transfer function

T 2(k) =
〈δ2
k〉z=0

〈δ2
k〉z→∞

/ 〈δ2
0〉z=0

〈δ2
0〉z→∞

. (9.48)

Here δ0 is the overdensity on large scales, which obeys equations such as
(9.37) and (9.46) with k = 0. Thus T (k) represents the factor by which the
linear fluctuations with wavenumber k are enhanced or suppressed relative to
large-scale fluctuations, which are easily calculated for any given cosmological
model—see Problem 9.1. By definition, T (0) = 1.

The transfer function is plotted in Figure 9.2 for a universe with pa-
rameters given by equation (1.73). Its structure is straightforward to under-
stand qualitatively. While the universe is radiation-dominated, fluctuations
in both matter and radiation initially grow as δ ∝ t (eq. 9.47), so long as
the comoving wavelength of the fluctuation is larger than the growing hori-
zon size (a/k ∼> ct). Once the fluctuation is contained within the horizon,
its growth is stopped or greatly slowed: fluctuations in the radiation den-
sity cannot grow because the wavenumber exceeds the Jeans wavenumber
as described after (9.46), and fluctuations in the baryons cannot grow be-
cause they are strongly coupled to the radiation. The growth of fluctuations
in the non-baryonic dark matter also slows, but for a different reason: be-
cause the universe is radiation-dominated, the characteristic expansion time
a/ȧ ∼ (Gργ)−1/2 is much shorter than the characteristic growth time for

gravitational instability in the matter, ∼ (Gρm)−1/2, so the instability does
not have time to grow.

Eventually, at redshift zγm ' 3100 (eq. 1.70 and Problem 1.13), the
universe becomes matter-dominated, and the dark-matter fluctuations begin
to grow as δ ∝ t2/3 (eq. 9.38). The baryons remain frozen to the radiation,
and thus their fluctuations cannot grow, until decoupling at redshift zd '
1100 (eq. 1.71). During decoupling, the population of free electrons fades
and the mean free path of photons increases. Hence there is an interval
in which the baryons are still coupled to the photons, but the mean free
path of the photons is not small. In this interval the photon-baryon fluid
has large coefficients of viscosity and thermal conductivity, so fluctuations
with scales smaller than the horizon, which are sound waves, are rapidly
damped—this process is called Silk damping (Silk 1968). In fact, they
are essentially eliminated on all scales smaller than that of rich clusters of
galaxies ≈ 10 Mpc. If there were no dark matter, structures with scales
smaller than 10 Mpc could not form, so dark matter is required for galaxy
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Figure 9.2 The transfer function for a universe with parameters given by equation (1.73)
using the approximation (9.50).

formation.5 However, small-scale fluctuations in the dark matter persist after
decoupling, so the baryons fall into the potential wells that they generate,
and from then on the dark-matter and baryon fluctuations evolve together.
Thus notwithstanding Silk damping, the transfer function is essentially the
same for dark matter and baryons in a given cosmological model.

Let tγm and xγm = xh(tγm) be the time and the comoving horizon
size when the universe becomes matter-dominated; for the model of equa-
tion (1.73), tγm ' 6 × 104 yr (eq. 1.70) and xγm ' 125 Mpc (Problem 1.13).
Fluctuations with comoving wavelength 2π/k larger than xγm grow as t for

t ∼< tγm and as t2/3 later, as predicted by equations (9.38) and (9.47); thus
the transfer function T (k) is near unity for kxγm ∼< 1. For shorter wave-
lengths, the growth δ ∝ t is suppressed by a factor th/tγm, where th is the
time when this wavelength enters the horizon, defined by kxh(th) ∼ 1. Since
xh ∝ t1/2 in the radiation-dominated era (eq. 1.68), th/tγm ∼ 1/(kxγm)2.
Thus the transfer function is roughly

T (k) ≈
{

1 (kxγm ∼< 1)
(kxγm)−2 (kxγm ∼> 1).

(9.49)

The exact transfer function for a given cosmological model can be calculated
using publicly available codes such as cmbfast (Seljak & Zaldarriaga 1996).
For the important case of a flat universe containing cold dark matter, in

5 If we were to dispense with dark matter, the rotation curves of galaxies would oblige
us to subscribe to a theory of gravity that differs materially from that used here, and in
such a theory galaxies might be able to form without dark matter.
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which the baryon density is negligible (Ωb0 � Ωm0), the transfer function
can be fitted by the formula (Bardeen et al. 1986)

T (k) =
ln(1 + 2.34q)

2.34q [1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]1/4
,

where q ≡ 2.04k

Ωm0h2
7 Mpc−1 .

(9.50)

If linear theory were valid to the present, the current matter power
spectrum P (k) would be proportional to the product of the primordial
power spectrum Pprim(k) established by inflation and the square of the
transfer function,

P (k) ∝ T 2(k)Pprim(k). (9.51)

The primordial power spectrum encapsulates the physics of inflation, and
the transfer function encapsulates the subsequent physics. The solid line in
Figure 9.3 shows the theoretical power spectrum for a Harrison–Zeldovich
primordial spectrum (eq. 9.23 with n = 1) and the transfer function that is
plotted in Figure 9.2. Using equation (9.49), we have

P (k) ∝
{
kxγm (kxγm ∼< 1)
1/(kxγm)3 (kxγm ∼> 1).

(9.52)

The comparison of observations with the linear theory of structure for-
mation is complicated by the fact that on small scales ∼< 10 Mpc the fluctua-
tions are currently nonlinear. Thus a theoretical model of nonlinear structure
formation (§9.2) is required to convert measurements of structure at z = 0
to the linear fluctuations from which these structures arose. Let zi be a red-
shift large enough that fluctuations on the scales of interest are linear, but
small enough for the transfer function between that time and the present
to be unity. Then if the power spectrum and variance at zi were Pi(k) and
σ2

ik, and linear theory continued to be valid to the present epoch, the power
spectrum and rms density fluctuation would now be

PL(k) ≡ g2
i (t0)Pi(k) ∝ T 2(k)Pprim(k) ; σL

k ≡ gi(t0)σik. (9.53)

These are the quantities plotted in Figure 9.3, while Figure 9.4 is a plot of
σL
k against Mk (eq. 9.19) rather than k.

The predicted matter power spectrum can be compared to a wide variety
of observations, including measurements of: fluctuations in the temperature
of the cosmic microwave background (cmb—see §1.3.5); the clustering of
galaxies on large scales; the distribution of clusters of galaxies, which lie at
the rare high peaks in the overdensity field; weak gravitational lensing, which
measures the distortion of images of distant galaxies by the gravitational
field of intervening density fluctuations (Schneider 2006); and the Lyman-α
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Figure 9.3 The matter power spectrum PL(k) (eqs. 9.8 and 9.53) at zero redshift, in
units of Mpc3. The solid line is the theoretical spectrum for a flat FRW model with
a Harrison–Zeldovich initial spectrum [Pi(k) ∝ k] and other parameters from equation
(1.73). Triangles show results from the cmb (Figure 11 of Spergel et al. 2007), squares
show results from galaxies in the Sloan Digital Sky Survey (Table 3 of Tegmark et al.
2004) scaled to the Hubble constant of equation (1.73), and hexagons (from Tegmark et
al. 2004) show results from an analysis of the Lyman-α forest (Gnedin & Hamilton 2002).
The dotted line shows the variance (σL

k )2 of the theoretical overdensity field smoothed on
the scale k−1 with a sharp k-space filter (eq. 9.22).

forest, the rich set of absorption lines in the spectra of distant quasars. The
relation of these measurements to the actual matter power spectrum is not
always straightforward. For example, galaxy clustering measures the power
spectrum Pg(k) of galaxies, not the overdensity power spectrum P (k). The
bias factor b ≡ Pg(k)/P (k) is likely to depend on k, galaxy luminosity,
Hubble type, etc. The hope is that any bias arises from the complicated
processes of galaxy formation, which should have only a limited spatial range
(at most the size of the largest clusters, a few Mpc), so any bias on larger
scales should be small. The data points in Figure 9.3 show that estimates of
the matter power spectrum obtained from the cmb, galaxy clustering, and
the Lyman-α forest agree remarkably well with the theoretical curve for a
Harrison–Zeldovich primordial spectrum.

The normalization of the power spectrum cannot be predicted theoret-
ically and is fitted to the observational measurements. Historically, the nor-
malization has been parameterized by σ8, the rms overdensity when filtered



732 Chapter 9: Galaxy Formation

Figure 9.4 The rms overdensity
fluctuation σL

k as a function of the
mass scale Mk defined by (9.19) for
the standard ΛCDM model.

by a particular window function in (9.15), namely the top-hat function

WL(x) =

{
( 4

3πL
3)−1 for |x| < L ≡ 11.4h−1

7 Mpc
0 otherwise.

(9.54)

This particular value of L, which is 8 Mpc for H0 = 100 km s−1 Mpc−1, is
chosen because then σ8 ' 1. In fact, current data yield (Spergel et al. 2007)

σ8 = 0.76 ± 0.06. (9.55)

This normalization yields the values of the power spectrum and rms over-
density that are plotted in Figures 9.3 and 9.4.

The success of these observational tests yields the following conclusions:
(i) on large scales, the universe is homogeneous and isotropic, as described by
the FRW metric (1.44); (ii) the geometry of the universe is flat, as predicted
by inflation; (iii) the present densities in ordinary or baryonic matter, dark
matter, and vacuum energy are given approximately by equation (1.73); (iv)
the dark matter is cold in the sense described on page 728; (v) the initial
density fluctuations were small (|δ| � 1) and described by a Gaussian ran-
dom field; (vi) the initial power spectrum of the density fluctuations was
approximately the Harrison–Zeldovich spectrum (eq. 9.23 with n = 1). The
cosmological model with these properties is called the standard ΛCDM
model after its two principal constituents, vacuum energy and cold dark
matter.
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9.2 Nonlinear structure formation

The density in a luminous galaxy at a radius of a few kpc is some 105 times
larger than the critical density ρc (eq. 1.55). Galaxy formation therefore
involves highly nonlinear density fluctuations, and our investigation of the
linear power spectrum must be supplemented by approximate analytic ar-
guments and numerical simulations to follow structure formation into the
nonlinear regime. We start by considering a highly idealized model that
enables us to introduce the principal concepts.

9.2.1 Spherical collapse

We assume that the background FRW model is matter-dominated and flat;
this is a reasonable approximation between zγm ' 3100 (eq. 1.70) and zmΛ '
0.5 (eq. 1.74), and it is in this interval that most structures form. Suppose
that at some initial time ti early in this redshift interval, there is a spherically
symmetric density fluctuation such that the volume-averaged overdensity
within a sphere of radius ri is δi � 1. Far outside the sphere the density is
that of the FRW model (eq. 1.63),

ρm(t) =
1

6πGt2
. (9.56)

The total mass in the sphere is

M = 4
3π(1 + δi)ρm(ti)r

3
i . (9.57)

We now follow the evolution of the radius r(t) of material at initial radius
ri. The gravitational acceleration of this material is determined only by the
total interior mass M , which is constant—the matter is assumed to be cold
so there is no flow of material across the shell r(t). Thus Newton’s laws
imply that

d2r(t)

dt2
= −GM

r2(t)
. (9.58)

This is the equation of motion of a projectile launched vertically from the
surface of a spherical body of mass M . Since we are interested in a pertur-
bation that eventually collapses to form a galaxy, we shall assume that the
projectile has too little energy to escape. The solution to equation (9.58)
can then be written parametrically (eq. 3.28),

r = a(1 − cos η) ; t =

√
a3

GM
(η − sin η) + t′, (9.59)

where rmax = 2a is the turnaround radius at which the expansion halts
and collapse commences, which occurs at η = π. We may set t′ = 0 by
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arguing that the radius r(t) should be zero at t = 0, the time of the Big
Bang.6 The average density inside the sphere is ρs(t) ≡ M/ 4

3πr
3(t), and

dividing this by equation (9.56) we obtain the average overdensity inside
r(t) as

δ(t) ≡ ρs(t)

ρm(t)
− 1 = 9

2

(η − sin η)2

(1 − cos η)3
− 1. (9.60)

At turnaround the overdensity is7

δmax ≡ δ(η = π) or δmax =
9π2

16
− 1 = 4.55. (9.61)

For small density contrast, η � 1, and we can expand (9.60) as a power
series to obtain δ(t) = 3

20η
2+O(η4). Thus the initial condition δ(ti) = δi � 1

implies η2
i = 20

3 δi. From a similar expansion of the first of equations (9.59),

we have that a ' 2ri/η
2
i ' 3

10ri/δi. When we use this relation to eliminate
ri from (9.57), we find that the turnaround radius is

rmax = 2a '
(

243

250

)1/3
(GMt2i )1/3

δi
. (9.62)

The turnaround time is

tmax = π

√
a3

GM
= π

(
243

2000

)1/2
ti

δ
3/2
i

= 1.095
ti

δ
3/2
i

. (9.63)

The larger the initial fluctuation δi, the sooner the collapse commences.
In this oversimplified model, the collapse reaches singular density at

η = 2π or t = 2tmax. In practice, density fluctuations are neither spherically
symmetric nor isolated, and the collapsing dark matter will undergo violent
relaxation and phase mixing (§§4.10.2 and 9.2.2 below) and settle into an
equilibrium configuration, called a halo. This collapse, mixing and relax-
ation process is sometimes called virialization, since the halo should satisfy
the virial theorem (4.248) after it is complete. A reasonable approximation
is that a realistic halo virializes at about the same time that our idealized
model collapses to a singular density, that is, at 2tmax.

Once a halo has settled to approximate equilibrium, its radius can be
estimated from the virial theorem. Let us assume that the density fluctuation

6 Our approximation that the universe is matter-dominated is invalid for t < tγm '
6 × 104 yr (eq. 1.70). However, this time is negligibly small.

7 This analysis neglects the influence of vacuum energy on the dynamics of the collapse.
This is justifiable providing the density in the collapsing object is always larger than the
vacuum density, that is ρm(1 + δ) > ρΛ. Since ρΛ is constant, this condition is always
satisfied if it is satisfied at turnaround. Therefore we require ρΛ < 5.55ρm at turnaround.
At the present time, ρΛ ' 2.7ρm (eq. 1.73), and is smaller at earlier times. Therefore this
condition is satisfied for any structure that has already turned around.
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inside r(t) is nearly homogeneous at turnaround. Then the potential energy
of the material inside the turnaround radius rmax is Wmax = − 3

5GM
2/rmax

(eq. 2.41). Moreover let us assume that all of the material in this region turns
around at the same time, so the kinetic energy is zero at tmax and the total
energy E = Wmax. After virialization, which conserves the total energy,
the potential energy W = 2E (eq. 4.250), so using rh ' 0.45GM2/|W |
(eq. 4.249b) we find that the half-mass radius of the relaxed system is

rh ' 0.375rmax, (9.64)

In words, the half-mass radius of the virialized system is about one-third
of the turnaround radius. After virialization the mean-square speed of its
particles is

〈v2〉 = |W |/M = 6
5GM/rmax. (9.65)

Since half of the halo mass is inside the half-mass radius, the mean
density inside this radius is ρh = 1

2M/( 4
3πr

3
h). Assuming once again that the

halo becomes virialized at t = 2tmax, equation (9.56) implies that the ratio
of this density to the unperturbed or background density at this time is

ρh

ρm(2tmax)
=

9GMt2max

r3
h

=
9π2

8

(
rmax

rh

)3

' 200; (9.66)

here we have used equations (9.63) and (9.64) and the relation rmax = 2a.
This result suggests that regions in which the density exceeds a few hun-
dred times the background density should be part of a halo; although the
derivation of equation (9.66) is valid only for a flat, matter-dominated uni-
verse, this statement remains valid for most cosmological models of interest.
Sometimes the virial radius r200 of a halo is defined to be the radius at
which the density equals 200 times the critical density; inside r200 the halo
is assumed to be in virial equilibrium, and the mass inside r200 is used as a
measure of the total mass of the halo.

9.2.2 The cosmic web

We now turn from studying the idealized collapse of a spherical overdensity
to what really happens during structure formation. Throughout the period
of linear growth, the over-density field δ(x) retains the same shape; only
its amplitude increases as t2/3. Thus, if we plot a contour map of δ(x) at
a series of times, we can make the contours at different times coincide by
an appropriate rescaling of the plotted contour levels. Moreover, if δ(x) is a
Gaussian field as we have assumed, the properties of the contours for negative
values of δ, which enclose underdense regions, are statistically indistinguish-
able from the contours for δ > 0 that enclose overdense regions.8 These two
symmetries are broken once the nonlinear regime is entered.

8 This symmetry follows from the fact that if δ(x) is a Gaussian field, then so is −δ(x).
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Figure 9.5 The interaction of voids. Top left: near the center of an expanding, self-
gravitating sphere are placed three regions of slightly reduced density, and inside each of
these are three spheres of even lower density. The low-density spheres expand faster than
the region around them, so they run into each other and merge. In the last frame there
is a single void within which a web of higher-density regions traces the locations of the
original low-density spheres. From Dubinski et al. (1993), by permission of the AAS.

Imagine a roughly spherical region that is underdense. The recession of
matter from the center of this region is slowed by gravity, but less so than
the general cosmic expansion, so the underdense region expands more rapidly
than the universe as a whole. This relative growth of underdense regions,
or voids, inevitably causes neighboring voids to collide with one another as
shown in Figure 9.5. The expanding voids shepherd matter into high-density
sheets that separate them. When the sheets surrounding three voids meet,
a filament of high-density material forms. The gravitational attraction of
this filament draws in material from the adjoining sheets.
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Figure 9.6 Six snapshots of the evolution of a region of a simulated universe: from top
left to bottom right a(t)/a(t0) = 0.1, 0.2, 0.3, 0.35, 0.4, and 0.5. In the earlier frames
many small voids are visible. By the last frame many of these have been squashed into
the wall that surrounds the central giant void. From Sheth & van de Weygaert (2004), by
permission of the AAS.

Just as the volume of underdense regions grows, the volume occupied
by overdense material diminishes because gravity slows the expansion of
overdense regions more than the universe as a whole. In fact, matter becomes
more and more strongly confined to a cosmic web of thin dense sheets that
enclose voids (Figure 9.6). The sheets feed matter into a network of filaments
at the intersections of the sheets, and these filaments in turn drain into nodes
at which a number of filaments intersect. Thus the simple picture of spherical
collapse is replaced by a model in which material falls first along sheets into
filaments and then along filaments into nodes, which develop into virialized
halos.

Let us assume that P (k) ' 0 for k > Kmax, whereKmax is determined by
the mass of whatever particle provides the dark matter (see the discussion
on page 728). Thus the overdensity field δ(x) will be smooth on scales
λ ∼< K−1

max. The nonlinear regime will first be entered where the overdensity
is initially largest, and it will be at these locations that the first virialized
objects will form through collapse onto a node of the developing cosmic
web. The contribution to the variance in the overdensity from an octave
in wavenumber is ∼ k3P (k) (eq. 9.22). Since equation (9.52) shows that
P (k) ∝ k−3 on comoving scales ∼< xγm ∼ 100 Mpc, all octaves satisfying
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x−1
γm ∼< k ∼< Kmax contribute equally to the overdensity at a typical point.

Thus δ(x) will be largest at locations that happen to lie near the crests of
a number of waves of very different wavelengths. Hence we expect the first
objects to form near the crests of both long- and short-wavelength waves,
and they will be part of a web that has a characteristic scale of order λ.
Gradually the web spreads out from these high-density locations.

Now consider the structure of the overdensity field smoothed on some
scale K−1 in the range (λ, xγm). At a given time ti this smoothed over-
density field will have smaller variance than the unsmoothed overdensity
field. Consequently, the smoothed overdensity field will start attaining the
critical density for collapse only after the first objects formed. However, at
this time the structure of the smoothed overdensity field will be very similar
to the structure that the unsmoothed overdensity field had just before the
first objects formed—both have P (k) ∝ k−3 up to some maximum value
of k, beyond which P (k) ' 0. In particular there will be voids bounded
by sheets, like those present when the first structures formed, but with an
increase in the linear scale from λ to ∼ K−1. Thus the cosmic web is con-
stantly regenerated, on ever larger scales; the principal difference between
the first appearance of the web and its subsequent reincarnations is that
“particles” in the later reincarnations are halos rather than primordial fluid.
Since σ8 ' 1, the typical radius of an over-dense sphere that is currently
collapsing is ∼ 10 Mpc. Figure 9.7 shows the cosmic web as it appears in the
2dF galaxy-redshift survey, and its appearance is dominated by voids that
currently have radii ∼ 20 Mpc, but have smaller comoving radii because they
have been expanding faster than a region of equal mass in the underlying
homogeneous universe.

We argued above that the first objects formed near the crests of long
waves, but these are precisely the nodes of the current cosmic web. So we
expect to find the oldest objects at the nodes of the current cosmic web,
which are the centers of rich clusters of galaxies.

Thus structure formation is hierarchical or “bottom-up” in the sense
that smaller structures form before larger ones. An ever larger-scale cosmic
web is constantly forming from the debris of previous smaller-scale webs.
The old concept of galaxies as island universes, which form and evolve with-
out interactions with their neighbors, is turned on its head: galaxies evolve
mainly through interactions with their neighbors, by a hierarchical process
of halos merging.

At any given redshift halos span a wide range in mass. Some mergers
involve halos of comparable mass, and these are called major mergers, while
minor mergers involve a small halo falling into a much larger neighbor. An
individual halo may contain substructure consisting of smaller halos that
it acquired earlier in its life, and that have not yet been disrupted by the
processes described in Chapter 8. We define a primary halo to be one
surrounded by infalling matter, while one that orbits inside a more massive
halo is a subhalo.
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Figure 9.7 The redshift distributions of galaxies along two strips on the sky, each 3◦ wide.
The density of galaxies falls away at large redshifts because at large distances only the most
luminous galaxies have been observed. Many voids of diameter δz ' 0.01 (40h−1

7 Mpc)
can be seen. The data were taken at the Anglo-Australian Observatory as part of the 2dF
Galaxy redshift Survey. Credit: Matthew Colless and the 2dF Galaxy Redshift Survey
team.

9.2.3 Press–Schechter theory

We now put our treatment of the development of the cosmic web on a quanti-
tative basis by developing extended Press–Schechter theory, which has
evolved from a seminal paper by Press & Schechter (1974)—more detail can
be found in Bond et al. (1991) and Lacey & Cole (1993). We focus on esti-
mating the expected number of halos of a given mass per unit volume (the
mass function), and the rate at which halos of various masses merge with
one another.

Our work on the spherical-collapse model suggests that protohalos can
be approximately identified long before they collapse, as regions in which
the average overdensity exceeds some critical overdensity δc. To estimate
δc at a time ti much less than the collapse time t, we use equation (9.63);
assuming that the halos virialize at t = 2tmax,

δc(ti, t) =

(
2 × 1.095ti

t

)2/3

= 1.686 (ti/t)
2/3. (9.67)

We have derived the coefficient 1.686 assuming a particular cosmology and,
unrealistically, homogeneous collapse. However numerical simulations show
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Figure 9.8 The full curve shows
the redshift zf at which a 1σ over-
density of mass M collapsed, while
the dashed curve shows the collapse
redshifts of 3σ overdensities as a
function of mass. These predictions
are based on the spherical-collapse
model and the fluctuation spectrum
plotted in Figure 9.3.

that when this coefficient is used in formulae that we derive below, it yields
remarkably good fits to the properties of halos for a wide range of cosmolog-
ical models (Jenkins et al. 2001).

Figure 9.4 is a plot of the linear growth factor gi(t0) times the rms

overdensity fluctuation σK(ti) within a spherical region at ti, as a function of
the mean mass MK contained within such a region (eqs. 9.19 and 9.22). This
quantity, σL

K = gi(t0)σK(ti) (eq. 9.53), is independent of ti and would be the
rms overdensity on mass-scale MK at the present time if linear theory were
still valid. According to (9.67), a typically overdense region of mass MK will
have virialized at the time tf or redshift zf when gi(tf)σK(ti) ' 1.686. The
full curve in Figure 9.8 plots zf as a function of MK . We see that objects
bigger than a large star cluster have typically formed at z ∼< 10.

While a typical overdense region of mass M will not collapse until red-
shift zf(M) given by the full curve in Figure 9.8, many halos of this mass
will form earlier, from rarer regions of higher overdensity. For example, a
3σK peak in the overdensity field collapsed at tf/3

3/2. The dotted line in
Figure 9.8 shows the corresponding collapse redshift as a function of M .

Equation (9.65) gives the mean-square velocity of a halo’s particles in
terms of the radius rmax at which a perturbation turns around. Equation

(9.62) connects rmax to δi/t
2/3
i . If we estimate this ratio as σK(ti)/t

2/3
i , we

obtain the estimated rms velocity of particles in halos as a function of halo
mass MK that is plotted in Figure 9.9. The rms velocity reaches the values
∼ 100 km s−1 characteristic of galaxies like the Milky Way for halo masses
M ∼ 1012 M� that are comparable to the masses estimated observationally,
for example from the dynamics of the Local Group (Box 3.1), providing a
welcome confirmation that we are on the right track.

We focus on a given position, x, at the initial time ti and follow the
evolution of δ(x) as we add in the waves that make up the Fourier sum (9.4).
We start with the longest wavelengths (smallest values of |k|). At each stage
in the process we add to δ(x) a quantity ∆K that is the overall perturbation



9.2 Nonlinear structure formation 741

Figure 9.9 The typical rms internal
velocity of a halo. This prediction is
based on the spherical-collapse model
and the fluctuation spectrum plotted
in Figure 9.3.

contributed by all waves that have wavevectors in a spherical shell in k-space,
that is

∆K =
1

V

∑

K≤|k|<K+dK

δkeik·x. (9.68)

Since ∆K is the sum of a large number of statistically independent ran-
dom variables δk, by the central limit theorem its probability distribution is
Gaussian.

Let σ2
K be the variance of δ(x) when we have included all waves with

|k| ≤ K (eq. 9.22). Evidently, σ2
K will grow monotonically from zero as we

add more shells. In fact, since ∆K is uncorrelated with the value reached by
δ(x) before ∆K is added, σ2

K will increase by 〈∆2
K〉 at each step. By contrast,

|δ(x)| does not necessarily increase at a particular step because ∆K may have
the opposite sign to the current value of δ(x). In fact, if we plot the values of
δ(x) at each stage against the corresponding values of σ2

K , δ(x) will undergo
a random walk (Figure 9.10), starting from the origin, in which σ2

K plays the
role of step number. The rms distance that a particle executing a random
walk moves in n steps is proportional to

√
n. In our context, the “distance”

walked is just |δ(x)| and the constant of proportionality between the mean-
square of the distance traveled and the step number—σ2

K—is unity because
〈|δ2|〉 = σ2

K by definition. This result is manifestly independent of the power
spectrum, which is why it is advantageous to use σ2

K as the independent
variable rather than K.

In the spherical-collapse model, a region will collapse and virialize by
time t if its overdensity at the initial time ti < t exceeds the critical over-
density δc(ti, t) given by (9.67). The dashed line in Figure 9.10 shows this
critical overdensity for t/ti = 196. If the random walk first carries δ(x) over
this line at ordinate σ2

K , we deduce that x belongs to a region of scale K−1

that will collapse at time t. As t increases, the dashed line in the figure sinks,
and the point at which the full curve first crosses the dashed line moves to
the left. This leftward movement is jerky because the full curve is jagged,
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Figure 9.10 The overdensity
δ(x) at some location smoothed
by including only waves with
wavenumbers < K, versus
the corresponding variance
σ2
K = 〈δ2(x)〉 (solid line). The

vertical coordinate executes a
random walk, with σ2

K playing
the role of the number of steps.
The dashed line shows the crit-
ical overdensity δc (eq. 9.67)
for fluctuations that will col-
lapse by tf = 196ti.

and each jerk to the left is associated with a discrete increase in the length
scale K−1 and mass MK (eq. 9.19) of the largest halo that contains our mass
element. Most such leftward movements are small and correspond to minor
accretion events which together make up a steady rain or infall of material
onto the halo. At certain times the dashed line just touches the top of an
isolated peak in the full curve, and the point of first intersection leaps to
the left; this situation corresponds to major mergers in which the halo that
incorporates our mass element merges with a similar or even larger halo, so
K−1 and MK increase by large amounts.

For δ > 0 the equation δc(ti, t) = δ gives the collapse time t of a re-
gion that has overdensity δ at time ti. Thus for δ > 0 the vertical axis in
Figure 9.10 can be regarded as a time axis as shown in Figure 9.11—smaller
values of δ correspond to larger times. The point marked A in Figure 9.11
corresponds to t/ti = tA/ti = 104 and σ2

K = σ2
KA

= 0.0079. Similarly, the

point B corresponds to time tB > tA and scale K−1
B > K−1

A . At tA the mass

element at x becomes part of a halo of scale K−1
A , and at tB it becomes part

of a more massive halo of scale K−1
B . At other times the scale of the halo

in which our mass element is embedded can be read off from the horizontal
position of the heavy line in Figure 9.11. The horizontal sections of that
line correspond to mergers, in which the scale and mass of the halo increase
discontinuously. The mass of the halo is related to its scale by equation
(9.19).

We have described the evolution of the overdensity at x in one particular
realization of the early universe. Actually our interest is in the statistics of
the early universe, so we want to know the probability that at a given stage
σ2
K in the addition process the overdensity at a randomly chosen point x

lies in the interval (δ, δ + dδ). We denote this probability by pK(δ) dδ and
note that through its subscript it is a function of σ2

K . If we consider a large
number N of locations x, the number of locations at which the overdensity
takes a value in the range (δ, δ + dδ) will be NpK(δ) dδ. As we add more
waves, and σ2

K increases, the overdensity at some locations will decrease,
while that at other locations will increase, with the consequence that the
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Figure 9.11 The light curve
is as in Figure 9.10 but with δ
replaced by t/ti = (1.686/δ)3/2

and with the ordering of the
horizontal axis reversed so MK

rather than σ2
K increases to the

right. The heavy curve shows
how MK increases discontinu-
ously with time.

cloud of points will diffuse along the line of δ-values. Thus the density of
the cloud, NpK(δ), must satisfy the diffusion equation (cf. eq. 7.68) with σ2

K

playing the role of time:
∂pK
∂σ2

K

= C
∂2pK
∂δ2

. (9.69)

Here C is a diffusion coefficient, which we determine by noting that σ2
K ≡

〈δ2〉 =
∫

dδ δ2pK(δ). Differentiating both sides of this equation with respect
to σ2

K , carrying the derivative inside the integral on the right, and then using
equation (9.69), we have

1 = C

∫
dδ δ2 ∂

2pK
∂δ2

. (9.70)

Two integrations by parts and the normalization condition
∫

dδ pK = 1 en-
able us to evaluate the integral and infer that C = 1

2 , so

∂pK
∂σ2

K

= 1
2

∂2pK
∂δ2

. (9.71)

We seek a solution of equation (9.71) that satisfies the normalization
condition

∫
dδ pK(δ) = 1 and the boundary value that at σ2

K = 0, pK(δ) = 0
for δ 6= 0. The required solution is (Problem 9.9)

pK(δ) =
1

(2πσ2
K)1/2

exp

(
− δ2

2σ2
K

)
. (9.72)

A related solution of equation (9.71) is

pK(δ) =
1

(2πσ2
K)1/2

[
exp

(
− δ2

2σ2
K

)
− exp

(
− (δ − 2δc)

2

2σ2
K

)]
, (9.73)

where δc is a constant. This is the difference between the probability density
of particles that are initially at the origin and ones that are initially at
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δ = 2δc. Since (9.71) is linear, this difference of solutions is itself a solution.
By symmetry it vanishes at δ = δc for all σ2

K . Let us now restrict our
attention to the region δ < δc. In this region (9.73) satisfies the boundary
condition pK(δc) = 0, and as σ2

K → 0 (i) it vanishes for all δ 6= 0, and (ii)

it satisfies the normalization condition
∫ δc
−∞ dδ pK(δ) = 1. That is, it gives

us the probability density of particles that are released from the origin and
diffuse towards an absorbing barrier at δ = δc.

(a) The mass function It will prove useful to calculate the probability
p1(K, t)dσ2

K that at time t the primary (i.e., largest) halo that contains some
given mass element has scale K−1, where K−1 is the radius of the sphere
associated with σ2

K . This is the probability that the random walk of δ first
moves above δc(ti, t) at the step σ2

K → σ2
K + dσ2

K . Our solution (9.73) to
the absorbing-barrier problem enables us to calculate p1(K, t) as follows.

The probability that δ < δc is
∫ δc
−∞ dδ pK . If we evaluate this integral with

pK given by (9.73), we obtain the probability that δ(x) has not reached δc.
Minus the rate of change of this probability is the probability density that
we seek. Thus

p1(K, t) = − ∂

∂σ2
K

∫ δc

−∞
dδ pK(δ) = − 1

2

∂pK
∂δ

∣∣∣∣
δc

−∞
, (9.74)

where the last equality follows from (9.71). With equation (9.73) we have

p1(K, t) =
δc(ti, t)

(2π)1/2σ3
K

exp

(
− δ2

c

2σ2
K

)
. (9.75)

The quantity p1(K, t) dσ2
K is the probability that at time t a randomly chosen

mass element is part of a halo of scale K−1 that is not part of a larger halo.
Let f(MK , t) dMK be the probability that the largest halo that contains a
given mass element has a mass in the interval (MK ,MK + dMK). Then
f(MK , t) dMK = p1(K, t) dσ2

K so

f(MK , t) =
δc/σK

(2π)1/2MK
exp

(
− δ2

c

2σ2
K

) ∣∣∣∣
d lnσ2

K

d lnMK

∣∣∣∣ , (9.76)

where the right side is a function of MK and t because δc is a function of
t and K is a function of MK (eqs. 9.67 and 9.19). At time t let there be
dn halos per unit volume with masses in the interval (M,M + dM). Then
the total mass per unit volume in these halos is M dn and this must equal
ρ0f(M, t) dM , so we have

dn

d lnM

∣∣∣∣
t

= ρ0f(M, t). (9.77)
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Figure 9.12 The mass function of halos in the standard standard ΛCDM model from
equation (9.77) (curve) and the galaxy luminosity function (symbols) scaled to mass-to-
light ratio ΥR = 220M�/L� (eq. 1.76). The luminosity function is taken from Blanton
et al. (2005). The error bars on most points are too small to be seen. The vertical arrow
marks the value of Mc.

The full curve in Figure 9.12 is a plot of dn/d lnM at the present
epoch from (9.77) for the standard ΛCDM model described at the end of
§9.1. The exponential in (9.76) rapidly diminishes dn/d lnM for values of
M large enough that σK � δc. The characteristic halo mass Mc(t) is the
mass at which σ2

K(ti) = 1
6δ

2
c (ti, t) above which dn/d lnM declines rapidly—

Mc(t0) = 7.4 × 1014 M�. The behavior of dn/d lnM for halos with mass
much smaller than Mc depends on the shape of the power spectrum. If
in some range of wavenumbers we approximate the power spectrum by the
power law P (k) ∝ kn, the variance on length scale K−1 is given by equa-
tion (9.24), so the variance on mass scale M ∝ K−3 is σ2

K ∝ M−1−n/3.
In this case equation (9.77) predicts dn/d lnM ∝ M (n−3)/6 for M � Mc.
According to equation (9.52) and Figure 9.3, n ' −3 for all galaxy-sized
masses. Thus equation (9.77) predicts dn/d lnM ∝ M−1 for M � Mc, in
agreement with Figure 9.12. The symbols in Figure 9.12 show the galaxy
luminosity function for one particular scaling L = M/Υ between mass and
luminosity. Clearly no scaling could make the luminosity function coincide
with the full curve: the luminosity of a halo cannot be proportional to its
mass. We shall return to this point at the end of §9.4.

If we return to (9.75), we can derive an equation that provides a valu-
able way to test extended Press–Schechter theory with N-body experiments
(§9.3.1). In a given simulation at time t let dn be the number density of
halos that have scales K−1 in the interval in which the variance σ2

K of the
initial density field changes by dσ2

K . Then the contribution MK dn of these
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halos to the total mass density ρ0 must be ρ0p1(K, t) dσ2
K , so

F ≡ MK

ρ0

∣∣∣∣
dn

d lnσ2
K

∣∣∣∣ = σ2
Kp1(K, t) =

δc/σK
(2π)1/2

exp

(
− δ2

c

2σ2
K

)
. (9.78)

Since the right side of this equation depends only on δc/σK , extended Press–
Schechter theory predicts that the left side, which can be determined by
counting halos, should have this property also. From equation (9.67) we
have that

δc
σK

= 1.686
(ti/t)

2/3

σK
=

1.686

σ̃K
where σ̃K ≡ (t/ti)

2/3σK . (9.79)

Thus according to extended Press–Schechter theory, the quantity F depends
on t and σK only in the combination σ̃K . This is a strong prediction that we
shall test in §9.3.1. The quantity σ̃K has a simple physical interpretation:
it is the rms fluctuation in MK at time t that linear theory predicts for a
strictly matter-dominated universe.

(b) The merger rate The rate at which halos merge can be deduced
from Press–Schechter theory in three steps.

(i) Consider a mass element that is within a halo of mass M2 at time t2.
What is the probability f1(M1, t1|M2, t2) dM1 that this element belonged to
a primary halo with mass in the range (M1,M1 + dM1) at time t1 < t2? As
above, each mass Mj is associated with a wavenumber Kj through (9.19),
and each time tj is associated with a value of the critical overdensity δj =
δc(ti, tj). Then f1 dM1 is simply the probability that the random walk, after
reaching δ2 at “time” σ2

K2
, will first reach δ1 > δ2 in the “time” interval

(σ2
K1
, σ2
K1

+ dσ2
K1

). This is the problem addressed in equation (9.75), except

that the starting point is (σ2
K2
, δ2) instead of (0, 0), so the answer can be

obtained by replacing σ2
K by σ2

K1
− σ2

K2
and δc by δ1 − δ2:

f1(M1, t1|M2, t2) dM1

=
δ1 − δ2

(2π)1/2(σ2
K1

− σ2
K2

)3/2
exp

( −(δ1 − δ2)2

2(σ2
K1

− σ2
K2

)

)
dσ2

K1

(
σ2
K1

>σ2
K2

δ1 >δ2

)
.

(9.80)
(ii) Consider now the probability f2(M2, t2|M1, t1) dM2 that a halo of

mass M1 at time t1 has been subsumed in a halo that at time t2 > t1 has
mass in the interval (M2,M2 + dM2). Again associating Kj with Mj and δj
with tj , we apply Bayes’s theorem (eq. B.87) to obtain

f2(M2, t2|M1, t1) =
f1(M1, t1|M2, t2)f(M2, t2)

f(M1, t1)

=
(δ1 − δ2)(δ2/δ1)(σK1

/σK2
)3

(2π)1/2(σ2
K1

− σ2
K2

)3/2

∣∣∣∣
dσ2

K2

dM2

∣∣∣∣

× exp

(
− (δ1 − δ2)2

2(σ2
K1

− σ2
K2

)
− δ2

2

2σ2
K2

+
δ2
1

2σ2
K1

)
,

(9.81)
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Figure 9.13 Merger rate as given by
equation (9.82) for equal-mass merg-
ers. The curves are labeled by the
pre-merger mass M1 in solar masses.
The figure is for the standard ΛCDM
model.

where σ2
K1

> σ2
K2
, δ1 > δ2, and f(M, t), the probability that a mass element

belongs to a halo of mass M , is given by equation (9.76).
(iii) Now let t2 approach t1, that is write t2 = t1 − dt and δ2 = δ1 − dδc.

In this limit the probability of multiple mergers is negligible, so f2(M2, t1 −
dt|M1, t1)dM2 is the probability that a halo with mass M1 experiences a
single merger that boosts its mass to the interval (M2,M2 + dM2). Thus the
probability per unit time that a halo of mass M1 will experience a merger
that increases its mass to M2 is given by

d2p

d lnM2dt
=

M2

(2π)1/2

∣∣∣∣
dδc
dt

dσ2
K2

dM2

∣∣∣∣
[
σ2
K1
/σ2

K2

σ2
K1

− σ2
K2

]3/2

exp

[
−δ

2
c

2

(
1

σ2
K2

− 1

σ2
K1

)]
.

(9.82)
The right side depends on time only through the critical overdensity δc(ti, t).
Figure 9.13 shows the merger rate d2p/d lnM2dt as a function of redshift for
M1 = 1010, 1012 and 1014 M� and M2 = 2M1 (equal-mass mergers). At a
given mass the rate rises at high redshift to a peak around the redshift at
which 3σ peaks are virializing (Figure 9.8) and then declines as more and
more halos of the given mass are subsumed in larger halos; for all three
masses plotted, the merger rate is predicted to be steeply declining at the
current epoch.

In §8.5.6 a mixture of observational data and dynamical arguments led
us to estimate that the merger rate per halo of L? galaxies is ' 0.008 Gyr−1.
The halos of these galaxies have masses ≈ 1012 M�, and for this mass Fig-
ure 9.13 predicts a merger rate per halo that is four times higher. Is this a
worrying discrepancy? In fact the merger rate we have calculated here is for
mergers of primary halos, whereas our earlier rate includes mergers of sub-
halos. A large fraction of halos of mass 1012 M� are now subhalos—recall
from Figure 9.12 that the characteristic halo mass for clustering is currently
Mc = 7.4× 1014 M�. Once a halo has fallen in to a significantly more mas-
sive halo, it is unlikely to merge with one of its peers. Hence when, as in
§8.5.6, the merger rate per halo is averaged over galaxies that are hosted by
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both primary halos and subhalos, we expect to obtain a value that is smaller
than the merger rate per halo when only primary halos are considered, as
here.

Many properties of the hierarchical growth of dark halos can be in-
vestigated by constructing Monte Carlo realizations of the evolution of the
dark-halo population (a merger tree). Techniques for constructing merger
trees using extended Press–Schechter theory are described by Sheth & Lem-
son (1999) and Somerville & Kolatt (1999).

Extended Press–Schechter theory has several limitations:

(i) It uses the arbitrary prescription (9.19) to relate the mass of a halo to
the scale K−1. In numerical experiments the mass of a halo is mea-
sured, arbitrarily, within the virial radius r200 (see discussion following
eq. 9.66).

(ii) It cannot address the fate of halos once they become subhalos by falling
into a larger halo, which is unfortunate given that the halos of satellite
galaxies and galaxies in groups and clusters are all subhalos rather than
primary halos.

(iii) It provides no information about the spatial or velocity distribution of
halos.

Despite these drawbacks, extended Press–Schechter theory is a powerful tool
for understanding nonlinear structure formation. Its limitations are less re-
markable than its successes.

9.2.4 Collapse and virialization in the cosmic web

In §9.2.2 we saw that the cosmic web largely comprises sheets into which
material is falling on both sides. We can explore this process by idealizing the
flow as perfectly one-dimensional and neglecting motion parallel to the plane
of a sheet. Then we need to follow a set of sheets of material as they move
along their common normal. We discretize the problem and suppose that we
have 2n+1 sheets, all with the same surface density, that are all perpendicular
to the x axis and move parallel to this axis. The equations of motion of the
sheets, which are given in Problem 7.3, can be solved analytically between
sheet crossings. Hence a computer can integrate these equations exactly,
apart from roundoff error (e.g., Yamashiro, Gouda, & Sakagami 1992).

We assume that all the sheets were at x = 0 for fixed time τ in the past
(the Big Bang). They then expanded with the Hubble flow, were slowed
by their mutual self-gravity and began to collapse. We start the integration
just after the time of maximum expansion, before any sheets have crossed.
For any given spatial distribution of the sheets, their velocities follow from
the requirement that all sheets were located at the origin at the Big Bang.
To introduce a small degree of initial inhomogeneity, we choose the loca-
tions of the sheets so that the coarse-grained density is proportional to
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[1 − 0.3 cos(0.3πξ)]−1, where ξ varies from −1 to 1 as one crosses the set
of sheets.

Figure 9.14 shows, from top left to bottom right, six stages in the viri-
alization of 401 sheets from these initial conditions. The elapsed time in
units of τ is given in the top left corner of each panel. The negative slope
in the top left panel implies that at the start of the simulation, the system
is already collapsing. In the next panel (t = 0.41) the vertical orientation of
the distribution near the origin indicates that the center has already finished
collapsing. By the time of the third panel, the center has expanded and col-
lapsed once more. The edge, by contrast, is only just starting to collapse for
the second time. In this simple system, the phase of a particle’s oscillation
about the spatial origin is related to be the polar angle in the phase plane of
Figure 9.14. The panels for t > 2 show that the phase lag ∆ψ between the
particles near the center and particles near the outside grows rapidly. By
the time of the last panel, ∆ψ has become so large near the center that it is
hard to follow the spiral of phase points.

The two processes discussed in §4.10.2 are manifest in Figure 9.14: (i)
the winding up of the line of phase points into an ever tighter spiral is phase
mixing, and (ii) violent relaxation causes the edge of the occupied part of
the phase plane to move outwards, and the points near the center to move
towards the origin as the system’s time-varying gravitational field transfers
energy from the central to the peripheral sheets. For example, between the
top left and top right panels, the sheets that are at |vx| ∼< 0.2 in the second
panel have fallen together under their mutual self gravity, and are beginning
to cross one another. Sheets further out have not begun to cross. However,
when the inner sheets expand, the outer sheets are falling in past them,
and the inner sheets have to climb out of a deeper well than they fell into.
Conversely, the outer sheets fall into a well that has significantly weakened
by the time they rise up the other side.

This transfer of energy from the inner to the outer sheets increases the
density contrast between the center and the outside. Since the frequency of
a sheet’s oscillations through the center scales as the square root of the mean
density ρ interior to it (eq. 2.40), the energy transfer enhances the rate at
which the phase lag ∆ψ between the inner and outer particles grows. The en-
ergy transfer works most effectively between groups of sheets with phase lag
∆ψ ∼ ±π/4. So, as the panels of Figure 9.14 clearly show, the characteristic
distance scale of the transfer rapidly decreases. In an oversimplified picture,
the first collapse transfers energy between the inner and the outer half of
the sheets. The second collapse at the center transfers energy from the first
quartile to the second quartile, and a little later energy is transferred from
the second to the third quartile, and later still on out to the fourth quartile.
By this time the additional central collapse pictured in the fourth panel of
Figure 9.14 is transferring energy from the innermost 1

8 of the sheets, and
so on. At each stage the transfers become smaller because they involve a
smaller and smaller fraction of the mass, but Figure 9.15 shows that they
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Figure 9.14 From top left to bottom right, six stages in the virialization of 401 sheets.
The number in the top left corner of each panel is the time since the initial conditions were
imposed. The units of time are the turnaround time τ of the underlying homogeneous
distribution of sheets.

Figure 9.15 Energy of the inner-
most 12 sheets (full curve) and
outermost 12 sheets (dotted curve)
as a function of time. For clarity
the energy of the inner sheets has
been multiplied by 2000. The energy
losses of the innermost 12 sheets are
suppressed by the discreteness of
the system from about t = 4. The
energy is defined as in Problem 7.3.
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remain significant to remarkably late times for the outer sheets. When only
a finite number of sheets are used in the simulation, the loss of energy by
the central sheets ceases once the phase difference between successive sheets
exceeds ∼ π/4 at the center, and the system settles to a configuration in
which the coarse-grained central density is finite. If a continuum of sheets of
infinitesimal surface density were used, the central sheets would continue to
lose energy for longer, and the numerical experiments suggest that the final
relaxed density profile would have a cusp in which the density would diverge
as x → 0 as ρ ∼ x−1/2 (Binney 2004b). This divergence—the formation of a
central cusp in the density—is possible only with initially cold matter: the
cusp has infinite phase-space density, and since phase mixing can only reduce
the maximum coarse-grained phase-space density (§4.10.2a) a cusp can form
only if the initial distribution also involves infinite phase-space density.

In our idealized model we have neglected motion parallel to the sheets
of the cosmic web. In reality these motions will become significant soon after
virialization perpendicular to the sheets is complete. The dominant effect is
streaming within sheets towards the filaments at which several sheets join,
and along the filaments to the nodes at which filaments meet. Halos grow
at the nodes by accreting a stream from each filament. Since by this time
the sheets have singular central densities, some of the infalling matter is
exceedingly dense. We shall see below that three-dimensional simulations
of the clustering process indicate that some of this dense material streams
to the center of the halo and forms a cusp in which the density diverges as
radius r → 0.

The simulations we have just described provide a model for what hap-
pened immediately after the cosmic web first formed. As we saw in §9.2.2,
ever larger-scale cosmic webs subsequently formed as the longer waves be-
come nonlinear. In these subsequent stages of structure formation, the cosmic
web is not made up of a smooth collisionless fluid of elementary particles,
but is the lumpy aggregation of relaxed halos that formed as an earlier web
collapsed. Hence we must imagine sheets of cuspy halos falling together and
the virialization of the system will involve many mergers of objects that have
cuspy density profiles.

9.3 N-body simulations of clustering

We now summarize the most important insights into the structure and dy-
namics of halos that have emerged from numerical simulations of the cos-
mological clustering of collisionless matter. Such simulations have been the
primary theoretical tool for investigating dark-matter structure for a quarter
of a century. Over this period the scale of these simulations has increased
enormously—by 2005 state-of-the-art simulations contained 1010 particles
in a box ' 700 Mpc on a side, in which particles interacted with a soften-
ing length of ∼< 2 kpc. Nevertheless, the questions that can be definitively
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Figure 9.16 Mass functions of dark-matter halos from numerical simulations (broken
curves) and from theory (full curves). On the vertical axis we plot (MK/ρ0)|dn/d lnσ2

K |
(eq. 9.78), while the horizontal axis shows values of σK at the relevant redshift, which in
equation (9.79) is denoted eσK . The curve marked PS is the prediction (9.78) of extended
Press–Schechter theory, while the curve marked SMT is the prediction (9.83) of Sheth,
Mo, & Tormen (2001). After Jenkins et al. (2001).

answered by simulations are still limited by finite resolution, both in mass
(determined by the mass of an individual particle) and in distance (deter-
mined by a combination of particle density and softening length). These
limitations must be borne in mind when examining small-scale features in
simulations.

9.3.1 The mass function of halos

In §9.2.3 we obtained a prediction (9.77) for the number density of pri-
mary halos as a function of mass, and it is important to compare this with
the results obtained from simulations. A key prediction of extended Press–
Schechter theory was that the quantity F ≡ (MK/ρ0)|dn/d lnσ2

K | should
be independent of time t when plotted as a function of the dispersion at t,
σ̃K (eq. 9.78). The broken curves in Figure 9.16 show for four redshifts the
values of F that Jenkins et al. (2001) determined by counting primary halos
in numerical simulations of the standard ΛCDM cosmology. To the degree
that the curves from different redshifts overlie one another, the prediction
of extended Press–Schechter theory is vindicated. On the other hand, the
theory’s functional form F (σ̃K), which is given by the extreme right side of
equation (9.78) and in Figure 9.16 is shown by the curve labeled “PS”, is
clearly an inadequate approximation to the form of F that emerges from the
simulations. By generalizing the spherical-collapse model of §9.2.1 to the
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case of collapsing ellipsoidal bodies, Sheth, Mo, & Tormen (2001) obtained
a slightly different form of F :

F (σ̃2
K) = 0.322

[
1 +

(
σ̃K
δ1

)0.3
]
δ1/σ̃K
(2π)1/2

exp

(
− δ2

1

2σ̃2
K

)
(δ1 ≡ 1.418).

(9.83)
This prediction, shown by the curve marked “SMT” in Figure 9.16, is in
much better agreement with the simulations.

The simulations show that halos contain many subhalos. Subhalos were
not counted in either the analytical work of §9.2.3 or in the simulation results
shown in Figure 9.16, but they are important for astronomy. The simplest
heuristic model for subhalos is that the distribution of normalized subhalo
masses m/M , where m and M are the masses of the subhalo and primary
halo, is the same for all primary halos. That is, the number of subhalos per
primary halo in some mass interval is dn = f(m/M)d(m/M). Obviously,
f(m/M) must turn steeply down as m/M approaches unity, and moreover
it is natural to assume that f(m/M) is a power law when m/M � 1. These
considerations suggest the simple form for the subhalo mass function

dn = c
(m
M

)a
exp(−km/M)

dm

M
, (9.84)

where c, a and k are constants (note the analogy to the Schechter law 1.18).
This formula provides a remarkably good fit to N-body simulations of struc-
ture formation by Gao et al. (2004). The constant a ' −2, so the overall
shape of the subhalo mass function (9.84) is similar to the mass distribution
of primary halos, shown in Figure 9.12. The normalizing constant c is a weak
function of primary halo mass, growing by a factor of two as the primary halo
mass grows by 103. Equation (9.84) predicts that the fraction of a primary
halo’s mass that is contained in subhalos with m/M exceeding some small
constant ε is independent of the mass of the primary halo; the simulations
indicate that for ε = 10−4 this fraction is 5–10%.

9.3.2 Radial density profiles

At the smallest resolved radii, the densities of halos can be approximated
by a power law ρ ∝ r−α, where α ≈ 1 (Diemand, Moore, & Stadel 2004;
Hayashi et al. 2004). Measurements of gravitational lensing of background
galaxies suggest that in galaxy clusters the dark-matter density profile is
indeed at least as steep as ρ ∝ r−1 (Sand et al. 2004). However, there is
much debate about whether such steep density profiles are consistent with
data for much smaller halos. In particular, it is not clear that such cusps
are consistent with the circular-speed curves of low-luminosity, dark-matter
dominated galaxies (McGaugh, Barker, & de Blok 2003), with the mass
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Figure 9.17 Median concentrations c = r200/a of halos of various masses at four redshifts
(after Zhao et al. 2003).

distribution of the Milky Way inside the solar circle (Binney & Evans 2001;
Klypin, Zhao, & Somerville 2002), with the pattern speeds of galactic bars
(§8.1.1d; Debattista & Sellwood 2000), or with the evidence for maximum
disks in galaxies (§6.3.3).

Outside the central cusp, the density profile of a halo depends on
whether it is a primary halo or a subhalo. The density profile of a pri-
mary halo steepens to ρ ∝ r−3 at large r. Remarkably, it appears that to
a good approximation all primary halos have a universal density profile, in-
dependent of cosmology, which can be fitted by the NFW model introduced
in §2.2.2g. If ρ ∝ r−3, the mass within radius r diverges like ln r at large
r (eq. 2.66). In reality, the halo ceases to be an equilibrium structure, and
the NFW model no longer applies, around the virial radius r200 (§9.2.1).
Figure 9.17 shows for halos of various masses at four redshifts the median
concentrations c ≡ r200/a, where a is the NFW scale radius. The filled
triangles show that at the current epoch the concentration of a typical halo
decreases with increasing halo mass. The pentagons and hexagons show that
at earlier epochs the dependence of c on mass was weaker. It is easy to un-
derstand this result qualitatively: we have seen that only low-mass halos are
formed at high redshift (Figure 9.8). If such a halo accretes relatively little
since its formation and is still a low-mass halo, its inner structure, and there-
fore its scale radius a, will not have changed much. However, its virial radius
r200 will have grown as the mean cosmic density fell, so c will have grown. If,
by contrast, an initially low-mass halo becomes a massive halo, it will have
experienced a succession of mergers with objects of comparable mass, giving
violent relaxation an opportunity to increase a, so higher masses correspond
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to lower concentrations.
Subhalos have density profiles that usually consist of a single power-law

segment with slope α ' 1 followed by an abrupt cutoff. Such a profile arises
naturally through the tidal truncation of an NFW profile by the gravitational
field of the primary halo (§8.3; Kazantzidis et al. 2004).

The origin of the universal density profile of primary dark halos is not
well understood. Halos settle to this profile regardless of the cosmology and
the power spectrum P (k) (Navarro, Frenk, & White 1996). In particular, if
the initial power spectrum is truncated, so P (k) = 0 for k ≥ K, low-mass ha-
los are eliminated but the density profiles of the primary halos that do form
remain essentially unchanged (Huss, Jain, & Steinmetz 1999; Moore et al.
1999). In such a simulation, the cuspy central density profiles of the small-
est halos cannot be fossils of small-scale structure in the initial conditions;
rather, they must have arisen through virialization along the lines discussed
in §9.2.4. By contrast, in simulations that start from a power spectrum that
has substantial small-scale power, halos form largely through merging and
accretion of smaller halos, yet they have the same density profile. Thus the
explanation we seek must come in two parts: (i) why does virialization pro-
duce something like an NFW profile? and (ii) why does this profile reproduce
itself when systems with NFW profiles merge?

The following argument offers an explanation of item (ii) above (cf. Dekel
et al. 2003). Consider what happens when a satellite on a nearly circular or-
bit spirals into a much larger system. Assume that inside the Jacobi or tidal
radius the satellite’s density varies as l−β, where l is distance from the satel-
lite’s center, and that the host’s density varies with radius as r−α. Dynamical
friction drains energy from the satellite’s orbit, causing it to shrink (§8.1).
Simultaneously, tides strip mass from the satellite (§8.3); this stripped ma-
terial subsequently contributes to the density of the host around the current
radius r of the satellite orbit. The masses interior to radius r in the host and
radius l in the satellite are

M(r) = Kar
3−α ; m(l) = Kbl

3−β, (9.85)

where Ka and Kb are unimportant constants. From equations (8.91) and
(8.108) the radius to which the satellite has been stripped is therefore

l(r) = f

(
Kb

3Ka

)1/β

rα/β , (9.86)

where f is a factor of order unity that depends on α. The mass dm that is
stripped as the orbit sinks through a radial interval dr is (dm/dl)(dl/dr)dr
and we should compare this with (dM/dr)dr, which is the mass that the
host originally had in that radial range. If the ratio of these masses increases
as r decreases, stripped material will be becoming more important as the
center is approached, and the accretion event will steepen the host’s density
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profile, while this profile will be flattened in the opposite case. The crucial
ratio of masses is

µ ≡ dm

dl

dr

dM

dl

dr
=

α(3 − β)Kbl
2−β

β(3 − α)Kar2−α f

(
Kb

3Ka

)1/β

rα/β−1 ∝ r3(α/β−1).

(9.87)
Thus if β > α, and the satellite is the cuspier system, µ will increase as r
decreases and the merger will steepen the host’s density profile. Conversely,
if β < α, the merger will flatten the host’s density profile. Thus halos that
arise from the merging of many small halos will acquire the density profile
of their small progenitors. Simulations of virialization tend to produce inner
profiles with α ' 1, as in an NFW model (Navarro, Frenk, & White 1995;
Moore et al. 1999, 2004). Hence the universality of the NFW profile probably
arises because (i) it is produced during virialization of the first halos and (ii)
it survives subsequent mergers.

9.3.3 Internal dynamics of halos

Halos prove to be slowly rotating, triaxial stellar systems that are dynami-
cally similar to luminous elliptical galaxies.

(a) The shapes of halos The shapes of halos are important for un-
derstanding many phenomena, including tidal streamers, warps, X-ray ha-
los, and weak gravitational lensing. They have been investigated by many
authors—Bailin & Steinmetz (2005) provide a useful summary of this work.

Halos are roughly ellipsoidal objects in the sense that the principal-axis
directions determined by considering only matter that lies within distance r
of the center, depend at most weakly on r. Figure 9.18 shows that halos are
strongly triaxial: the left panel shows that the ratio c/a of the lengths of the
shortest and longest principal axes clusters around 0.6, while the lower right
panel plots the distribution of the triaxiality parameter

T ≡ a2 − b2

a2 − c2
, (9.88)

where b is the length of the intermediate axis. T varies from zero for oblate
spheroids to unity for prolate halos and the right panel of Figure 9.18 shows
that halos with 0.5 < T < 0.85 are common while spheroidal halos, either
oblate or prolate, are exceedingly rare. The scarcity of prolate halos is em-
phasized by the upper right panel, which shows the distribution of triaxiality
parameters obtained when the axis lengths are chosen randomly between 0
and 1. This distribution peaks at T = 1 because when b2, c2 � a2, T ' 1
regardless of the values taken by b and c. By contrast the distributions of
triaxiality parameters of N-body halos is sharply depressed at T = 1.

If a halo still lies in a sheet of the cosmic web, the direction of the
smallest principal axis has a strong tendency to be the normal to that sheet.
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Figure 9.18 Left panel: distribution of the axis ratio c/a for halos that form in numerical
cosmological N-body simulations. Lower right panel: the distribution of the triaxiality
parameters (eq. 9.88) of these halos measured at radius r = 0.12r200 (full line) and at
r = r200 (dashed curve). Upper right panel: the distribution of triaxiality parameters
when the axis lengths are each chosen with uniform probability on (0, 1) (after Bailin &
Steinmetz 2005).

It is likely that the shape of a halo reflects the last major merger that
was involved in its formation. For example, prolate shapes arise when halos
of comparable mass merge from a nearly radial orbit, while oblate halos form
when similar halos merge from a nearly circular orbit (Moore et al. 2004).

(b) Rotation of halos The dynamical importance of rotation for a self-
gravitating system is quantified by the spin parameter

λ =
J |E|1/2
GM5/2

, (9.89)

where M is the system’s mass, E is its energy and J is its spin angular
momentum. The spin parameter is a dimensionless number (Problem 9.7)
that increases linearly with the rotation speed when the system’s energy and
shape are unchanged9 and it is constructed from quantities that are constant
for an isolated system. Thus λ provides a measure of how rapidly a system is
rotating that is independent of the system’s mass and can be evaluated even
before the system has virialized. For a non-rotating system λ = 0, while for a
cold, razor-thin, self-gravitating exponential disk λ = 0.4255 (Problem 9.10).

9 We saw in §4.2.1b that for axisymmetric systems the part of the df, f−, that is
odd in Lz contributes neither to the density nor to E, so such changes can be made by
changing f−.
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Figure 9.19 A histogram of the
values of λ for halos in a simulated
standard ΛCDM universe. The curve
shows the log-normal distribution
dP (λ) ∝ exp[− ln2(λ/λ0)/2σ2 ]d lnλ
with λ0 = 0.037 and σ = 0.55 (after
Bullock et al. 2001).

The principal limitation of λ is that the values of J and M are both sensitive
to the definition of the halo’s outer boundary.

Figure 9.19 shows the distribution of λ-values for halos formed in a
simulation of the standard ΛCDM cosmology. The distribution can be fitted
by a log-normal distribution with median value λ = 0.037. This distribution
appears to be independent of halo mass or environment (Barnes & Efstathiou
1987; Warren et al. 1992). Since the typical λ-value of a halo is much less
than 0.5, we conclude that halos are not significantly flattened by rotation.

Bullock et al. (2001) investigated the radial distribution of angular mo-
mentum within halos that form in a standard ΛCDM cosmology. They found
that the fraction f(j) of the mass that has specific angular momentum less
than j can be fitted by the simple formula

f(j) =
µj

j + j0
, (9.90)

where j0 and µ are parameters. The function f(j) is proportional to j for
small j and increases more slowly at larger j. The maximum specific angular
momentum jmax is such that f(jmax) = 1, so jmax = j0/(µ − 1). Typically
µ ' 1.25 and j0 ' 1.4λr200v200, where v200 is the circular speed at r200, so
jmax ' 5.6λr200v200.

The mean angular-momentum vector of material near the center gen-
erally lies within ≈ 25◦ of the halo’s shortest principal axis, but Bailin &
Steinmetz (2005) find that there is very little correlation between the direc-
tions of the angular-momentum vectors of material near the center and on the
periphery of a typical halo. These findings are consistent with the prediction
of linear theory that the direction of the angular momentum that is being
accreted by a halo varies dramatically over cosmic time (Quinn & Binney
1992). On account of tidal torques and infall, the total angular momentum
of a halo varies strongly over cosmic time, both in direction and magnitude.
Collisionless relaxation processes within a halo work constantly to align the
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Figure 9.20 The full curve is a fit
from Gao et al. (2004) to the frac-
tion of subhalos contained within
radius r, while the dashed line shows
the fraction of the mass of an NFW
halo that is inside r. The halo has
been assumed to have concentration
c = 8.

angular-momentum vectors of different mass shells, and they work fastest in
the inner regions where the crossing time is shortest. Thus the overall effect
is to produce a coherent inner portion that is constantly slewing its spin axis
under the influence of torques produced by the less coherent outer regions
(Binney & May 1986; Ostriker & Binney 1989). As we described in §6.6.1,
disk warps may be a manifestation of this process.

(c) Dynamics of halo substructure As we saw in §9.3.1, primary halos
have subhalos orbiting within them that contain up to 10% of the primary
halo’s mass. Subhalos are constantly eroded by tides (§8.3) and tidal shocks
(§8.2), and dragged inwards by dynamical friction (§8.1). The consequences
of these processes are evident in subhalo statistics compiled by Gao et al.
(2004):
(i) A subhalo is much more likely to have been accreted recently than the

halo’s matter as a whole. About 70% of subhalos fell into their primary
halo since z = 0.5, and ≈ 90% since z = 1.

(ii) The ratio of the present mass of a subhalo to the mass it had when it
fell in to the primary halo at redshift z decreases rapidly with increasing
z, independent of the original subhalo mass.

(iii) The spatial distribution of subhalos is more extended than that of all
the halo’s mass (Figure 9.20). This finding presumably arises because
subhalos at smaller radii are subject to stronger disruptive processes.

There is an important corollary of these results for the relation between the
luminosity of a satellite galaxy or a galaxy in a cluster and the mass of its
surrounding subhalo. The stellar parts of galaxies are much less affected by
tides and other disruptive dynamical processes than their host halos because
they are confined to the central regions of their halos. Consider two subhalos
that start out with the same mass and galaxy luminosity, one at small radius
and one at large radius in the primary halo. The subhalo at smaller radius
will be eroded much faster than the one at larger radius, but the luminosities
of the galaxies they contain will remain the same. So eventually, the relation
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between galaxy luminosity and subhalo mass will vary strongly with position
within the primary halo. In other words, there is no simple relation between
the present distribution of subhalo masses and galaxy luminosities.

9.4 Star formation and feedback

Thus far we have been exclusively concerned with dark matter, which has
simple physics but is so far observable only through its gravitational field. All
our knowledge of the universe has been gleaned by studying particles, such
as photons, neutrinos and high-energy nuclei, that have been emitted by
“ordinary,” or “baryonic,” matter, such as the matter we and the Earth are
made of. We now discuss what baryonic matter did as clustering developed.

(a) Reionization As we saw in §9.1, baryonic matter was tightly coupled
to the photons of the cmb until the epoch of decoupling at z ' 1000, so
baryonic fluctuations could not grow at a time when the dark matter was al-
ready clustering. Since the dark matter had this head start, after decoupling
the baryons simply fell into the potential wells associated with pre-existing
dark-matter overdensities.

Because the mass in baryons is much smaller than the mass in dark
matter, the presence of the baryons probably had a very small impact on the
development of the universe from decoupling until the first regions started
to collapse, probably no earlier than z ≈ 30 (Figure 9.8). The behavior of
baryons during collapse was much richer and more dramatic than the re-
sponse of the dark matter. Collisions between the neutral hydrogen and
helium atoms that formed at decoupling both heated the gas and excited its
atoms, causing them to emit photons and free electrons. The latter catalyzed
the formation of hydrogen molecules, which can radiate at lower tempera-
tures than atomic hydrogen. On account of the propensity of excited atoms
and molecules to radiate, much of the gravitational energy released by the
collapsing gas was lost, and gas sank towards the bottom of the potential
well of whatever halo it was in. On account of this dissipation of energy—a
process not available to dark matter—soon gas dominated the mass density
at the centers of halos, even though the total halo mass was dominated by
dark matter.

Continued radiation caused the density to run away to very high values
in restricted volumes. Eventually these regions became optically thick to
the photons radiated by gas atoms. Once photons became trapped, further
collapse simply heated the gas. As the temperature rose, dynamical equilib-
rium became possible, and stars formed. We are not sure what these first
stars looked like—the structure of present-day stars is heavily influenced by
the trace amounts of heavy elements such as carbon and oxygen that they
contain, while the first stars contained no such pollutants. Moreover, we do
not know what the typical mass of a first-generation star was. However, the
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cmb provides evidence that between z ≈ 20 and 10 a great deal of ionizing
radiation had been released by these stars, which suggests that many were
massive objects (M ∼> 10M�).

As growing numbers of massive stars poured ionizing photons into the
surrounding gas, the fraction of the universe containing ionized rather than
neutral gas rapidly increased, until by z ' 6 almost all the volume of the
universe was filled with ionized gas—we know this by studying lines in the
spectra of distant quasars that are due to absorption of photons by neutral
hydrogen and helium atoms in the intergalactic medium (Problem 1.14).
This process is called reionization since the gas had previously been ionized
until decoupling.

(b) Feedback When hydrogen and helium are photo-ionized, electrons
are ejected at speeds characteristic of temperatures ≈ 104 K. Hence, as the
universe was reionized, the intergalactic medium, which still contained nearly
all the baryons, was heated to T ≈ 104 K.

At a temperature of 104 K the sound speed in hydrogen is ' 10 km s−1,
so gas at this temperature would not have fallen into gravitational potential
wells that had escape speeds ve ∼< 10 km s−1, which is the case for halos
less massive than ≈ 108 M� (Figure 9.9). Thus a halo less massive than
M ≈ 108 M� that had not already formed stars before the universe reionized
will have missed its opportunity, and will not subsequently form stars. This
argument suggests that there may be “dark-dark” halos that contain no stars
(Dekel & Woo 2003).

We have only a limited understanding of star formation, in part because
it is a consequence of the microstructure of the interstellar medium (ism).
Both observationally and theoretically, this is exceedingly hard to study, and
we have only intimations of what the ism may look like on the smallest scales.
However, observations clearly show that (i) stars form from very cold (T ∼<
20 K) molecular gas, and (ii) when a mass of cold gas gathers, the ensuing
starburst (§8.5.5) converts only a small fraction of it into stars, blowing most
of it away. The propensity of star formation to inject significant quantities
of energy into the ism is called feedback—this is negative feedback since
the injected energy tends to quench subsequent star formation. A number of
lines of observational evidence suggest that feedback is a remarkably effective
process: for every unit of mass that is turned into stars, at least another unit
of mass is driven out of a typical starbursting galaxy.

Supernovae can heat gas to temperatures T ∼> 106 K at which it can
escape from halos with circular speeds ∼< 100 km s−1 (Dekel & Silk 1986).
This energy input drives bulk motion of the gas at speeds of hundreds of
km s−1 on galactic scales (a galactic wind). The hot, fast-moving gas of
the wind entrains colder, denser gas, which can be detected either through
its emission lines (Strickland et al. 2004), or through its absorption of light
from a background quasar (Pettini et al. 2001). Thus a starburst-driven wind
is associated with an outflow that moves much more gas out of the galaxy
than is directly involved in the wind.
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The dynamics of the Local Group provides evidence for the importance
of outflows. In Box 3.1 we concluded that the Local Group has mass M '
5×1012 M�, and in §1.3.5 we saw that ' 20% of matter is baryonic (eq. 1.75),
so the Local Group should contain 1 × 1012 M� of baryons. The Galaxy
contains ' 5×1010 M� of baryonic mass (Table 1.2) and accounts for about
a third of the Local Group’s luminosity (BM Table 4.3). If the other Local-
Group galaxies contribute a similar amount of light per unit baryonic mass,
the galaxies of the Local Group must contain ∼< 2 × 1011 M� of baryonic
mass in total, no more than a quarter of the total baryonic mass of the
Local Group. Observational constraints on the pressure of hot gas around
the Galaxy require that the remaining gas must extend through a volume ∼>
1 Mpc in size (Problem 9.12). Thus fully three-quarters of the Local Group’s
baryons lie outside galaxies, probably in hot gas (Pedersen et al. 2006). This
prediction can be reconciled with our picture of structure formation only if
outflows have driven most of the baryons out of individual halos.

Another telling argument for outflows is that at least half of the heavy
elements in rich clusters of galaxies are in the intracluster medium rather
than in galaxies. Since the luminosity of the cluster is dominated by the
galaxies, these elements must have been made in galaxies, and transferred
to the intracluster medium by outflows. The synthesis of heavy elements
was dominated by galaxies with luminosities L ∼> L?, the characteristic lu-
minosity of the galaxy luminosity function (§1.1.3), and these galaxies have
high escape velocities (ve ∼> 500 km s−1). Therefore massive outflows must
be possible from galaxies with deep potential wells.

In the case of cluster galaxies, outflows can be driven in two ways. The
starburst-driven winds described above are one mechanism, and the other is
ram-pressure stripping by intergalactic gas (van Gorkom 2004). A typ-
ical cluster galaxy is moving through intracluster gas of density ρ at about
v ≈ 1000 km s−1, and the impact of this gas produces a ram pressure of order
ρv2. This pressure sweeps the galactic gas into the turbulent wake that trails
the galaxy. In practice star-formation powered outflows and ram-pressure
stripping probably work in tandem: energy injected by star formation pro-
duces diffuse, extended gas, which is then easily removed by ram pressure.
Note that ram-pressure stripping is effective only when a dense intraclus-
ter medium already exists as a result of winds, galaxy collisions or other
mechanisms.

Like the thick disk of our own galaxy, the stellar populations of the
early-type galaxies that dominate galaxy clusters have high abundances of
α nuclides such as 16O and 24Mg relative to 56Fe. As described on page 13,
a high α/Fe ratio indicates that the era of star formation ended in ∼< 1 Gyr.
The natural explanation for this brief era of star formation is that cold gas
was quickly removed by outflows powered by starbursts or ram pressure.

(c) Mergers, starbursts and quiescent accretion When two halos of
comparable size merge, the gas in their disks is violently shocked. Conse-
quently, the merger produces a starburst (§8.5.5). Stars that are formed in
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such events are unlikely to be neatly arranged on circular, coplanar orbits,
since the gas from which they form is not in quiescent rotation. Hence star-
bursts that occur during mergers probably give rise to bulges rather than
stellar disks, and many bulges must have form in this way, and/or through
the mixing together of pre-existing smaller disks.

So long as the cold ism forms a quiescent disk, conservation of angular
momentum keeps it away from the central black hole, so the latter cannot
grow rapidly by accreting cold, dense gas. During a merger the gravita-
tional field is far from axisymmetric, and by losing all its angular momentum
(§8.5.5) some gas is likely to plunge to the center, and feed the black hole.
Hence, the black hole is expected to grow rapidly at times of bulge formation;
this may explain the observed tight correlation between black-hole mass and
bulge luminosity and velocity dispersion (eq. 1.27) and also suggests a close
relation between quasars and major mergers.

At least two other mechanisms are capable of forming bulges. First, in
§6.6.2 we saw how the buckling instability can fatten a barred disk into a
peanut-shaped bulge. Second, bulges can be made out of disks when a satel-
lite galaxy plunges deep into its host. If the intruder is much less massive
than the disk, the latter will become a thick disk such as the Milky Way
possesses (page 13). If the intruder is massive, the disk will be shattered,
and its debris will subsequently be part of a bulge. Thus we suspect that
some bulge stars were born on non-circular orbits during merger-driven star-
bursts, while others were born in quiescent disks and subsequently scattered
into their present orbits. The α/Fe ratio mentioned above provides a useful
diagnostic, since a bulge formed from a disk that had been quiescent for

∼> 1 Gyr would have a near-solar α/Fe ratio.
Several lines of evidence indicate that spiral galaxies are continually

acquiring gas, from accreted galaxies, and perhaps from the hot intergalactic
medium discussed above. On account of the ability of gas to radiate, the
incoming gas clouds will soon settle onto closed orbits in one of the galaxy’s
principal planes. In most cases this plane will coincide with the plane of
the pre-existing stellar disk, but there are exceptions. In (rare) polar-ring
galaxies (BM §8.2.5) the gas is observed to orbit in a plane perpendicular to
the plane of the existing stellar disk. In even rarer cases, for example NGC
4550, the original disk and the accreted gas disk lie in the same plane but
rotate in opposite senses. These exotic systems confirm that galaxies can
be rejuvenated by acquiring a fresh source of gas, and illustrate the chaotic
nature of galaxy formation.

In the inner regions of well-studied galaxies, baryons now dominate the
mass budget (§§2.7 and 4.9.2). Consequently, the gravitational field in these
regions is expected to differ significantly from that found in simulations that
include only dark matter. If the baryons arrived in bursts, as during merg-
ers, simulations that include the complex physics of baryons are required to
predict the current gravitational field from cosmological initial conditions.
By contrast, if the baryons arrived slowly through steady accretion, we can
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determine the current force field by exploiting the adiabatic invariance of
actions (§4.6.1b). The simplicity of the second approach has led to its being
used more widely than is probably justified.

(d) The role of central black holes Figures 9.8 and 9.9 show that
the characteristic mass of dark halos, Mc, and the associated characteristic
velocity dispersion σc are constantly increasing. Consequently, the temper-
ature that gas must attain if it is to escape from a typical halo, which is
proportional to σ2

c , also increases. By contrast, the highest temperature to
which stellar winds and supernovae can heat gas during a starburst is fixed
at ∼< 107 K, which yields vs ' 300 km s−1. Consequently, there is a critical
halo mass, Mtrap ' 1013 M� (Figure 9.9), above which gas is trapped, and
supernova-heated gas simply accumulates in the halo’s potential well. Atmo-
spheres of trapped hot gas in luminous elliptical galaxies have been detected
and extensively studied through their thermal X-ray emission.

As star formation continues in a halo with M > Mtrap, the density
of hot, trapped gas rises. The gas can cool radiatively, and in response to
cooling its density rises to maintain pressure balance. The radiative cooling
time of the gas is tcool = 3

2kBT/Ė, where Ė is the rate per particle at which

the gas radiates. Ė is proportional to the particle density n because radiation
is caused by collisions of ions with free electrons, so tcool is shortest at the
center. Consequently, the first manifestation of cooling is an increase in the
density of the gas at the center. A massive halo contains a black hole at
its center (eq. 1.27), and this increased gas density boosts the rate at which
the black hole accretes gas, and the rate of release of accretion energy. The
details of this energy release are inadequately understood, but observations
indicate that a significant fraction, in some cases almost all, of the energy
emerges as a collimated outflow that heats the surrounding gas mechanically
(e.g., Omma & Binney 2004).

Roughly three-quarters of rich clusters of galaxies host cooling-flow
X-ray sources in which tcool ∼< 300 Myr at r ' 10 kpc. These systems must
be several Gyr old, so this cooling time is at least an order of magni-
tude shorter than the lifetime, and even shorter cooling times must occur at
smaller radii. Consequently, in the absence of heating these systems would
develop infinite central densities within the next ∼< 100 Myr. The X-ray mor-
phologies of the systems are remarkably similar to one another (Donahue et
al. 2006), which suggests that they are in approximate steady states, presum-
ably because the central black hole is acting like a thermostatically controlled
central-heating system. The cooling-flow phenomenon10 occurs in individual
galaxies as well as in rich clusters of galaxies, but such cooling flows have
been less thoroughly studied because they are much harder to observe.

The cooling-flow phenomenon has a major impact on galaxy formation
by effectively quenching star formation in halos more massive than Mtrap.

10 The name “cooling flow” is a misnomer derived from a defunct model: in these
systems gas radiates but in a time-averaged sense neither cools nor flows inwards.
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This happens because once a dense atmosphere at T ∼> 107 K has built up,
thermal conduction and turbulent mixing carries heat from the hot atmo-
sphere into any infalling clouds of cold gas, causing them to mix in with the
hot atmosphere rather than forming a disk of cold gas in which stars can
form. Notice that the heat absorbed by infalling cold clouds, like the energy
radiated by the hot atmosphere, ultimately comes from accretion onto the
central black hole.

(e) Origin of the galaxy luminosity function We finally return to
the discrepancy between the galaxy luminosity function, shown by symbols
in Figure 9.12, and the mass function of halos, given by the full curve in
that figure. In that figure the galaxy luminosity function has been converted
into a mass function by assuming that all galaxies have the same mass-to-
light ratio, and that all of the mass of the universe is contained in galaxies
(eq. 1.76). If the second of these assumptions is incorrect, we should shift
the mass function of galaxies horizontally to the left. Whether or not such
a shift is made, there are two irreconcilable differences between the mass
functions of halos and galaxies: there are too many halos at both the largest
and smallest masses.

These discrepancies can be resolved only if the mass-to-light ratio varies
with halo mass. In particular, the most massive halos must have abnormally
large mass-to-light ratios: in effect there is an upper limit to the luminosity of
a galaxy, no matter how massive its halo is. Our discussion of how galaxies
form and evolve suggests how this upper limit arises: halos more massive
than Mtrap have luminosities not much above L? because stars ceased to
form in them around the time that their luminosities reached L?.

The discrepancy at low halo masses can in principle be resolved in two
ways. Either low-mass halos have abnormally low mass-to-light ratios so their
luminosities cluster around L∗, or they have abnormally high mass-to-light
ratios, so they are faint or invisible. Our discussion of how galaxies form and
evolve suggests which of these possibilities is likely to be true: low-mass halos
have abnormally high mass-to-light ratios because a combination of efficient
feedback and early heating of the intergalactic medium has kept gas out of
their shallow potential wells. Thus at a qualitative level feedback from stars
and active galactic nuclei can explain why the galaxy luminosity function
differs strongly from the mass function of halos (Binney 2004a; Cattaneo et
al. 2006).

9.5 Conclusions

Galaxies dominate the visual appearance of the universe, but over the last
several decades we have concluded that they are only the tips of vast icebergs
of dark matter that are in turn embedded in a mysterious sea of vacuum
energy. Our primitive ideas as to the nature of dark matter and vacuum
energy are speculative and possibly far from the truth, yet we understand
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enough about these exotic materials to be able to assemble a coherent and
elegant account of the evolution of galaxies and the universe with remarkable
predictive power.

A convenient starting point is the redshift zγm ' 3100 when matter first
dominated the overall mass budget of the universe. The cmb provides a clear
window on the universe at the redshift of decoupling zd ' 1100, when the
scale factor was only three times larger. Through it we have seen the ripples
in the cosmic density from which large-scale structure grew, and the power
spectrum of these fluctuations is consistent with the theoretical predictions of
Harrison and Zeldovich and of inflationary models of the very early universe.

Given these initial conditions, stellar dynamics, the subject of this book,
is the only physics needed to follow the evolution of dark matter right up to
the present epoch.

The story is more uncertain as regards the baryonic component of the
universe, which is insignificant in terms of mass but dominates observational
phenomena. The involvement of baryons in galaxy formation implies that
a clear understanding of galaxy formation and evolution can be obtained
only by complementing stellar dynamics with many other branches of astro-
physics, including star formation, stellar evolution, the dynamics of inter-
stellar gas and dust, accretion disks, and even black-hole physics. This is a
vast enterprise that is in its infancy. A particularly important and challeng-
ing area is gas dynamics, which is involved in both star formation and its
aftermath, and imprints on the world of galaxies characteristic scales that
have their origin in atomic and nuclear physics.

We have sketched the main points of a theory of galaxy formation that
may emerge in the years to come. Only time and much work will show
whether our sketch is true to life.

Problems

9.1 [2] (a) Let u(t) be a solution of ÿ+p(t)ẏ+ q(t)y = 0. By writing y(t) = v(t)u(t) show
that the general solution is

y(t) = Au(t) + Bu(t)

Z t

dt′
e−P (t′)

u(t′)2
, (9.91)

where A and B are arbitrary constants and P (t) =
R t dt′p(t′).

(b) Show that the decaying solution of equation (9.37) for large-scale (k → 0) density
perturbations in a universe dominated by matter and vacuum energy is δ = ȧ/a. If possi-
ble, you should derive this simple result using both mathematical and physical arguments.
Hint: use equations (1.49) and (1.59).

(c) Show that for k → 0 the growing solution of equation (9.37) is

δ ∝ ȧ

a

Z a

0

da′

ȧ′
3
. (9.92)

9.2 [1] The energy density and entropy density of black-body radiation are universal
functions of the temperature, which we may write as uBB(T ) and sBB(T ). The pressure
exerted by black-body radiation is p = 1

3
ρc2 = 1

3
uBB (eq. 1.58). Prove that uBB(T ) = aT 4

and sBB(T ) = 4
3
aT 3, where a is a universal constant. Hint: use the thermodynamic

relation dU = T dS − pdV .
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9.3 [2] The Lagrangian of a particle in comoving coordinates is given by equation (9.27).

(a) Show that the corresponding Hamiltonian is

H(x,p, t) =
p2

2a2
− ȧ

a
p · x + Φ(x, t), (9.93)

where p ≡ a2ẋ + aȧx is the momentum conjugate to x.

(b) Show that after a suitable canonical transformation, the motion is described by the
Hamiltonian

H′(x,p′, t) =
(p′)2

2a2
+ Φ(x, t) + 1

2
aäx2, (9.94)

where p′ = a2ẋ. Hint: use equations (D.93) and (D.98).

(c) If the universe is homogeneous, show that the potential must have the form

Φ(x, t) = − 1
2
aäx2 + constant. (9.95)

Hint: consider the equations of motion for a particle moving with the Hubble flow.

(d) If the universe contains non-relativistic matter with mean density ρ0(t) and overdensity
δ(x, t) (eq. 9.1), argue that the potential must have the form

Φ(x, t) = − 1
2
aäx2 + φ(x, t) where ∇2

xφ = 4πGa2ρ0δ with ∇x ≡ ∂/∂x. (9.96)

(e) Show that the equations of motion in comoving coordinates are

ẋ =
p′

a2
; ṗ′ = −∂φ

∂x
. (9.97)

(f) Find a symplectic integration algorithm (§3.4) to solve the equations of motion (9.97).

9.4 [3] (a) By considering the form taken by the energy-momentum tensor Tαβ of a perfect
fluid in the fluid’s rest frame, explain why Tαβ has to take the form (ρ+p/c2)uαuβ+pgαβ,
where x0 = ct, u(x) is the four-velocity of material at the event x, the metric is taken to
have signature s = (−1, 1, 1, 1), and ρ and p are the inertial density and pressure.

(b) In special relativity, the equations of hydrodynamics are obtained from the conservation
law ∂βT

αβ = 0, where ∂β ≡ ∂/∂xβ and the metric gαβ is replaced by the Minkowski metric

ηαβ ≡ sαδαβ . For a fluid composed of relativistic particles (so p is of order ρc2), show
that in the absence of gravitational fields Euler’s equation takes the form

∂v

∂t
+ (v · ∇)v = −1 − v2/c2

ρ+ p/c2

„
∇p+

v

c2
∂p

∂t

«
. (9.98)

Hence derive equation (9.44).

9.5 [3] In this problem we use notation introduced in Problem 9.4 to determine the grav-
itational field generated by a slowly evolving distribution of relativistic matter when the
field is weak. Since the field is weak, we can use coordinates that are nearly inertial, so
we may take the metric to be of the form gαβ = ηαβ + hαβ , where |hαβ | � 1.

(a) The four-velocity uα of a freely-falling particle satisfies the equation of motion11

duα

dτ
+ Γαµνu

µuν = 0, (9.99)

where τ is the particle’s proper time and the Christoffel symbol Γαµν is related to the
metric by

Γαµν = 1
2
gαβ

`
∂µgβν + ∂νgµβ − ∂βgµν

´
. (9.100)

Show that for a slow-moving particle in a weak gravitational field the spatial components
of this equation may be approximated by Newton’s law of motion u̇i = −∂iΦ provided
h00 = −2Φ/c2.

11 Notice the analogy with the special-relativistic motion of a particle of mass m
and charge q that moves in the electromagnetic field described by Fµν : duα/dτ −
(q/m)Fαµuµ = 0.
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(b) It is often convenient to work with coordinates that satisfy the harmonic gauge

condition

gµνΓαµν = 0, (9.101)

In such coordinates the Ricci tensor associated with a weak gravitational field may be
approximated as Rµν = 1

2
∂α∂αhµν . Given that Einstein’s field equations are

Rµν = −8πG

c4

`
Tµν − 1

2
gµνT

γ
γ

´
, (9.102)

show that in the harmonic gauge the Einstein equations for the weak gravitational field
generated by a perfect fluid (Problem 9.4) are

∂α∂
αhµν = −16πG

c4

ˆ
(ρ+ p/c2)uµuν + 1

2
gµν(ρc

2 − p)
˜
. (9.103)

Show that when the field is only slowly varying and we work in the fluid’s rest frame, Φ
satisfies the modified Poisson equation

∇2Φ = 4πG(ρ+ 3p/c2). (9.104)

9.6 [2] Consider the gravitational collapse of an initially homogeneous and spheroidal
cloud of pressureless fluid. A time t later, let x be the position vector of the particle that
originally had position vector q. Show that if the components of x are xi(q, t) = αi(t)qi
(no summation on i), then the cloud remains homogeneous, and that for αi(0) = 1 the
density at any time is ρ(t) = ρ(0)/

Q
i αi(t). Show from the equations of motion of particles

that (Lin, Mestel, & Shu 1965)

α̈i = −2πGρ(0)
Aiαi

α1α2α3
(no summation on i), (9.105)

where Ai(α) is given by Table 2.1. By numerically integrating these coupled differential
equations, show that an initially oblate spheroid with axis ratio 0.95 collapses to a disk
whose radius is smaller than the original semi-major axis of the spheroid by a factor
0.0744. What is the connection between the dynamics of this system and the formation
of the cosmic web?

9.7 [1] Let −E be the energy and J the spin angular momentum of a system. Show that
GEβJγ cannot be dimensionless. Find values of α, β, and γ for which GMαEβJγ is
dimensionless.

9.8 [3] The original argument that led Press & Schechter (1974) to their formula for the
distribution of halo masses was much simpler and more direct than that given in §9.2.3.
From the probability that the overdensity smoothed on scale K−1 lies near δ, show that
the probability Pc(K, t) that at time t a given mass element is part of a collapsed structure
of scale K−1 is

Pc(K, t) = 1
2
− 1

2
erf

„
δc(ti, t)√
2σK(ti)

«
, (9.106)

where δc is defined by (9.67). Hence show that the number density of halos with mass in
(M,M + dM) is

dn

d lnM
=

ρ0δc/σK

2(2π)1/2M
exp

 
− δ2c

2σ2
K

! ˛̨
˛̨
˛
d ln σ2

K

d lnM

˛̨
˛̨
˛ . (9.107)

This formula for dn/d lnM agrees with (9.77) except for a factor of two. Which one is
correct, and why?

9.9 [2] We seek solutions of the diffusion equation

∂P

∂t
= D

∂2P

∂x2
subject to the normalization condition

Z ∞

−∞
dxP (x, t) = 1.
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(a) Use dimensional analysis to show that there should be solutions proportional to
Q(ξ)/t1/2 , where ξ ≡ x2/(Dt) is a dimensionless variable.

(b) Show that Q satisfies
4ξQ′′ + (2 + ξ)Q′ + 1

2
Q = 0. (9.108)

(c) By obtaining a series solution of this equation, or otherwise, derive the function (9.72).

9.10 [1] Show that a centrifugally supported Kuzmin disk (§2.3.1) has spin parameter
(eq. 9.89) λ =

√
8/5 = 0.566, and that a centrifugally supported exponential disk has

λ = 0.4255.

9.11 [2] Let the rate per unit volume at which halos of mass M1 and M2 merge to form
halos of mass Mf = M1+M2 be Q(M1,M2)n(M1)n(M2) dM1 dM2, where n(M) dM is the
number density of halos of mass M . Show that extended Press–Schechter theory predicts
that Q is given by

Q(M1,M2) =
M2

ρ0

˛̨
˛̨
˛
d ln δc

dt

dσ2
f

dMf

dM2

dσ2
2

˛̨
˛̨
˛

 
σ2
1σ

2
2/σ

2
f

σ2
1 − σ2

f

!3/2

exp

"
− δ

2
c

2

 
1

σ2
f

− 1

σ2
1

− 1

σ2
2

!#
,

(9.109)
where σ2

1 is the variance of δ on mass scale M1, etc. Show that Q(M1,M2) is not a
symmetrical function of its arguments. Is this fact worrying? (Benson, Kamionkowski, &
Hassani 2005).

9.12 [1] Spitzer12 (1956) inferred from absorption lines in the spectra of stars at high
Galactic latitudes that the Galaxy is surrounded by gas at the virial temperature with
neT ' 5 × 108 K m−3 near the Sun. Taking the Galactic potential to be spherical with
vc = 220 km s−1 at all radii, and the gas to be an isothermal mixture of fully ionized
hydrogen and helium, with one ion in ten 4He, show that the gas mass inside radius r is

M(r) ' 108 M�

„
106 K

T

«Z r/R0

0
dx x2−α,

where α ' 3.63(106 K/T ). Hence estimate the radius to which this atmosphere must
extend if it is to contain that part of the Galaxy’s share of the Local Group’s baryons that
is not in Galactic stars.

12 As early as 1946 Lyman Spitzer (1914–1997) wrote a paper that explored the ben-
efits of having a telescope in space. In 1951 he initiated work on magnetically confined
nuclear fusion, the initially secret Project Matterhorn that later became the Princeton
Plasma Physics Laboratory. He pioneered the kinetic theory of plasmas and the study
of the interstellar medium, and made important contributions to our understanding of
the dynamics of star clusters. From 1962 he led the project that culminated in NASA’s
Copernicus satellite, which from 1972–1981 opened up the far ultraviolet to astronomers.
He played a leading role in the planning of and advocacy for the Hubble Space Telescope.
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Appendices

Appendix A: Useful numbers

Physical constants1

gravitational constant G = 6.6742(10) × 10−11 m3 kg−1 s−2

speed of light c = 2.99792458 × 108 m s−1 (definition)
magnetic constant µ0 = 4π × 10−7 N A−2

= 1.256637 . . . × 10−6 N A−2 (definition)
electric constant ε0 = (µ0c

2)−1

= 8.854188 . . . × 10−12 F m−1 (definition)
Planck constant h = 6.6260693(11) × 10−34 J s

h̄ = h/(2π)
= 1.05457168(18) × 10−34 J s

Boltzmann’s constant kB = 1.3806505(24) × 10−23 J K−1

electron charge e = 1.60217653(14) × 10−19 coulomb
proton mass mp = 1.67262171(29) × 10−27 kg
electron mass me = 9.1093826(16) × 10−31 kg
Stefan–Boltzmann constant σ = π2k4

B/(60h̄
3c2)

= 5.670400(40) × 10−8 W m−2 K−4

Thomson cross-section σT = e4/(6πε20m
2
ec

4)
= 6.65245873(13) × 10−29 m2

1 Taken from Mohr & Taylor (2005), Yao et al. (2006), Standish (1995), Cox (2000),
BM, and Spergel et al. (2007). Numbers given in parentheses indicate one standard devi-
ation uncertainty in the last digits of the preceding number.
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Astronomical constants

astronomical unit 1 AU = 1.49597871475(30) × 1011 m
parsec 1 pc = (648 000/π) AU

= 3.0856775975(6) × 1016 m
year2 1 yr = 3.15582 × 107 s
solar mass M� = 1.9884(3) × 1030 kg
heliocentric gravitational constant GM� = 1.32712440018(8) × 1020 m3 s−2

solar radius R� = 6.9551(3) × 108 m
solar luminosity (bolometric) L� = 3.845(8) × 1026 W

escape speed from Sun v? = (2GM�/R�)1/2

= 617.8 kms−1

solar absolute magnitude MV = +4.83 MR = +4.42
Earth mass M⊕ = 3.0034896(2) × 10−6 M�

= 5.9723(9) × 1024 kg
Hubble constant H0 = 70h7 km s−1 Mpc−1

h7 = 1.05 ± 0.05
Hubble time H−1

0 = 13.969h−1
7 Gyr

age of the universe t0 = (13.73 ± 0.16) Gyr
critical density ρc0 = 3H2

0/(8πG)
= 9.2040(14) × 10−27h2

7 kg m−3

= 1.359929 × 1011 h2
7 M� Mpc−3

Useful relations

1 km s−1 ' 1 pc per million years (actually 1.023)
1 radian = 206 265 arcsec

Appendix B: Mathematical background

The text presupposes an acquaintance with mathematical physics at the level of
Jackson (1999) or Arfken & Weber (2005). This appendix contains a summary of
some of the material and formulae that will be needed.

B.1 Vectors

The location of the point with Cartesian coordinates (x, y, z) may be described by
a position vector,

x = xêx + yêy + zêz, (B.1)

where êx, êy, and êz are fixed unit vectors that point along the x, y and z axes.
The distance of the point from the origin is written r or |x| and is equal to (x2 +

y2 + z2)1/2.
Similarly, we represent an arbitrary vector A in component form as

A = Axêx +Ayêy +Azêz. (B.2)

2In Galactic and extragalactic astronomy, “year” is an approximate time unit used for
convenience. We have given the Gaussian year (the period of a test particle orbiting the
Sun with a semi-major axis of 1 AU), which is the same as the sidereal year (the period
of revolution of the Earth with respect to the fixed stars) at the quoted accuracy.
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The magnitude of a vector A is A ≡ |A| ≡ (A2
x +A2

y +A2
z)

1/2.

The scalar or dot product of two vectors A and B is

A · B ≡ |A||B| cosψ, (B.3)

where ψ is the angle between the two vectors, placed tail to tail. Note that A ·B =
B ·A and A ·A = |A|2. Since êx · êx = êy · êy = êz · êz = 1, and êx · êy = êx · êz =
êy · êz = 0, we may write the dot product in component form as

A · B =

3X

i=1

AiBi, (B.4)

where the subscripts 1, 2, and 3 stand for x, y, and z, respectively. For simplicity
we generally adopt the summation convention: we automatically sum from 1 to
3 over any dummy subscript that appears repeatedly in one term of an equation.
Thus equation (B.4) may be written

A · B = AiBi. (B.5)

The vector or cross product of two vectors is

A × B ≡ AB sinψ p̂, (B.6)

where p̂ is a unit vector that is perpendicular to the plane containing A and B

and points in the direction of movement of a right-hand screw when A is rotated
about the origin into B. Note that A × B = −B × A, that A × A = 0, and that
êx × êy = êz, êy × êz = êx, êz × êx = êy. In component form the cross product
may be written

A ×B = εijkêiAjBk, (B.7)

where a sum over i, j, and k is implied by the summation convention. Here εijk
is the permutation tensor which is defined to be zero if any two or more of the
indices i, j, and k are equal, +1 if (i, j, k) is an even permutation of (1, 2, 3) [the
even permutations are (2, 3, 1) and (3, 1, 2)] and −1 if (i, j, k) is an odd permutation
of (1, 2, 3).

Three important identities that involve the dot and cross product are:

A · (B × C) = C · (A × B) = B · (C × A), (B.8)

A × (B× C) = (A · C)B − (A · B)C, (B.9)

(A× B) · (C × D) = (A · C)(B · D) − (A · D)(B · C). (B.10)

In proving these identities it is useful to employ the relation

εijkεklm = δilδjm − δimδjl, (B.11)

where the summation convention has been used (over index k) and δpq is defined
to be 1 if p = q and zero otherwise.

The velocity and acceleration of a particle may be written in Cartesian com-
ponents as

v ≡ ẋ ≡ dx

dt
= ẋêx + ẏêy + żêz ; a ≡ ẍ ≡ d2x

dt2
= ẍêx + ÿêy + z̈êz. (B.12)
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Figure B.1 The three main coor-
dinate systems: Cartesian (x, y, z),
cylindrical (R, φ, z), and spherical
(r, θ, φ).

B.2 Curvilinear coordinate systems

Let (q1, q2, q3) denote the coordinates of a point in an arbitrary coordinate system.
A fundamental quantity of any coordinate system is the metric tensor hij(q),
defined such that the distance ds between the points (q1, q2, q3) and (q1 +dq1, q2 +
dq2, q3 + dq3) is given by

ds2 = hijdqidqj ; (B.13)

summation over i and j from 1 to 3 is implied by the summation convention. The
coordinate systems used in this book are orthogonal, that is, hij = 0 if i 6= j. In
this case we write hii ≡ h2

i , so

ds2 = h2
i dq

2
i . (B.14)

The velocity is

ẋ =
X

i

hi
dqi
dt

êi, (B.15)

where ê1 is a unit vector pointing in the direction from (q1, q2, q3) to (q1 +
dq1, q2, q3), etc. The volume element in orthogonal coordinates is

d3
x = h1h2h3dq1dq2dq3. (B.16)

For Cartesian coordinates, (q1, q2, q3) = (x, y, z) and h1 = h2 = h3 = 1.

Cylindrical coordinate system In this system the location of a point is de-
noted by the triple (R,φ, z), where R is the perpendicular distance from the z axis
to the point, and φ is the azimuthal angle between the x axis and the projection
of the position vector onto the (x, y) plane (Figure B.1). Thus the relation to
Cartesian coordinates is

x = R cosφ ; y = R sinφ ; z = z. (B.17)

In cylindrical coordinates the position vector is

x = RêR + zêz. (B.18)

Any vector may be written A = ARêR +Aφêφ +Azêz, where êφ = êz × êR and

Ax = AR cos φ−Aφ sinφ ; Ay = AR sinφ+Aφ cosφ ; Az = Az. (B.19)
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The expressions for dot and cross products in cylindrical coordinates are simply
equations (B.5) and (B.7), with the subscripts (1, 2, 3) denoting (R, φ, z) instead of
(x, y, z); however, the decomposition into components must be carried out at the
same position for both vectors in the product, since the directions of êR and êφ
depend on position.

The velocity in cylindrical coordinates is

v =
dx

dt
= ṘêR +R ˙̂eR + żêz. (B.20)

To compute ˙̂eR we use equation (B.19) with AR = 1, Aφ = 0, Az = 0. Thus
êR = cos φ êx + sinφ êy, and dêR = (− sinφ êx + cosφ êy)dφ. The expression in
parentheses is just êφ. After carrying out a similar analysis for êφ we have

dêR
dφ

= êφ ;
dêφ
dφ

= −êR, (B.21)

and
˙̂eR = +φ̇ êφ ; ˙̂eφ = −φ̇ êR. (B.22)

Thus the velocity is
v = ṘêR +Rφ̇êφ + żêz. (B.23)

The acceleration is

a =
dv

dt
= (R̈−Rφ̇2)êR + (2Ṙφ̇+Rφ̈)êφ + z̈êz. (B.24)

For cylindrical coordinates the metric tensor is given by (B.14) with

hR = 1 ; hφ = R ; hz = 1. (B.25)

The volume element is d3x = R dR dφdz.

Spherical coordinate system The position of a point in these coordinates
is denoted by (r, θ, φ) (Figure B.1). The coordinate r is the radial distance from
the origin to the point; θ is the angle between the position vector and the z axis;
and φ is the same azimuthal angle used in cylindrical coordinates. The relation to
Cartesian coordinates is

x = r sin θ cosφ ; y = r sin θ sinφ ; z = r cos θ. (B.26)

In spherical coordinates the position vector is simply

x = rêr. (B.27)

Any vector may be written A = Arêr +Aθêθ +Aφêφ, where êθ = êφ × êr and

Ax = Ar sin θ cosφ+Aθ cos θ cos φ−Aφ sinφ,

Ay = Ar sin θ sinφ+Aθ cos θ sinφ+Aφ cosφ,

Az = Ar cos θ −Aθ sin θ.

(B.28)

Once again, the expressions for dot and cross products in spherical coordinates are
equations (B.5) and (B.7), with the subscripts (1, 2, 3) denoting (r, θ, φ) instead
of (x, y, z), and with the understanding that the decomposition into components
must be carried out at the same position for both vectors in the product.

The rate of change of the unit vectors is

˙̂er = θ̇êθ + φ̇ sin θêφ ; ˙̂eθ = −θ̇êr + φ̇ cos θêφ ; ˙̂eφ = −φ̇ sin θêr− φ̇ cos θêθ. (B.29)
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Thus the velocity is
v = ṙêr + rθ̇êθ + r sin θφ̇êφ. (B.30)

The acceleration is

a =
dv

dt
= (r̈ − rθ̇2 − r sin2 θφ̇2)êr + (2ṙθ̇ + rθ̈ − r sin θ cos θφ̇2)êθ

+ (r sin θφ̈+ 2 sin θṙφ̇+ 2r cos θθ̇φ̇)êφ.

(B.31)

For spherical coordinates the metric tensor is given by

hr = 1 ; hθ = r ; hφ = r sin θ. (B.32)

The volume element is d3x = r2 sin θ drdθdφ.
For brevity the two angular coordinates are sometimes written as Ω ≡ (θ, φ),

and the element of area on the unit sphere is written d2Ω ≡ sin θ dθ dφ.

B.3 Vector calculus

Gradient In Cartesian coordinates we define the gradient of a scalar function
of position f(x) to be

∇f ≡ êx
∂f

∂x
+ êy

∂f

∂y
+ êz

∂f

∂z
= êi

∂f

∂xi
, (B.33)

where (x1, x2, x3) = (x, y, z) and we have used the summation convention. The
symbol ∇ is called grad, del, or nabla and is considered to be a vector operator
defined by

∇ = êi
∂

∂xi
. (B.34)

Where it is necessary to distinguish the variable used in the gradient, we write

∇x or
∂

∂x
. (B.35)

The change in the value of f between the points x and x + dx is

df =
∂f

∂xi
dxi = ∇f · dx. (B.36)

If x and x+dx lie on a surface S on which f is constant, that is, if f(x) = f(x+dx),
then df = 0 and ∇f · dx = 0, so ∇f is orthogonal to dx. Since dx can be chosen
to be any infinitesimal vector lying in S, ∇f must be normal to S itself. Hence
the gradient of f is normal to surfaces of constant f .

In cylindrical coordinates the expression for the gradient must be modified,
since dx is not dR êR + dφ êφ + dz êz but dR êR + Rdφ êφ + dz êz. Hence for
consistency with equation (B.36) we must have

∇ = êR
∂

∂R
+

êφ

R

∂

∂φ
+ êz

∂

∂z
. (B.37)

In spherical coordinates

∇ = êr
∂

∂r
+

êθ

r

∂

∂θ
+

êφ

r sin θ

∂

∂φ
. (B.38)
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The general form valid in any orthogonal coordinate system is

∇ =
êi

hi

∂

∂qi
. (B.39)

We shall use the identity

∇x[a · (x × b)] = ∇x[x · (b × a)] = b × a, (B.40)

where a and b are constants.

Divergence In Cartesian coordinates we define the divergence of a vector-valued
function F(x) to be the scalar

∇ · F ≡ ∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

=
∂Fi
∂xi

. (B.41)

To clarify the physical meaning of the divergence, consider a volume V en-
closed by a surface S. For simplicity, assume initially that the volume is cubical,
occupying the region xia ≤ xi ≤ xib, i = 1, 2, 3. Then
Z

V

d3
x∇ · F =

Z x1b

x1a

dx1

Z x2b

x2a

dx2

Z x3b

x3a

dx3

„
∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3

«

=

Z x2b

x2a

dx2

Z x3b

x3a

dx3 [F1(x1b, x2, x3) − F1(x1a, x2, x3)] + two similar terms.

(B.42)
This expression may be written more concisely as the area integral

H
S

d2S·F, where

d2S is the area of a small element of the surface and d2S is a vector normal to the
surface, pointing outward, with magnitude d2S. (Note that in this notation d3x is
a scalar but d2S is a vector.) We may generalize this result to an arbitrary volume
by dividing the volume into many small cubes and noting that the surface integrals
from the inside faces of the cubes cancel. Hence for an arbitrary volume V ,

Z

V

d3
x∇ · F =

I

S

d2
S · F. (B.43)

This result is known as the divergence theorem or Gauss’s theorem (we reserve
the latter term for the application of the divergence theorem to Poisson’s equation;
see eq. 2.12). In Cartesian coordinates we have

Z

V

d3
x
∂Fj
∂xj

=

I

S

d2SjFj . (B.44)

An immediate consequence of the divergence theorem is that for arbitrary
scalar and vector functions g and F,

Z
d3

x g∇ · F =

I

S

gF · d2
S −

Z
d3

x (F · ∇)g, (B.45)

which is a three-dimensional analog of integration by parts.
If F = f êi, then we have

R
V

d3x (∂f/∂xi) =
H
S

d2Si f , which can be written
more compactly after multiplication by êi and summing over indices as

Z

V

d3
x∇f =

I

S

d2
S f. (B.46)

In cylindrical coordinates

∇ · F =
1

R

∂

∂R
(RFR) +

1

R

∂Fφ
∂φ

+
∂Fz
∂z

. (B.47)
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This result can be derived from the divergence theorem, or by writing ∇ · F =
(êR∂/∂R+êφ∂/R∂φ+êz∂/∂z)·(FRêR+Fφêφ+Fzêz) and expanding the expression
using equation (B.21). In spherical coordinates

∇ · F =
1

r2
∂

∂r
(r2Fr) +

1

r sin θ

∂

∂θ
(sin θFθ) +

1

r sin θ

∂Fφ
∂φ

. (B.48)

In arbitrary orthogonal coordinates

∇ · F =
1

h1h2h3

»
∂

∂q1
(h2h3F1) +

∂

∂q2
(h3h1F2) +

∂

∂q3
(h1h2F3)

–
. (B.49)

Laplacian The divergence of the gradient of a scalar function is called the
Laplacian of that function. Thus the Laplacian of F (x) is

∇2F ≡ ∇ · (∇F ). (B.50)

In different coordinate systems we have

∇2F =
∂2F

∂x2
+
∂2F

∂y2
+
∂2F

∂z2
; (B.51)

∇2F =
1

R

∂

∂R

„
R
∂F

∂R

«
+

1

R2

∂2F

∂φ2
+
∂2F

∂z2
; (B.52)

∇2F =
1

r2
∂

∂r

„
r2
∂F

∂r

«
+

1

r2 sin θ

∂

∂θ

„
sin θ

∂F

∂θ

«
+

1

r2 sin2 θ

∂2F

∂φ2
; (B.53)

∇2F =
1

h1h2h3

»
∂

∂q1

„
h2h3

h1

∂F

∂q1

«
+

∂

∂q2

„
h3h1

h2

∂F

∂q2

«
+

∂

∂q3

„
h1h2

h3

∂F

∂q3

«–
.

(B.54)

Convective operator We shall use the convective operator (A·∇)B. In Carte-
sian coordinates we have

(A · ∇)B = êiAj
∂Bi
∂xj

. (B.55)

In cylindrical coordinates

(A · ∇)B =

„
AR

∂BR
∂R

+
Aφ
R

∂BR
∂φ

+Az
∂BR
∂z

− AφBφ
R

«
êR

+

„
AR

∂Bφ
∂R

+
Aφ
R

∂Bφ
∂φ

+Az
∂Bφ
∂z

+
AφBR
R

«
êφ

+

„
AR

∂Bz
∂R

+
Aφ
R

∂Bz
∂φ

+Az
∂Bz
∂z

«
êz.

(B.56)

In spherical coordinates

(A · ∇)B =

„
Ar

∂Br
∂r

+
Aθ
r

∂Br
∂θ

+
Aφ
r sin θ

∂Br
∂φ

− AθBθ +AφBφ
r

«
êr

+

„
Ar

∂Bθ
∂r

+
Aθ
r

∂Bθ
∂θ

+
Aφ
r sin θ

∂Bθ
∂φ

+
AθBr
r

− AφBφ cot θ

r

«
êθ

+

„
Ar

∂Bφ
∂r

+
Aθ
r

∂Bφ
∂θ

+
Aφ
r sin θ

∂Bφ
∂φ

+
AφBr
r

+
AφBθ cot θ

r

«
êφ.

(B.57)
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In arbitrary orthogonal coordinates

(A · ∇)B = êj

»
Ai
hi

∂Bj
∂qi

+
Bi
hihj

„
Aj

∂hj
∂qi

−Ai
∂hi
∂qj

«–
. (B.58)

Green’s theorem Let γ be a closed curve in the (x, y) plane, and S the area
enclosed by this curve. Then Green’s theorem states that for any functions
f(x, y), g(x, y)

I

γ

[f(x, y) dx+ g(x, y) dy] =

ZZ

S

dxdy

„
∂g

∂x
− ∂f

∂y

«
, (B.59)

where the line integral is taken anti-clockwise around the curve. This is demon-
strated by first proving the theorem for the small square area x → x + ∆x,
y → y + ∆y, then adding together many of these areas to fill up S.

In particular, let f(x, y) = −y, g(x, y) = x. Then
I

γ

(xdy − y dx) = 2

ZZ

S

dxdy. (B.60)

Now1
H
γ
y dx = −

H
γ
xdy so

I

γ

x dy =

ZZ

S

dxdy, (B.61)

which is the area enclosed by the curve γ.

B.4 Fourier series and transforms

Any function f(x) that is periodic with period L, so that f(x+ L) = f(x), can be
written as a Fourier series,

f(x) =
1

c

∞X

n=−∞
Fn exp

„
2πinx

L

«
; (B.62)

normally the constant c is set to unity, but for some purposes (see below) it is more
convenient to set c = L.

To find the coefficients Fn, we multiply this equation by exp(−2πimx/L),
where m is an integer, and integrate from −L/2 to L/2:

Z L/2

−L/2
dxf(x) exp

„
−2πimx

L

«
=

∞X

n=−∞

Fn
c

Z L/2

−L/2
dx exp

„
2πi(n −m)x

L

«
.

(B.63)
The integral on the right side is zero for integer n and m unless n = m, in which
case it equals L. Thus

Fn =
c

L

Z L/2

−L/2
dxf(x) exp

„
−2πinx

L

«
. (B.64)

If f(x) is real, then F ∗
n = F−n.

1 To see this, let t be a parameter that varies from 0 to 1 as we travel around the curve
γ, so the curve is defined by [x(t), y(t)], 0 ≤ t < 1. Then integrating by parts we haveH
γ xdy =

R 1
0 dt x(t) dy(t)/dt = −

R 1
0 dt y(t) dx(t)/dt = −

H
γ y dx.
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When x is the azimuthal angle φ, L = 2π and it is convenient to write Fn ≡
an exp(−inφn) where an is real and positive. Then for c = 1 equation (B.62)
becomes

f(φ) =

∞X

n=−∞
an exp [in(φ − φn)] . (B.65)

If f(φ) is real, then a−n = an, φ−n = φn, and

f(φ) = a0 + 2

∞X

m=1

an cosm(φ− φn). (B.66)

To derive analogous formulae for non-periodic functions, we consider the limit
in which both |n| and L become large. We replace n by a continuous variable
k ≡ 2πn/L, replace LFn/c by a continuous function F (k), and replace the sumP
n in (B.62) by the integral

R
dn = L

R
dk/(2π). Thus we arrive at the Fourier

transform,

F (k) =

Z ∞

−∞
dxf(x)e−ikx ; f(x) =

Z ∞

−∞

dk

2π
F (k)eikx. (B.67)

Here the advantage of the choice c = L is that Fn and F (k = 2πn/L) are identical
(see, for example, §9.1).

The Fourier transform is easily generalized to D-dimensional vectors:

F (k) =

Z
dDx f(x)e−ik·x ; f(x) =

Z
dDk

(2π)D
F (k)eik·x, (B.68)

where the integral is over the entire D-dimensional space. In this book, the variable
x or x in the Fourier transform often denotes position, and then k or k is called
the wavenumber or wavevector.

We shall also use Fourier transforms in the time domain. Here we restrict our
attention to functions f(t) that vanish for t < 0. The temporal Fourier transform
of f(t) is then given by

F (ω) =

Z ∞

0

dt f(t)eiωt ; f(t) =

Z ∞

−∞

dω

2π
F (ω)e−iωt, (B.69)

where ω is the frequency. Note that the sign convention differs from (B.67) (there
are good reasons for this). Note also that ω can be a complex number, in contrast
to k or k which is real. The use of complex ω enables us to generalize the temporal
Fourier transform F (ω) to a wide class of functions f(t) that diverge as t → ∞.
Suppose there exists a real constant c > 0 such that f(t) exp(−ct) → 0 as t → ∞.
Set g(t) = f(t) exp(−ct). Then

G(ω) =

Z ∞

0

dt f(t)e(iω−c)t ; g(t) =

Z ∞

−∞

dω

2π
e−iωtG(ω). (B.70)

Now set ω′ ≡ ω + ic and F (ω′) ≡ G(ω). The preceding equation becomes

F (ω′) =

Z ∞

0

dt f(t)eiω′t ; f(t) =

Z ic+∞

ic−∞

dω′

2π
F (ω′)e−iω′t, (B.71)

and F (ω′) is defined whenever Im(ω′) ≥ c.
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B.5 Abel integral equation

Let

f(x) =

Z ∞

x

dt g(t)

(t− x)α
(0 < α < 1). (B.72a)

Then

g(t) = − sinπα

π

d

dt

Z ∞

t

dxf(x)

(x− t)1−α

= − sinπα

π

Z ∞

t

dx

(x− t)1−α
df

dx
.

(B.72b)

The first line can be proved by substituting equation (B.72a) into (B.72b),
interchanging the order of integration, and using the integral

Z 1

0

du

uα(1 − u)1−α
=

π

sinπα
. (B.73)

The second line can be proved by replacing the integration variable x in the first
expression for g(t) by u = x − t and then carrying out the differentiation with
respect to t.

Another useful result, which can be proved similarly, is

f(x) =

Z x

0

dt g(t)

(x− t)α
(0 < α < 1), (B.74a)

g(t) =
sinπα

π

d

dt

Z t

0

dxf(x)

(t− x)1−α
=

sinπα

π

»Z t

0

dx

(t− x)1−α
df

dx
+
f(0)

t1−α

–
. (B.74b)

B.6 Schwarz’s inequality

For any two real functions A(x) and B(x),

Z
dxA2

Z
dxB2 ≥

„Z
dxAB

«2

, (B.75)

with equality if and only if A(x) = cB(x) for some constant c.

To prove this, let C(x) = A(x) − λB(x). Then
R

dxC2 is non-negative, so

Z
dxC2 =

Z
dxA2 − 2λ

Z
dxAB + λ2

Z
dxB2 ≥ 0. (B.76)

Now set λ =
R

dxAB/
R

dxB2. Equation (B.76) becomes

Z
dxA2 − (

R
dxAB)2R
dxB2

≥ 0, (B.77)

which proves (B.75).
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B.7 Calculus of variations

Consider a curve x = x(t), t0 ≤ t ≤ t1, which we label by γ. We define a function

I(γ) ≡
Z t1

t0

dt L[x(t), ẋ(t), t]. (B.78)

Now consider a nearby curve γ′ defined by x = x(t) + εh(t), where h(t0) =
h(t1) = 0. As ε→ 0 we have

I(γ′) − I(γ) =

Z t1

t0

dt [L(x + εh, ẋ + εḣ, t) − L(x, ẋ, t)]

= ε

Z t1

t0

dt

»
h · ∂L

∂x
+ ḣ · ∂L

∂ẋ

–
+ O(ε2),

(B.79)

where the integral on the second line is evaluated along the unperturbed curve
γ. On this curve L can be considered to be a function only of time, L(t) =
L[x(t), ẋ(t), t]. Hence we may integrate by parts to obtain

I(γ′) − I(γ) = −ε
Z t1

t0

dth ·
»

d

dt

„
∂L

∂ẋ

«
− ∂L

∂x

–
+ ε

„
h · ∂L

∂ẋ

«t1

t0

+ O(ε2). (B.80)

The boundary term is seen to be zero since h(t0) = h(t1) = 0.

The curve γ is an extremal if I(γ) − I(γ′) = O(ε2) for all variations h.
Extremal curves have the largest or smallest values of the function I on any con-
tinuous curves connecting the fixed endpoints x(t0) and x(t1). At an extremal
curve, the integral in equation (B.80) must vanish for all variations h(t) for which
h(t0) = h(t1) = 0; thus the condition for an extremal curve is

d

dt

„
∂L

∂ẋ

«
− ∂L

∂x
= 0. (B.81)

This is the Euler–Lagrange equation for an extremal curve I.

B.8 Poisson distribution

This distribution describes the statistical properties of a wide range of physical
phenomena, but for concreteness we shall derive it in the context of the distribution
of stars in phase space.

Suppose that the phase-space density of stars, f , is uniform over some phase-
space volume V, and that the distribution of stars is separable (§7.2.4) so the
probability of finding a star at any phase-space position is unaffected by the pres-
ence or absence of other stars nearby. On average, we expect to find r = fV stars
in this volume, but we want more detailed information: the probability pn that
exactly n stars are present.

Let us divide V into a large number K of cells, each of volume ∆V = V/K.
If K is sufficiently large, the probability of finding two or more stars in any cell
is negligible, and the probability of finding one star in a cell is just f∆V = r/K.
Hence the probability of finding n stars in V is simply the probability that n
cells are occupied by a star and K − n are vacant. This is given by the binomial
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distribution,

pn =
K!

n!(K − n)!
(f∆V)n(1 − f∆V)K−n

=
K(K − 1) · · · (K − n + 1)

n!

rn

Kn

“
1 − r

K

”K−n

=

„
1 − 1

K

«
· · ·
„

1 − n− 1

K

«
rn

n!

“
1 − r

K

”K−n
.

(B.82)

Now let K → ∞; each of the factors (1 − j/K) approaches unity, (1 − r/K)K →
exp(−r) and (1 − r/K)−n → 1. Thus

pn =
rn

n!
e−r, (B.83)

which is the Poisson distribution. It is straightforward to show that
P∞

n=1 pn =
1, as it must, and that the mean and variance of the Poisson distribution are

〈n〉 =
∞X

n=1

npn = r ; 〈(n− µ)2〉 = r. (B.84)

More generally, the Poisson distribution describes the probability of obtaining
n successes in a Poisson process, which is a large number K of trials in which
the probability of success in a single trial is r/K, and the probability of success in
different trials is independent.

B.9 Conditional probability and Bayes’s theorem

The joint probability distribution p(x, y) of two variables x and y is defined so
that p(x, y) dxdy is the probability that the first variable is found in the interval
(x, x+dx) and the second variable is in the interval (y, y+dy). For many purposes
we are interested in the conditional probability distribution p(x|y), where p(x|y) dx
is the probability that the first variable is found in the interval (x, x + dx) given
that the second variable has the value y.

The relation between these two functions is fundamental to probability theory
and statistical inference. Let X be the event “first variable is found in the interval
(x, x+ dx),” and Y the event “second variable is in the interval (y, y + dy).” The
probability that both events occur is PXY = p(x, y)dxdy. The probability that Y
occurs, whatever the value of x may be, is PY = dy

R
dx′ p(x′, y) ≡ py(y) dy. The

probability that X occurs, given that Y occurs, is PX|Y = PXY /PY . Thus

p(x|y) =
p(x, y)R

dx′ p(x′, y)
=
p(x, y)

py(y)
. (B.85)

Similarly,

p(y|x) =
p(x, y)R

dy′ p(x, y′)
=
p(x, y)

px(x)
; (B.86)

eliminating p(x, y) between equations (B.85) and (B.86) gives

p(y|x) = p(x|y) py(y)
px(x)

=
p(x|y)py(y)R

dy′ p(x|y′)py(y′)
. (B.87)

This is the celebrated Bayes’s theorem, proved by Bayes and by Laplace in the
eighteenth century. The formula is equally valid if x and y are vectors.
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The most important application of Bayes’s theorem is in statistical inference.
Here y represents a set of model parameters and x represents a set of experimental
or observational data. The model to be tested is encapsulated in p(x|y), which
predicts the probability of observing a given set of data x given a particular value
for the model parameters y. The function py(y) is the prior probability of y, which
is our best estimate of the probability distribution of the model parameters before
the data are taken—usually py(y) ∝ constant or py(y) ∝ y−1. Then p(y|x) is the
probability distribution of the model parameters given the data, from which the
best estimate of y and associated error bars can be derived (e.g., Saha 2003).

B.10 Central limit theorem

This theorem governs the behavior of sums of large numbers of independent random
variables. For a thorough treatment see Feller (1971).

Let u1, u2, . . . , un be independent random variables with distinct probability
distributions pj(u); that is, the probability that uj lies in the interval (uj , uj+duj)
is pj(uj)duj . Since pj(u) is a probability distribution, we must have pj(u) ≥ 0 andR

du pj(u) = 1.

The first two moments of the distributions are
Z

duupj(u) ≡ µj ;

Z
du (u− µj)

2pj(u) ≡ σ2
j ; (B.88)

these define the mean µj and the variance σ2
j or the standard deviation σj .

For simplicity we assume that µj = 0, although our results are easily generalized
to distributions with non-zero mean, by working with the variables u′

j ≡ uj − µj .
We define the normalized sum

s ≡ 1√
n

(u1 + · · · + un). (B.89)

The central limit theorem states that as n → ∞ the probability distribution of s
approaches

g(s) ≡ 1√
2πσ2

exp

„
− s2

2σ2

«
, where σ2 ≡ 1

n

nX

j=1

σ2
j , (B.90)

which is the normal or Gaussian probability distribution. Thus the sum
Pn
i=1 ui

is also normally distributed, with variance nσ2 equal to the sum of the individual
variances.

Proof: Since the uj are statistically independent, the probability that they lie in
the volume du1 · · · dun around (u1, . . . , un) is p1(u1) · · · pn(un)du1 · · · dun. Thus
the probability that the normalized sum lies in the interval (s, s + ds) is q(s)ds,
where

q(s) =

Z
du1 · · · dun p1(u1) · · · pn(un)δ

„
s− u1 + · · · + un√

n

«
; (B.91)

here δ denotes the delta function and we have used equation (C.7). Taking the
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Fourier transform (B.67), we have

Q(ω) ≡
Z

ds g(s)e−iωs

=

Z
du1 · · · dun p1(u1) · · · pn(un) exp

»
−iω(u1 + · · · + un)√

n

–

=
nY

j=1

Z
du pj(u)e

−iωu/
√
n.

(B.92)

As n → ∞ at fixed u, the exponent in the last equation tends to zero, so we can
expand the exponential in a Taylor series,

Z
du pj(u)e

−iωu/
√
n =

Z
du pj(u)

h
1 − iωu/

√
n − 1

2
(ωu)2/n + O(n−3/2)

i

= 1 − ω2σ2
j

2n
+ O(n−3/2),

(B.93)
where the last equation employs our assumption that the mean µj = 0. Substitut-
ing equation (B.93) into (B.92) and taking the logarithm, we have

lnQ(ω) =
nX

j=1

ln
h
1 − 1

2
ω2σ2

j /n + O(n−3/2)
i
. (B.94)

We expand the right side in its Taylor series to find

lnQ(ω) = −ω
2

2n

nX

j=1

σ2
j + O(n−1/2) (B.95)

so as n→ ∞

Q(ω) = exp

 
−ω

2

2n

nX

j=1

σ2
j

!
. (B.96)

Taking the inverse Fourier transform (B.67),

q(s) =

Z
dω

2π
Q(ω)eiωs =

1√
2πσ2

e−
1
2
s2/σ2

, (B.97)

where σ2 = n−1Pn
j=1 σ

2
j . This is the normal distribution (B.90), as required./

The central limit theorem can be generalized to vectors. Let u1, . . . ,un be in-
dependent random variables with dimension D and probability distribution pj(uj).
The moments of the distribution are

Z
dDuuip

j(u) ≡ µji ;

Z
dDu (ui − µji )(uk − µjk)p

j(u) ≡ Cjik, (B.98)

where i, k = 1, . . . , D, j = 1, . . . , n, and Cj is the covariance matrix.

For simplicity we assume again that the means µj = 0. Then the normalized
sum s ≡Pn

j=1 uj/
√
n approaches the multivariate Gaussian distribution

g(s) =
1

(2π)D/2|C|1/2 exp
`
− 1

2
s · M · s

´
, (B.99)
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where |C| is the determinant of C and

C ≡ 1

n

nX

j=1

C
j ; M = C

−1. (B.100)

Appendix C: Special functions

Complete descriptions of the special functions of mathematical physics are given
in many books (Morse & Feshbach 1953; Abramowitz & Stegun 1964; Jackson
1999; Gradshteyn & Ryzhik 2000; Arfken & Weber 2005) and on web sites such as
mathworld.wolfram.com.

Throughout this appendix, x and z represent real and complex variables re-
spectively.

C.1 Delta function and step function

The delta function is a singular function defined by the properties

δ(x) = 0 for x 6= 0 ;

Z ∞

−∞
dxf(x)δ(x) = f(0), (C.1)

where f(x) is an arbitrary function continuous at x = 0. The delta function is
sometimes called the Dirac delta function, after its inventor P.A.M. Dirac. The
definition (C.1) implies that

δ[f(x)] =
X

j

δ(x− xj)

|f ′(xj)|
, (C.2)

where xj are the solutions of f(xj) = 0.
The three-dimensional delta function is a function of x = (x, y, z) defined by

δ(x) = δ(x)δ(y)δ(z). (C.3)

The delta function can be written as

δ(x) =
1

π
lim
ε→0

|ε|
ε2 + x2

=
1

π
lim
a→∞

sin ax

x
=

1

2π

Z ∞

−∞
dx eixt. (C.4)

The Plemelj identity is

lim
ε→0

Z b

a

dxf(x)

x− y + i|ε| = ℘

Z b

a

dxf(x)

x− y
− iπf(y), (C.5)

where f(x) is an arbitrary continuous function, x and y are real, a < y < b, and ℘
denotes the Cauchy principal value,

℘

Z b

a

dxf(x)

x− y
≡ lim
ε→0

 Z y−|ε|

a

dxf(x)

x− y
+

Z b

y+|ε|

dxf(x)

x− y

!

= lim
ε→0

Z b

a

dxf(x)
x− y

(x− y)2 + ε2
.

(C.6)

The Plemelj identity is easy to prove using the last line in (C.6) and the first of
the expressions in (C.4).
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If p(x1, . . . , xN ) dx1 · · · dxN is the number of objects with parameters in the
range x1 → x1 + dx1, . . . , xN → xN + dxN , and G is some function of x1, . . . , xN ,
then the number of objects with G in the range g → g + dg is n(g) dg, where

n(g) =

Z
dx1 · · · dxN p(x1, . . . , xN )δ[g −G(x1, . . . , xN )]. (C.7)

The step function is defined by

H(x) =


0 (x < 0),

1 (x > 0).
(C.8)

Obviously,
dH(x)

dx
= δ(x). (C.9)

C.2 Factorial or gamma function

z! ≡ Γ(z + 1) ≡
Z ∞

0

dt tze−t (Re z > −1). (C.10)

By analytic continuation the function z! can be defined for all complex numbers z,
except for simple poles at −1,−2, . . .. Some useful relations are

z! = z(z − 1)!, (C.11)

(z − 1)! (−z)! = π cscπz, (C.12)

(2z)! =
22z

√
π
z! (z − 1

2
)!, (C.13)

z!∗ = (z∗)!, (C.14)

x! =
√

2πxx+1/2e−x
ˆ
1 + O(x−1)

˜
as x→ ∞; (C.15)

the last of these is Stirling’s approximation to x! for large x.
Special values of x! include

n! = 1 · 2 · 3 · · ·n ; 0! = 1! = 1;

(− 1
2
)! =

√
π = 1.77245 ; ( 1

2
)! = 1

2

√
π = 0.88623.

(C.16)

C.3 Error function, Dawson’s integral, and plasma dispersion function

The error function is defined by

erf z ≡ 2√
π

Z z

0

dt e−t
2

=
2√
π

∞X

n=0

(−1)nz2n+1

n! (2n + 1)
. (C.17)

We have

erf(0) = 0 ; erf(∞) = 1 ; erf(−z) = − erf(z) ; erf(z∗) = [erf(z)]∗. (C.18)

As x→ ∞, 1 − erf x→ e−x
2

√
πx

ˆ
1 + O(x−2)

˜
. (C.19)
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The error function is closely related to Dawson’s integral,

F±(x) ≡ e∓x
2
Z x

0

dy e±y
2

; (C.20)

in particular,

F−(z) = 1
2

√
πez

2

erf(z) ; F+(z) = − 1
2

√
πie−z

2

erf(iz). (C.21)

On the interval (0,∞), the function F+(x) has a maximum of 0.54104 at x =
0.92414. As x→ ∞, F+(x) → 1/(2x).

The plasma dispersion function (Fried & Conte 1961) is

Z(z) = i
√
πe−z

2

[1 + erf(iz)]. (C.22)

An alternative expression is

Z(z) =
1√
π

Z ∞

−∞
ds

e−s
2

s− z
(Im z > 0), (C.23)

and its analytic continuation for Im z ≤ 0. For real and imaginary argument,

Z(x) = i
√
πe−x

2

− 2F+(x) ; Z(iy) = i
√
πey

2

(1 − erf y). (C.24)

For y > 0,

Z(x− iy) = Z∗(x+ iy) + 2i
√
πe−(x−iy)2 . (C.25)

We have also

Z(0) = i
√
π ; Z(z∗) = −[Z(−z)]∗ ;

dZ

dz
= −2 − 2zZ(z). (C.26)

As |z| → ∞,

Z(z) = i
√
πσe−z

2

−
∞X

n=0

(n− 1
2
)!√

πz2n+1
, (C.27)

where σ = 0, 1, 2 if Im(z) is positive, zero or negative.

C.4 Elliptic integrals

The incomplete elliptic integrals of the first and second kinds are

F (θ, k) ≡
Z θ

0

dφp
1 − k2 sin2 φ

; E(θ, k) ≡
Z θ

0

dφ

q
1 − k2 sin2 φ. (C.28)

The complete elliptic integrals of the first and second kinds are

K(k) ≡ F ( 1
2
π, k) =

Z π/2

0

dφp
1 − k2 sin2 φ

=

Z 1

0

dtp
(1 − t2)(1 − k2t2)

,

E(k) ≡ E( 1
2
π, k) =

Z π/2

0

dφ

q
1 − k2 sin2 φ =

Z 1

0

dt

r
1 − k2t2

1 − t2
.

(C.29)

Note that K(0) = E(0) = π/2, E(1) = 1, and K(k) diverges logarithmically as
k → 1, in that K(k) − 1

2
ln[16/(1 − k2)] → 0.
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C.5 Legendre functions

The Legendre functions of the first and second kinds, P µλ (z) and Qµλ(z), are linearly
independent solutions of the differential equation

d

dz

»
(1 − z2)

dw

dz

–
− µ2

1 − z2
w + λ(λ+ 1)w = 0. (C.30)

For Re(λ) > 0, the Legendre functions of the first kind diverge (∝ zλ) as |z| → ∞,

while the functions of the second kind vanish [∝ z−(λ+1)]. As z → 0
»
d lnP µλ (z)

dz

–

z=0

= 2 tan[ 1
2
π(λ+ µ)]

[ 1
2
(λ+ µ)]![ 1

2
(λ− µ)]!

[ 1
2
(λ+ µ− 1)]![ 1

2
(λ− µ− 1)]!

,

»
d lnQµλ(z)

dz

–

z=0

= 2 exp{ 1
2
πi sgn[Im(z)]} [ 1

2
(λ+ µ)]![ 1

2
(λ− µ)]!

[ 1
2
(λ+ µ− 1)]![ 1

2
(λ− µ − 1)]!

.

(C.31)

Here sgn(x) = +1 if x > 0 and −1 if x < 0.
For many applications we are interested in the Legendre functions with real

arguments, z = x, in the interval −1 ≤ x ≤ 1. Unless µ is an even integer, P µλ (x+iε)
and P µλ (x − iε) are different for real x and ε as ε → 0. Thus it is conventional to
redefine the Legendre functions for −1 ≤ x ≤ 1 by

Pµλ (x) ≡ 1
2

lim
ε→0

h
eπiµ/2Pµλ (x+ i|ε|) + e−πiµ/2Pµλ (x− i|ε|)

i

Qµλ(x) ≡ 1
2
e−iπµ lim

ε→0

h
e−πiµ/2Qµλ(x+ i|ε|) + eπiµ/2Qµλ(x− i|ε|)

i
.

(C.32)

For µ = 0 and λ a non-negative integer, the Legendre functions are polyno-
mials given by the formula

Pl(x) ≡ P 0
l (z) =

1

2ll!

dl

dxl
(x2 − 1)l. (C.33)

These Legendre polynomials are also generated by the relation

1√
1 − 2xt+ t2

=

∞X

l=0

Pl(x)t
l |t| < 1, |x| ≤ 1, (C.34)

which leads to an expression for the inverse distance between the points x and x′,

1

|x − x′| =
∞X

l=0

rl<

rl+1
>

Pl(cos γ), (C.35)

where r< = min(|x|, |x′|), r> = max(|x|, |x′|), and γ is the angle between the two
vectors.

For integer m > 0 and integer l ≥ 0 the Legendre functions are sometimes
called associated Legendre functions, and are given by1

Pml (x) = (−1)m(1 − x2)m/2
dmP 0

l (x)

dxm
= (−1)m

(1 − x2)m/2

2ll!

dl+mP 0
l (x)

dxl+m
. (C.36)

1 Our convention for associated Legendre functions with real x between −1 and +1
follows Abramowitz & Stegun (1964), Press et al. (1986), Gradshteyn & Ryzhik (2000),
and software such as IDL, Maple, and Mathematica, but differs from Morse & Feshbach
(1953), Arfken & Weber (2005), and the first edition of this book by a factor (−1)m .
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Note that Pml (x) vanishes for m > l, and that Pml (x) is even in x if l−m is even,
and odd if l −m is odd. We have

Pml (0) = (−1)(l+m)/2 (l +m)!

2l[ 1
2
(l −m)]! [ 1

2
(l +m)]

(l −m even), (C.37)

and zero if (l −m) is odd. For integer m > 0,

P−m
l (x) = (−1)m

(l −m)!

(l +m)!
Pml (x). (C.38)

The associated Legendre functions are orthogonal in the sense that
Z 1

−1

dxPml (x)Pmn (x) =
2

2l + 1

(l +m)!

(l −m)!
δln. (C.39)

Z 1

−1

dx

1 − x2
Pml (x)P kl (x) =

1

m

(l +m)!

(l −m)!
δmk. (C.40)

The associated Legendre functions can be written most compactly using the
substitution x = cos θ; since −1 ≤ x ≤ 1 we take 0 ≤ θ ≤ π and let c = cos θ,
s = sin θ:

P0(c) = 1

P1(c) = c P 1
1 (c) = −s

P2(c) = 1
2
(3c2 − 1) P 1

2 (c) = −3cs P 2
2 (c) = 3s2

P3(c) = 1
2
(5c3 − 3c) P 1

3 (c) = − 3
2
s(5c2 − 1) P 2

3 (c) = 15cs2 P 3
3 (c) = −15s3.

(C.41)

C.6 Spherical harmonics

A spherical harmonic is defined by the expression

Ym
l (θ, φ) =

s
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ (m ≥ 0). (C.42)

For most purposes, the indices of the spherical harmonics can be restricted to
l = 0, 1, 2, . . . and m = −l,−l + 1, . . . , l − 1, l. The variables lie in the range
0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π and usually represent the angular coordinates in a
spherical coordinate system (see Figure B.1). Note that

Y−m
l (θ, φ) = (−1)mYm

l
∗(θ, φ), (C.43)

where the asterisk denotes complex conjugation.
The most important feature of the spherical harmonics, which is easily proved

using equation (C.39), is that they are orthonormal in the sense that
I

d2Ω Yn
k
∗(Ω)Ym

l (Ω) =

Z π

0

dθ sin θ

Z 2π

0

dφYn
k
∗(θ, φ)Ym

l (θ, φ) = δklδnm. (C.44)

An arbitrary function of position f(r) can be written in spherical coordinates
as a series of spherical harmonics,

f(r) = f(r, θ, φ) =

∞X

n=0

lX

m=−l
flm(r)Ym

l (θ, φ). (C.45)
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Multiplying by Ykn
∗
(θ, φ), integrating over solid angle, and using equation (C.44),

we find

fnk(r) =

Z
d2Ω Yn

k
∗(θ, φ)f(r). (C.46)

The addition theorem for spherical harmonics states that if the directions
(θ, φ) and (θ′, φ′) are separated by an angle γ, then

Pl(cos γ) =
4π

2l + 1

lX

m=−l
Ym
l

∗(θ′, φ′)Ym
l (θ, φ). (C.47)

Together with equation (C.35), this leads to an expression for the inverse distance
between the points x = (r, θ, φ) and x′ = (r′, θ′, φ′):

1

|x − x′| =
∞X

l=0

lX

m=−l

4π

2l + 1

rl<

rl+1
>

Ym
l

∗(θ′, φ′)Ym
l (θ, φ), (C.48)

where r< = min(r, r′) and r> = max(r, r′).
Using equations (B.53) and (C.30) we can show that

∇2[f(r)Ym
l (θ, φ)] =

»
1

r2
d

dr

“
r2

df

dr

”
− l(l + 1)

r2
f(r)

–
Ym
l (θ, φ). (C.49)

The first few spherical harmonics are:

Y0
0(θ, φ) = 1√

4π

Y0
1(θ, φ) =

q
3
4π

cos θ Y±1
1 (θ, φ) = ∓

q
3
8π

sin θ e±iφ

Y0
2(θ, φ) =

q
5

16π
(3 cos2 θ − 1) Y±1

2 (θ, φ) = ∓
q

15
8π

sin θ cos θ e±iφ

Y±2
2 (θ, φ) =

q
15
32π

sin2 θ e±2iφ.

(C.50)

C.7 Bessel functions

The most complete reference is Watson (1995).
The Bessel functions of the first and second kind, Jν(z) and Yν(z), are linearly

independent solutions of the differential equation

1

z

d

dz

“
z
dw

dz

”
+
“
1 − ν2

z2

”
w = 0. (C.51)

In series form,

Jν(z) =
∞X

k=0

(−1)k

k! (ν + k)!
( 1
2
z)ν+2k, (C.52)

and Yν(z) is defined by the relation

Yν(z) =
cos νπJν(z) − J−ν(z)

sin νπ
, (C.53)

or by its limiting value if ν is an integer. The function Yν(z) diverges as z−|ν| when
z → 0. As x→ ∞

Jν(x) →
r

2

πx
cos(x− 1

2
νπ − 1

4
π) + O(x−1). (C.54)
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If ν ≡ n is an integer

Jn(−z) = (−1)nJn(z) ; J−n(z) = (−1)nJn(z) ; Y−n(z) = (−1)nYn(z),
(C.55)

Jn(z) =
1

π

Z π

0

dθ cos(z sin θ − nθ). (C.56)

If Cν denotes either Jν or Yν ,

Cν−1(z) +Cν+1(z) =
2ν

z
Cν(z) ; Cν−1(z) − Cν+1(z) = 2

dCν(z)

dz
. (C.57)

For ν = 0 these relations imply

J ′
0(z) = −J1(z). (C.58)

An important integral identity is
Z ∞

0

dk k

Z ∞

0

dRRF (R)Jν(kR)Jν(kr) = F (r) (ν ≥ − 1
2
), (C.59)

where F (R) is an arbitrary function. If

g(k) =

Z ∞

0

dr rf(r)Jν(kr) (C.60a)

then g is called the Hankel transform of f , and equation (C.59) yields

f(r) =

Z ∞

0

dk kg(k)Jν(kr). (C.60b)

The Hankel transform is defined for any integer ν and all real ν ≥ − 1
2
.

The modified Bessel functions are

Iν(z) = i−νJν(iz) ; Kν(z) = K−ν(z) =
π

2

I−ν(z) − Iν(z)

sin νπ
; (C.61)

the second equation is replaced by its limiting value if ν is an integer. As z → 0,

Iν(z) → 1

ν!

`
1
2
z
´ν

(ν 6= −1,−2, . . .);

Kν(z) → (ν − 1)!

2

`
1
2
z
´−ν

(ν > 0);

(C.62)

At large x,

Iν(x) → ex√
2πx

; Kν(x) →
r

π

2x
e−x. (C.63)

If ν ≡ n is an integer,

In(−z) = (−1)nIn(z) ; In(z) = I−n(z) =
1

π

Z π

0

dθ ez cos θ cos(nθ). (C.64)

If Zν denotes either Iν or eiπνKν ,

Zν−1(z) − Zν+1(z) =
2ν

z
Zν(z) ; Zν−1(z) + Zν+1(z) = 2

dZν(z)

dz
; (C.65)

for ν = 0 these imply

I ′0(z) = I1(z) ; K′
0(z) = −K1(z). (C.66)
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We shall use the results

ez cos θ = I0(z) + 2

∞X

n=1

In(z) cos nθ =

∞X

n=−∞
In(z) cosnθ; (C.67)

Z ∞

0

dxxµJν(x) = 2µ
[ 1
2
(ν + µ+ 3)]!

[ 1
2
(ν − µ+ 3)]!

Re(ν + µ) > −1, Re(µ) < 1
2
. (C.68)

Z ∞

u

dx
x e−µx

(x2 − u2)1−ν

=
2ν−1/2(ν − 1)!√

π

uν+1/2

µν−1/2
Kν+1/2(uµ) (u > 0, Reµ, ν > 0);

(C.69)

Z b

0

dy yν(b2 − y2)ν−3/2Kν(y) = 2ν−3√π(ν − 3
2
)! b2ν−1

×
ˆ
Iν−1(

1
2
b)Kν(

1
2
b) − Iν(

1
2
b)Kν−1(

1
2
b)
˜

(Re ν > − 1
2
).

(C.70)

Appendix D: Mechanics

We assume a background in classical mechanics at the advanced undergraduate
level, including basic Hamiltonian mechanics. Useful reference texts include Lan-
dau & Lifshitz (1989), José & Saletan (1998), and Sussman & Wisdom (2001). The
most elegant and mathematical treatment of the subject is found in Arnold (1989).
This appendix contains a brief summary of the concepts employed in this book.

D.1 Single particles

The momentum of a particle is p = mv, where m is its mass and v is its velocity.
Its motion is described by Newton’s second law,

F =
dp

dt
, (D.1)

where F is the force acting on the particle. Thus, if the mass of the particle is
constant,

dv

dt
=

d2x

dt2
=

F

m
. (D.2)

The work done against the force F in moving a particle from x1 to x2 is

W12 = −
Z x2

x1

dx · F, (D.3)

a line integral that is to be taken along the particle’s trajectory from x1 to x2. The
rate at which work is done on the force is

dW

dt
= − d

dt

Z x2(t)

x1

dx · F = −dx

dt
· F = −F · v, (D.4)

evaluated at x2. For a particle of fixed mass,

W12 = −m
Z x2

x1

dx · d2x

dt2
= −m

Z x2

x1

dt
dx

dt
· d2x

dt2
= −m

Z x2

x1

dtv · dv

dt

= 1
2
m[v2(x1) − v2(x2)].

(D.5)
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The kinetic energy of a particle is K ≡ 1
2
mv2, so

W12 = K1 −K2. (D.6)

Many forces encountered in nature are conservative, that is, the work W12

is independent of the path taken between the endpoints x1 and x2. In this case,
we may choose some fixed point x0 and define the potential energy V (x) by

V (x) ≡ −
Z x

x0

dx · F then W12 = V (x2) − V (x1), (D.7)

A common convention that fixes the otherwise arbitrary zero point of V is to
place the point x0 at “infinity,” that is, far from all interacting bodies, where F is
negligibly small. All such points yield the same zero point, since the work done in
moving from one point at “infinity” to another is negligible.

There are two immediate consequences of equations (D.7). Taking the gradient
of V , we obtain

F = −∇V (x) = −∂V
∂x

; (D.8)

and substituting the second of equations (D.7) into (D.6) yields

K1 + V (x1) = K2 + V (x2). (D.9)

Thus if the energy of a particle is defined to be E = K + V = 1
2
mv2 + V (x),

we find that if the forces acting on a particle are conservative, then its energy is
conserved. We shall also encounter cases in which the forces are conservative if the
trajectory is traversed instantaneously, but the force at a given position is time-
dependent. In these cases we can still write F = −∇V (x, t), but the energy E is
no longer conserved; in fact,

dE

dt
=
∂V (x, t)

∂t
. (D.10)

Forces due to gravity are conservative (the proof is given at the beginning of
Chapter 2); for gravity the potential energy of a particle is proportional to its mass
and we may write V (x) = mΦ(x), where Φ is the gravitational potential. Thus the
energy per unit mass 1

2
v2 + Φ(x) is conserved. Since we deal almost exclusively

with gravitational forces in this book, we shall usually shorten the term “energy
per unit mass” to simply “energy,” and refer to 1

2
v2 as the kinetic energy and Φ

as the potential energy. When the distinction is not clear from the context, we use

the notation E for energy per unit mass and eE = mE for energy.
The angular momentum of a particle relative to some origin O is

L ≡ x × p, (D.11)

where the position vector x is measured from O. The torque is

N = x ×F. (D.12)

We have
dL

dt
=

dx

dt
× p + x× dp

dt
= v × p + x × F. (D.13)

The first term is proportional to p × p = 0, and thus

N =
dL

dt
; (D.14)

in words, the torque is equal to the rate of change of angular momentum.
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D.2 Systems of particles

Consider an isolated system of N particles of masses mα and positions xα, α =
1, . . . , N . The total mass of the system and the total force on particle α are

M =
NX

α=1

mα ; Fα =
NX

β=1
β 6=α

Fαβ, (D.15)

where Fαβ is the force exerted on particle α by particle β. According to Newton’s

third law

Fαβ = −Fβα. (D.16)

The center of mass is located at

xcm =

PN
α=1 mαxα

M
. (D.17)

Thus

d2xcm

dt2
=

1

M

NX

α=1

mα
d2xα

dt2
=

1

M

NX

α=1

X

β 6=α
Fαβ. (D.18)

The sum over Fαβ vanishes since each pair Fαβ + Fβα sums to zero. Thus

d2xcm

dt2
= 0, (D.19)

and we conclude that the center of mass of an isolated system moves at uniform
velocity.

Similarly, the total angular momentum is

L =
NX

α=1

xα × pα, (D.20)

and

dL

dt
=

NX

α=1

X

β 6=α
xα ×Fαβ . (D.21)

The right side is a sum of pairs of the form xα×Fαβ+xβ×Fβα = (xα−xβ)×Fαβ .
In the case of gravity and most other phenomena, the interparticle force acts along
the line joining the two particles, so this term also vanishes. In words, the total
angular momentum of an isolated system is conserved if the interparticle forces act
along the line joining the particles.

As for a single particle, we compute the work done against the forces Fα on
particle α in moving the system from configuration 1 to configuration 2,

W12 = −
NX

α=1

Z 2

1

dxα · Fα, (D.22)

and as in equation (D.5) we may write

W12 = Ktot,1 −Ktot,2, (D.23)

where Ktot = 1
2

PN
α=1mαv

2
α is the total kinetic energy of the system. Note that

Ktot = 1
2
Mv2

cm + 1
2

NX

α=1

mαv
′
α

2
, (D.24)
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where v′
α = vα − vcm and vcm = ẋcm is the velocity of the center of mass. Thus

the total kinetic energy is the sum of the kinetic energy of motion relative to the
center of mass, and the kinetic energy of a single particle of mass M moving at the
velocity of the center of mass.

In many cases the interparticle forces are conservative, and can be written as

Fαβ = − ∂

∂xα
V (|xα − xβ|). (D.25)

Note that this form automatically guarantees the validity of Newton’s third law,
and that the interparticle forces act along the line joining the particles. We have

W12 =
NX

α=1

X

β 6=α

Z 2

1

dxα · ∂

∂xα
V (|xα − xβ|). (D.26)

We define the potential energy of the system to be

Wtot = 1
2

NX

α=1

X

β 6=α
V (|xα − xβ|). (D.27)

Then, as a result of any small change xα → xα + dxα, α = 1, . . . , N ,

dWtot =

NX

α=1

X

β 6=α
dxα · ∂V (|xα − xβ|)

∂xα
, (D.28)

where the factor 1
2

has disappeared because the term involving a given pair of
particles—say, V (|x1 − x2|)—appears twice in equation (D.27). Thus equations
(D.26) and (D.28) yield W12 = Wtot,2 −Wtot,1, and equation (D.23) yields

Ktot,1 +Wtot,1 = Ktot,2 +Wtot,2; (D.29)

in words, the total energy of the system Ktot +Wtot is conserved.
The behavior of an isolated two-body system with conservative interparticle

forces is particularly simple. We have

m1
d2x1

dt2
= F12 = −m2

d2x2

dt2
. (D.30)

The center of mass is at xcm = (m1x1 +m2x2)/M and moves at uniform velocity.
The relative separation vector r = x2 − x1 obeys the equation

d2r

dt2
= −F12

µ
=

1

µ

∂V (|r|)
∂x1

, (D.31)

where the reduced mass is
µ ≡ m1m2

m1 +m2
. (D.32)

Since ∂V/∂x1 = −∂V/∂r, we have

d2r

dt2
= − 1

µ

∂V (|r|)
∂r

, (D.33)

which is the equation of motion of a fictitious single particle (the reduced parti-

cle) of mass µ in the fixed potential V (|r|). Thus the two-body problem has been
reduced to a one-body problem. The total energy is

E = 1
2
Mv2

cm + 1
2
(m1v

′
1
2

+m2v
′
2
2
) + V = 1

2
Mv2

cm + 1
2
µṙ2 + V (|r|), (D.34)
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in which we have used the relations v′
1 = −m2ṙ/M , v′

2 = m1ṙ/M .

Rigid bodies Although stellar systems are not rigid bodies, the simple behavior
of rigid bodies provides a useful comparison to the behavior of rotating stellar
systems.

Consider a rigid body that rotates about its center of mass at x = 0, with an-
gular velocity Ω. Its angular momentum and kinetic energy are given by equations
(D.20) and (D.24),

L =
NX

α=1

mαxα × vα ; K = 1
2

NX

α=1

mαv
2
α, (D.35)

where the sum is over all of the particles in the body. Since the body is rigid, the
velocity at each point is

vα = Ω × xα. (D.36)

Using the vector identity (B.8), we have

K = 1
2

NX

α=1

mαvα · (Ω × xα) = 1
2

NX

α=1

mαΩ · (xα × vα) = 1
2
Ω · L. (D.37)

Moreover

L =

NX

α=1

mαxα × (Ω × xα) = I
′ · Ω or Lj =

3X

k=1

I ′jkΩk. (D.38)

Here I′ is the moment of inertia tensor, a symmetric tensor having components1

I ′jk ≡
NX

α=1

mα(|xα|2δjk − xαjxαk). (D.41)

The kinetic energy is given by

K = 1
2
Ω · I′ · Ω = 1

2
L · (I′)−1 · L. (D.42)

If the coordinate axes coincide with the principal axes of the moment of inertia
tensor, then the tensor is diagonal. If, in addition, the angular velocity vector lies
in one of the principal axes (say, the z axis), we have

L = Lêz ; Ω = Ωêz ; K =
L2

2I
, (D.43)

where

I ≡ I ′zz =

NX

α=1

mα(x2
α + y2

α). (D.44)

1 Unfortunately, this term is sometimes used to denote the tensor

Ijk ≡
NX

α=1

mαxαjxαk (D.39)

(cf. eqs. 4.243 and 7.15). The relation between the two definitions is

I′jk = trace (I)δjk − Ijk. (D.40)
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D.3 Lagrangian dynamics

Consider a particle moving in a conservative force field defined by the potential
energy V (x, t). We define the Lagrangian

L(x, ẋ, t) ≡ K − V = 1
2
mẋ

2 − V (x, t). (D.45)

The principle of least action or Hamilton’s principle states that the motion
of the particle from time t0 to t1 is along a curve x(t) that is an extremal of the
action

I ≡
Z t1

t0

dtL. (D.46)

The proof is simple. According to the Euler–Lagrange equation (B.81), the trajec-
tory is an extremal of I if and only if

0 =
d

dt

„
∂L
∂ẋ

«
− ∂L
∂x

= mẍ +
∂V

∂x
, (D.47)

which is simply a restatement of Newton’s second law.
The attraction of this approach is that the Lagrangian L is a scalar function.

Hence it is straightforward to compute L as a function L(q, q̇, t) of arbitrary—
sometimes called generalized—coordinates q and their time derivatives q̇. Ex-
tremizing the action with L expressed in this form yields Lagrange’s equations

d

dt

„
∂L
∂q̇

«
− ∂L
∂q

= 0, (D.48)

which are the equations of motion in the generalized coordinates. This approach
avoids the heavy algebra that is often required to express vector equations in curvi-
linear coordinates.

D.4 Hamiltonian dynamics

For a given set of generalized coordinates q we define the generalized momentum

p to be

p ≡
„
∂L
∂q̇

«

q,t

. (D.49)

The Hamiltonian is
H(q,p, t) ≡ p · q̇ − L(q, q̇, t), (D.50)

where it is understood that q̇ is to be eliminated in favor of q, p, and t using
equation (D.49).

D.4.1 Hamilton’s equations

The total derivative of the Hamiltonian is

dH =

„
∂H

∂q

«

p,t

· dq +

„
∂H

∂p

«

q,t

· dp +

„
∂H

∂t

«

q,p

dt. (D.51)

Differencing equation (D.50) we also have

dH = p · dq̇ + q̇ · dp −
„
∂L
∂q

«

q̇,t

· dq−
„
∂L
∂q̇

«

q,t

· dq̇−
„
∂L
∂t

«

q,q̇

dt

= q̇ · dp −
„
∂L
∂q

«

q̇,t

· dq−
„
∂L
∂t

«

q,q̇

dt,

(D.52)
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where the first and fourth terms in the first line have canceled because of equa-
tion (D.49). Since equations (D.51) and (D.52) must be the same, we have

q̇ =

„
∂H

∂p

«

q,t

;

„
∂H

∂q

«

p,t

= −
„
∂L
∂q

«

q̇,t

;

„
∂H

∂t

«

q,p

= −
„
∂L
∂t

«

q,q̇

. (D.53)

Using Lagrange’s equations (D.48) and simplifying the notation, the first two of
these equations lead us to Hamilton’s equations

q̇ =
∂H

∂p
; ṗ = −∂H

∂q
. (D.54)

The configuration space of a system is the n-dimensional space with co-
ordinates (q1, . . . , qn). The corresponding momentum space has coordinates
(p1, . . . , pn). A system with n-dimensional configuration and momentum spaces
is said to have n degrees of freedom. Phase space is the 2n-dimensional space
with coordinates (q1, . . . , qn, p1, . . . , pn) ≡ (q,p) ≡ w. Since Hamilton’s equations
(D.54) are first-order differential equations, if we are given the Hamiltonian and
a particle’s phase-space coordinates w0 at time t = 0, we can solve for the coor-
dinates wt at any later (or earlier) time t. Thus through each point w0 in phase
space there passes a unique phase-space trajectory wt(w0), which gives the future
and past phase-space coordinates of the particle that has coordinates w0 at t = 0.
No two of these trajectories can ever intersect: if they did, the trajectory of a
particle that started from the intersection point would not be unique. We define
the time-evolution operator Ht by

wt ≡ Ht(w0), (D.55)

and say that the operator Ht defines a Hamiltonian flow in phase space.

Along a trajectory w(t), the Hamiltonian H[w(t), t] changes at a rate

dH

dt
=
∂H

∂q
· q̇ +

∂H

∂p
· ṗ +

∂H

∂t
=
∂H

∂t
, (D.56)

where we have used (D.54) to eliminate q̇ and ṗ. Hence, if ∂L/∂t = 0, it follows
from (D.53) that the Hamiltonian is conserved along all dynamical trajectories.

Thus, for example, consider motion in the time-independent potential V (x). If
we work in Cartesian coordinates, the Lagrangian L = 1

2
mẋ2 −V (x) depends only

on x and ẋ, so ∂L/∂t = 0. Hence the Hamiltonian H is conserved. The physical
meaning of this conservation law is easily found. We have p = ∂L/∂ẋ = mẋ and

H(x,p) = p · ẋ − L =
p2

2m
+ V (x); (D.57)

this is simply the total energy E = K + V , which we know to be conserved for
motion in a time-independent potential. Thus for motion in a fixed potential the
Hamiltonian is equal to the total energy.

In most cases, the velocity v of a particle of mass m is just 1/m times the
particle’s momentum p, so by a slight abuse of language, we shall also use the term
phase space to denote the six-dimensional space with coordinates (x,v).
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D.4.2 Poincaré invariants

Let S0 be any two-dimensional surface in phase space, and let us specify points on
S0 by some set of coordinates (u, v). The time-evolution operator Ht maps each
point of S0 into a new surface St and also maps the curves of constant u, v on
S0 into curves that define (u, v) coordinates on St. With this definition, each pair
(u, v) defines a trajectory.

We define

A(t) ≡
ZZ

St

dq · dp =
nX

i=1

ZZ

St

dqidpi

=
nX

i=1

ZZ

St

dudv
∂(qi, pi)

∂(u, v)
,

(D.58)

and calculate dA/dt. We set t′ ≡ t+ δt, where δt is small, and let q(u, v), q′(u, v)
be points on the same trajectory at times t and t′, with similar definitions for p
and p′. To first order in the small interval δt, Hamilton’s equations (D.54) yield

(q′,p′) = Hδt(q,p) =

„
q +

∂H

∂p
δt, p − ∂H

∂q
δt

«
. (D.59)

Differentiating these equations with respect to u and v, we find

∂(q′i, p
′
i)

∂(u, v)
=

˛̨
˛̨
˛̨
˛̨

∂qi
∂u

+
∂2H

∂u∂pi
δt

∂qi
∂v

+
∂2H

∂v∂pi
δt

∂pi
∂u

− ∂2H

∂u∂qi
δt

∂pi
∂v

− ∂2H

∂v∂qi
δt

˛̨
˛̨
˛̨
˛̨

=
∂(qi, pi)

∂(u, v)
+

„
∂qi
∂v

∂2H

∂u∂qi
− ∂pi
∂u

∂2H

∂v∂pi
+
∂pi
∂v

∂2H

∂u∂pi
− ∂qi
∂u

∂2H

∂v∂qi

«
δt+ O(δt)2.

(D.60)
Thus

dA

dt
= lim
δt→0

1

δt

ZZ
dudv

X

i

»
∂(q′i, p

′
i)

∂(u, v)
− ∂(qi, pi)

∂(u, v)

–

=
X

i

ZZ
dudv

„
∂qi
∂v

∂2H

∂u∂qi
− ∂pi
∂u

∂2H

∂v∂pi
+
∂pi
∂v

∂2H

∂u∂pi
− ∂qi
∂u

∂2H

∂v∂qi

«
.

(D.61)
One may show that the sum of the brackets in the second of equations (D.61)
vanishes, by replacing every occurrence of ∂/∂u in the second derivatives by
P
k

“
∂qk
∂u

∂
∂qk

+ ∂pk
∂u

∂
∂pk

”
and similarly for ∂/∂v. Hence dA/dt = 0 and we have:

Poincaré invariant theorem If S(0) is any two-surface in phase space, and
S(t) is the surface into which S(0) is mapped by the time-evolution operator Ht,
then ZZ

S(0)

dq · dp =

ZZ

S(t)

dq · dp. (D.62)

This conserved quantity is known as a Poincaré invariant.

Corollary If γ(0) is any closed path through phase space, and γ(t) is the path to
which γ(0) is mapped by the time-evolution operator, then

I

γ(0)

dq · p =

I

γ(t)

dq · p. (D.63)
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Proof: By Green’s theorem (B.61),
I

γ(t)

dq · p =
X

i

I

γ(t)

dqi pi =
X

i

ZZ

S(t)

dqidpi =

ZZ

S(t)

dq · dp, (D.64)

where S(t) is any surface that has γ(t) as its boundary. The result now follows
from the Poincaré invariant theorem./

D.4.3 Poisson brackets

Let A(w) and B(w) be any two scalar functions of the phase-space coordinates.
Then the Poisson bracket is defined by

[A,B] ≡ ∂A

∂q
· ∂B
∂p

− ∂A

∂p
· ∂B
∂q

. (D.65)

An equivalent definition is

[A,B] =
2nX

α,β=1

Jαβ
∂A

∂wα

∂B

∂wβ
, (D.66)

where the symplectic matrix is

J ≡
„

0 I

−I 0

«
, (D.67)

and 0 and I are the n × n zero and unit matrix. The symplectic matrix has the
useful properties

J
−1 = J

T = −J ; J
2 = −I ; |J| = 1, (D.68)

where |J| denotes the determinant of J, and the superscript “T” denotes the trans-
pose of a matrix, AT

ij = Aji.
It is straightforward to verify the following properties of Poisson brackets:

(i) [A,B] = −[B,A] and [A+B,C] = [A,C] + [B,C];
(ii) [AB,C] = A[B,C] +B[A,C];
(iii) [[A,B], C] + [[B,C], A] + [[C,A], B] = 0 (Jacobi identity);
(iv) Hamilton’s equations may be written

ẇα = [wα, H] or ẇ = [w, H] or ẇ = J · ∂H
∂w

; (D.69)

(v) The phase-space coordinates w = (q,p) satisfy the canonical commutation

relations [pi, pj ] = [qi, qj ] = 0 and [qi, pj ] = δij , or simply

[wα, wβ] = Jαβ . (D.70)

D.4.4 Canonical coordinates and transformations

The power of Lagrange’s equations (D.48) is that they can describe the motion
of a dynamical system in any system of coordinates q. It is therefore natural to
ask what are the most general phase-space coordinates in which motion can be
described by Hamilton’s equations.

Any set of phase-space coordinates W ≡ {Wα, α = 1, . . . , 2n} is said to be
canonical if

[Wα,Wβ] = Jαβ . (D.71)
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Equation (D.70) shows that ordinary phase-space coordinates are canonical. If
W and w are two sets of canonical coordinates, then the function relating them,
W(w), is a canonical transformation or map.

Let W be a set of canonical coordinates; then with equation (D.70) and the
chain rule we have

[A,B] =

2nX

α,β=1

Jαβ
∂A

∂wα

∂B

∂wβ
=
X

κλ

„X

αβ

Jαβ
∂Wκ

∂wα

∂Wλ

∂wβ

«
∂A

∂Wκ

∂B

∂Wλ

=
X

κλ

[Wκ,Wλ]
∂A

∂Wκ

∂B

∂Wλ
=
X

κλ

Jκλ
∂A

∂Wκ

∂B

∂Wλ
.

(D.72)

Thus the derivatives involved in the definition (D.65) of the Poisson bracket can be
taken with respect to any set of canonical coordinates, just as the vector formula
∇ · a =

P
i(∂ai/∂xi) is valid in any Cartesian coordinate system.

The rate of change of an arbitrary canonical coordinate Wα along an orbit is

Ẇα =

2nX

β=1

∂Wα

∂wβ
ẇβ =

X

βγ

∂Wα

∂wβ
Jβγ

∂H

∂wγ
, (D.73)

where we have used Hamilton’s equations (D.69). We now write H in terms of the
new coordinates Wα, so

Ẇα =
X

βγδ

∂Wα

∂wβ
Jβγ

∂Wδ

∂wγ

∂H

∂Wδ
=
X

δ

[Wα,Wδ]
∂H

∂Wδ
. (D.74)

Since the coordinates are canonical, this simplifies to

Ẇα =
X

δ

Jαδ
∂H

∂Wδ
, (D.75)

which is simply Hamilton’s equations (D.69) in the coordinate system W. Thus
Hamilton’s equations are valid in any canonical coordinate system, whatever the
Hamiltonian may be.

The Jacobian matrix relating two coordinate systems w and W is a 2n × 2n
matrix g(w) defined by

gαβ ≡ ∂Wα

∂wβ
. (D.76)

In terms of this matrix, equation (D.66) can be written

[Wα,Wβ] =
X

γδ

Jγδgαγgβδ. (D.77)

If the coordinates W are canonical, [Wα,Wβ] = Jαβ , then this equation can be
rewritten in matrix notation as

g · J · gT = J. (D.78)

Conversely, if equation (D.78) holds the coordinates W are canonical.
An equivalent condition is obtained by left-multiplying this result by J and

using equation (D.68) to obtain J · g · J · gT = −I; then left-multiplying by gT

to obtain gT · J · g · J · gT = −gT; then right-multiplying by the inverse of gT to
obtain gT · J · g · J = −I; then right-multiplying by J to obtain

g
T · J · g = J. (D.79)
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A matrix g that satisfies the condition (D.78) or (D.79) is said to be sym-

plectic. Thus a transformation W(w) is canonical if and only if its Jacobian
matrix is symplectic. Sometimes the terms “canonical” and “symplectic” are used
interchangeably.

Consider a small phase-space volume element, which may be written d2nw

and d2nW in two different canonical coordinate systems. The relation between
these two expressions is

d2n
W =

˛̨
˛̨
˛̨
˛̨∂W
∂w

˛̨
˛̨
˛̨
˛̨ d2n

w = ||g|| d2n
w, (D.80)

where ||g|| denotes the absolute value of the determinant |g|. From equation (D.78),
|J| = |g|×|J|×|gT | = |J|×|g|2 , where we have used the fact that the determinant of
a matrix and its transpose are identical. Since |J| is non-zero (eq. D.68), |g| = ±1,
so ||g|| = 1 and

d2n
W = d2n

w; (D.81)

in words, the phase-space volume element is the same in any canonical coordinates.
Finally, we consider how the Poincaré invariant is changed by an canonical

transformation. In the canonical coordinates W, the analog of equation (D.58) is

A′(t) ≡
ZZ

St

dQ · dP =
nX

i=1

ZZ

St

dudv
∂(Qi, Pi)

∂(u, v)

=
nX

i=1

ZZ

St

dudv

„
∂Qi
∂u

∂Pi
∂v

− ∂Qi
∂v

∂Pi
∂u

«
.

(D.82)

The expression in brackets can be rewritten using the symplectic matrix,

A′(t) =
2nX

α,β=1

ZZ

St

dudv
∂Wα

∂u
Jαβ

∂Wβ

∂v

=
X

αβγδ

ZZ

St

dudv
∂Wα

∂wγ

∂wγ
∂u

Jαβ
∂Wβ

∂wδ

∂wδ
∂v

=
X

γδ

ZZ

St

dudv
∂wγ
∂u

(gT · J · g)γδ
∂wδ
∂v

=
X

γδ

ZZ

St

dudv
∂wγ
∂u

Jγδ
∂wδ
∂v

,

(D.83)

where the last line follows from equation (D.79) because W is canonical. The
last line is simply the Poincaré invariant A(t) in the original coordinates w. We
conclude that Poincaré invariants are conserved in a canonical transformation.
Thus, if w and W are any two sets of canonical coordinates,

ZZ

S
dq · dp =

ZZ

S
dQ · dP ;

I

γ

dq · p =

I

γ

dQ · P (D.84)

for all surfaces S and closed curves γ in phase space. The converse argument
shows that any transformation that conserves all integrals of the form

RR
dq · dp

and
H

dq · p is canonical. Thus a transformation is canonical if and only if it
conserves the Poincaŕe invariants of all surfaces in phase space.

We have shown that the mapping defined by the time-evolution operator Ht

(eq. D.55) conserves Poincaré invariants; hence the transformation defined by a
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Hamiltonian flow over any time interval t is canonical. Since canonical transfor-
mations preserve the phase-space volume element, the phase-space volume element
is conserved in the flow. Since any finite volume is the sum of volume elements,
the volume of any arbitrary region in phase space is conserved by a Hamiltonian
flow. This result leads immediately to the collisionless Boltzmann equation in the
form (4.10).

D.4.5 Extended phase space

A Hamiltonian that does not depend explicitly on time is said to be autonomous.
Although most of the Hamiltonians that we shall deal with in this book are au-
tonomous, it is important to understand the behavior of dynamical systems gov-
erned by time-dependent or non-autonomous Hamiltonians H(q,p, t). The tra-
jectories in such systems still satisfy Hamilton’s equations (D.54), but by (D.56)
the energy of the system E(t) = H[q(t),p(t), t] is no longer conserved along a
trajectory.

Let us define p0 ≡ −E, q0 = t, and an extended phase space with coor-
dinates (Q,P), where Q ≡ (q0, q1, . . . , qn) and P ≡ (p0, p1, . . . , pn). We introduce
a new variable τ called the fictitious time, which serves as the time coordinate
in the extended phase space. Now consider the trajectories in the extended phase
space governed by the Hamiltonian

H(Q,P) ≡ H(q,p, t) −E = H(q,p, q0) + p0. (D.85)

These are given by Hamilton’s equations

dQi
dτ

=
∂H
∂Pi

;
dPi
dτ

= − ∂H
dQi

i = 0, . . . , n. (D.86)

For i = 0 the first of these becomes dt/dτ = 1 which implies that the fictitious time
and the actual time coincide along a trajectory; and the second becomes dE/dτ =
∂H/∂t which is identical to equation (D.56). For i = 1, . . . , n the equations of
motion (D.86) are identical to Hamilton’s equations in the original phase space.
Thus the behavior of a dynamical system governed by a time-dependent Hamiltonian
with n degrees of freedom can be described by an autonomous Hamiltonian with
(n+ 1) degrees of freedom.

D.4.6 Generating functions

Consider two points w0 and w in phase space, and two distinct paths γ0 and
γ1 from w0 to w1. Let Γ denote the closed path from w0 to w and back that
is created by first traversing γ0 and then traversing γ1 in the reverse direction.
If (q,p) and (q′,p′) are canonical coordinate systems then the conservation of
Poincaré invariants in canonical transformations implies that

I

Γ

(dq · p − dq′ · p′) = 0; (D.87)

splitting the path Γ into its components we have
Z

γ0

(dq · p − dq′ · p′) =

Z

γ1

(dq · p − dq′ · p′). (D.88)
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We conclude that the integral does not depend on the path of integration, so for a
fixed initial point w0 we may write

S(w) =

Z w

w0

(dq · p − dq′ · p′), (D.89)

or
dS = dq · p − dq′ · p′, (D.90)

where dS is an exact differential. S is called a generating function of the canon-
ical transformation from (q,p) to (q′,p′).

Now let us assume that we use (q,q′) as phase-space coordinates instead of
(q,p). Then dS(q,q′) = dq ·p−dq′ ·p′, where p and p′ are regarded as functions
of q and q′. Since dS is an exact differential, we must have

p =
∂S(q,q′)

∂q
; p

′ = −∂S(q,q′)

∂q′ . (D.91)

Every sufficiently smooth and non-degenerate function S(q,q′) defines a canonical
transformation through these relations.

Similarly, let S2(q,p
′) ≡ q′ · p′ + S, where p and q′ are now regarded as

functions of q and p′. Then equation (D.90) becomes

dS2(q,p
′) = q

′ · dp′ + dq′ · p′ + dS = q
′ · dp′ + dq · p (D.92)

and

q
′ =

∂S2(q,p
′)

∂p′ ; p =
∂S2(q,p

′)

∂q
. (D.93)

If S3(q
′,p) ≡ q ·p−S, where q and p′ are regarded as functions of q′ and p, then

p
′ =

∂S3(q
′,p)

∂q′ ; q =
∂S3(q

′,p)

∂p
. (D.94)

Canonical transformations can also be defined by generating functions of the form
S4(p,p

′). Notice that all these generating functions depend on one old and one
new variable so the canonical transformation defined by a generating function is,
inconveniently, always implicit.

The generating function S(q,q′) = q · q′ yields the canonical transformation
(q′,p′) = (p,−q); this transformation simply exchanges position and momentum
and highlights the fact that configuration space and momentum space have equal
status in Hamiltonian mechanics. The generating function S2(q,p

′) = q ·p′ yields
the identity transformation (q′,p′) = (q,p).

These results can be extended to time-dependent generating functions S(w, t),
using the extended phase space (Q,P) = (q0,q, p0,p) defined earlier. Let us define
a canonical transformation in the extended phase space by the generating function

S2(Q,P
′) = q0p

′
0 + S2(q,p

′, q0). (D.95)

The analogs to equations (D.93) in the extended phase space become

q′0 =
∂S2

∂p′0
= q0 ; p0 =

∂S2

∂q0
= p′0 +

∂S2

∂q0
; q

′ =
∂S2

∂p′ ; p =
∂S2

∂q
. (D.96)

The third and fourth equations are simply a restatement of the original canonical
transformation between w and w′ as defined by equations (D.93). The Hamiltonian
H(Q,P) in the extended phase space (eq. D.85) is transformed to

H′(Q′,P′) = H(Q,P) = H(q,p, q0) + p0 = H(q,p, q0) + p′0 +
∂S2

∂q0
, (D.97)
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where q0, q, and p are functions of q′0, q
′, and p′ defined by equations (D.96). Now

we transform back from the extended phase space (Q′,P′) to ordinary phase space
with coordinates (q′,p′). The time variable is unchanged, since q0 = q′0. However,
the motion is now described by a Hamiltonian

H ′(q′,p′, t) = H(q,p, t) +
∂S2

∂q0
= H(q,p, t) +

∂S2

∂t
. (D.98)

Similarly, the generating function S3(q
′,p, t) transforms the Hamiltonian to

H ′(q′,p′, t) = H(q,p, t) − ∂S3

∂t
. (D.99)

Appendix E: Delaunay variables for Kepler orbits

Angle-action variables for Kepler orbits are fundamental tools of celestial mechan-
ics. They follow immediately from formulae in §3.5.2 for the isochrone potential
by taking the limit b → 0. From equations (3.226), the Kepler Hamiltonian and
frequencies are

HK = − (GM)2

2(L + Jr)2
; Ωr = Ωϑ =

(GM)2

(L+ Jr)3
; Ωφ = sgn(Jφ)Ωϑ. (E.1)

Since HK depends on the actions in the combination L + Jr, it is convenient
to make this combination an action. Delaunay variables (Ja, Jb, Jc) are defined
by the generating function

Sd = θφJa + θϑ(Jb − |Ja|) + θr(Jc − Jb). (E.2)

Differentiating with respect to the old angles we discover the connection between
the new and old actions:

Jφ = Ja ; Jϑ = Jb − |Ja| ; Jr = Jc − Jb. (E.3)

Thus the Delaunay actions are (Ja, Jb, Jc) = (Lz, L, L+Jr). In these variables the
Kepler Hamiltonian and frequencies take on an extremely simple form:

HK = − (GM)2

2J2
c

; Ωa = Ωb = 0 ; Ωc =
(GM)2

J3
c

. (E.4)

Since Ωa and Ωb both vanish, the Delaunay angles θa and θb are both integrals
of motion. Thus the Kepler potential has five isolating integrals—three actions and
two angles. Differentiating Sd with respect to Ja, etc., we find that the Delaunay
angles are

θa = θφ − sgn(Ja)θϑ = θ1 ; θb = θϑ − θr ; θc = θr. (E.5)

Physically, the constancy of θa and θb implies that both the orientation of the
orbital plane and the direction of the line of apsides are fixed, or, equivalently, that
both the angular-momentum vector L and the eccentricity vector e (Box 3.2) are
time-independent.1

A Kepler orbit is conventionally described by its semi-major axis a and ec-
centricity e, which were defined in §3.1b, and by three angular orbital elements, i,

1 Conservation of the three components of L and the three components of e yields only
five independent constraints because L · e = 0.
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n

orbit

ascending node

line of nodes

pericenter

Figure E.1 Definition of Kepler or-
bital elements. The line of nodes is
the intersection of the orbital plane
with the xy-plane, and the angle Ω
between it and the x axis is the lon-
gitude of the ascending node. The
pericenter occurs where the orbit
crosses a line from the center that
makes an angle ω, the argument of
pericenter, with the line of nodes.

Ω and ω, as shown in Figure E.1. In the limit b → 0 the parameter c of equations
(3.240) becomes −GM/(2H), so by equation (3.32) it is equal to a. The variable

e in equation (3.240) becomes (1 − L2/GMa)1/2 so by (3.25b) it is equal to the
Kepler eccentricity having the same symbol. With equations (3.230) we have that
a, e, and i are given by the Delaunay actions:

a =
J2
c

GM
; e =

s

1 − J2
b

J2
c

; i = cos−1(Ja/Jb). (E.6)

The inverse relations are

Ja = Jb cos i ; Jb = Jc
p

1 − e2 ; Jc =
√
GMa. (E.7)

In the limit b → 0, equations (3.240) reduce to equation (3.28) between r and
η, so the latter is the eccentric anomaly. By the first of equations (3.241), the
angle θc = θ3 is simply 2πt/Tr, where Tr = 2π/Ωc is the radial period and t is the
time elapsed since the last pericenter passage (eq. 3.28b). In celestial mechanics
this angle is known as the mean anomaly and is usually denoted by `. The second
of equations (3.241) shows that

θ2 = ψ + θ3 − 2 tan−1

„r
1 + e

1 − e
tan( 1

2
η)

«
. (E.8)

Equation (3.29) shows that the last term is simply ψ0 − ψ, where ψ0 is the angle
measured in the orbit plane from the ascending node to the pericenter; this angle
is the argument of pericenter and is usually denoted by ω (Figure E.1). Thus
for a Kepler potential

θ2 = ω + θ3 = ω + `. (E.9)

The analogous relations for the other angle-action variables are given in Ta-
ble E.1.
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Table E.1 Angle-action variables in a Kepler potential

actions Jφ =
p
GMa(1 − e2) cos i

Jϑ =
p
GMa(1 − e2)(1 − | cos i|)

Jr =
√
GMa(1 −

√
1 − e2)

angles θφ = Ω + sgn(Lz)(ω + `) ; θϑ = ω + ` ; θr = `
Hamiltonian − 1

2
(GM)2/(Jr + Jϑ + |Jφ|) = − 1

2
GM/a

frequencies Ωφ = sgn(Jφ)Ωϑ
Ωϑ = (GM)2/(Jr + Jϑ + |Jφ|)2 = (GM/a3)1/2

Ωr = Ωϑ

actions J1 =
p
GMa(1 − e2) cos i

J2 =
p
GMa(1 − e2)

J3 =
√
GMa(1 −

√
1 − e2)

angles θ1 = Ω ; θ2 = ω + ` ; θ3 = `
Hamiltonian − 1

2
(GM)2/(J2 + J3)

2 = − 1
2
GM/a

frequencies Ω1 = 0 ; Ω2 = (GM)2/(J2 + J3)
3 = (GM/a3)1/2 ; Ω3 = Ω2

actions Ja =
p
GMa(1 − e2) cos i

Jb =
p
GMa(1 − e2)

Jc =
√
GMa

angles θa = Ω ; θb = ω ; θc = `
Hamiltonian − 1

2
(GM)2/J2

c = − 1
2
GM/a

frequencies Ωa = 0 ; Ωb = 0 ; Ωc = (GM)2/J3
c = (GM/a3)1/2

notes: Actions and angles are expressed in terms of the standard Kepler orbital elements:
semi-major axis a, eccentricity e, inclination i, longitude of the ascending node Ω, argu-
ment of pericenter ω, and mean anomaly `. These are defined in §3.1b and Figure E.1.
Unfortunately, Ω is also used for the frequency corresponding to a given action, but in
this case it is always accompanied by a subscript.

Appendix F: Fluid mechanics

The basic principles of fluid mechanics play an important role in galaxy dynamics,
both because fluid and stellar systems behave in similar ways and because gas
dynamics is central to the formation of galaxies. We review here some of the
concepts of fluid mechanics that are used in the book. For further reading see
Landau & Lifshitz (2000).

F.1 Basic equations

The state of a fluid is specified by its density ρ(x, t), pressure p(x, t), and velocity
field v(x, t), and possibly by other thermodynamic functions such as the tempera-
ture T (x, t) and specific entropy or entropy per unit mass s(x, t).

F.1.1 Continuity equation

Consider an arbitrary closed volume V that is fixed in space and bounded by a sur-

face S. The mass of fluid in this volume is M(t) =
R
V

d3x ρ(x, t), and M(t) changes
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with time at a rate dM/dt =
R
V

d3x ∂ρ/∂t. The mass flowing out through the sur-

face area element d2S per unit time is ρv · d2S, where d2S is an outward-pointing
vector, normal to the surface, with magnitude d2S. Thus dM/dt = −

H
S

d2S · (ρv)
and hence Z

V

d3
x
∂ρ

∂t
+

I

S

d2
S · (ρv) = 0. (F.1)

Using the divergence theorem (B.43),
Z

V

d3
x

»
∂ρ

∂t
+ ∇ · (ρv)

–
= 0; (F.2)

since this result must hold for any volume, we arrive at the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0. (F.3)

In Cartesian coordinates this can be written

∂ρ

∂t
+

∂

∂xj
(ρvj) = 0, (F.4)

where we have used the summation convention (page 772).
In perturbation theory, we sometimes need to know the change in density

resulting from a small displacement of the fluid. Let the fluid element at position
x be displaced to x+εξ(x), where ε is sufficiently small. If the displacement occurs
at t = t0, we may write v(x, t) = ξ(x)δ(t− t0), where δ denotes the delta function
(Appendix C.1). If we now integrate equation (F.3) in time from just before to
just after t0, we have

ρ1 = −∇ · (ρ0ξ), (F.5)

where ερ1(x) is the change in density at x. We have replaced the density by its
unperturbed value in the divergence, since it is multiplied by the small quantity ξ.
For more details see, for example, Chandrasekhar (1969).

F.1.2 Euler’s equation

In a fluid that has no viscosity, the total pressure force acting on a volume is

−
H
S

d2S p. In addition, there may be some external force, in particular from a
gravitational potential Φ(x, t). Thus Newton’s second law reads

M
dv

dt
= −

I

S

d2
S p−M∇Φ. (F.6)

According to the divergence theorem in the form (B.46),
H
S

d2S p =
R
V

d3x∇p,
and since equation (F.6) must hold for any volume V ,

ρ
dv

dt
= −∇p− ρ∇Φ. (F.7)

The quantity dv/dt in equation (F.7) is the acceleration of the fluid element
at x. This is not necessarily the same as ∂v/∂t, the rate of change of velocity
at the point x, since different fluid elements occupy this point at different times:
for example, in a waterfall ∂v/∂t = 0 but dv/dt = g, the acceleration due to the
Earth’s gravity. More generally, if w(x, t) is any intrinsic property of the fluid—
pressure, density, velocity, etc.—we define dw/dt to be the rate of change of w
as seen by an observer traveling with the fluid. The quantity dw/dt is sometimes
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referred to as the Lagrangian or convective derivative of w, to distinguish it
from the Eulerian derivative ∂w/∂t. The relation between these two derivatives
is straightforward to derive. The change dw during the interval dt is the sum of
the change at a given point in space, (∂w/∂t)dt, and the difference in w between
two points separated by dx = vdt at the same instant. The latter change isP3
i=1(∂w/∂xi)dxi = dx · ∇w = v · ∇w dt. Thus

dw

dt
=
∂w

∂t
+ v · ∇w. (F.8)

If we replace w in this general formula by the three components of the velocity v,
we have

dv

dt
=
∂v

∂t
+ (v · ∇)v. (F.9)

See equations (B.55) to (B.58) for (v · ∇)v in various coordinate systems.
Combining equations (F.7) and (F.9) we arrive at Euler’s equation

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p− ∇Φ. (F.10)

In Cartesian coordinates, using the summation convention, we have

∂vi
∂t

+ vj
∂vi
∂xj

= −1

ρ

∂p

∂xi
− ∂Φ

∂xi
. (F.11)

A static fluid has v = 0 and thus obeys the equation of hydrostatic equilibrium,

∇p = −ρ∇Φ. (F.12)

Euler’s equation can be regarded as a statement of conservation of momentum.
The momentum per unit volume of the fluid is ρv. The rate of change of momentum
per unit volume is

∂

∂t
(ρvi) = vi

∂ρ

∂t
+ ρ

∂vi
∂t

. (F.13)

Using the continuity and Euler equations (F.4) and (F.11) this can be rewritten as

∂

∂t
(ρvi) = −vi

∂

∂xj
(ρvj) − ρvj

∂vi
∂xj

− ∂p

∂xi
− ρ

∂Φ

∂xi
= −∂Πij

∂xj
− ρ

∂Φ

∂xi
, (F.14)

where
Πij ≡ ρvivj + pδij , (F.15)

and δij is 1 if i = j and zero otherwise. To interpret equation (F.14), we integrate
over a volume V that is fixed in space and bounded by a surface S. We have

∂

∂t

Z

V

d3
x ρvi = −

Z

V

d3
x
∂Πij

∂xj
−
Z

V

d3
x ρ

∂Φ

∂xi

= −
I

S

d2SjΠij −
Z

V

d3
x ρ

∂Φ

∂xi
,

(F.16)

where in the last equation we have used the divergence theorem (B.44), except that
the vector Fj in that equation has been replaced by the tensor Πij . The left side is
the rate of change of the ith component of the momentum contained in the volume
V . The integral over ∂Φ/∂xi on the right is the rate at which momentum is added
to this volume from the gravitational acceleration −∇Φ. The surface integral on
the right side therefore represents the rate at which momentum flows out of the
volume through the surface S. In particular,

P3
j=1 Πijd

2Sj is the rate at which
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the ith component of the momentum flows through the surface element d2S. The
tensor Πij is therefore called the momentum flux tensor.

F.1.3 Energy equation

A fluid carries kinetic energy, internal energy, and gravitational potential energy.
We ignore other energy forms, such as magnetic fields (Kulsrud 2005).

The kinetic energy per unit volume is K(x, t) = 1
2
ρv2. Using the continuity

equation (F.3), Euler’s equation (F.10), and the vector identity v · [(v · ∇)v] =
vivj(∂vi/∂xj) = 1

2
v ·∇v2, the rate of change of kinetic energy per unit volume can

be written

∂K

∂t
= 1

2

∂ρ

∂t
v2 + ρv · ∂v

∂t

= − 1
2
v2

∇ · (ρv) − 1
2
ρv · ∇v2 − v · ∇p− ρv · ∇Φ

= − 1
2
∇ · (ρvv2) − v · ∇p− ρv · ∇Φ.

(F.17)

The internal energy per unit volume is U(x, t) = ρu, where u is the specific internal
energy (internal energy per unit mass), which is determined by the equation of state
of the fluid. The rate of change of internal energy per unit volume is

∂U

∂t
=
∂ρ

∂t
u + ρ

∂u

∂t
= −u∇ · (ρv) + ρ

∂u

∂t
. (F.18)

The potential energy per unit volume due to an external gravitational field is
We = ρΦe, and the energy due to the self-gravity of the fluid is Ws = 1

2
ρΦs, where

∇2Φs = 4πGρ (eq. 2.18). Setting W ≡We +Ws and Φ ≡ Φe + Φs, we have

∂W

∂t
=

∂

∂t
ρ(Φe + 1

2
Φs) =

∂ρ

∂t
(Φe + 1

2
Φs) + ρ

∂(Φe + 1
2
Φs)

∂t

= −(Φe + 1
2
Φs)∇ · (ρv) + ρ

∂(Φe + 1
2
Φs)

∂t
.

(F.19)

The total rate of change of energy is

∂

∂t
(K + U +W ) = −∇ · [ρv( 1

2
v2+u+ Φ)] − v · ∇p+ ρv · ∇u

+ρ
∂u

∂t
+ 1

2
Φs∇ · (ρv) + ρ

∂(Φe + 1
2
Φs)

∂t

= −∇ · [ρv( 1
2
v2 + u+ Φ)] − v · ∇p+ρ

du

dt
+ 1

2
Φs∇ · (ρv) + ρ

∂(Φe + 1
2
Φs)

∂t
,

(F.20)
where we have used equation (F.8) to replace the Eulerian derivative of u by the
convective derivative.

To proceed further, we use the second law of thermodynamics, which states
that the specific entropy of a fluid element changes if heat flows into or out of it,
or if heat is generated within the element by viscous dissipation, nuclear reactions,
or other mechanisms. Let q be the heat flux, so the rate of heat flow out of a
volume is

H
S

d2S · q, which is equal to
R
V

d3x∇ · q by the divergence theorem,
equation (B.43). Let ε be the rate of internal energy production per unit mass.
Then according to the second law, the specific entropy changes at a rate given by

ρT
ds

dt
= −∇ · q + ρε. (F.21)
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The specific entropy is related to the volume per unit mass V = 1/ρ, the internal
energy u, and the specific enthalpy h ≡ u+ pV = u + p/ρ by

du = Tds− pdV = Tds+
p

ρ2
dρ ; dh = Tds+ V dp = Tds+

dp

ρ
. (F.22)

We can now simplify equation (F.20) by using (F.22) to replace du/dt by
Tds/dt + (p/ρ2)dρ/dt and replacing u in the first term on the right side by h =
u+ p/ρ. After some algebra we obtain

∂

∂t
(K+U+W ) = −∇ ·

ˆ
ρv( 1

2
v2 + h+ Φ) + q

˜
+ρε+ 1

2
Φs∇ ·(ρv)+ρ

∂(Φe + 1
2
Φs)

∂t
.

(F.23)
In the simplest case, the heat flux is proportional to the temperature gradient, so
we may write

q = −κ∇T, (F.24)

where κ is the thermal conductivity, which in general may depend on T and ρ.
Using the equation of continuity,

1
2
Φs∇ · (ρv) + 1

2
ρ
∂Φs

∂t
= 1

2

„
ρ
∂Φs

∂t
− ∂ρ

∂t
Φs

«

=
1

8πG
∇ ·

„
∂Φs

∂t
∇Φs − Φs∇

∂Φs

∂t

«
,

(F.25)

where the last equality can be verified using Poisson’s equation.
Thus we have

∂

∂t
(K + U +W ) =

∂

∂t

ˆ
ρ( 1

2
v2 + u + Φe + 1

2
Φs)
˜

= −∇ ·
»
ρv( 1

2
v2 + h + Φ) − κ∇T

+
1

8πG

„
Φs∇

∂Φs

∂t
− ∂Φs

∂t
∇Φs

«–
+ ρε+ ρ

∂Φe

∂t
,

(F.26)

where Φ = Φs + Φe. The terms on the right side of equation (F.26) can be inter-
preted as follows. The quantity ρv( 1

2
v2 +h+Φ) is the energy flux vector, which

represents the rate at which energy is convected by the fluid. The term propor-
tional to κ represents the conduction of heat. The terms involving Φs represent
the rate at which energy is transported by self-gravity. The term ρε represents the
rate of heat generation by internal processes. The term involving the external po-
tential Φe reflects changes in the zero-point of the external gravitational potential
(cf. eq. D.10).

F.1.4 Equation of state

To relate the pressure and density, we need an equation of state p = p(ρ, s) or
p = p(ρ, T ). For our purposes it is usually sufficient to consider the simple case of
a barotropic equation of state, where the pressure is determined by the density,

p = p(ρ). (F.27)

The most important examples of barotropic equations of state arise when the fluid
is isentropic or adiabatic, that is, has constant specific entropy. In an isentropic
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fluid the thermodynamic relations (F.22) simplify to

du =
p

ρ2
dρ ; dh =

dp

ρ
, (F.28)

so we may write

u(ρ) =

Z ρ

0

dρ′
p(ρ′)

ρ′2
; h(ρ) =

Z ρ

0

dp(ρ′)

ρ′
=

Z ρ

0

dρ′

ρ′
dp(ρ′)

dρ′
. (F.29)

For a barotropic fluid, Euler’s equation (F.10) becomes simply

∂v

∂t
+ (v · ∇)v = −∇(h+ Φ). (F.30)

F.2 The ideal gas

One of the simplest fluids is the ideal gas, whose equation of state is

p =
ρkBT

m
, (F.31)

where kB is Boltzmann’s constant and m is the mass of a single molecule. The
pressure in an ideal gas is related to the velocity dispersion of the molecules in each
direction by

p = ρv2
x = ρv2

y = ρv2
z , (F.32)

and thus

v2
x = v2

y = v2
z = 1

3
v2 =

kBT

m
. (F.33)

The first of equations (F.22) implies that

ds =
1

T
du− p

Tρ2
dρ. (F.34)

Writing the internal energy u as a function of T and ρ, we have

ds =
1

T

„
∂u

∂T

«

ρ

dT +

»
1

T

„
∂u

∂ρ

«

T

− p

Tρ2

–
dρ. (F.35)

If we write the entropy s as a function of T and ρ, we have

ds =

„
∂s

∂T

«

ρ

dT +

„
∂s

∂ρ

«

T

dρ. (F.36)

Since dT and dρ are arbitrary, their coefficients in the previous two equations must
be the same. Hence„

∂s

∂T

«

ρ

=
1

T

„
∂u

∂T

«

ρ

;

„
∂s

∂ρ

«

T

=
1

T

„
∂u

∂ρ

«

T

− p

Tρ2
. (F.37)

The derivative of the first expression with respect to ρ is ∂2s/∂ρ∂T , which must
equal the derivative of the second expression with respect to T . Thus

„
∂

∂ρ

«

T

1

T

„
∂u

∂T

«

ρ

=

„
∂

∂T

«

ρ

»
1

T

„
∂u

∂ρ

«

T

− p

Tρ2

–
. (F.38)

This expression can be simplified to
„
∂u

∂ρ

«

T

=
p

ρ2
− T

ρ2

„
∂p

∂T

«

ρ

. (F.39)
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For the ideal gas, the equation of state (F.31) then implies that (∂u/∂ρ)T = 0; thus
the internal energy per unit mass is a function of temperature alone, u = u(T ).
For an ideal gas of point particles, the internal energy is simply the kinetic energy
associated with random motions,

u = 1
2
v2 =

3kBT

2m
; (F.40)

more generally, if the particles have q internal degrees of freedom,

u =
(q + 3)kBT

2m
. (F.41)

Equation (F.35) can now be evaluated as

ds =
kB

m

»
q + 3

2

dT

T
− dρ

ρ

–
, (F.42)

which can be integrated to yield the specific entropy,

s =
kB

m
ln

„
T (q+3)/2

ρ

«
+ constant. (F.43)

There are two important special cases in which the ideal gas is barotropic. (i)
If the temperature of the gas is fixed everywhere at T0, then the fluid is said to be
isothermal. In this case

p = Kρ, (F.44)

with K = kBT0/m. (ii) If the fluid is isentropic, equation (F.43) implies that

ρ ∝ T (q+3)/2 = T 1/(γ−1), (F.45)

where we have replaced q by a new constant γ ≡ (q+5)/(q+3). Using the equation
of state (F.31), we then have

p = Kργ , (F.46)

where K is a constant that depends on the specific entropy. A barotropic equation
of state with the power-law form (F.46) is known as a polytropic equation of
state; the isothermal equation of state (F.44) is polytropic with γ = 1.

F.3 Sound waves

We examine the evolution of small disturbances in a stationary barotropic fluid of
constant density ρ0. We assume that the gravitational field ∇Φ = 0. If the fluid
is subjected to a small perturbation, we may write

ρ(x, t) = ρ0 + ερ1(x, t) ; h(x, t) = h0 + εh1(x, t) ; v(x, t) = εv1(x, t), (F.47)

where ε � 1 and the quantities with subscripts 0 and 1 are of the same order of
magnitude. Substituting (F.47) into equations (F.3), (F.29), and (F.30), we find
that the terms that are independent of ε vanish, and discarding terms proportional
to ε2 we obtain

∂ρ1

∂t
+ ρ0∇ · v1 = 0 ; h1 =

„
dp

dρ

«

ρ0

ρ1

ρ0
;

∂v1

∂t
= −∇h1. (F.48)

We differentiate the first of these with respect to time and eliminate v1 and h1 to
obtain the wave equation

∂2ρ1

∂t2
− v2

s∇2ρ1 = 0, (F.49)
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where

v2
s ≡

„
dp

dρ

«

ρ0

. (F.50)

The solution of this equation is simplest to understand when ρ1 depends on
only one coordinate, say, x. Then

∂2ρ1

∂t2
− v2

s
∂2ρ1

∂x2
= 0. (F.51)

The general solution is

ρ1 = f+(x− vst) + f−(x+ vst), (F.52)

where f+ and f− are arbitrary functions. This solution consists of two superim-
posed waves, both traveling at speed vs—one (f+) to the right and the other (f−)
to the left. The disturbances are sound waves, and vs is the sound speed.

The simplest examples of sound waves are uniform wavetrains of the form

ρ1 = A cos(kx− ωt+ constant), (F.53)

which satisfy equation (F.51) when

ω2 = v2
s k

2. (F.54)

This is the dispersion relation for sound waves.
In general the perturbations in a sound wave are adiabatic, and hence equa-

tions (F.31), (F.46), and (F.50) yield for the sound speed in an ideal gas

vs =

r
γp0

ρ0
=

r
γkBT0

m
=
q

1
3
γv2, (F.55)

where T0 is the temperature of the equilibrium gas and the second equality follows
from (F.33). Hence the speed of sound is close to the rms speed of the molecules.

F.3.1 Energy and momentum in sound waves

We now compute the density and flux of energy and momentum in a train of
sound waves. We assume that the waves are traveling in the x-direction and that
vy = vz = 0. In the absence of a gravitational field, the energy density of the fluid is
E = ρ( 1

2
v2
x+u) (eq. F.26; see Problem 5.7 for sound waves with self-gravity). In the

undisturbed state ρ = ρ0 is a constant and vx = 0. In the presence of a wave, the
value of ρu peaks where ρ is largest and is smallest at troughs of ρ. These extrema
of ρu occur where the fluid is stationary and there is no kinetic contribution to
E, so E is an oscillating function. We want to identify the amount by which E
is changed by the wave when averaged over a cycle, for it is this net change in
E that must be supplied to the fluid to establish a wavetrain. Only this average
contribution to E is propagated by the wave rather than sloshing backwards and
forwards during each cycle. The derivation below follows Lighthill (1978).

We make use of the energy transport equation (F.26), which in the present
context reads

∂E

∂t
+
∂F

∂x
= 0, where F = ρvx(

1
2
v2
x + h) (F.56)

is the energy flux. We write

E = (ρu)0 +E′ +Ew ; F = F ′ + Fw, (F.57)
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where E′ and Ew are the non-wave and wave energy densities, and F ′ and Fw are
the non-wave and wave energy fluxes. We demand that the non-wave and wave
contributions separately satisfy transport equations analogous to (F.56), as they
must if they are to be interpreted as densities and fluxes of conserved quantities.

Since the fluid is assumed barotropic, ρu is a function of only ρ, so it can be
expanded in a Taylor series,

ρu = (ρu)0 +
d(ρu)

dρ

˛̨
˛̨
0

∆ρ+ 1
2

d2(ρu)

dρ2

˛̨
˛̨
0

(∆ρ)2 + O(∆ρ3), (F.58)

where ∆ρ = ρ−ρ0. Equation (F.28) and the definition of specific enthalpy h imply
that

d(ρu)

dρ

˛̨
˛̨
0

= u0 +
p0

ρ0
= h0 ;

d2(ρu)

dρ2

˛̨
˛̨
0

=
1

ρ0

dp

dρ

˛̨
˛̨
0

=
v2
s

ρ0
; (F.59)

thus

ρu = (ρu)0 + h0∆ρ+
v2
s

2ρ0
(∆ρ)2 + O(∆ρ3). (F.60)

We take the non-wave energy and flux to be

E′ ≡ h0∆ρ ; F ′ = h0ρvx, (F.61a)

so
∂E′

∂t
+
∂F ′

∂x
= h0

»
∂ρ

∂t
+
∂(ρvx)

∂x

–
, (F.61b)

which equals zero because of the continuity equation (F.4). Since both the total
energy and the non-wave energy satisfy transport equations of the form (F.56),
their difference, the wave energy, must do so as well. The wave energy and wave
flux are then

Ew = E −E′ − (ρu)0 = 1
2
ρv2
x + ρu− (ρu)0 − h0(ρ− ρ0),

Fw = F − F ′ = 1
2
ρv3
x + ρvx(h− h0).

(F.62)

Note that the wave and non-wave energy densities are defined exactly, not merely
to some order in perturbation theory. However, for most purposes it is sufficient
to work in the approximation that the amplitude of the sound wave is small. Let
us therefore write the density ρ(x, t) = ρ0 + ρ1(x, t) + ρ2(x, t) + · · ·, where ρn is
of order An, and A is the small amplitude of the sound wave. We write a similar
expansion for vx, noting that vx0 = 0 since the equilibrium fluid is stationary. We
have

Ew = 1
2
ρ0v

2
x1 +

v2
s

2ρ0
ρ2
1 + O(A3),

Fw = ρ0vx1h1 = v2
s ρ1vx1 + O(A3).

(F.63)

From the linearized continuity equation (F.48), the first-order density and
velocity perturbations associated with a wavetrain may be written as

ρ1 = Aρ cos(kx− ωt)

vx1 = Av cos(kx− ωt)
, where Av =

ω

kρ0
Aρ. (F.64)
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The wave energy density and flux can thus be written to second-order in the am-
plitude as

Ew = 1
2
ρ0A

2
v cos2(kx− ωt) +

v2
sA

2
ρ

2ρ0
cos2(kx− ωt)

=
ω2 + v2

s k
2

2k2ρ0
A2
ρ cos2(kx− ωt) =

v2
s

ρ0
A2
ρ cos2(kx− ωt),

Fw = v2
s ρ1vx1 =

v2
sω

kρ0
A2
ρ cos2(kx− ωt) = ±vsEw,

(F.65)

where we have used the dispersion relation ω = ±vsk (eq. F.54), and the ± signs
correspond to waves traveling to the right and to the left. We conclude that the
energy flux in a plane sound wave equals the energy density times the speed of
sound; that is, the energy of the wave propagates at the sound speed.

Averaging over one cycle, we have

〈Ew〉 = 1
2
ρ0A

2
v ; 〈Fw〉 =

ω

2k
ρ0A

2
v = ±vs〈Ew〉. (F.66)

The transport equation (F.56) for the wave energy density and flux Ew and
Fw describes conservation of energy to second-order in the wave amplitude with a
constant multiple of the continuity equation (F.61b) excluded. This definition of
the wave energy eliminates much larger first-order terms that have no bearing on
the behavior of the waves.

We may calculate the momentum density and flux of the wave similarly. The
momentum density in the fluid containing the wavetrain we are considering is
P = ρvx, and from equation (F.14) the momentum flux (rate of transfer of x-
momentum in the x-direction) is Π = ρv2

x + p. We write

P = P ′ + Pw ; Π = p0 + Π′ + Πw, (F.67)

where P ′ = ρ0vx, Π′ = 1
2
ρ0v

2
x + ρ0(h− h0), and

Pw = (ρ− ρ0)vx = ρ1vx1 + O(A3) = ± vs
ρ0
A2
ρ cos2(kx− ωt) + O(A3)

Πw = (ρ− 1
2
ρ0)v

2
x + (p− p0) − ρ0(h − h0) = 1

2
ρ0v

2
x1 +

v2
s

2ρ0
ρ2
1 + O(A3)

=
v2
s

ρ0
A2
ρ cos2(kx− ωt) + O(A3)

(F.68)

are the momentum density and momentum flux of the wave. These satisfy the
conservation equation

∂Pw

∂t
+
∂Πw

∂x
= 0, (F.69)

and Πw = ±vsPw, so the momentum of the wave is propagated at the sound
speed. The first-order non-wave contributions P ′ and Π′ also satisfy a conservation
equation,

∂P ′

∂t
+
∂Π′

∂x
= 0, (F.70)

which is simply ρ0 times Euler’s equation.
The transport of energy and momentum through the fluxes Fw and Πw is

sometimes called advective or Reynolds transport. Advective transport is trans-
port of a quantity due to bulk motions of the fluid (as opposed, say, to diffusion or
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Figure F.1 (a) The real part of a wavetrain with wavenumber k0. (b) A typical wave
packet. The dashed curve is the envelope or amplitude of the wave packet. (c) The
absolute value |F (k)| of the Fourier amplitude of the packet.

other microscopic processes). Reynolds transport is associated with the Reynolds
stress 〈ρvivj〉. See Whitham (1974) or Lighthill (1978) for general discussions of
energy and momentum transport by waves.

F.4 Group velocity

The dispersion relation for sound waves ω(k) = ±vsk (eq. F.54) is linear in the
wavenumber k. This is not a general property of all waves; for example, the
dispersion relation for sound waves in a medium with self-gravity has the form
ω2(k) = v2

s k
2 − 4πGρ0 (eq. 5.34). If ω(k) is not linear in k, the medium is said to

be dispersive.

One example of a wave in a dispersive medium is a uniform wavetrain of the
form exp{i[k0x−ω(k0)t]}, as shown in Figure F.1a. However, any wavetrain of this
sort is somewhat unphysical, since it extends throughout all space. To describe a
spatially localized wave is more difficult, since general solutions of the form (F.52)
do not exist for a dispersive medium. Instead, we must construct a wave packet, a
wave whose amplitude is non-zero over a region whose extent is finite, but changes
only on scales much larger than the wavelength. A typical wave packet is shown in
Figure F.1b. The wave packet can be represented mathematically by superimposing
uniform wavetrains:

f(x, t) =

Z ∞

−∞

dk

2π
F (k)ei[kx−ω(k)t] ; (F.71)

with this definition, F (k) exp[−iω(k)t] is the spatial Fourier transform of f(x, t),
as defined in equation (B.67).

In any small region, the wave packet looks like a wavetrain of fixed wavenum-
ber, say, k0. Hence F (k) will be non-zero only for values of k near k0 (see
Figure F.1c), and we may therefore expand ω(k) in a Taylor series, ω(k) '
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ω(k0) + (k − k0)vg, where

vg ≡
„

dω(k)

dk

«

k0

. (F.72)

When we write k = k0 + u, equation (F.71) becomes

f(x, t) ' ei[k0x−ω(k0)t]

Z ∞

−∞

du

2π
F (k0 + u)eiu(x−vgt). (F.73)

We can rewrite this expression as

f(x, t) ' ei[k0x−ω(k0)t]A(x− vgt), (F.74)

where

A(x) ≡
Z ∞

−∞

du

2π
F (k0 + u)eiux. (F.75)

Because F (k) is non-zero only for k near k0, the integrand in this equation is
non-zero only for |u| � k0. Thus A(x) varies much more slowly than exp{i[k0x−
ω(k0)t]}, and we can picture the wave at any instant as having a rapidly varying
phase ∝ exp(ik0x) modulated by a slowly varying amplitude |A(x − vgt)| (the
dashed line in Figure F.1b). This argument shows that the envelope of the wave
propagates with a velocity vg, which is known as the group velocity. The group
velocity represents the velocity of any true physical disturbance, since a disturbance
arising from any physical source is always localized.

The group velocity is distinct from the phase velocity vp, the velocity of a
given crest of the wave. On a crest kx− ωt = constant ; thus

vp =
ω

k
. (F.76)

The phase velocity and group velocity are equal in a non-dispersive medium, for
then ω(k) is linear in k. It can be shown that the energy of a dispersive wave prop-
agates at the group velocity (Whitham 1974). For the sound waves investigated in
Appendix F.3.1, vp = vg = vs, the sound speed.

Appendix G: Discrete Fourier transforms

The discrete Fourier transform of a set of K numbers, {xk} (k = 0, . . . , K − 1), is

x̂m ≡
K−1X

k=0

xke
−2πikm/K (m = 0, . . . , K − 1). (G.1a)

We have:

Discrete Fourier transform theorem If the K numbers x̂m are defined by
equation (G.1a), then

xk′ =
1

K

K−1X

m=0

x̂me2πik′m/K . (G.1b)

Proof: We multiply both sides of equation (G.1a) by (1/K)e2πik′m/K and sum over
m, to obtain

1

K

K−1X

m=0

x̂me2πik′m/K =
1

K

K−1X

m=0

K−1X

k=0

xke
2πi(k′−k)m/K =

1

K

K−1X

k=0

xk

K−1X

m=0

e2πi(k′−k)m/K .

(G.2)
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The inner sum on the extreme right of equation (G.2) is a geometric series, with
sum K if k′ = k, or (since k and k′ are integers and |k′ − k| < K)

1 − e2πi(k′−k)

1 − e2πi(k′−k)/K = 0 if k′ 6= k. (G.3)

Thus the only contributing term in the outer sum on the right of equation (G.3)
is that for which k = k′./

In 1965 Cooley and Tukey published an algorithm, known as the fast Fourier

transform, by which the discrete transform {x̂m} of K numbers xk can be evalu-
ated in only ∼ K ln(K) multiplications and additions.1 For large K this is far fewer
operations than the K2 operations required by a direct evaluation of the sums of
equation (G.1a) (Press et al. 1986).

Discrete Fourier transforms share many of the properties of continuous Fourier
transforms. To demonstrate these properties, it is necessary to define the quantities
xk for k outside the range (0, K − 1) by the rule

xk = xk+mK for all integer m, (G.4)

i.e., to assume that xk is periodic with period K. Note that x̂m is already periodic
with period K (see eq. G.1a). We may now prove:

Discrete Fourier convolution theorem If the three sets of K numbers {xk},
{yk}, {zk} satisfy (G.4) and are related by

zk =
K−1X

k′=0

yk−k′xk′ , then ẑm = ŷmx̂m. (G.5)

Proof: We take the discrete Fourier transform of both sides of equation (G.5) and
then rearrange the resulting double sum. We have

ẑm =

K−1X

k=0

e−2πikm/K
K−1X

k′=0

yk−k′xk′ =

K−1X

k′=0

xk′e
−2πik′m/K

K−1X

k=0

yk−k′e
−2πi(k−k′)m/K .

(G.6)
If we now define k′′ ≡ k − k′, the inner sum in equation (G.6) becomes ŷm. This
is independent of k′, so it may be taken out of the outer sum, which then yields
x̂m./

Application to James’s Fourier potential solver Given K−1 real numbers
xk (k = 1, . . . , K − 1) we define the sine transform of the set to be the numbers

xα(S) ≡
K−1X

k=1

xk sin
“παk
K

”
(j = 1, . . . , K − 1). (G.7a)

Multiplying both sides of this equation by sin(παj/K) and summing over α we
find that the inverse transformation is

xj =
2

K

K−1X

α=1

xα(S) sin
“παj
K

”
. (G.7b)

1 The Cooley–Tukey algorithm requires that K = pm, where m is an integer and p is
a prime number; usually p = 2.
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Analogously we define the cosine transform of a set of K numbers xk (k =
0, . . . , K − 1) to be2

xα(C) ≡
K−1X

k=0

xk cos
“παk
K

”
. (G.8)

There is no elegant formula for recovering the xk from the xα(C), but the matrix
that is the inverse of Aαk ≡ cos(παk/K) can be calculated numerically if required.

Sine transforms help us to convolve values of the density on a grid with a
softening kernel (§2.9). For simplicity we consider the two-dimensional case, but
the results generalize straightforwardly to three dimensions. If the density at grid
point (i, j) is ρij , the potential values are

Φij =
X

kl

Si−k,j−l ρkl, (G.9)

where S is the softening kernel. Since this is an even function of its indices, i.e.,
Sij = S−i,j etc., and it will be evaluated only for |i − j| ≤ K, it can be written as
a sum of cosines:

Sij =
X

αβ

SαβC cos
“παi
K

”
cos
“πβj
K

”
. (G.10)

Using this expression to eliminate Si−k,j−l from (G.9), we have

Φij =
X

kl

X

αβ

SαβC cos
“πα(i− k)

K

”
cos
“πβ(j − l)

K

”
ρkl

=
X

kl

X

αβ

SαβC

h
cos
“παi
K

”
cos
“παk
K

”
+ sin

“παi
K

”
sin
“παk
K

”i

×
h
cos
“πβj
K

”
cos
“πβl
K

”
+ sin

“πβj
K

”
sin
“πβl
K

”i
ρkl,

(G.11)

where we have twice used cos(A−B) = cosA cosB+sinA sinB. When we multiply
out the two big square brackets, we get a sum of four terms of the type

X

αβ

SαβC

X

kl

cos
“παi
K

”
cos
“παk
K

”
sin
“πβj
K

”
sin
“πβl
K

”
ρkl

=
X

αβ

SαβC cos
“παi
K

”
sin
“πβj
K

”
ραβ(CS),

(G.12)

2 The connection between discrete complex Fourier transforms and discrete sine and
cosine transforms is established by: (i) taking the period of the data xk to be 2K; (ii)

breaking the sum x̂m =
P2K−1
k=0 xke

−πikm/K into a sum from 0 to K − 1 and another
from K to 2K − 1 and then using the periodicity of the xk to express the latter as a sum
from −K to −1; (iii) writing xk = x+

k +x−k , where x±k ≡ 1
2
(xk±x−k), and then combining

terms associated with k and −k to produce

x̂m = x0 + (−1)mx−K + 2

K−1X

k=1

»
x+
k cos

„
πkm

K

«
− ix−k sin

„
πkm

K

«–
.
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where

ραβ(CS) ≡
X

kl

cos
“παk
K

”
sin
“πβl
K

”
ρkl (G.13)

is ρkl with its first index cosine transformed and its second index sine transformed.
When these and the analogous results are inserted into (G.11), we find

Φij =
X

αβ

SαβC

»
ραβ(CC) cos

“παi
K

”
cos
“πβj
K

”
+ ραβ(CS) cos

“παi
K

”
sin
“πβj
K

”

+ ραβ(SC) sin
“παi
K

”
cos
“πβj
K

”
+ ραβ(SS) sin

“παi
K

”
sin
“πβj
K

”–
.

(G.14)
Thus, Φij is the sum of four contributions, one from each of the four sine or
cosine transforms of ρij . The generalization to three dimensions is clear: in three
dimensions there are eight possible transforms, ραβγ(CSS) etc., and each one will
give rise to a contribution to Φijk. The necessity of calculating eight sine/cosine
transforms of ρ in order to use the convolution theorem to calculate the potential
corresponds to the doubling of the range of each index mentioned below equation
(2.237) in the context of complex DFTs.

Box 2.5 describes a technique for obtaining the gravitational potential of a
general mass distribution without convolving the softening kernel with the full
density distribution. Instead a potential is calculated from the triple sine transform
of ρ, and a correction to this potential made by convolving the softening kernel
with a distribution of masses that is confined to the walls of the box. Here we
explain how the hollowness of the mass distribution dramatically simplifies the
convolution.

We break the boundary points of the grid into six isolated pieces, being the
top and bottom, front and back, etc., of the grid’s bounding box. We ensure that
each of these bounding planes is a complete (K + 1)× (K + 1) plane of grid points
by duplicating nodes of the grid that lie along edges of the grid, and splitting into
three copies the nodes that lie at the corners of the grid. We divide any mass
assigned to these replicated nodes in equal parts to the copies. Now the triple
cosine transform of a density distribution that is confined to the top and bottom
planes, k = 0 and k = K, is

ραβγtop/bot(CCC) =
X

ij

`
ρij0 + (−1)γρijK

´
cos
“παi
K

”
cos
“πβj
K

”
,

≡ ραβ.0 (CC) + (−1)γραβ.K (CC),

(G.15)

where the second line introduces a convenient notation for keeping track of the
objects generated. The key point is that the right side of equation (G.15) is just
a two-dimensional cosine transform, which is inexpensive to calculate. The other
two pairs of bounding planes generate similar contributions to ραβγ(CCC), so for a
hollow mass distribution ραβγ(CCC) may be expressed as a sum of two-dimensional
cosine transforms. The other transforms required, such as ραβγ(CCS), ραβγ(CSS),
and ραβγ(SSS) are even easier to evaluate because, for example,

P
k ρijk sin(πγk/K)

vanishes for a mass distribution that is confined to the top and bottom bounding
surfaces.
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Appendix H: The Antonov–Lebovitz theorem

This theorem states that all non-radial modes of a barotropic star with dp(ρ)/dρ >
0 are stable. The original proofs are by Antonov (1962b) and Lebovitz (1965), but
here we follow Aly & Pérez (1992).

To prove the theorem, we must show that W [ρ1] in equation (5.120) is never
negative. We begin by rewriting the second term using Poisson’s equation (5.115),
so

W [ρ1] =

Z
d3

x

˛̨
˛̨dΦ

dρ

˛̨
˛̨
0

ρ2
1(x) +

Z
d3

x ρ1(x)Φ1(x). (H.1)

Now we apply Schwarz’s inequality (B.75), setting A = |dΦ/dρ|1/20 ρ1 and B =

Φ1/|dΦ/dρ|1/20 . We have

W [ρ1] =

Z
d3

x(A2 +AB) ≥ X2

Y
+X =

X

Y
(X + Y ), (H.2)

where

X ≡
Z

d3
xAB =

Z
d3

x ρ1Φ1 ; Y ≡
Z

d3
xB2 =

Z
d3

x

˛̨
˛̨ dρ
dΦ

˛̨
˛̨
0

Φ2
1. (H.3)

As shown in Box 5.2, any non-radial mode can be chosen to be the real part of
a function having angular dependence proportional to Ym

l (θ, φ) with l ≥ 1. Thus
if Φ1(x) is the potential of a mode, we may write

Φ1(x) = Re[Φc(x)], where Φc(x) ≡ dΦ0

dr
slm(r)Ym

l (θ, φ); (H.4)

the common factor dΦ0/dr has been introduced to simplify later equations. Using
equation (C.49), Poisson’s equation can be written

ρ1(x) = Re[ρc(x)] (H.5a)

where

ρc(x) =
1

4πG
∇2Φc =

1

4πG
Ym
l (θ, φ)

„
1

r2
d

dr
r2

d

dr
slm

dΦ0

dr
− l(l + 1)

r2
slm

dΦ0

dr

«
.

(H.5b)
Then X =

R
d3x ρ1Φ1 = 1

4

R
r2dr d2Ω(ρcΦc + ρcΦ

∗
c ) + CC, where “CC” denotes

the complex conjugate of the preceding terms in a sum. Using the orthonormality
of the spherical harmonics (eq. C.44), we have

X =
1

16πG

Z ∞

0

dr
dΦ0

dr
s∗lm

„
d

dr
r2

d

dr
slm

dΦ0

dr
− l(l + 1)slm

dΦ0

dr

«
+ CC. (H.6)

We now carry out the derivatives in the first term in square brackets, and integrate
the term involving d2slm/dr

2 by parts. The boundary terms can be shown to
vanish (Φ1 decays at least as fast as r−2 as r → ∞ because mass conservation
dictates that there cannot be any monopole component of Φ1; thus slm is constant
or decaying as r → ∞). We simplify the result using Poisson’s equation in the
form

d2Φ0

dr2
+

2

r

dΦ0

dr
= 4πGρ0, (H.7)
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which can be differentiated to eliminate the term involving d3Φ0/dr
3. After some

algebra we find

X = 1
2

Z ∞

0

dr r2
dρ0

dr

dΦ0

dr
|slm|2

− 1

8πG

Z ∞

0

dr

„
dΦ0

dr

«2
 ˛̨
˛̨r dslm

dr

˛̨
˛̨
2

+ (l2 + l − 2)|slm|2
!
.

(H.8)

Similarly, we use equation (H.4) and the orthonormality of the spherical har-
monics to evaluate Y in terms of slm(r),

Y = 1
2

Z ∞

0

dr r2
˛̨
˛̨ dρ
dΦ

˛̨
˛̨
0

„
dΦ0

dr

«2

|slm|2 = − 1
2

Z ∞

0

dr r2
dρ0

dr

dΦ0

dr
|slm|2, (H.9)

where we have assumed that (dρ/dΦ)0 < 0 since dp/dρ > 0 by assumption and
(dp/dΦ)0 = −ρ0 < 0 by hydrostatic equilibrium (F.12). Combining equations
(H.8) and (H.9), we have

X + Y = − 1

8πG

Z ∞

0

dr

„
dΦ0

dr

«2
 ˛̨
˛̨r dslm

dr

˛̨
˛̨
2

+ (l2 + l − 2)|slm|2
!
. (H.10)

Non-radial modes have l ≥ 1, and for these l2 + l − 2 ≥ 0. Thus X + Y ≤ 0 for
non-radial modes. Moreover Y ≥ 0 and X ≤ 0; the latter statement is evident
from a comparison of equations (2.17) and (2.18). Thus equation (H.2) implies
that W [ρ1] ≥ 0 for non-radial modes.

Appendix I: The Doremus–Feix–Baumann theorem

This theorem states that any spherical stellar system with an ergodic equilibrium
df that satisfies f ′

0(E) < 0 is stable to radial perturbations. Proofs are given by
Doremus, Feix, & Baumann (1971) and Kandrup & Sygnet (1985).

We introduce polar coordinates (v, η, ψ) in velocity space (eq. 4.63). The
volume element in velocity space is

d3
v = v2dv sin η dη dψ = vtdvtdvrdψ, (I.1)

where vr is the radial velocity and vt ≡ v sin η = (v2
θ + v2

φ)
1/2 is the tangential

velocity. The energy is E = H0(r, v) = 1
2
v2 + Φ0(r), where Φ0(r) is the potential,

and the angular momentum is L = rv sin η = rvt. Since both the equilibrium
system and the perturbation are spherically symmetric, neither can depend on the
angular variables (θ, φ); moreover we can integrate the df over the angle ψ, and
work in the variables (r,E, L).1 In these variables the volume element in velocity
space is

d3
v = 2π

dE dL2

ry(r,E, L)
, where y(r, E,L) =

˘
2r2[E − Φ0(r)] − L2¯1/2

(I.2)

1 In principle, the perturbed df f1 could depend on ψ, so long as the density ρ1 =R
d3v f1 is spherically symmetric. It is straightforward to generalize the proof to account

for this possibility.
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if the quantity in braces is positive, and zero otherwise. Note that a factor of two
has been included because there are stars with both positive and negative radial
velocities at a given value of (r, E, L).

The proof is based on the variational principle (5.131). The second term of this
expression is twice the potential energy of the perturbation. Since the perturbation
is spherically symmetric, we can use equation (2.17) to replace this term by

W2[f1] = − 1

G

Z
dr

„
r
dΦ1

dr

«2

, (I.3)

where
dΦ1

dr
=
GM1(r)

r2
=

4πG

r2

Z r

0

dr′ r′
2
Z

d3
v
′f1(r

′,v′)

=
8π2G

r2

Z r

0

dr′ r′
Z

dE dL2

y(r′, E, L)
f1(r

′,v′).

(I.4)

At this point we change variables from f1(r,v) to g(r,E, L), where

f1(r,v) ≡ f ′
0(E)y(r,E, L)

r

∂

∂r
[y(r,E, L)g(r,E, L)] . (I.5)

Substituting this expression into (I.3), we have

W2[f1] = −64π4G

Z
dr

r2

»Z r

0

dr′
Z

dE dL2f ′
0(E)

∂

∂r′
y(r′, E, L)g(r′, E, L)

–2

= −64π4G

Z
dr

r2

»Z
dE dL2f ′

0(E)y(r,E, L)g(r,E, L)

–2
;

(I.6)
the contribution to the integral from its lower limit r′ = 0 is zero since y(0, E, L) =
0.

Using equations (I.2) and (I.5), and recalling that f ′
0(E) < 0, the first term of

equation (5.131) can be written as

W1[f1] = −8π2

Z
dr dE dL2 f

′
0(E)y(r,E,L)

r

»
∂(yg)

∂r

–2
. (I.7)

We now apply Schwarz’s inequality (B.75) to the integral over dEdL2 in equa-

tion (I.6), with A = (−f ′
0y)

1/2 and B = Ag:

W2[f1] ≥− 64π4G

Z
dr

r2

Z
dE dL2 f ′

0(E)y(r,E, L)g2(r, E,L)

×
Z

dE1 dL2
1 f

′
0(E1)y(r,E1, L1).

(I.8)

To evaluate the last integral we integrate by parts with respect to E1:Z
dE1 dL2

1f
′
0(E)y(r,E1, L1) = −

Z
dE1 dL2

1 f0(E1)
∂y

∂E1
; (I.9)

the boundary terms vanish because y = 0 at the minimum energy, while f0(E) = 0
at the maximum energy. Now ∂y/∂E = r2/y, so using equation (I.2) we have

Z
dE1 dL2

1 f
′
0(E1)y(r,E1, L1) = −r2

Z
dE1 dL2

1

y(r,E1, L1)
f0(E1)

= − r3

2π

Z
d3

v1f0(
1
2
v2
1 + Φ0) = − r3

2π
ρ0(r),

(I.10)
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where ρ0(r) is the density of the equilibrium system. With this result, equations
(I.7) and (I.8) simplify to

W [f1] = W1[f1] +W2[f1] ≥ −8π2

Z
dE dL2 f ′

0(E)

×
Z

dr y(r,E, L)

r

(»
∂(yg)

∂r

–2
− 4πGρ0(r)r

2g2

)
.

(I.11)

We integrate the component in square brackets by parts. The boundary terms
vanish, since y(r,E, L) = 0 at r = 0 or as r → ∞. The remaining integral involves
several terms, one of which contains ∂2g/∂r2; we integrate this by parts a second
time, and the boundary terms vanish for the same reason. The result is

W [f1] ≥− 8π2

Z
dE dL2 f ′

0(E)

Z
dr y(r,E, L)

r

×
(„

y
∂g

∂r

«2

− g2

"„
∂y

∂r

«2

+ y
∂2y

∂r2
− y

r

∂y

∂r

#
− 4πGρ0(r)r

2g2

)
.

(I.12)

Using the definition of y(r,E, L), equation (I.2), we have

1

r

∂

∂r

1

r

∂y2

∂r
= −2

d2Φ0

dr2
− 6

r

dΦ0

dr
. (I.13)

Using Poisson’s equation in the form (H.7) this can be rewritten as
„
∂y

∂r

«2

+ y
∂2y

∂r2
− y

r

∂y

∂r
= −4πGρ0(r)r

2 − r
dΦ0

dr
, (I.14)

so (I.12) simplifies to

W [f1] ≥ −8π2

Z
dE dL2f ′

0(E)

Z
dr y(r,E, L)

r

"„
y
∂g

∂r

«2

+ g2r
dΦ0

dr

#
, (I.15)

which is non-negative since f ′
0(E) < 0 and dΦ0/dr > 0. Thus the system is stable.

Appendix J: Angular-momentum transport in disks
We have shown in §6.1.5 that the gravitational torques exerted by a trailing spiral
pattern transport angular momentum outward in a disk galaxy. In this appendix
we present a more complete description of angular-momentum transport in fluid
and stellar disks.

J.1 Transport in fluid and stellar systems

The angular momentum per unit volume in a fluid1 is el = ρx × v. Its rate of
change can be written in Cartesian coordinates as

∂eli
∂t

= εijkxj
∂

∂t
(ρvk), (J.1)

1 The tilde on l is a flag that in this appendix, the angular momentum and energy
of a fluid element of mass m are defined as mx × v and m( 1

2
v2 + Φ), while in most

other sections of this book, “angular momentum” and “energy” are shorthand for specific
angular momentum (angular momentum per unit mass) and specific energy, x × v and
1
2
v2 + Φ.
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where the permutation tensor εijk is defined after equation (B.7) and we have used
the summation convention defined just above that equation. Using equation (F.14)
this can be rewritten as

∂eli
∂t

= −εijkxj
„
∂Πkm

∂xm
+ ρ

∂Φ

∂xk

«
= −∂Λim

∂xm
− ρ(x × ∇Φ)i, (J.2)

where the momentum flux tensor Πkm = ρvkvm + pδkm and

Λim = εijkxjΠkm. (J.3)

The second term in equation (J.2) is simply the gravitational torque per unit
volume exerted on the fluid. The first arises from the flow or current of angular
momentum; specifically, the outward flow of the angular momentum component
eLi through a unit area with outward normal parallel to the unit vector êm is Λim,
and thus Λim is known as the angular-momentum flux tensor. Note that
Λim 6= Λmi.

The analogous equation for a stellar system can be written down by inspection.
The derivation of the momentum flux tensor in Appendix F relies on the equation
of continuity and Euler’s equation. The analogs to these equations for a stellar
system are the Jeans equations (4.204) and (4.209); the only changes are that
the velocity vi is replaced by the mean velocity vi, and the pressure is replaced
by the product of the density and the velocity-dispersion tensor, ρσ2

ij . Thus the
momentum flux tensor for a stellar system must be

Πkm = ρvkvm + ρσ2
km = ρvkvm; (J.4)

the second expression follows from the first by equation (4.26). The angular-
momentum flux tensor for a stellar system is then given by equation (J.3), if the
momentum flux tensor is given by equation (J.4).

J.2 Transport in a disk with stationary spiral structure

We now specialize to a razor-thin disk in the z = 0 plane. We assume that the disk
has a stationary spiral pattern with pattern speed Ωp; that is, the surface density
Σ(R, φ, t) and all other physical variables depend on the azimuthal angle φ and
time t only in the combination φ−Ωpt. We allow for sources and sinks of angular
momentum, such as torques from an external potential, but assume that there are
no sources or sinks of mass. We shall focus on the flow of angular momentum
through the cylinder R = R0 = constant .

The mass inside R0 is constant, since the surface density is constant in the
frame rotating at the pattern speed. Thus the net flow of mass through R0 must
be zero; that is, CM(R0) = 0 where

CM(R) = R

Z 2π

0

dφΣvR (J.5)

is the mass current, and vR is the radial velocity.

The rate of change of the angular momentum eL inside R0 is given by inte-
grating equation (J.2) over this volume:

deL
dt

=

Z

R<R0

d3
x
∂elz
∂t

= −
Z

R<R0

d3
x

„
∂Λzm
∂xm

+ εzjkρxj
∂Φ

∂xk

«
. (J.6)
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For an arbitrary vector field F, the divergence theorem (B.43) implies that
Z

R<R0

d3
x∇ · F =

I

S

d2
S · F = R0

Z 2π

0

dφ

Z ∞

−∞
dz FR, (J.7)

where FR = F · êR is the component of F in the radial direction, and S is the
surface of the cylinder R = R0. We can apply this result to the tensor Λzm by
treating the three components Λzm, m = 1, 2, 3 as a vector; thus

Z

R<R0

d3
x
∂Λzm
∂xm

= R0

Z 2π

0

dφ

Z ∞

−∞
dz ΛzR. (J.8)

We now write ρ(R,φ, z, t) = Σ(R, z, t)δ(z) and integrate over z to obtain

deL
dt

= −R2
0

Z 2π

0

dφΣvφvR −
Z R0

0

dRR

Z 2π

0

dφΣ
∂Φ

∂φ
. (J.9)

This result is for a fluid; for a stellar system we simply replace vφvR by vφvR.
The first integral on the right side of this equation arises from advective or

Reynolds transport of angular momentum due to the bulk motion of the fluid (see
discussion following eq. F.70),2 and leads to a flow of angular momentum through
radius R0 or advective angular-momentum current

CA(R0) ≡ R2
0

Z 2π

0

dφΣvφvR. (J.10)

The second term on the right side of (J.9) represents the gravitational torque
exerted on the fluid inside radius R0. The gravitational potential exerting this
torque can be written Φ ≡ Φext + Φin + Φout, where Φext is the potential from
sources external to the disk, Φin is the potential due to the disk mass inside R0,
and Φout is due to the disk mass outside R0. The torque due to Φin must vanish,
since the disk interior to R0 cannot exert any net torque on itself. The torque due
to external sources is

eN(R0) ≡ −
Z R0

0

dRR

Z 2π

0

dφΣ
∂Φext

∂φ
. (J.11)

The torque due to the disk exterior to R0 adds angular momentum to the disk
inside R0 and removes it from the disk outside R0. Hence this torque redistributes
of the angular momentum in the disk; the corresponding gravitational angular-

momentum current through R0 is

CG(R0) ≡
Z R0

0

dRR

Z 2π

0

dφΣ
∂Φout

∂φ
. (J.12)

This quantity was already defined and discussed in §6.1.5.
The equation for angular-momentum conservation inside radius R0 is

deL
dt

= eN(R0) − CA(R0) − CG(R0); (J.13)

2 The term lorry transport was used by Lynden–Bell & Kalnajs (1972), who likened
the fluid elements to a fleet of lorries or trucks carrying coal. The trucks travel outward
full of coal and return empty, so there is an outward flow of coal but no net flow of
trucks. Similarly the fluid elements carry angular momentum outward, deposit it near the
apocenter of their orbits, and return to acquire more angular momentum near pericenter,
leading to an outward flow of angular momentum with no outward flow of mass.
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in words, the rate of change of the angular momentum of the disk interior to R0

equals the external torque on that region minus the advective and gravitational
currents of angular momentum out of that region.

J.3 Transport in perturbed axisymmetric disks

We next consider the case of small perturbations from axisymmetry, so

vR = εvR1 + ε2vR2 + · · · ; vφ = vφ0 + εvφ1 + ε2vφ2 + · · · ,
Σ = Σ0 + εΣ1 + ε2Σ2 + · · · ; Φ = Φ0 + εΦ1 + ε2Φ2 + · · · ,

(J.14)

where ε � 1 and vφ0(R), Σ0(R) and Φ0(R) are independent of angle. Note that the
zero-order terms in radial velocity vR and external potential Φext both vanish—the
first since the unperturbed disk is in circular rotation, and the second since the
external perturbations are assumed to be weak. To first order in the small quantity
ε, equations (J.5), (J.10), (J.11), and (J.12) become

CM1(R0) = εR0

Z 2π

0

dφΣ0vR1,

CA1(R0) = εR2
0

Z 2π

0

dφΣ0vφ0vR1,

eN1(R0) = −ε
Z R0

0

dRR

Z 2π

0

dφΣ0
∂Φext,1

∂φ
,

CG1(R0) = ε

Z R0

0

dRR

Z 2π

0

dφΣ0
∂Φout,1

∂φ
.

(J.15)

The mass current CM1(R0) must vanish, since the mass current is zero to all orders
in a stationary disk. Since CA1 is just R0vφ0 times CM1, CA1 must also vanish.

Since Σ0(R) is independent of the angle φ, the integrals for eN(R0) and CG1(R0)
must also vanish. Thus the angular-momentum transport in an axisymmetric disk
due to external torques and non-axisymmetric density waves of strength ε is of order
ε2. This result is closely related to the finding that the energy and momentum flux
in a sound wave is second-order in the wave amplitude (Appendix F.3.1).

To quadratic order in ε we have

CM2(R0) = ε2R0

Z 2π

0

dφ (Σ1vR1 + Σ0vR2),

CA2(R0) = ε2R2
0

Z 2π

0

dφ (Σ1vφ0vR1 + Σ0vφ1vR1 + Σ0vφ0vR2),

= ε2R2
0

Z 2π

0

dφΣ0vφ1vR1 +R0vφ0CM2(R0) = ε2R2
0Σ0

Z 2π

0

dφ vφ1vR1,

eN2(R0) = −ε2
Z R0

0

dRR

Z 2π

0

dφΣ1
∂Φext,1

∂φ
,

CG2(R0) = ε2
Z R0

0

dRR

Z 2π

0

dφΣ1
∂Φout,1

∂φ
.

(J.16)
Here the last expression for CA(R0) follows because CM(R0) is zero to all orders.
For stellar systems the advective current is obtained by replacing vφ1vR1 by vφ1vR1.
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Following equation (6.42), we can write the perturbed quantities as a sum
over azimuthal wavenumber m ≥ 0 of terms of the form

vR1 = Re[vRa(R)eim(φ−Ωpt)] = 1
2
vRa(R)eim(φ−Ωpt) + 1

2
v∗Ra(R)e−im(φ−Ωpt), (J.17)

etc. Axisymmetric perturbations (m = 0) cannot transport angular momentum,
so we may restrict the sum to terms with m > 0. Then equation (J.13) can be
integrated over φ to yield a sum over m of terms of the form

deL
dt

= eN2(R0) − CA2(R0) − CG2(R0)

= − 1
2
πε2R2

0Σ0vφav
∗
Ra + 1

2
πmiε2

Z R0

0

dRRΣa(Φ
∗
ext,a + Φ∗

out,a) + CC,

(J.18)

where “CC” stands for the complex conjugate of the preceding terms.
Using equations (6.43), the advective current can be written, after some alge-

bra, as

CA2(R0) =
πε2R0Σ0im

2∆

»
(Φa + ha)

∗ d

dR
(Φa + ha)

–
+ CC, (J.19)

where ∆ = κ2 −m2(Ω − Ωp)2.

J.4 Transport in the WKB approximation

The expressions we have derived for the angular-momentum currents can be eval-
uated in the WKB approximation analyzed in §6.2. In this approximation d/dR
can be replaced by ik in equation (J.19), where k is the radial wavenumber, so the
advective current simplifies to

CA2(R0) = −πmε
2R0Σ0k

∆
|Φa + ha|2. (J.20)

Using equations (6.30) and (6.45), we can express the perturbed enthalpy in terms
of the perturbed potential,

ha = v2
s
Σa
Σ0

= − v2
s |k|

2πGΣ0
Φa, (J.21)

so the advective angular-momentum current is

CA2(R0) = −πmε
2R0Σ0k

∆

„
1 − v2

s |k|
2πGΣ0

«2

|Φa|2. (J.22)

The gravitational current has already been evaluated in equation (6.21); adjusting
the notation to the present usage we have

CG2(R0) = sgn (k)
mε2R0|Φa|2

4G
; (J.23)

so the total angular-momentum current from a tightly wrapped wave in a fluid disk
is (Goldreich & Tremaine 1979)

CeL(R0) = CA2(R0) + CG2(R0) = sgn (k)
mε2R0|Φa|2

4G

„
v2
s |k|

πGΣ0
− 1

«
, (J.24)

where ∆ has been eliminated using the WKB dispersion relation (6.55). The WKB
analysis of disk dynamics in §6.2.2 shows that the total angular-momentum current
is conserved, as it must be (eq. 6.56).
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For a stellar disk the analogous formula is (Toomre 1969)

CeL(R0) = −sgn (k)
mε2R0|Φa|2

4G

„
1 + 2

∂ lnF(s, χ)

∂ lnχ

«
, (J.25)

where s = m(Ωp −Ω)/κ, χ = σ2
Rk

2/κ2, and the reduction factor F(s, χ) is defined
in equation (6.63).

Appendix K: Derivation of the reduction factor

Our goal in this appendix is to derive the reduction factor F , the factor by which
the response of a stellar disk to an imposed potential is reduced below that of a
cold disk (eq. 6.58). We assume that the potential is tightly wound, that the orbits
in the disk can be described by the epicycle approximation, and that the disk is
razor-thin and flat, with the df having the Schwarzschild form (6.62).

As usual we assume that the perturbations are small, so we can linearize the
equations of motion. The linearized collisionless Boltzmann equation (5.15) reads

f1(x,v, t) = −
Z t

−∞
dt′[f0,Φ1]x′ ,v′,t′ =

Z t

−∞
dt′

∂f0
∂v′ (x

′,v′) · ∇′Φ1(x
′, t′); (K.1)

here f0(x,v) and f1(x,v, t) are the equilibrium and perturbed dfs, Φ1(x, t) is
the perturbed gravitational potential, and [·, ·] is the Poisson bracket, evaluated
along the unperturbed orbit (x′,v′) ≡ (x[t′],v[t′]) that arrives at x,v at time t.
In writing equation (K.1) we have assumed that f1 → 0 as t → −∞, i.e., the
perturbation was small in the distant past.

We write the potential perturbation in the disk plane in the form (cf. eqs. 6.42
and 6.51)

Φ1(x, t) = Φa(R)ei(mφ−ωt) = F (R)ei(
R

R
k dR+mφ−ωt), (K.2)

where as usual only the real part is physical. The component of ∇Φ1 in the disk
plane is

∇Φ1 =

»
êR

„
dF

dR
+ ikF

«
+ êφ

imF

R

–
ei(
R
k dR+mφ−ωt). (K.3)

Since the potential is tightly wound, |kR| � 1, we keep only the term proportional
to k:

∇Φ1 ' êR ikF ei(
R
k dR+mφ−ωt). (K.4)

Substituting this result and the Schwarzschild df (6.62) into equation (K.1) yields

f1(R, φ, vR, vφ, t) = − i

2π

Z t

−∞
dt′
„
γkFΣ

σ4
R

«

R′

ei(
R

R′

k′′ dR′′+mφ′−ωt′)−w′

v′R,

(K.5)
where the unperturbed trajectory at time t′ is (x′,v′) = (R′, φ′, v′R, v

′
φ),

w′ =
v′R

2
+ γ2(R′)[v′φ − vc(R

′)]2

2σ2
R(R′)

, (K.6)

and γ(R) = 2Ω(R)/κ(R).
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The epicycle orbit equations (3.75), (3.91), and (3.97) yield the relations

R′ = Rg +X cos(κt′ + ψ),

v′R = −κX sin(κt′ + ψ),

v′φ − vc(R
′) = −κ

γ
X cos(κt′ + ψ),

(K.7)

where the epicycle amplitude X, guiding-center radius Rg, and phase ψ are deter-
mined by the boundary conditions that R′ = R, v′R = vR, and v′φ = vφ at t′ = t.
Straightforward manipulation of equations (K.7) yields

R′ = R− γ

κ
(vφ−vc)(cos τ−1)+

vR
κ

sin τ ; v′R = vR cos τ+γ(vφ−vc) sin τ, (K.8)

where τ = κ(t′ − t) and vφ, vR and vc(R) are all evaluated at t.
We are assuming that the epicycle amplitude X is small, so X and |R′ − R|

are always much less than R. We are also assuming that the spiral wave is tightly
wound, so |kR| � 1. The epicycle amplitude can be either larger or smaller than
the radial spacing between arms, so |kX| can be either large or small compared to
unity. With this ordering, equation (K.5) can be simplified considerably:
(i) Since |R′ − R| � R, to a good approximation k(R′), F (R′), Σ(R′), σR(R′),

and γ(R′) can all be replaced by their values at R and taken outside the
integral.

(ii) At the same level of approximation we can write

ei
R

R′

k′′ dR′′

' ei[
R

R
k′′ dR′′+k(R)(R′−R)]. (K.9)

(iii) Since the azimuthal angle φ′ enters only through the factor exp(imφ′), and the
epicycle amplitude is small, we may neglect the epicyclic motion in φ and set
φ′ = φ+ Ω(t′ − t). We cannot use the same argument to neglect the epicyclic
motion in R since the small factor (R′ − R) is multiplied by the large factor
k.

(iv) Equations (K.7) imply that w′ = κ2X2/(2σ2
R). Since X is an integral of the

motion, w′ must therefore be conserved along the trajectory.1 Thus w′ = w
and the factor exp(−w) can be taken out of the integral.

Inserting these approximations into equation (K.5), we find

f1(R, φ, vR,vφ, t) = − iγkFΣ

2πκσ3
R

ei(
R

R
k′′ dR′′+mφ−ωt)e−(u2+v2)/2

×
Z 0

−∞
dτ ei(kσR/κ)[u sin τ−v(cos τ−1)]−isτ (u cos τ + v sin τ ).

(K.10)

Here we have introduced the notations

s =
ω −mΩ

κ
; u =

vR
σR

; v = γ
vφ − vc
σR

. (K.11)

The mean radial velocity at a given point is

vR1 =

R
d2v (f0 + f1)vRR
d2v (f0 + f1)

. (K.12)

1 This result also follows from the Jeans theorem: since the unperturbed df depends
on velocity only through w, w must be an integral.
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Since
R

d2v f0vR = 0, to first order in the perturbation we have

vR1 =

R
d2v f1vRR
d2v f0

=
σ3
R

R
dudv f1u

γΣ
. (K.13)

Writing vR1 = vRa exp[i(mφ − ωt)] (eq. 6.42) and using equation (K.2) and the
definition of the reduction factor F (eq. 6.58), we find

F = i
1 − s2

2πs

Z ∞

−∞
duu

Z ∞

−∞
dv e−(u2+v2)/2

×
Z 0

−∞
dτ ei(kσR/κ)[u sin τ−v(cos τ−1)]−isτ (u cos τ + v sin τ ).

(K.14)

We now use the following integrals:
Z ∞

−∞
dx e−x

2/2eiµx =
√

2πe−µ
2/2 ;

Z ∞

−∞
dx e−x

2/2xeiµx = i
√

2πµe−µ
2/2,

Z ∞

−∞
dxe−x

2/2x2eiµx =
√

2π(1 − µ2)e−µ
2/2.

(K.15)
Evaluating the u and v integrals and replacing τ by −τ , we obtain

F(s, χ) = i
1 − s2

s

Z ∞

0

dτ eisτ−χ(1−cos τ)(cos τ − χ sin2 τ ), (K.16)

where χ = (kσR/κ)
2. Now write the integral as a sum of integrals from τ = 0 to

2π, 2π to 4π, etc.:

F(s, χ) = i
1 − s2

s

∞X

n=0

e2πins

Z 2π

0

dτeisτ−χ(1−cos τ)(cos τ − χ sin2 τ ). (K.17)

The geometric series in (K.17) has the form
P∞
n=0 p

n, where |p| = | exp(2πis)| =
exp[−2πIm(s)] < 1, since Im(s) > 0 (we have assumed that the perturbation
vanishes as t→ −∞). Hence the series is convergent, with sum 1/(1 − p). Thus

F(s, χ) = i
1 − s2

s

1

1 − e2πis

Z 2π

0

dτ eisτ−χ(1−cos τ)(cos τ − χ sin2 τ ). (K.18)

Replacing the variable τ by τ + π, we have

F(s, χ) = i
1 − s2

s

eπis

1 − e2πis

Z π

−π
dτ eisτ−χ(1+cos τ)(− cos τ − χ sin2 τ ). (K.19)

We can write (1− e2πis)/eπis = −2i sinπs. Also, if we write eisτ = cos sτ +i sin sτ ,
only the cosine term will contribute to the integral since the sine produces an
integrand that is odd in τ . Thus

F(s, χ) =
1 − s2

s sinπs

Z π

0

dτ e−χ(1+cos τ) cos sτ (cos τ + χ sin2 τ ). (K.20)

The integral can be simplified by writing the second term of the integrand as
χe−χ(1+cos τ) cos sτ sin2 τ = cos sτ sin τd[e−χ(1+cos τ)]/dτ and integrating by parts:

F(s, χ) =
1 − s2

sinπs

Z π

0

dτ e−χ(1+cos τ) sin sτ sin τ. (K.21)



The diffusion coefficients 833

Yet another integration by parts yields a second form:

F(s, χ) =
1 − s2

χ

»
1 − s

sinπs

Z π

0

dτ e−χ(1+cos τ) cos sτ

–
. (K.22)

We obtain a third form, involving the modified Bessel function In, by using the
identities (C.64) and (C.67):

F(s, χ) =
1 − s2

χ

»
1 − s

sinπs
e−χ

∞X

n=−∞
(−1)nIn(χ)

Z π

0

dτ cos nτ cos sτ

–
. (K.23)

It is simple to show that
R π
0

dτ cos nτ cos sτ = (−1)n+1s sinπs/(n2 − s2); hence

F(s, χ) =
1 − s2

χ

»
1 + s2e−χ

∞X

n=−∞

In(χ)

n2 − s2

–
. (K.24)

This equation can be simplified by rewriting the unit term in the square brackets
as 1 = e−χ

P∞
n=−∞ In(χ), an identity that follows from equation (C.67) by setting

θ = 0. After some rearrangement, we obtain a final form,

F(s, χ) =
2

χ
(1 − s2)e−χ

∞X

n=1

In(χ)

1 − s2/n2
. (K.25)

Appendix L: The diffusion coefficients

We consider a subject star of mass m and velocity v moving through a homoge-
neous sea of field stars of mass ma and df fa(va); the df is normalized so thatR

d3va fa(va) = n, the number density of field stars. Due to encounters with the
field stars, the subject star suffers a gradually accumulating velocity change ∆v.
Our goal is to calculate the diffusion coefficients D[∆vi] and D[∆vi∆vj ], which
measure the average velocity changes per unit time,

D[∆vi] =
〈∆vi〉
∆t

; D[∆vi∆vj ] =
〈∆vi∆vj〉

∆t
. (L.1)

The diffusion coefficients were first derived by Landau (1936) in the context of
Coulomb interactions in plasmas, but the derivation here follows Rosenbluth, Mac-
Donald, & Judd (1957).

Suppose that in a particular encounter the subject and field stars have veloc-
ities v and va respectively. The relative velocity is V = v − va. Its initial value
is V0 and the change in velocity caused by the encounter is ∆V. The dynamics of
the encounter is described in §3.1d and in particular the relation between ∆V and
the change in velocity of the subject star ∆v is given by equation (3.45), which in
the present notation reads

∆v =
ma

m+ma
∆V. (L.2)

We introduce a coordinate system ê′
1, ê

′
2, ê

′
3, such that ê′

1 is parallel to V0

(see Figure L.1). Thus

V0 · ê′
1 = |V0| ≡ V0 ; V0 · ê′

2 = V0 · ê′
3 = 0. (L.3)
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Figure L.1 Geometry of an en-
counter. The angle θ is the deflection
angle θdefl introduced on page 155
and in Figure 3.2.

We denote the angle between the plane of the relative orbit and ê′
2 by φ. The

change in v during the encounter may be written

∆v = −∆v‖ê
′
1 + ∆v⊥(−ê

′
2 cos φ+ ê

′
3 sinφ), (L.4)

where ∆v‖ and ∆v⊥ are the magnitudes of the components of ∆v that are parallel
and perpendicular to V0. The signs are chosen to ensure that ∆v‖ and ∆v⊥ are
positive if the interaction between the two particles is attractive.

Using the identity ∆v =
P3
k=1(∆v · ê′

k)ê
′
k we have

∆vi =

3X

k=1

(∆v · ê′
k)(êi · ê′

k),

∆vi∆vj =
3X

k,l=1

(∆v · ê′
k)(∆v · ê′

l)(êi · ê′
k)(êj · ê′

l).

(L.5)

Since all angles 0 ≤ φ < 2π are equally probable, and ∆v‖ and ∆v⊥ do not depend
on φ, we can take averages of equations (L.4) and (L.5) over φ. Denoting these
averages by 〈·〉φ, we have 〈cos φ〉φ = 〈sinφ〉φ = 0, 〈cos2 φ〉φ = 〈sin2 φ〉φ = 1

2
. Thus

equations (L.4) and (L.5) yield

〈∆vi〉φ = −∆v‖(êi · ê′
1),

〈∆vi∆vj〉φ = (∆v‖)
2(êi · ê′

1)(êj · ê′
1)

+ 1
2
(∆v⊥)2[(êi · ê′

2)(êj · ê′
2) + (êi · ê′

3)(êj · ê′
3)].

(L.6)

From equations (3.54) we have

∆v⊥ =
2maV0

m+ma

b/b90
1 + b2/b290

; ∆v‖ =
2maV0

m+ma

1

1 + b2/b290
, (L.7)
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where b is the impact parameter and

b90 ≡ G(m+ma)

V 2
0

(L.8)

is the 90◦ deflection radius defined in equation (3.51).
We now sum the effects of all the encounters. The number density of field

stars in the velocity-space volume d3va is fa(va)d
3va. The number of encounters

in a time ∆t with impact parameters between b and b+db is just this density times
the volume of an annulus with inner radius b, outer radius b+db, and length V0∆t,
that is,

2πbdb V0∆tfa(va)d
3
va. (L.9)

Thus

D[∆vi] =
〈∆vi〉
∆t

= 2π

Z
d3

vadb bfa(va)V0〈∆vi〉φ, (L.10)

with a similar equation for D[∆vi∆vj ]. We can carry out the integration over the
impact parameter b using equations (L.7). The range of integration is from 0 to
bmax. The integrals involved are:

Z bmax

0

db b∆v‖ =
maV0b

2
90

m+ma
ln(1 + Λ2),

Z bmax

0

db b(∆v‖)
2 = 2

„
maV0b90
m+ma

«2 „
1 − 1

1 + Λ2

«
,

Z bmax

0

db b(∆v⊥)2 = 2

„
maV0b90
m+ma

«2 „
ln(1 + Λ2) +

1

1 + Λ2
− 1

«
,

(L.11)

where

Λ ≡ bmax

b90
. (L.12)

The choice of the appropriate value for bmax is discussed following equation (7.84),
where it is argued that bmax is given approximately by the radius of the subject
star’s orbit. In most applications, Λ is very large, and therefore without loss of
accuracy we can discard terms involving (1+Λ2)−1 and replace ln(1+Λ2) by 2 ln Λ
in equation (L.11). Furthermore, although this is a less accurate approximation,
we can discard terms of order unity compared to those of order ln Λ. In this manner
we arrive at a simplified version of equations (L.11), keeping only terms of order
ln Λ,

Z bmax

0

db b∆v‖ = 2
maV0b

2
90

m+ma
lnΛ,

Z bmax

0

db b(∆v‖)
2 = 0 ;

Z bmax

0

db b(∆v⊥)2 = 4

„
maV0b90
m+ma

«2

lnΛ.

(L.13)

At this point we investigate whether diffusion tensors of rank higher than two
play an important role in gravitational scattering. By analogy with equation (L.6),
a diffusion tensor of rank n, D[∆vi1 · · ·∆vin], will involve products of unit vectors
with terms such as (∆v‖)

c(∆v⊥)d where c + d = n. When b � b90, ∆v⊥ ∝ b−1

and ∆v‖ ∝ b−2, while for b � b90, ∆v⊥ ∝ b and ∆v‖ ∝ constant . Therefore

(∆v‖)
c(∆v⊥)d ∝ b−2c−d = b−n−c for b � b90 and ∝ bd = bn−c for b � b90. The

integral over impact parameter in the analog of equation (L.10) will have the formR
db b1−n−c for b� b90 and

R
db b1+n−c for b� b90. Since 0 ≤ c ≤ n these integrals
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cannot give a divergent factor such as ln Λ for n > 2. Thus diffusion tensors of rank
three or higher are smaller than the tensors of ranks 1 and 2 by at least O(ln Λ)−1,
and hence can be dropped in the Fokker–Planck expansion (7.65) (Hénon 1973b).
An explicit calculation of the higher-rank tensors is given by Hénon (1960a).

Using equations (L.6), (L.10), and (L.13) we can write the diffusion tensors
as

D[∆vi] = −4π
ma

m+ma

Z
d3

va V
2
0 b

2
90fa(va) ln Λ(êi · ê′

1),

D[∆vi∆vj ] = 4π

„
ma

m+ma

«2 Z
d3

va V
3
0 b

2
90fa(va) ln Λ

×
ˆ
(êi · ê′

2)(êj · ê′
2) + (êi · ê′

3)(êj · ê′
3)
˜
.

(L.14)

Since we assume that lnΛ is large, we do not make any significant additional error
by replacing the factor V0 in Λ by some typical stellar speed vtyp. Thus

Λ =
bmaxv

2
typ

G(m+ma)
, (L.15)

which is independent of va so ln Λ may be taken outside the integral. Also, the
expressions involving unit vectors can be simplified, since

P3
p=1(êi · ê′

p)(êj · ê′
p) =

êi · êj = δij , and (êi · ê′
1) = V0i/V0. After eliminating b90 using equation (L.8), we

obtain

D[∆vi] = −4πG2ma(m+ma) ln Λ

Z
d3

va
fa(va)

V 3
0

V0i,

D[∆vi∆vj ] = 4πG2m2
a ln Λ

Z
d3

va
fa(va)

V0

„
δij − V0iV0j

V 2
0

«
.

(L.16)

These equations can be simplified further by noting that V0 = [
P3

i=1(vi−vai)2]1/2,
so

∂

∂vi

1

V0
= −V0i

V 3
0

;
∂2

∂vi∂vj
V0 =

δij
V0

− V0iV0j

V 3
0

; (L.17)

thus we can write

D[∆vi] = 4πG2ma(m+ma) ln Λ
∂

∂vi
h(v),

D[∆vi∆vj ] = 4πG2m2
a lnΛ

∂2

∂vi∂vj
g(v),

(L.18)

where the Rosenbluth potentials are

h(v) ≡
Z

d3
va

fa(va)

|v − va|
; g(v) ≡

Z
d3

va fa(va)|v − va|. (L.19)

To within a proportionality constant, h(v) is simply the gravitational potential at v

generated by a fictitious body in velocity space that has density fa(va) (cf. eq. 2.3).
When the field star df is isotropic, so fa(va) depends only on va = |va|,

more explicit expressions can be obtained. In this case, symmetry dictates that
the Rosenbluth potentials depend only on v = |v|. To evaluate g(v) and h(v), we
use equation (C.35) to write

1

|v − va|
=

∞X

l=0

vl<

vl+1
>

Pl(cos γ), (L.20)
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where v< and v> are the smaller and larger of v and va, Pl(x) is a Legendre
polynomial, and γ is the angle between v and va. Thus

h(v) = 2π
∞X

l=0

Z ∞

0

dva
v2
av
l
<

vl+1
>

fa(va)

Z π

0

dγ sin γ Pl(cos γ). (L.21)

Using the relation
R 1

−1
dxPl(x) = 2δl0 (eq. C.39 with m = n = 0) we obtain

h(v) = 4π

»
1

v

Z v

0

dva v
2
afa(va) +

Z ∞

v

dva vafa(va)

–
. (L.22)

To evaluate g(v) we write |v−va| = (v2−2vva cos γ+v2
a)/|v−va| and use equation

(L.20) to expand 1/|v−va|. Using the identity
R 1

−1
dxxPl(x) = 2

3
δl1 (eq. C.39 with

m = 0, n = 1) we find that

g(v) =
4π

3

» Z v

0

dva
“
3v2
av +

v4
a

v

”
fa(va) +

Z ∞

v

dva
“
3v3
a + v2va

”
fa(va)

–
. (L.23)

Since the Rosenbluth potentials depend only on v, we can use the relation
∂v/∂vi = vi/v to rewrite equations (L.18) in the form

D[∆vi] =
vi
v
D[∆v‖],

D[∆vi∆vj ] =
vivj
v2

`
D[(∆v‖)

2] − 1
2
D[(∆v⊥)2]

´
+ 1

2
δijD[(∆v⊥)2],

(L.24)

where

D[∆v‖] = 4πG2ma(m+ma) ln Λh′(v),

D[(∆v‖)
2] = 4πG2m2

a ln Λ g′′(v) ; D[(∆v⊥)2] =
8πG2m2

a ln Λ

v
g′(v).

(L.25)

The reason for this notation can be seen by considering the case in which v lies
along one of the coordinate axes, say ê1, so v1 = v and v2 = v3 = 0. Then
D[(∆v‖)

2] = D[(∆v1)
2] is the total diffusion rate parallel to the velocity vector,

and D[(∆v⊥)2] = 2D[(∆v2)
2] = 2D[(∆v3)

2] is the total diffusion rate in the two-
dimensional plane perpendicular to the velocity vector. Note that here the sub-
scripts “‖” and “⊥” refer to directions parallel and perpendicular to the subject
star velocity v, whereas in equations (L.4) to (L.13) they refer to directions parallel
and perpendicular to the relative velocity V = v − va.

Substituting from equations (L.22) and (L.23) into (L.25), we have

D[∆v‖] = −16π2G2ma(m+ma) ln Λ

v2

Z v

0

dva v
2
afa(va),

D[(∆v‖)
2] =

32π2G2m2
a lnΛ

3

»Z v

0

dva
v4
a

v3
fa(va) +

Z ∞

v

dva vafa(va)

–
,

D[(∆v⊥)2] =
32π2G2m2

a lnΛ

3

×
»Z v

0

dva
“3v2

a

v
− v4

a

v3

”
fa(va) + 2

Z ∞

v

dva vafa(va)

–
.

(L.26)

Notice thatD[∆v‖] depends only on the total number density of field stars traveling
slower than the subject star. This is a simple corollary of Newton’s first and second
theorems from §2.2.1: the Rosenbluth potential h(v) (eq. L.19) is the velocity-space
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analog of the definition (2.3) of the gravitational potential, with v replacing x and
fa(va) replacing ρ(x′); the expression for D[∆vi] in (L.18) involves the velocity-
space gradient of h(v), which is analogous to the force; so Newton’s theorems tell
us that this gradient depends only on the number of stars inside the velocity-space
sphere of radius |v|.

Appendix M: The distribution of binary energies

We have argued in §§4.10.1 and 7.3.2 that a stellar system has no maximum-entropy
state and thus cannot be in thermal equilibrium. Nevertheless, for many purposes
the distribution of soft binaries can be approximated by an equilibrium distribution,
because soft binaries are so weakly bound that they approach equilibrium much
faster than the stellar system as a whole.

M.1 The evolution of the energy distribution of binaries

As in §7.5.7, we let B(eE) denote the destruction rate for a binary of energy eE,

while C(eE′) deE′ and Q(eE, eE′) deE′ are, respectively, the rate of creation of binaries

with energy in the range (eE′, eE′ + deE′) and the rate at which a binary of energy
eE makes transitions to energies in this range.1 These functions are related by

B(eE) =

Z ∞

0

deE′Q(eE, eE′); (M.1)

that is, the rate of destruction of binaries is the rate at which they make transitions

to positive energy. The number of binaries nb(eE, t) per unit volume and per unit
energy must satisfy a master equation (cf. §7.4.1 and Goodman & Hut 1993)

∂nb

∂t
= C(eE) −B(eE)nb(eE, t)

+

Z 0

−∞
deE′nb(eE′, t)Q(eE′, eE) − nb(eE, t)

Z 0

−∞
deE′Q(eE, eE′);

(M.2)

the third and fourth terms on the right side denote respectively the rate at which

binaries transition into a unit energy range centered on eE, and the rate at which
binaries already in this energy range are scattered to other bound energies. Equa-
tion (M.2) assumes that binaries interact only with single field stars, not with one
another; this is reasonable if the fraction of stars in binaries is small.

Fitting functions for B(eE), C(eE), and Q(eE, eE′) are given by Heggie & Hut
(1993) and the steady-state solution for equation (M.2) is described by Goodman
& Hut (1993).

1 The tilde on eE is a flag that in this appendix “energy” denotes a quantity having
units mass× (velocity)2, rather than the specific energy (energy per unit mass) with units
(velocity)2 that is common elsewhere in the book.
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M.2 The two-body distribution function in thermal equilibrium

Consider a system of N identical stars of mass m, contained in a volume V . We
denote the position and velocity of star n by wn = (xn,vn), and invoke the Jeans
swindle to neglect large-scale gravitational fields within the system. As in §7.2.3,
we define the two-body df f (2) such that the probability of finding two stars in the
phase-space volume elements d6w1 and d6w2 is f (2)(w1,w2) d6w1d

6w2.
In thermal equilibrium we expect that

f (2)(w1,w2) = ce−β
eH , (M.3)

where c and β are positive constants and the Hamiltonian eH is given by

eH(w1,w2) = 1
2
m(v2

1 + v2
2) − Gm2

|x1 − x2|
. (M.4)

If the separation of stars 1 and 2 is large, their distributions should be in-
dependent, so f (2) should be simply the product of one-body dfs. If these are
Maxwellian, with dispersion σ, then we have

f (2)(w1,w2) =
1

(2πσ2)3V 2
e−v

2
1/2σ

2

e−v
2
2/2σ

2

as |x1 − x2| → ∞. (M.5)

Comparison of equations (M.3) and (M.5) permits us to evaluate the constants c
and β. We find

f (2)(w1,w2) =
1

(2πσ2)3V 2
exp

»
− 1

2σ2

„
v2
1 + v2

2 − 2Gm

|x1 − x2|

«–
. (M.6)

M.3 The distribution of binary energies in thermal equilibrium

In thermal equilibrium, the number density of binaries with internal energies in

the range (eE, eE + deE) is neq(eE)deE, where

neq(eE) =
N2

2V

Z
d6

w1d
6
w2 f

(2)(w1,w2)δ
ˆeE(w1,w2) − eE

˜
. (M.7)

In this expression we have used the identity (C.7), and we have divided by a factor
of two because each binary pair is counted twice in the integration. The function
eE(w1,w2), the internal energy of the binary, is given by equation (7.162).

At this point it is convenient to convert the integration variables from v1 and
v2 to the relative velocity V and the center of mass velocity vcm = 1

2
(v1 + v2).

Following the arguments after equation (7.189), we have

neq(eE) =
n2

16π3σ6V

Z
d3

x1d
3
x2d

3
vcmd3

V

× exp

»
− 1

σ2

„
v2
cm + 1

4
V 2 − Gm

|x1 − x2|

«–
δ

„
1
4
mV 2 − Gm2

|x1 − x2|
− eE

«
,

(M.8)

where N/V has been replaced by the number density n. The integral over vcm is
given in equation (7.192). Because of the δ function, we can set 1

4
V 2 −Gm/|x1 −

x2| = eE/m in the exponential. We can replace the dummy variable x1 by x =
x1 − x2; moreover, since we are primarily interested in binaries whose separation
|x| is much less than the system size, we can just as well extend the integral over x
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to cover all space (i.e., we neglect edge effects). In this approximation, the integral
over x2 is independent of x and yields

R
d3x2 = V . Thus

neq(eE) =
n2

16π3/2σ3
e−
eE/mσ2

Z
d3

xd3
V δ

„
1
4
mV 2 − Gm2

|x| − eE
«
. (M.9)

Since the integrand depends only on |x| and |v|,

neq(eE) =
π1/2n2

σ3
e−
eE/mσ2

Z ∞

0

dV V 2

Z ∞

0

dxx2δ

„
1
4
mV 2 − Gm2

x
− eE

«
. (M.10)

Performing the integration over x, replacing the number density n by the mass

density ρ = mn, and recalling that eE < 0, we obtain

neq(eE) =
π1/2G3ρ2m4

σ3
e|
eE|/mσ2

Z ∞

0

dV V 2

( 1
4
mV 2 + |eE|)4

. (M.11)

Using the result
R∞
0

dxx2/(x2 + 1)4 = π/32, we find

neq(eE) =
π3/2G3ρ2m5/2

4σ3|eE|5/2
e|
eE|/mσ2

. (M.12)

The integral
R

deE neq(eE) diverges, both as |eE| → 0 and as |eE| → ∞. The

divergence as |eE| → ∞ is not worrying because hard binaries are not in thermal
equilibrium anyway; rather, as we have seen in §7.5.7, there is a steady flux of hard

binaries towards larger and larger values of |eE|. The divergence as |eE| → 0 arises
because of the large volume of phase space available to a loosely bound binary.
However, in a realistic stellar cluster such binaries are very short-lived, because
they are disrupted by tidal forces or encounters with field stars. In particular,
tidal forces—which are not present in this analysis because of the Jeans swindle—
impose an upper limit to the semi-major axis of a binary that is roughly the Jacobi
radius rJ ≈ R/N1/3 (eq. 8.91), where M = Nm and R are the mass and radius

of the host system. Hence the minimum |eE| for a binary is |eE|min ≈ Gm2/rJ ≈
GmM/(N2/3R), and using the virial theorem in the form σ2 ≈ GM/R we can
write

|eE|min ≈ mσ2

N2/3
. (M.13)

Thus we expect that the relation (M.12) applies in the energy range |eE|min ∼< |eE| ∼<
mσ2—all soft binaries that can survive tidal disruption—so long as there has been
time for thermal equilibrium to be achieved.

We may use these results to estimate the equilibrium total number of soft
binaries in a cluster. We integrate equation (M.12) over the range just derived to
obtain the number density of soft binaries,

nsoft '
π3/2G3ρ2m5/2

4σ3

Z mσ2

|eE|min

d|eE|e
|eE|/mσ2

|eE|5/2
' π3/2G3ρ2m

4σ6

Z 1

N−2/3

dx
ex

x5/2
.

(M.14)
For N � 1 the integral is dominated by the region x � 1, so we can replace the
exponential by unity to find

nsoft ≈
π3/2G3ρ2mN

6σ6
. (M.15)
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The total number of soft binaries is Nsoft ≈ nsoftR
3, and if we set ρ ≈ Nm/R3 and

σ2 ≈ GNm/R, we find Nsoft ≈ 1, that is, there is only of order one soft binary in
the whole system! Obviously, soft binaries play no role of any consequence in the
evolution of stellar systems; even a large primordial population of soft binaries will
rapidly be destroyed by encounters with field stars.

M.4 The principle of detailed balance

Let us temporarily assume that a stellar system is in thermal equilibrium. The

rate of creation of binaries per unit volume is C(eE), and in thermal equilib-
rium this must equal the rate of destruction of binaries per unit volume, which is

B(eE)neq(eE). Similarly, the rate of transition of binaries from energies in the range

(eE, eE + deE) to energies in the range (eE′, eE′ + deE′) is neq(eE)Q(eE, eE′) deE deE′,
and this must equal the rate of transition in the opposite direction, which is

neq(eE′)Q(eE′, eE) deEdeE′. Thus

C(eE) = B(eE)neq(eE)

neq(eE)Q(eE, eE′) = neq(eE′)Q(eE′, eE),
(M.16)

where neq(eE) is given by equation (M.12). It is easy to verify that if these relations
are satisfied then so is the master equation (M.2).

Equation (M.12) can be combined with the first of equations (M.16) to yield

C(eE) =
π3/2G3ρ2m5/2

4σ3|eE|5/2
e|
eE|/mσ2

B(eE). (M.17)

The rates B(eE) and C(eE) do not depend on the assumption that the bi-
nary distribution is in thermal equilibrium, so long as the field-star distribution is
Maxwellian. Hence (M.17) must hold whether or not the binary distribution is in
thermal equilibrium. This principle of detailed balance allows us to calculate
both the formation and destruction rates if either one of them is known (Heggie
1975).
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Hénon, M. 1973b. In Third Advanced Course

of the Swiss Society of Astronomy and As-
trophysics, Dynamical Structure and Evo-

lution of Stellar Systems, ed. L. Martinet &
M. Mayor (Sauverny: Geneva Observatory),
183
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López–Corredoira, M., Cabrera–Lavers, A., &

Gerhard, O. 2005. A&A, 439, 107

Lotz, J.M., Telford, R., Ferguson, H.C.,
Miller, B.W., Stiavelli, M., & Mack, J. 2001.
ApJ, 552, 572

Louis, P.D. 1990. MNRAS, 244, 478

Lovelace, R.V.E., Jore, K.P., & Haynes,
M.P. 1997. ApJ, 475, 83

Lupton, R., Blanton, M.R., Fekete, G.,
Hogg, D.W., O’Mullane, W., Szalay, A., &
Wherry, N. 2004. PASP, 116, 133

Lynden–Bell, D. 1960. MNRAS, 120, 204
Lynden–Bell, D. 1962a. MNRAS, 123, 447

Lynden–Bell, D. 1962b. MNRAS, 124, 279
Lynden–Bell, D. 1967. MNRAS, 136, 101
Lynden–Bell, D. 1969. MNRAS, 144, 189
Lynden–Bell, D. 1979. MNRAS, 187, 101

Lynden–Bell, D. 1999. Physica A, 263, 293
Lynden–Bell, D., & Eggleton, P.P. 1980. MN-

RAS, 191, 483
Lynden–Bell, D., & Kalnajs, A.J. 1972. MN-

RAS, 157, 1
Lynden–Bell, D., & Lynden–Bell, R.M. 1977.

MNRAS, 181, 405
Lynden–Bell, D., & Ostriker, J.P. 1967. MN-

RAS, 136, 293

Lynden–Bell, D., & Pringle, J.E. 1974. MN-
RAS, 168, 603

Lynden–Bell, D., & Wood, R. 1968. MNRAS,
138, 495

Lynds, R., & Toomre, A. 1976. ApJ, 209,
382

Lyttleton, R.A. 1953. The Stability of Rotat-
ing Liquid Masses (Cambridge: Cambridge

University Press)
Ma, J. 2002. A&A, 388, 389
Magorrian, J. 2006. MNRAS, 373, 425
Magorrian, J., & Tremaine, S. 1999. MNRAS,
309, 447

Magorrian, S.J. 2007. astro-ph/0703406
Magorrian, S.J., & Binney, J. 1994. MNRAS,
271, 949

Majewski, S.R., Skrutskie, M.F., Weinberg,

M.D., & Ostheimer, J.C. 2004. ApJ, 599,
1082

Makino, J. 1991. ApJ, 369, 200
Makino, J. 1996. ApJ, 471, 796
Makino, J. 2001. In ASP Conference Series

228, Dynamics of Star Clusters and the
Milky Way, ed. S. Deiters, B. Fuchs, A.
Just, R. Spurzem, & R. Wielen (San Fran-
cisco: Astronomical Society of the Pacific),

87
Makino, J., & Aarseth, S.J. 1992. PASJ, 44,

151
Makino, J., Fukushige, T., Koga, M., & Na-

mura, K. 2003. PASJ, 55, 1163
Makino, J., & Funato, Y. 2004. ApJ, 602, 93
Malin, D. 1993. A View of the Universe

(Cambridge, MA: Sky Publishing)
Maoz, E. 1991. ApJ, 375, 687

Maoz, E. 1995. ApJ, 447, L91
Mardling, R. 1995. ApJ, 450, 722
Mardling, R., & Aarseth, S.J. 2001. MNRAS,
321, 398

Mark, J.W.-K. 1971. ApJ, 169, 455
Mark, J.W.-K. 1974. ApJ, 193, 539



851

Mark, J.W.-K. 1976. ApJ, 205, 363
Marochnik, L.S. 1967. AZh, 44, 5 (in Rus-

sian). Also SvA, 11, 873 (in English)
Marochnik, L.S., & Suchkov, A.A. 1996. The

Milky Way Galaxy (Amsterdam: Gordon

and Breach)
Mateo, M.L. 1998. ARA&A, 36, 435
Mathews, W.G., & Brighenti, F. 2003.

ARA&A, 41, 191

Mathur, S. 1990. MNRAS, 243, 529
McGaugh, S.S., Barker, M.K., & de Blok,

W.J.G. 2003. ApJ, 584, 566
McGlynn, T.A. 1984. ApJ, 281, 13

Merrifield, M.R. 2003. In ASP Conference
Series 317, Milky Way Surveys: the Struc-
ture and Evolution of our Galaxy, ed. D.
Clemens, R.Y. Shah, & T. Brainerd (San
Francisco: Astronomical Society of the Pa-

cific), 289
Merrifield, M.R., & Kuijken, K. 1995. MN-

RAS, 274, 933
Merritt, D. 1985. AJ, 90, 1027 and MNRAS,

214, 25p
Merritt, D. 1999. PASP, 111, 129
Merritt, D., & Aguilar, L.A. 1985. MNRAS,
217, 787

Merritt, D., & Fridman, T. 1996. ApJ, 460,
136

Merritt, D., & Quinlan, G.D. 1998. ApJ,
498, 625

Merritt, D., & Sellwood, J.A. 1994. ApJ,

425, 551
Merritt, D., & Valluri, M. 1999. AJ, 118,

1177
Mestel, L. 1963. MNRAS, 126, 553

Meza, A., & Zamorano, N. 1997. ApJ, 490,
136

Michie, R.W. 1963. MNRAS, 125, 127
Michie, R.W., & Bodenheimer, P.H. 1963.

MNRAS, 126, 269

Mihos, J.C., & Hernquist, L. 1996. ApJ, 464,
641

Mikkola, S. 1997. CeMDA, 68, 87
Mikkola, S., & Aarseth, S.J. 1996. CeMDA,

64, 197
Mikkola, S., & Aarseth, S.J. 1998. NewA, 3,

309
Miller, R.H. 1964. ApJ, 140, 250

Miller, R.H. 1971. In IAU Colloquium 10,
Gravitational N-Body Problem, ed. M.
Lecar (Dordrecht: Reidel), 213. Also
Ap&SS, 14, 73

Miller, R.H., & Smith, B.F. 1979. ApJ, 227,

785
Miyamoto, M., & Nagai, R. 1975. PASJ, 27,

533
Mohr, P.J., & Taylor, B.N. 2005. Rev. Mod.

Phys., 77, 1. See also physics.nist.gov/cuu-
/Constants/index.html

Moore, B., Kazantzidis, S., Diemand, J., &
Stadel, J. 2004. MNRAS, 354, 522

Moore, B., Quinn, T., Governato, F., Stadel,
J., & Lake, G. 1999. MNRAS, 310, 1147

Morse, P.M., & Feshbach, H. 1953. Meth-

ods of Theoretical Physics (New York:
McGraw–Hill)

Mueller, M.W., & Arnett, W.D. 1976. ApJ,
210, 670

Mulchaey, J.S., Dressler, A., & Oemler,
A., ed. 2004. Carnegie Observatories As-
trophysics Series, 3, Clusters of Galax-
ies: Probes of Cosmological Structure and

Galaxy Evolution (Cambridge: Cambridge
University Press)

Mulder, W.A. 1983. A&A, 117, 9
Murai, T., & Fujimoto, M. 1980. PASJ, 32,

581

Murali, C., & Weinberg, M.D. 1997a. MN-
RAS, 288, 749

Murali, C., & Weinberg, M.D. 1997b. MN-
RAS, 291, 717

Murray, C.D., & Dermott, S.F. 1999. Solar
System Dynamics (Cambridge: Cambridge
University Press)

Naab, T., Jesseit, R., & Burkert, A. 2006.

MNRAS, 372, 839
Nagai, R., & Miyamoto, M. 1976. PASJ, 28,

1
Nakano, T., & Makino, J. 1999. ApJ, 525,

L77

Navarro, J.F., Frenk, C.S., & White, S.D.M.
1995. MNRAS, 275, 720

Navarro, J.F., Frenk, C.S., & White, S.D.M.
1996. ApJ, 462, 563

Navarro, J.F., Frenk, C.S., & White, S.D.M.
1997. ApJ, 490, 493

Nelson, R.W., & Tremaine, S. 1996. In Grav-
itational Dynamics, ed. O. Lahav, E. Ter-
levich, & R.J. Terlevich (Cambridge: Cam-

bridge University Press), 73
Nelson, R.W., & Tremaine, S. 1999. MNRAS,
306, 1

Nishikawa, K., & Wakatani, M. 2000. Plasma

Physics (3rd ed.; Berlin: Springer)
Noguchi, M. 1988. A&A, 203, 259
Nordström, B., et al. 2004. A&A, 418, 989
Norman, C.A., May, A., & van Albada,

T.S. 1985. ApJ, 296, 20
Norman, C.A., Sellwood, J.A., & Hasan,

H. 1996. ApJ, 462, 124
Novikov, I. D., & Frolov, V. P. 1989. Physics

of Black Holes (Dordrecht: Kluwer)

O’Neill, J.K., & Dubinski, J. 2003. MNRAS,
346, 251

Odenkirchen, M., et al. 2003. AJ, 126, 2385
Omma, H., & Binney, J. 2004. MNRAS, 350,

L13
Oort, J.H. 1932. BAN, 6, 249



852 References

Oort, J.H. 1962. In Interstellar Matter in
Galaxies, ed. L. Woltjer (New York: Ben-
jamin)

Oort, J.H. 1970. In IAU Symposium 38, The
Spiral Structure of Our Galaxy, ed. W.

Becker & G. Contopoulos (Dordrecht: Rei-
del), 1
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Stodó lkiewicz, J.S. 1986. AcA, 36, 19
Strickland, D.K., Heckman, T.M., Col-

bert, E.J.M., Hoopes, C.G., & Weaver,

K.A. 2004. ApJ, 606, 829
Strom, S.E., Jensen, E.B., & Strom, K.M.

1976. ApJ, 206, L11
Sugimoto, D., & Bettwieser, E. 1983. MN-

RAS, 204, 19p
Sumi, T., et al. 2003. ApJ, 591, 204
Summers, D., & Thorne, R.M. 1991. Phys.

Fluids B, 3, 1835

Sussman, G.J., & Wisdom, J. 2001. Structure
and Interpretation of Classical Mechanics
(Cambridge, MA: MIT Press)

Swaters, R.A., Madore, B.F., van den Bosch,
F.C., & Balcells, M. 2003. ApJ, 583, 732

Sweet, P.A. 1963. MNRAS, 125, 285
Syer, D., & Tremaine, S. 1996. MNRAS, 282,

223
Sygnet, J.F., Tagger, M., Athanassoula, E., &

Pellat, R. 1988. MNRAS, 232, 733
Szebehely, V.G. 1967. Theory of Orbits (New

York: Academic Press)
Takahara, F. 1976. Prog. Theor. Phys., 56,

1665
Takahashi, K. 1995. PASJ, 47, 561
Tassoul, J.L. 1978. Theory of Rotating Stars

(Princeton: Princeton University Press)
Tegmark, M., et al. 2004. ApJ, 606, 702

Teuben, P.J., & Sanders, R.H. 1985. MN-
RAS, 212, 257

Theuns, T. 1996. MNRAS, 279, 827
Thornley, M.D. 1996. ApJ, 469, L45

Tilanus, R.P.J., & Allen, R.J. 1989. ApJ,
339, L57

Tisserand, P., et al. 2007. A&A, 469, 387
Toomre, A. 1963. ApJ, 138, 385
Toomre, A. 1964. ApJ, 139, 1217

Toomre, A. 1966. In Geophysical Fluid Dy-
namics, notes on the 1966 Summer Study
Program at Woods Hole Oceanographic In-
stitute, ref. no. 66-46, 111

Toomre, A. 1969. ApJ, 158, 899
Toomre, A. 1977a. ARA&A, 15, 437
Toomre, A. 1977b. In The Evolution of

Galaxies and Stellar Populations, ed. B.M.

Tinsley & R.B. Larson (New Haven: Yale
University Observatory), 401

Toomre, A. 1978. In IAU Symposium 79, The
Large Scale Structure of the Universe, ed.
M.S. Longair & J. Einasto (Dordrecht: Rei-

del), 109
Toomre, A. 1981. In The Structure and Evo-

lution of Normal Galaxies, ed. S.M. Fall &
D. Lynden–Bell (Cambridge: Cambridge

University Press), 111
Toomre, A. 1982. ApJ, 259, 535



855

Toomre, A. 1983. In IAU Symposium 100, In-
ternal Kinematics and Dynamics of Galax-
ies, ed. E. Athanassoula (Dordrecht: Rei-
del), 177

Toomre, A., & Kalnajs, A.J. 1991. In Dy-

namics of Disc Galaxies, ed. B. Sundelius
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