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This book develops the basic underlying physics required for a fuller, richer under-
standing of the science of astrophysics and the important astronomical phenomena
it describes. The Cosmos manifests phenomena in which physics can appear in
its most extreme, and therefore more insightful, forms. A proper understanding of
phenomena such as black holes, quasars and extrasolar planets requires that we
understand the physics that underlies all of astrophysics. Consequently, developing
astrophysical concepts from fundamental physics has the potential to achieve two
goals: to derive a better understanding of astrophysical phenomena from first prin-
ciples and to illuminate the physics from which the astrophysics is developed. To
that end, astrophysical topics are grouped according to the relevant areas of physics.
The book is ideal as a text for graduate students and as a reference for established
researchers.
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Preface

Astrophysics strives to describe the Universe through the application of fundamen-
tal physics. The Cosmos manifests phenomena in which the physics can appear in
its most extreme, and therefore more insightful, forms. Consequently, developing
astrophysical concepts from fundamental physics has the potential to achieve two
goals: to derive a better understanding of astrophysical phenomena from first prin-
ciples, and to illuminate the physics from which the astrophysics is developed. To
that end, astrophysical topics are grouped, in this book, according to the relevant
areas of physics. For example, the derivation of the laws of orbital motion, used in
the detection of extrasolar planets, takes place in the classical mechanics part of the
book while the derivation of transition rates for the 21 cm neutral hydrogen line,
used to probe galaxy kinematics, is performed in the quantum mechanics part. The
book could serve as a text for graduate students and as a reference for established
researchers.

The content of this book is based on the material used by the author in support
of advanced astrophysics courses taught at the University of New Mexico. The
intended audience consists of graduate students and senior undergraduates pur-
suing degrees in physics and/or astrophysics. Perhaps the most directly relevant
demographic is the combined Physics and Astronomy departments. These depart-
ments tend to emphasize the fundamental physics regardless of the research track
pursued by the student. In many cases a separate astrophysics degree is not an
option. In these departments (such as the author’s) all students must pass the same
physics comprehensive examination. Consequently, students must be well prepared
in fundamental physics both from the points of view of course work as well as re-
search. In the latter case a strong physics foundation is very helpful in developing
thesis topics to an acceptable level in a physics-dominated department. This book
is specifically aimed at those departments.

The department of Physics and Astronomy at the University of New Mexico
requires its graduate students to take the physics comprehensive exam. Courses

xiii



xiv Preface

based on the material in this book have helped astrophysics and physics students
prepare for these exams. I attribute this benefit to the fact that the astrophysical
topics provide interesting and insightful manifestations of the fundamental physics,
of which, the students previously may have had only a theoretical knowledge. I
therefore expect the book to impact the physics as well as the astrophysics students
in the mixed departments. I also expect that graduate students in physics-only and
astronomy-only departments may choose to use this book to hone their research
skills. Targeting junior/senior undergraduates is also possible in schools where the
science curricula are robust.

Multi-disciplinary and cross-disciplinary investigations are playing an increas-
ingly important role in scientific research. The cross-over of particle physicists into
cosmology, and the establishment of the field of astroparticle physics, is just one
manifestation of the growing overlap between physics and astrophysics disciplines.
The emphasis on the linkage of fundamental physics and astrophysics makes this
book potentially useful as a reference to physics and astrophysics researchers who
wish to broaden their research base.

The author acknowledges the help of Dr. Rich Epstein (Los Alamos National
Laboratory) who co-taught the first course in the series of courses that have led to the
development of the material used in this book. The cooperation and help of the many
students who have taken these courses has been instrumental in identifying many
typos and inconsistencies in the course material. Finally, the author acknowledges
the help and support of the department of physics and astronomy at UNM and the
patience and encouragement of family and friends in this endeavor.



Part I

Classical mechanics

The visible Universe contains hundreds of billions of galaxies, each consisting of
billions of stars. Recent discoveries of extrasolar planets lead us to believe that
a typical galaxy may contain billions of planets (and presumably, asteroids and
comets). The planets, stars and galaxies interact on a hierarchy of scales ranging
from AU to parsec to megaparsec, experiencing forces arising from gravity, on all
scales, and cosmic expansion on the larger scales. The combination of gravitational
attraction and cosmic expansion has shaped the visible matter in the Universe into
a hierarchy of structures leading to clusters and superclusters of galaxies.

A full description of the interactions that define the large-scale structure of the
Universe and its constituent parts requires the application of general relativity on
all scales and the introduction of a new force, as embodied in the recently proposed
cosmological constant, on the largest scales. In this part, however, we limit ourselves
largely to the application of classical (Newtonian) mechanics which is sufficiently
accurate to describe the topics covered in this part and has the advantage of being
more intuitive and accessible to the reader.

This part begins with a review of the basic elements of classical mechanics,
subsequently used to derive Kepler’s laws, the Virial theorem and various aspects
of orbital motion. The resulting derivations are applied to specific astrophysical
problems such as planetary motion, extrasolar planets, binary stars, galaxy rotation
curves, dark matter, the large scale structure of the Universe and cosmic expansion.

1





Chapter 1

Orbital mechanics

I begin this part by reviewing some basic concepts that underlie Newtonian gravi-
tation. The concepts of universal gravitation, center of mass and reduced mass are
defined and subsequently used in the following chapters.

1.1 Universal gravitation

The gravitational force acting between two bodies, m1 and m2, located at �R1 and
�R2, is given by

�F = ± Gm1m2

| �R1 − �R2|3
( �R1 − �R2) (1)

where the quantities are defined in Fig. 1.1 and G is the gravitational constant. The
± signs reflect the fact that the same magnitude of force acts on m1 and m2 but with
opposite sign.

1.1.1 Center of mass

Consider a point on a line, joining m1 and m2, which is the centroid of the total
mass distribution. We call this centroid the center of mass of the two-body system.
The vector �r , separating the two masses, can then be decomposed into �r1 and �r2

relative to the center of mass, such that

�r = �r1 − �r2.

From Newton’s Second Law

�F1 = m1�̈r1 = −Gm1m2

|�r |3 �r . (2)

3



4 Orbital mechanics

m2 m1+
r2 r1

R2 R1

cm

Fig. 1.1 The universal law of gravitation. Gravity is a mutual force that acts
between the masses m1 and m2.

Similarly

�F2 = Gm1m2

|�r |3 �r (3)

⇒ �̈r1 − �̈r2 = �̈r = −G(m1 + m2)

|�r |3 �r = −G M

|�r |3 �r . (4)

The acceleration of the two bodies toward each other is proportional to the total
mass and inversely proportional to the square of the distance between them. The
location of the center of mass (CM) can now be found

m1�̈r1 = −m2�̈r2 ⇒ −m1
G M

|�r |3 �r1 = m2
G M

|�r |3 �r2 ⇒ �r1 = −m2

m1
�r2 (5)

where r1 and r2 represent the distance of m1 and m2 from the center of mass,
respectively. The center of mass is a useful concept in astronomy. It marks the
center about which two astronomical bodies orbit. In an isolated two-body system,
the center of mass is not seen to accelerate.

1.1.2 Reduced mass

Let us define a mass such that

�F = µ�̈r = −G Mµ

|�r |3 �r = −Gm1m2

|�r |3 �r

⇒ µ = m1m2

m1 + m2
. (6)

The concept of reduced mass allows us to transform any two-body problem into a
one-body problem where the reduced mass responds to a central force emanating
from a point whose distance is equal to the separation of the original two bodies.



1.2 Kepler’s laws 5

1.2 Kepler’s laws

We are now in a position to derive the most famous orbital laws used in astronomy,
Kepler’s laws. We begin, as with so many other problems in classical mechanics,
with the Lagrangian

L = T − V (7)

where T is the kinetic energy and V is the potential energy. Let us set m = m1

and M = m2 in anticipation of defining planetary orbits where the planets have
much lower masses than the Sun (that is m � M). We are considering a two-
body interaction so that the expected motion is in a plane and possibly periodic.
It therefore makes sense to use polar coordinates, r and θ for this problem. Equation
(7) then becomes

L = 1

2
m(ṙ2 + r2θ̇2) − V (r ). (8)

We are now in a position to determine the angular momentum pθ from the
Lagrangian. Recall that

pθ = ∂L

∂θ̇
= mr2θ̇ .

We now use the Lagrange equation of motion

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0.

so that

d

dt
(mr2θ̇ ) = 0.

Integrating

mr2θ̇ = l = constant. (9)

Equation (9) represents the conservation of angular momentum. Rearranging
terms

1

2
r2θ̇ = 1

2

l

m
= constant.

Recall that the area of an elemental triangle is given by dA = r2/2 dθ , so that

dA

dt
= r2

2

(
dθ

dt

)
= constant. (10)

According to (10), a radius vector sweeps out equal areas in equal time which, of
course, is Kepler’s Second Law.
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The Hamiltonian or total energy of a two-body system is given by

E = T + V = 1

2
m(ṙ2 + r2θ̇2) + V (r ). (11)

Rearranging (11) and solving for ṙ

ṙ2 = 2

m
(E − V (r )) − r2θ̇2.

But, r2θ̇ = l/m so that

ṙ2 = 2

m
(E − V (r )) −

(
l

rm

)2

⇒ ṙ =
√

2

m

(
E − V (r ) − l2

2mr2

)
.

The above can be solved for dt so that

dt = dr√
(2/m)(E − V (r ) − (l2/(2mr2)))

. (12)

Equation (12) can now be used to determine the shape of the orbit resulting
from the two-body interaction. What we really want is a function r (θ ) which
means converting (12) into a relationship between r and θ and eliminating t in the
process.

We begin by noting that r2θ̇ = r2(dθ/dt) = l/m so that l dt = mr2 dθ

⇒ d

dt
= l

mr2

d

dθ

so that

mr2

l
dθ = dr√

(2/m)(E − V (r ) − (l2/(2mr2)))

⇒ dθ = l dr

mr2
√

(2/m)(E − V (r ) − (l2/(2mr2)))

⇒ θ =
∫ r

r0

dr

r2
√

(2m E/ l2) − (2mV/ l2) − (1/r2)
+ θ0. (13)

Let µ = 1/r and substitute into (13)

⇒ θ = θ0 −
∫ µ

µ0

dµ√
(2m E/ l2) − (2mV/ l2) − µ2

.
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For V = −(Gm M)/r = −k/r = −kµ

⇒ θ = θ0 −
∫ µ

µ0

dµ√
(2m E/ l2) + (2mkµ/ l2) − µ2

(14)

which can be put into standard form and solution with µ = x∫
dx√

a + bx + cx2
= 1√−c

cos−1

[−b + 2cx

q

]
(15)

where

q = b2 − 4ac.

Comparison of (14) and (15) yields

a = 2m E

l2
b = 2mk

l2
c = −1

q =
(

2mk

l2

)2 (
1 + 2El2

mk2

)

so that the solution to (14) becomes

θ = θ ′ − cos−1

[
(l2µ/mk) − 1√
1 + (2El2/mk2)

]
(16)

where θ ′ incorporates the additional constants resulting from the integration. Putting
µ = 1/r back into (16) and taking the cosine of both sides yields

1

r
= mk

l2

(
1 +

√
1 + 2El2

mk2
cos(θ − θ ′)

)
. (17)

We now have a solution, r (θ ), that determines the shape of the orbit and clearly
depends on the energy, E , and the angular momentum, l. This equation can be
compared with the general expression for a conic section

1

r
= C(1 + ε cos(θ − θ ′)). (18)

By equating (17) to (18) we see that

C = mk

l2
(19)

ε =
√

1 + 2El2

mk2
.
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Fig. 1.2 Orbits as conic sections. Circular, elliptical and parabolic/hyperbolic
classes of orbits are shown. The total energy, E , determines the class of orbit
while the combination of E and the angular momentum, l, determines the shape
of the orbit within a class. The Sun is shown as the small filled circle at the center.

The only variable that can be negative is the total energy of the two-body system
so that

E > 0 → ε > 1 hyperbola

E = 0 → ε = 1 parabola

E < 0 → ε < 1 ellipse

E = −1

2
V = −mk2

2l2
→ ε = 0 circle.

These define conic sections, as illustrated in Fig. 1.2.
In the solar system, planets have closed orbits (E < 0) and move in elliptical

trajectories (Kepler’s First Law). Kepler’s Third Law can now be derived, beginning
with the second law. Integrating (10) over a complete period of the orbit yields∫ P

0
Ȧ dt = 1

2

l

m
P = �ab (20)

where �ab is the area of an ellipse and a and b are the semi-major and semi-minor
axes of the elliptical orbit. Now from (18) we can define a as the sum of distances
that correspond to θ = θ ′ and θ = θ ′ + �

a = 1

C(1 − ε2)
.

Combining this with the well-known relationship between a and b

b = a
√

(1 − ε2)
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yields

b =
√

a

C
. (21)

Combining (19) and (21) yields

b = √
a

√
l2

mk
. (22)

Combining (20) and (22)

1

2

l

m
P = �a3/2

√
l2

mk

⇒ P = 2�a3/2

√
m

k

⇒ P = 2�√
G M

a3/2. (23)

Equation (23) represents Kepler’s Third Law – the square of the period is propor-
tional to the cube of the diameter of the orbit.

1.2.1 Planetary orbits

The planets follow orbits as described by (18). However, the orbits differ signifi-
cantly from each other and do not fall in exactly the same plane. Consequently, it
is necessary to describe planetary orbits in three dimensions relative to a standard
reference frame, as shown in Fig. 1.3.

There are two major reference points for a planetary orbit and both are related
to the Earth. The Earth’s orbit (plane NB) is used as the standard reference plane
called the ecliptic. The intersection of the Earth’s celestial equator with the ecliptic
defines the vernal and autumnal equinoxes. The former is denoted as γ in Fig. 1.3.
It is used as the fundamental reference point for defining the orbital elements. The
plane of the Earth’s orbit (the ecliptic) is γ N′B while the plane of the planet’s
orbit is NQN′. The intersection of the two planes is called the line of nodes which
connect the ascending and descending nodes (N and N′, respectively – the direction
of motion of the planet is indicated by the arrow). The Sun is located at the center
and its position is denoted by S. The true orbit of the planet is shown as the ellipse
pLA. The perihelion position is marked as A and the position of the planet, at time
t , is denoted as p. The planet and the Sun define a radius vector, Sp, that cuts the
great circle, NQN′, at P1.
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p

S A
L

Q

N

N'

B
A1

P1

γ θ

ω

Fig. 1.3 The orbit of a planet relative to the Earth’s orbit. A planetary orbit can
be uniquely defined in 3-D space relative to γ and the Earth’s orbit. The various
parameters that characterize the planetary orbit are defined in the text.

With the help of Fig. 1.3, we can define the following parameters of the apparent
orbit of the planet

v = A1 − P1 = true anomaly

ω = N − A1 = argument of perihelion

θ = γ − N = longitude of ascending node

ω̄ = θ + ω = longitude of the perihelion

L = θ + ω + v = true longitude of planet

i = B − N − A1 = inclination of orbit

τ = time when planet is at perihelion, A.

The six elements that completely define the orbit are a, e, θ, ω̄, i, τ . To complete
the connection to (18), which we derived earlier, we see that v = θ − θ ′. The
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Table 1.1. Planetary orbits – elements on January 1, 2000

Planet a (AU) e P (years) i (degree) θ (degree) θ + ω (degree)

Mercury 0.387 0.206 0.241 7.00 48.33 77.46
Venus 0.723 0.007 0.615 3.39 76.68 131.53
Earth 1.000 0.017 1.000 0.0 −11.26 102.95
Mars 1.524 0.093 1.85 1.85 49.58 336.04
Jupiter 5.203 0.048 11.862 1.31 100.56 14.75
Saturn 9.537 0.054 29.458 2.49 113.72 92.43
Uranus 19.191 0.047 84.012 0.77 74.23 170.96
Neptune 30.069 0.009 164.796 1.77 131.72 44.97
Pluto 39.482 0.249 246.378 17.14 110.30 224.07

additional elements allow us to determine the orbit relative to our perspective at the
Earth. Table 1.1 lists the orbital elements of the planets in our solar system.

1.3 Binary stars

1.3.1 Visual binaries

Roughly half of all stars in the Galaxy are binaries. Analysis of binary star orbits
via the equations we have derived thus far, provides valuable information regarding
stellar properties and stellar evolution, information that would otherwise be diffi-
cult to obtain. Binary systems in which both stars are visible are known as visual
binaries.

1.3.2 The apparent orbit

Binary stars represent the most general two-body problem. Their orbits are oriented
randomly in space and are described fully in three dimensions in much the same
way as were the planets we discussed earlier. However, because we only see a
projection of the orbit on the sky we must somehow recover the orbital elements
from an analysis of the 2-D orbit. The 2-D orbit is measured according to Fig. 1.4.

The most general form of an ellipse is given by

ax2 + 2hxy + by2 + 2gx + 2 f y + 1 = 0 (24)

where x = ρ cos θ and y = ρ sin θ and all coefficients are real constants. The equa-
tion of the apparent orbit is obtained by fitting (24) to a large number of measure-
ments of ρ and θ . The more observations the better the fit and the more accurate
the coefficients that define the shape of the apparent orbit. The procedures for
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Fig. 1.4 Definition of the apparent orbit. The cardinal directions are shown. The
apparent separation of the two stars is given by ρ and the position angle (measured
east of north) is given by θ .

recovering the elements of the 3-D orbit from the measured 2-D orbit and the
associated limitations are now discussed.

1.3.3 The true orbit

Consider Fig. 1.5, which shows the binary orbit relative to the observer. The position
of the primary star of the binary system is denoted as S, at the center of the sphere.
The position of the companion, at time t , is given by F. Periastron is at P. The plane
LGM represents the plane of the binary orbit. The plane NLD corresponds to the
apparent orbit. It is perpendicular to the line of sight to the observer and represents
the projection of the plane of the true orbit in the direction of the observer. The line
segment, SN, represents a reference angle, θ = 0 (relative to true north for the
observer). ML is the line of nodes defined by the intersection of the plane of the
binary orbit and the plane NLD.

Analysis of Fig. 1.5 shows that

ρ = r cos GD (25)

where r = SF and ρ is the apparent distance of the companion from the primary
(Fig. 1.4) and r is the true separation of the two stars. We also note the following
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Fig. 1.5 Binary star orbit relative to the observer. The orbit of the secondary star
is shown relative to the primary (S). The orbit is defined relative to a plane that is
orthogonal to the line of sight to the observer.

relationship between three of the angles

cos GD = cos(v + ω)

cos(θ − Ω)
. (26)

Combining (25) and (26) yields

ρ = r
cos(v + ω)

cos(θ − Ω)
. (27)
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Similarly,

tan(θ − Ω) = tan(v + ω) cos i. (28)

The average angular velocity (averaged over one orbit) is given by

n = 2�

P
.

The time of periastron passage is given by τ . Kepler’s Third Law must be used in its
full form so that

n2a3 = 4�2a3

P2
= G(m1 + m2). (29)

1.3.4 Determining the orbital elements

The elements of the true orbit are a, e, i, Ω, ω, τ and P . The true orbit is determined
by varying the orbital elements to generate values of ρ and θ using equations such
as (27), (28) and (29) and comparing this with the apparent orbit until there is a good
match. All the orbital parameters can be obtained in this way, including a but not
a1 and a2 because the center of mass is not measured. The individual semi-major
axes can only be obtained if the motions of the stars are monitored with respect to
an absolute reference frame. Although this is possible the resulting elements tend
to be much less accurate.

Determining the stellar masses

Since the individual semi-major axes are not measured, only the sum of the masses
can be determined via (29). Again, if measurements are made on an absolute ref-
erence grid the individual masses can be obtained.

1.3.5 Spectroscopic binaries

When stars are too close to be individually resolved we rely on information obtained
from their spectra. Generally one of the two stars dominates the observed spectrum
by being the brighter of the two. We will therefore begin by considering a single
spectrum.

The essential point is that the wavelengths of the spectral lines are measured
repeatedly and accurately in order to search for Doppler induced wavelength vari-
ations. Consider Fig. 1.6, where G is the center of gravity of the two-body system.
From the figure

z = r sin(PM) (30)
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Fig. 1.6 Orbit of a spectroscopic binary relative to the observer. The orbit is defined
relative to a plane orthogonal to the line of sight to the observer.

represents the elevation of the star above the HLM plane and therefore represents
the component of r along the line of sight to the observer. It is only the line-of-sight
component that contributes to the Doppler effect. Also, remember that the observer
can be considered to be at infinity relative to the scale of the binary system.

Again, from Fig. 1.6

sin(PM) = sin(v + ω) sin i. (31)

Combining (30) and (31)

z = r sin(v + ω) sin i. (32)
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Fig. 1.7 Radial velocity curve showing the radial velocity changes as well as the
systemic velocity. The systemic velocity is shown as a dashed line.

The radial velocity (the line-of-sight velocity) is simply the rate at which z
changes with time plus whatever net velocity the binary system has with respect to
the observer

Vr = Vs + dz

dt
. (33)

The velocity Vs is called the systemic velocity and represents the steady, non-
periodic portion of the binary’s motion along the line of sight. The velocity Vr is
measured empirically from high-dispersion spectra. The velocity Vs is separated
from dz/dt by examining velocity curves such as that shown in Fig. 1.7.

To extract useful information about the orbit of the star it is necessary to relate
dz/dt to the parameters of the true orbit.

We begin with the general expression for an orbit (equations (18) and (20))

r = a(1 − e2)

1 + e cos v
(34)

and Kepler’s Second Law

r2 dv

dt
= h = [n2a4(1 − e2)]1/2. (35)
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Differentiating both sides of (32) with respect to time yields

dz

dt
= dr

dt
sin(v + ω) sin i + r cos(v + ω) sin i

dv

dt
. (36)

Doing the same thing with (34)

dr

dt
= nae sin v

(1 − e2)1/2
. (37)

From (35)

r
dv

dt
= 1

r
r2 dv

dt
= h

r
= na

(1 − e2)1/2
(1 + e cos v). (38)

Substituting (37) and (38) into (36) yields

dz

dt
= na sin i

(1 − e2)1/2
[cos (v + ω) + e cos ω] (39)

which gives us what we have been looking for, the radial velocity as a function of the
true orbital parameters. With many repeated measurements of dz/dt it is possible
to determine the orbital parameters via (39). In practice, we vary the parameters in
(39) in order to fit the observed radial velocity curve, such as the one shown.

One important aspect of this procedure is that it does not yield a unique value for i ,
the orbital inclination, because only the radial component of the velocity is measured
without accompanying geometrical information. This means that only a sin i can
be measured, not a. As we will see this affects the ability to measure the masses of
the stars.

1.3.6 The mass function

From page 3 and the discussion of the center of gravity (center of mass), we have

a1

a1 + a2
= a1

a0
= m2

m1 + m2

so that

(a1 sin i)3 =
(

a0m2

m1 + m2
sin i

)3

= m3
2a3

0 sin3 i

(m1 + m2)3
. (40)

Re-examining Kepler’s Third Law,

m1 + m2 = 4�2

G

a3
0

P2
. (41)
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Fig. 1.8 The apparent orbit of 70 Tauri on the sky. The observed data points are
shown along with the best-fit ellipse (from Torres, G., Stefanik, R.P. and Latham,
D. W., 1997, ApJ, 479, pp. 268–278).

Combining (40) and (41), yields

m3
2 sin3 i

(m1 + m2)2
= 4�2

G

(a1 sin i)3

P2
. (42)

The quantity on the right can be estimated from observations. The left-hand side
is referred to as the mass function. Though it contains information about the masses
it is not possible to determine individual masses or, for that matter, the total mass.
If two spectra are visible the ratio of the masses can also be obtained. If the binary
is eclipsing (i = 90◦) the individual masses can also be obtained.

1.3.7 Summary of binary star studies

Examples are now shown of results relating to binary stars. Figure 1.8 shows the
orbit of 70 Tauri. The orbit was derived from speckle imaging, a method that
compensates for the blurring of the Earth’s atmosphere. The figure is taken from
Torres et al. (1997). The system is also a double-line spectroscopic binary as shown
in Fig. 1.9 (from Torres et al., 1997). In all subsequent figures in this section, the
dots represent the data and the curve represents the best fit model.
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Table 1.2. Binary orbits – derivable parameters

Type of binary Derivable parameters Observations needed

Visual Luminosity Parallax, apparent brightness
Sum of masses, orbital elements Parallax, separation, period
Individual masses Absolute reference grid

Spectroscopic Mass function, some orbital data Single velocity curve
Ratio of masses, some orbital data Double velocity curve

Eclipsing Radii, masses, orbital elements Light and velocity curves
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Fig. 1.9 Radial velocity curve of the double-line spectroscopic binary 70 Tauri.
Observations of both stars are shown by the filled and unfilled circles. The systemic
velocity is shown as a horizontal line (from Torres, G., Stefanik, R. P. and Latham,
D. W., 1997, ApJ, 479, pp. 268–278).

For comparison, a single-line spectroscopic binary, 51 Tauri, is shown in
Fig. 1.10, also from Torres et al. (1997). Table 1.2 summarizes and compares
the various studies of binary stars.

1.3.8 Mass–luminosity relation

As noted earlier, one of the main reasons for studying binary stars is to determine the
masses of stars and to correlate those masses with other properties. Such correlations
yield important clues on how stars are born and how they evolve with time. A
cornerstone for such studies is the mass–luminosity relation which is a correlation
between the mass of a star and the rate at which it emits (and therefore produces)
energy.
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Fig. 1.10 Radial velocity curve of the single-line spectroscopic binary 51 Tauri.
In this case only one star is visible (from Torres, G., Stefanik, R. P. and Latham,
D. W., 1997, ApJ, 485, pp. 167–181).

The mass–luminosity relation is fairly tight and is well represented by the fol-
lowing equations

L

L�
=

(
M

M�

)4.0

(M > 0.43 M�)

L

L�
= 0.23

(
M

M�

)2.3

(M < 0.43 M�).

An example of a mass–luminosity relation for members of the Hyades cluster of
stars is shown in Fig. 1.11. It has been determined from mass measurements obtained
using astrometric and spectroscopic techniques as described before. Figure 1.11 is
also taken from Torres et al. (1997).

1.4 Extrasolar planets

The detection of extrasolar planets represents a holy grail of modern astronomy.
The techniques used to hunt down planets are extensions of the methods used to
study binary stars. I describe each of them briefly.
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Fig. 1.11 The mass–luminosity relation for members of the Hyades star cluster.
The visual magnitude is shown along the vertical axis while the log of the mass
is shown along the horizontal axis (from Torres, G., Stefanik, R. P. and Latham,
D. W., 1997, ApJ, 485, pp. 167–181).

1.4.1 The astrometric method

This method is essentially the same as the visual binary method except for the
fact that the companion is not visible. Consequently, all measurements of the star
must be made with respect to the center of mass, in other words in an inertial
reference such as that provided by background stars. Figure 1.12 shows how such
measurements might be made.

The measurements of the stellar position relative to the center of mass are, of
course, angles (θ ) and are related to the mass of the system as

θ ′′ = m

M

a(AU)

D(pc)

where θ ′′ is the angular deviation in seconds of arc, m is the mass of the planet, M
is the mass of the star, a is the orbital semi-major axis of the planet relative to the
center of mass of the system, in AUs, and D is the distance to the system in parsecs.
This equation follows directly from (5) by setting r1 = θ ′′ D and r2 = a.
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Fig. 1.12 Apparent motion of a star interacting with an unseen companion. The
combination of the proper motion and the orbital motion of the star leads to the
dashed path. The angle θ is the maximum deviation from a straight line.

The measured amplitude of the signal is independent of the inclination of the orbit
which is the primary advantage of this method. The major disadvantages are that it
is difficult to measure accurate positions in the presence of atmospheric turbulence
and that it takes a long time to monitor changes in the orbit and accumulate a
significant signal.

So far, the best candidate for this type of work is Lalonde 21185. George Gate-
wood (1996), using the Allegheny Observatory, has monitored this star for many
years. He claims that the star has two Jovian-mass companions, one with an orbit
of 30 years, the other 6 years. This result, however, is controversial. For details see
the catalog of extrasolar planets, www.obspm.fr/encycl/catalog.html.

1.4.2 The radial velocity method

This method is identical to that used to study single-line spectroscopic binaries. It
has proven to be the most prolific method for detecting extrasolar planet candidates.

From (42), assuming m � M (which is true for planets)

m3 sin3 i

M2
= n2

G
(a1 sin i)3

but from (39), setting a = a1 and e = 0, we have

Vr (max) = na1 sin i.
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Fig. 1.13 The two stars, 51 Peg and 70 Vir, are responding to an unseen com-
panion, as shown in these radial velocity plots. These curves are equivalent to the
single-line spectroscopic binary curves but have much lower amplitudes. From
www.physics.sfsu.edu/∼gmarcy/planetsearch/doppler.html.

Keeping in mind that a = a1 is the semi-major axis relative to the center of mass,
then, from (5), we have

a1

a1 + a2
= a1

a0
= m

M

so that

Vr (max) = 2�

P
a1 sin i = 2�

P

m

M
a0 sin i.

But from Kepler’s Second Law

P2 = 4�2

G M
a3

0 → P = 2�√
G M

a3/2
0 .

Substituting into the expression for Vr (max)

⇒ Vr (max) =
√

G
m√
Ma0

sin i.

In astronomer-friendly units

Vr

km s−1
≈ 30

m√
Ma0

sin i

where m, M are in solar masses and a0 is in AUs.
Examples of velocity curves with planetary signatures are shown in Fig. 1.13.

Over 100 planets have been detected with this procedure. Although this is the most
sensitive technique for finding planets it has one major drawback. Only m sin i can
be inferred, not m. It is therefore difficult to prove that any given candidate is a bona



24 Orbital mechanics

star

planet

brightness

time

3

3

2

2

1

1 3

2.07

2.08

0.6 0.7 0.75 0.80.65

2.06

2.05

Fig. 1.14 Schematic of a transit, from Hans Deeg (2003), and actual data showing
a transit of HD 209458, from Henry (2003). A transit occurs when the planet passes
in front of a star, as shown. The resulting changes in the brightness of the star are
shown in the case of HD 209458. The units are magnitude and time.

fide planet. Statistically, though, it would seem that at least some of the candidates
are planets. The candidates are detailed further in the catalog of extrasolar planets.

1.4.3 The transit method

For stars oriented in just the right way, companions will transit (eclipse) in front of
the star as a result of their orbital motion (Fig. 1.14). A light curve results very much
like that of eclipsing binaries except that the depth of the eclipse is much smaller.
This method is still in its infancy and suffers from the major disadvantage that it
requires systems whose orbital planes are aligned with the observer’s line of sight.
Needless to say, statistics do not favor such an orientation. The first such searches
have relied on observing known eclipsing binaries. It is not clear that binaries can
support stable planetary orbits although that in itself is an interesting question that
can be addressed by this method. The major advantage of the transit method is
that it can, in principle, detect planets as small as the Earth, using current detector
technology. The first possible detection of an extrasolar planet was reported by
Charbonneau et al. (2000). Figure 1.14 shows a transit around the star HD 209458.
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Chapter 2

Galaxy dynamics

Now that I have covered the two-body interaction in detail I turn my attention to
more complex systems such as galaxies. Galaxies can be thought of as large systems
of interacting objects such as stars and gas clouds. Since galaxies like the Milky
Way contain of the order of 1011 stars it is not practical to analyze all possible
two-body interactions in such a system. Instead, I treat the mass distribution of a
galaxy as a continuous quantity and therefore determine the gravitational effects
in a macroscopic fashion, that is, by considering the integral effects of matter on
a test mass. I therefore begin with a discussion of forces and potentials arising
from continuous but finite distributions of matter. In the discussions that follow
I will relate forces and potential energy to test particles of unit mass. Much of
the mathematical development in this chapter is patterned after that of Binney and
Tremaine (1988).

2.1 Potentials of arbitrary matter distributions

Consider an incremental force � �F(�x) acting on a unit mass and arising from an
infinitesimal mass element �m(�x). From Newton’s law of universal gravitation
(equation (1)) we have

� �F(�x) = G
�x ′ − �x

|�x ′ − �x |3 �m(�x ′) = G
�x ′ − �x

|�x ′ − �x |3 ρ(�x ′) �3 �x ′. (43)

The total force arising from all mass elements of the mass distribution is obtained
by integrating (43) so that

�F(�x) =
∫

� �F(�x) = G
∫ �x ′ − �x

|�x ′ − �x |3 ρ(�x ′) �3 �x ′. (44)

26
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Similarly, the gravitational potential of a continuous mass distribution can be
expressed as

Φ(�x) = −G
∫

ρ(�x ′)
|�x ′ − �x | �3 �x ′. (45)

We can relate Φ to �F by noting (see Jackson, 1998) that

�∇
(

1

|�x − �x ′|
)

= �x ′ − �x
|�x ′ − �x |3

and combining with (44) to yield

�F(�x) = �∇
∫

Gρ(�x ′)
|�x ′ − �x | �3 �x ′ (46)

or

�F(�x) = −�∇Φ (47)

which is the well-known result that the vector gravitational force is proportional to
the gradient of the scalar gravitational potential.

Using these equations it can be shown (see Binney and Tremaine, 1988) that

∇2Φ = 4�Gρ Poisson’s equation

which reduces to

∇2Φ = 0 Laplace equation

for the special case ρ = 0.
From Poisson’s equation we can derive Gauss’s theorem

4�G
∫

ρ d3 �x =
∫

�∇Φ · d2 �S. (48)

Let us now put these equations to use.

2.2 Dynamics of thin disks

Galaxies such as the Milky Way are characterized by cylindrical disks that are
very thin compared to the disk radii. To first order we can ignore their thickness
completely for the sake of mathematical expediency. Consider therefore a circular
disk of zero thickness characterized by some surface density distribution, Σ(R),
where R is the radial distance from the center of the disk (Fig. 2.1).

Since the disk is infinitely thin we can start with the Laplace equation rather than
the Poisson equation and we should expect that the resulting solution is valid for
all regions outside the disk (which means almost all regions). Since the disk has
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Fig. 2.1 Side and top views of an idealized galaxy disk. The relevant coordinates
are R, θ and z.

cylindrical symmetry and since we want a solution for all 3-D space we begin by
casting the Laplace equation in cylindrical coordinates.

∇2Φ = 1

R

∂

∂ R

(
1

R

∂Φ

∂ R

)
+ ∂2Φ

∂z2
= 0.

Separating variables, we look for a solution of the form

Φ(R, z) = J (R)Z (z).

Substituting into the Laplace equation yields

1

J (R)

1

R

d

dR

(
R

dJ

dR

)
= − 1

Z (z)

d2 Z

dz2
= −k2,

which follows from the fact that the two independent quantities always add up to
zero and this can only happen if the two terms are constrained to a constant value,
k. Thus

d2 Z

dz2
− k2 Z = 0

1

R

d

dR

(
R

dJ

dR

)
+ k2 J (R) = 0.
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The first equation looks a lot easier to solve. In fact, we immediately see that its
solution is given by

Z (z) = S e±kz (49)

where S is a constant. The second equation is a little trickier. We begin with the
substitution, u = k R, which leads to

1

u

d

du

(
u

dJ

du

)
+ J (u) = 0. (50)

If we add the constraint that the solution should lead to a finite value of J at
u = 0, we have

J (u) = J0(u) → J (k R) = J0(k R). (51)

The relevant solution is the cylindrical Bessel function of order zero. Combining
the two solutions yields

Φ(R, z) = S e±kz J0(k R). (52)

Considering now a solution for a specific value of k, we have

Φk(R, z) = e−k|z| J0(k R). (53)

This solution has the desirable properties that Φk → 0 as z → ∞ and R → ∞.

It also has the undesirable property that there is a discontinuity in the gradient of
Φ(z) at z = 0. It does not satisfy Laplace’s equation because matter is present there.
We therefore need to correct the solution for the presence of the thin matter disk.
Since the matter distribution is two dimensional, that is it forms a surface rather
than a volume, it makes sense to use Gauss’s theorem here. Since we are interested
in finding the surface density that gives rise to the discontinuity in �∇Φ

∂Φk

∂z
= −k J0(k R), lim z → 0+

∂Φk

∂z
= k J0(k R), lim z → 0−.

The integral of �∇Φk over a closed unit surface must equal 4�GΣk (48) so that

Σk(R) = − k

2�G
J0(k R) (54)

is the surface density that we need.
Now we can determine the potential associated with the surface density.

Using (53)

Φk(R, z) = −e−k|z| 2�GΣk(R)

k
. (55)
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Keep in mind that this is a special solution corresponding to a particular surface
density Σk . To get the general solution for an arbitrary surface density Σ we need
to allow for all possible values of k. If we can find a function S(k) such that

Σ(R) =
∫ ∞

0
S(k)Σk(R) dk = − 1

2�G

∫ ∞

0
S(k)J0(k R) k dk (56)

then we will have

Φ(R, z) =
∫ ∞

0
S(k)Φk(R, z) dk =

∫ ∞

o
S(k)J0(k R) e−k|z| dk (57)

and the equations will be in terms of an arbitrary mass density Σ(R).
The function S(k) is the Hankel transform of −2�GΣ and transforms in a similar

fashion to Fourier transforms so that

S(k) = −2�G
∫ ∞

0
J0(k R)Σ(R)R dR. (58)

Eliminating S(k) from (57) and (58) yields

Φ(R) = −2�G
∫ ∞

0
dk e−k|z| J0(k R)

∫ ∞

0
Σ(R′)J0(k R′)R′ dR′.

This is the solution we have been seeking. By stipulating the surface density we
obtain the potential.

With the potential expressed in terms of the mass density it is now possible to
determine the circular speed an object would have at any point on the disk (z = 0).
Setting z = 0 we have

v2

R
= F = | �∇Φ|

⇒ v2(R) = R | �∇Φ| = R

(
∂Φ

∂ R

)
z=0

= −R
∫ ∞

0
S(k)J1(k R) k dk. (59)

Equation (59) allows us to determine the rotation curve of a galaxy. Let us now
do that for a galaxy like the Milky Way.

2.3 Rotation curves of disk galaxies

So far we have kept the surface mass density unspecified. Let us now consider a
disk with a specific density distribution. Disk galaxies such as the Milky Way are
characterized by optical surface brightnesses that decline exponentially with radius.
Since it is generally believed that stars emit light in direct proportion to their mass,
it is inferred that the radial mass distribution is also exponential. The surface mass
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density we will therefore assume is given by

Σ(R) = Σ0 e−R/Rd . (60)

Substituting (60) into (59) and solving for the function S(k), we have

S(k) = − 2�GΣ0 R2
d

[1 + (k Rd)2]3/2
. (61)

To get the potential we simply insert (61) into (60) yielding

Φ(R, z) = −2�GΣ0 R2
d

∫ ∞

0

J0(k R) e−k|z|

[1 + (k Rd)2]3/2
dk.

Since we are primarily interested in the dynamics of the thin disk itself we set
z = 0 and solve the above integral – for solutions see Gradshteyn and Ryzhik (2000)
and Abramowitz and Stegun (1964)

Φ(R, 0) = −�GΣ0 R(I0(y)K1(y) − I1(y)K0(y)) (62)

where

y ≡ R

2Rd
.

In (62), I0 and I1 are the modified Bessel functions of the first kind and of order
0 and 1 respectively. Similarly, K0 and K1 are modified Bessel functions of the
second kind and of order 0 and 1 respectively.

To get the velocity of the disk as a function of radial distance R we need to
differentiate (62) according to (59). Doing so, we obtain

v2(R) = R
dΦ

dR
= 4�GΣ0 Rd y2 [I0(y)K0(y) − I1(y)K1(y)] . (63)

Equation (63) represents the rotation curve of a thin disk. It is a good represen-
tation of how we expect disk galaxies to rotate. A plot corresponding to (63), is
shown in Fig. 2.2. Note the initial rise, the peak velocity and the subsequent 1/

√
R

decline. The latter is known as Keplerian rotation because that is how the planets
in the solar system behave.

2.3.1 Rotation curves of real spiral galaxies

Real spiral galaxies are not, of course, disks of zero thickness. Their disks have a
finite width and they have spiral arms superimposed. In addition, the central region
of many spiral galaxies is characterized by a spherical distribution of mass called
the bulge. Conceptually, a real spiral galaxy looks something like Fig. 2.3. It is
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Fig. 2.2 Model rotation curves based on equation (63). The variables R and V are
shown in relative units. Note the rigid body rotation evident at small R and the
Keplerian fall-off at large R.

|

|
h

RdRb

Fig. 2.3 The major parameters of a galaxy disk. The radius RB of the central bulge
and the radius Rd and thickness h of the disk are shown.

assumed that mass elements in the disk of a spiral galaxy have circular orbits about
the center of the galaxy. The galaxy is taken to have a central bulge and a flat,
circular disk.

The bulge

If the bulge has a constant density ρB , independent of radius, then

M(r ) = 4

3
�r3ρB (r < RB)

represents the mass distribution as a function of the radius, r , out to the edge of the



2.3 Rotation curves of disk galaxies 33

bulge, r = RB . Balancing centripetal and gravitational forces, we have

v2(r ) = G M(r )

r
= 4

3
�ρB Gr2 (r < RB)

Thus, we see that

v(r ) ∝ r and θ̇ (r ) = constant.

The linear velocity increases with r and the angular velocity is constant indicating
rigid body rotation. This kind of rotation is observed in all spiral galaxy bulges and
is consistent with the rotation of the inner disk as shown in Fig. 2.2.

The disk

Suppose that a point is reached where most of the disk is encompassed within an
orbit of an outer mass element. Then we expect that mass element to respond as if
it were orbiting a point mass. In the limit of large r , (63) yields

v(r ) ∝ 1√
r

and θ̇ ∝ r−3/2

consistent with M(r ) = constant and Keplerian rotation. These dependencies are
indicative of differential rotation, a characteristic shared by many astronomical
bodies that are not solid or rigid.

Thus, it is expected that in the outer-most regions of a spiral galaxy there should be
a turnover where v(r ) begins to decline according to Keplerian orbital motion. Such
a turnover is rarely observed in spiral galaxies! In fact, most rotation curves appear
to be flat, i.e. v(r ) = constant. Why is that? Well, if we assume that Kepler’s laws
are valid on kiloparsec scales then we must conclude that the true mass distribution
is different from that which is actually visible. The unseen mass may not radiate
but it still provides a gravitational potential that any mass element must respond to.

The halo

Let us therefore suppose that there is a massive, spherical and invisible halo of
material surrounding a spiral galaxy such that

M(r ) = 4

3
�r3ρh (r < Rh)

and let us suppose that the halo dominates all other components in terms of total
mass. It turns out that such massive halos are gravitationally stable if ρh ∝ 1/r2 in
which case

M(r ) ∝ r

v2(r ) ∝ M(r )

r
= constant

⇒ v(r ) = constant.
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Rb Rd Rh

V(r)

r

Fig. 2.4 Hypothetical rotation curve showing a massive halo. If a massive dark
matter halo did exist and we had the means to measure rotation into the halo, the
resulting rotation curve might look like the one shown.

We see that massive halos of dark matter can flatten rotation curves of spiral
galaxies. This fact is the main argument that individual galaxies are surrounded by
dark matter. Dark matter and the rotation curves of galaxies are discussed in greater
detail in Chapter 14. In Sections 2.4.3 and 3.2.3, I discuss evidence for dark matter
in clusters of galaxies. If dark matter halos exist then the true rotation curves of
galaxies might look similar to the sketch in Fig. 2.4.

2.4 N-body gravitational systems

Consider a system of many particles (galaxies) that interact only via gravity.

2.4.1 Equation of motion

We can set up an equation of motion using the law of universal gravitation
(equation (1))

mi �̈ri = −G
∑
j �=i

mi m j

|�ri − �r j |3 (�ri − �r j ). (64)
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Taking the product of �̇ri with (64) and summing over all i , the left-hand side
becomes

∑
i

mi �̈ri · �̇ri = d

dt

∑
i

mi ṙi
2

2
= d

dt
Ek (65)

while the right-hand side becomes

−G
∑
i, j

mi m j

|�ri − �r j |3 (�ri − �r j ) · �̇ri

= −G
∑
i, j

mi m j

|�r j − �ri |3 (�r j − �ri ) · �̇r j

= 1

2
G

∑
i, j

mi m j
d

dt

1

|�ri − �r j | = − d

dt
EG .

Equating the two sides we see that

d

dt
(Ek + EG) = d

dt
Etot = 0.

This equation is not only a statement of energy conservation but is also useful as
an equation of motion for large numbers of bodies under the influence of gravity.

2.4.2 The Virial theorem

The Virial theorem is a valuable tool for studying static, non-evolving (relaxed)
systems such as stars (systems of gas particles), gas clouds, star clusters, galaxies
and galaxy clusters. The Virial theorem can be used to study large structures in the
Universe as now described.

Let us go back to (64) and dot-multiply the left-hand side of the expression with
�ri and then sum over all i

∑
i

mi �̈ri · �ri =
∑

i

mi

[
d2

dt2

(
r2

i

2

)
− ṙ2

i

]

= d2

dt2

∑
i

mir2
i

2
−

∑
i

mi ṙ
2
i = d2

dt2
I − 2Ek,

where I is the moment of inertia of the system. For a stationary system (one that is
relaxed) the moment of inertia does not change (on average) with time. Thus∑

i

mi r̈iri = −2Ek . (66)
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Repeating the same operation on the right-hand side of (64) we get

−
∑

i j

mi m j G
(�ri − �r j ) · �ri

|�ri − �r j |3

= −
∑

i j

mi m j G
(�r j − �ri ) · �r j

|�ri − �r j |3

= −1

2

∑
i j

mi m j G

|�ri − �r j | = EG . (67)

Equating (66) and (67) yields the relation that defines the theorem

Ek = −1

2
EG = 1

2
|EG |. (68)

⇒ the Virial theorem

According to the Virial theorem the total energy of a stationary system is

ET = Ek + EG = 1

2
EG .

A stationary system is one in which no significant dynamical evolution is taking
place.

2.4.3 Clusters of galaxies

Let us consider now a cluster of galaxies and the application of the Virial theorem
to such a cluster. The kinetic energy can be obtained by summing over the kinetic
energies of the individual galaxies in the cluster.

Ek =
∑ Mi V 2

i

2
= Mtot

〈V 2〉
2

. (69)

The space velocities of the galaxies cannot be observed directly but their radial
velocities, Vrad can. For a sufficiently large number of galaxies, there is a relation-
ship between the average radial velocities of the galaxies and their average space
velocities. Assuming isotropic orbits, it is given by〈

V 2
rad

〉 = 〈V 2〉/3.

The self-potential or gravitational energy can be expressed as

EG = −G M2
tot

Rc
, (70)

where Rc is the radius of the cluster. By combining (68), (69) and (70) we obtain
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Fig. 2.5 The Hercules cluster of galaxies. Note the mix of elliptical and
spiral galaxies. From: http://antwrp.gsfc.nasa.gov/apod/ap980827.html. Credit:
Dr. Victor Andersen (University of Alabama, KPNO).

an expression for estimating the total mass of the cluster.

Mtot = 3
〈
V 2

rad

〉
Rc

G
.

The radius of the cluster, Rc, can be estimated if the distance to the cluster is
known (obtained from the Hubble relation). Masses of clusters, obtained in the
above manner, have led to estimates of the mass-to-light ratio, that is

Mtot

L
≈ 200

M�
L�

.

This is a much higher number than is typically found for individual galaxies
indicating that there must be a lot of matter whose gravitational influence is felt
but is otherwise invisible. This ratio of mass to light can be used to estimate the
average density of the Universe (see Chapter 3).

There are uncertainties in these analyses that must be kept in mind.

(i) The characteristic radius of the cluster is determined from the distribution of visible
matter and may not be representative of the true matter distribution.

(ii) The outer parts of the cluster may not be static in which case, d2 I/dt2 may not be 0.
(iii) The mass-to-light ratio may be a function of radius within the cluster.
(iv) Newtonian gravitation may be invalid on large scales.

Examples of well-known galaxy clusters are shown in Figs. 2.5 to 2.7.



38 Galaxy dynamics

Fig. 2.6 The Virgo cluster of galaxies. The field is dominated by a pair of giant
elliptical galaxies. From: http://www.seds.org/messier/more/virgo.html.

Fig. 2.7 Abell 2218: A Galaxy Cluster Lens. The foreground galaxy cluster
is refracting, gravitationally, the light from distant background objects. From:
http://antwrp.gsfc.nasa.gov/apod/ap950710.html Picture Credit: NASA, HST,
WFPC2, W. Couch (UNSW).
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Chapter 3

Cosmic expansion and large scale structure

3.1 The expansion of the Universe

The expansion of the Universe can be modeled in a very simple way if we assume
uniform expansion and that matter dominates the dynamics of the expansion (in
other words, purely gravitational dynamics). Let us therefore consider a sphere
expanding uniformly such that

�V = H�r

where �V is the velocity of expansion and �r is the radius at which the velocity is
measured (Fig. 3.1). We also assume complete spherical symmetry. The kinetic
energy of the expansion can be written as

Ek =
∫

ρv2

2
d3r = 4�ρH 2

2

∫ R

0
r4 dr = 2�

5
ρH 2 R5.

The gravitational potential energy can be expressed as

EG = −G
∫

M(r )ρ

r
d3r = −G

∫ (
4�

3
r3ρ

)
ρ

r
d3r

⇒ EG = (4�)2

15
ρ2G R5.

We see that

MR ∝ ρR3

R ∝
(

MR

ρ

)1/3

EG ∝ ρ1/3 M5/3 → 0 as ρ → 0.

40
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r

Fig. 3.1 Cosmic expansion according to Newtonian mechanics. The expansion is
assumed to be uniform and isotropic.

The total energy in the expansion can now be obtained

ET = Ek

(
1 + EG

Ek

)
= Ek

(
1 − 8�ρG

3H 2

)
≡ Ek

(
1 − ρ

ρc

)
≡ Ek (1 − Ω)

where

ρc = 3H 2
0

8�G
= 10−29g cm−3

(
H0

70 km s−1 Mpc−1

)2

= 6 × 10−6m p cm−3

(
H0

70 km s−1 Mpc−1

)2

,

where H0 is known as the Hubble constant and represents the present rate of
expansion.

We know from Earth-based and space-based observations that

H0 ≈ 70 km s−1 Mpc−1 = 2.3 × 10−18 s−1 = (14 billion years)−1

to within about 30%. Note that H0 has units of inverse time so that 1/H0 represents
a timescale for the expansion,

⇒ t0 ≈ H−1
0 = 1.4 × 1010 years.

Using these relationships it is possible to determine the radius of the Universe as
a function of time. The exact shape of the function R(t), depends on the quantity
Ω , the density of the Universe. Figure 3.2 illustrates the cases, Ω < 1, Ω = 1 and
Ω > 1. If ρ < ρc (Ω < 1) then ET > 0 so that as ρ → 0, EG → 0 and Ek remains
> 0. Thus expansion continues without termination.
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t

W < 1

W

W > 1

 = 1

Fig. 3.2 Possible expansion scenarios. In the Newtonian model of the Universe,
the future evolution of the universe is determined by the parameter Ω . An open,
flat or closed universe is possible, depending on the mass density of the Universe.

If, on the other hand, ρ > ρc (Ω > 1) ⇒ ET < 0. Then a time is eventually
reached when Ek = 0 and ET = EG . Without any kinetic energy left in the expan-
sion the gravitational term takes over and the Universe re-collapses to a point.

Empirical determinations of Ω have narrowed its value to

Ω ≈ 0.3.

This value of Ω suggests that the Universe is open. However, recent observations
suggest that Ω is not the only parameter that characterizes the expansion of the
Universe.

3.1.1 The cosmological constant

Until recently, the above simple picture provided a good qualitative picture of how
the Universe expands. However, recent observations of galaxy redshift–distance
relations have revealed that the Universe may be actually accelerating as opposed
to decelerating. How can this be?

In order for the Universe to accelerate, there must be an effective “force” that is
countering gravity. Current speculation centers on the “cosmological constant”. The
cosmological constant, Λ, is a term in Einstein’s general relativity equations that
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Fig. 3.3 The distance R(t) for an expanding Universe with a nonzero Λ. The
inflection point corresponds to the present epoch. The past expansion has been
dominated by matter, future expansion will be controlled by Λ.

describes the expansion of the Universe. Einstein had placed the term there when
the Universe was believed to be static. A re-examination of those equations leads
to the following equation of motion for the Universe

3R̈

R
= − c

2R3
+ Λ.

The behavior of this function is interesting. For small values of R (early Universe)
the solution is similar to that which we derived for the Newtonian case. For large
R, the first term on the right-hand side becomes insignificant, leading to

3R̈

R
= Λ

which has the solution, for large R

R ∝ e
√

3Λt/3.

The expansion of the Universe becomes exponential.
A plot of the formal (full) solution is sketched in Fig. 3.3. Note that we are near

the inflection point. The expansion of the Universe has been dominated by gravity
in the past and will be dominated by the cosmological constant in the future. The
physical meaning of Λ is not fully known but current theories suggest that vacuum
energy is the source of the “repulsive force”.

The geometry of the Universe is now determined by Ω = ΩΛ + ΩM where
ΩM replaces the Ω determined earlier for a purely Newtonian Universe. Current
estimates of the values of ΩΛ and ΩM are based on plots such as the one shown
in Fig. 3.4.
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Fig. 3.4 The observations that led to a nonzero Λ. The top plot shows the distance
moduli (relating to actual distance) plotted as a function of redshift, z. The ob-
served points are shown as dots, along with best fit model curves utilizing different
combinations of ΩΛ and ΩM . The differences in the fits are more clearly seen in
the bottom figure, which results from subtracting the ΩΛ = 0, ΩM = 0.3 model
curve from the data points. The excess of positive data points near z = 0.5 is best
fit by the ΩΛ = 0.7, ΩM = 0.3 model. From: Perlmutter, S. et al., The Supernova
Cosmology Project, 1999, ApJ, 517, pp. 565–586.

Inspection of Fig. 3.4 shows that the best fit solution yields, ΩM ≈ 0.3 and
ΩΛ ≈ 0.7. The sum of the two terms is consistent with Ω = 1. Thus, it appears
that we live in a flat Universe.

There is still considerable uncertainty in these estimates, as shown in Fig. 3.5.
Future projects, such as the Supernova Acceleration Probe (SNAP), are designed
to bring down the uncertainties, as illustrated in Fig. 3.5.
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Fig. 3.5 The values of ΩΛ and ΩM . These results from the Supernova Cosmo-
logy Project show the best fit contours in the ΩΛ–ΩM plane. The uncertainty
is displayed in terms of confidence levels. Although the uncertainties are large
they are consistent with a nonzero ΩΛ. Future projects such as SNAP should
greatly reduce the uncertainties shown hypothetically in the plot. From: Perlmutter,
S. et al., The Supernova Cosmology Project, 1999, ApJ, 517, pp. 565–586.

3.2 Large-scale cosmic structure

I now discuss the characteristics of large scale structure and gravitational dynam-
ics on large scales. Expanding upon the preceding discussion I relate the current
large scale structure to the conditions in the early Universe that led to the formation
of galaxies. Figure 3.8 shows the distribution of galaxies for a specific “slice” of
the Universe, indicating that galaxies are not distributed randomly in space.

3.2.1 Overview

The following observations describe the main characteristics of large scale structure
in the modern Universe.

� Stars are distributed uniformly on scales of ≈ 10 kpc and mass concentrations of
≈ 1011 M� which we call galaxies. We can think of galaxies as test particles that trace
out the structure of the Universe. Even “empty” regions of the sky contain countless
galaxies if we look hard enough (see Fig. 3.9).
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Fig. 3.6 A volume element near a galaxy. The definitions of �r and �V used in
galaxy correlation studies are as shown.

� The distribution of galaxies is non-uniform.
� Galaxies trace out structures we call clusters, superclusters and voids (see Fig. 3.8).
� The big question is: How did these structures form and how do they relate to the formation

of galaxies?

Before addressing the last question, let us first describe a quantitative measure of
cosmic structure, the correlation function of galaxies, a tool that can help illustrate
the role of dark matter in large scale structure. The discussion is motivated by the
developments of Narlikar (1993).

3.2.2 Correlation functions of galaxies

Consider an elemental volume of space �V , a distance r from a given galaxy
(Fig. 3.6). What is the probability of finding a galaxy in that volume? The elemental
probability is given by

�p = n̄ {1 + ζ (r )} �V

where n̄ is the local mean density of galaxies. The function ζ (r ) represents the
deviation from a uniform distribution. Positive means an enhancement of galaxies
while a negative means a depletion.

Galaxy counts can be used to determine the shape of the function, ζ (r ). Such
measurements yield

ζ (r ) ∝
(

r

r0

)−γ

where r0 = 5h−1
0 Mpc, γ ≈ 1.8 and h0 = H0/75. A major result is that γ appears

to be scale invariant.
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The correlation functions describe the distributions of visible matter. But we have
some hints that dark matter plays an important dynamical role. In order to build a
theory that describes galaxy formation and the formation of large scale structure
we need to take into account the possible properties of dark matter.

3.2.3 Dark matter and large-scale structure

Dark matter is obviously difficult to detect. One approach is to determine the mass-
to-light ratios of the various structures in the Universe. We begin by defining the
mass-to-light ratio as

η = M(M�)

L(L�)
.

Galaxies

It is possible to estimate the “visible” mass of an individual galaxy from its rotation
curve via

v2(r )

r
= G M(r )

r2

⇒ M(r ) = rv2(r )

G

where v(r ) is the rotational velocity at radius r . Since most galaxy rotation curves
do not fall off, the resulting mass is a lower limit. Such measurements yield

η = (9 ± 1)h0 Spirals

η = (10 ± 2)h0 Ellipticals.

For comparison, the Sun has η = 1, an M5 star has η = 20 and an O star has
η = 2 × 10−4.

Galaxy groups

Consider a pair of galaxies, moving non-relativistically, as shown in Fig. 3.7.
Typically, �v = �vH + �v p, where �vH is the velocity resulting from the Hubble flow
and �v p is the velocity arising from peculiar motions caused by the local gravitational
potential. The velocity of object G can be similarly expressed so that

� �V = �vG − �vg = ��vH + ��v p = H��rH + H��rp

where ��rH + ��rp represents the apparent radial component of the separation vec-
tor. The total apparent separation is given by

��r = ��rH + ��rp + �σ = �π + �σ
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Fig. 3.7 Components of galaxy motion. The motion of galaxy g relative to galaxy
G has two components.

which now includes the transverse component, �σ . The true separation is given by

⇒ ��rt = ��rH + �σ .

Thus a plot of π versus σ for a large number of galaxies results in a distorted
correlation where the points clump vertically, parallel to the radial axis.

Such plots can be used to yield 〈�rp〉 and ��v p. Typically〈
v2

p

〉1/2 ≈ (600 ± 250) km s−1.

This information can be used to estimate masses of galaxy groups as follows.
Recall from the Virial theorem that

v2
i ≈ G M Ni

R
.

where vi is the “peculiar” velocity one would expect of the i th galaxy having Ni

neighbors of average mass, M , at a distance R. The Ni can be estimated from the
correlation function, ζ (r ) for a 5 Mpc volume around our Galaxy where

N = n̄
∫ 5 Mpc

0
[1 + ζ (r )] d3r ≈ 42

and n̄ = 0.03h3
0 Mpc−3 (for bright galaxies). Setting R = r0, N = 〈Ni 〉, the result is

M ≈ 5 × 1012 h−1
0 M�

for a volume of space with r0 = 5 Mpc. Combining this result with empirical
estimates of the luminosity, L , for the same volume, yields

η ≈ (500 ± 200)h0.

An image of Stephan’s Quintet, a group of galaxies, is shown in Fig. 3.10.
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Fig. 3.8 Structure in redshift space. A slice of the Universe is shown. Each dot
represents a galaxy whose RA coordinate and redshift have been measured. The
resulting plot is a plane that shows the distribution of galaxies in depth. It is
seen that galaxies are mainly found in large filamentary structures, which can
be thought of as walls separating large empty regions known as voids. From:
http://nedwww.ipac.caltech.edu/level5/March01/Salzer/Figures/figure2.jpg.

Hubble Deep Field HST WFPC2
ST Scl OPO January 15, 1996 R. Wllliams and the HDF Team (ST Scl) and NASA

Fig. 3.9 Deep HST field of an “empty” region. Regions of the sky that appear
empty to the naked eye are filled with galaxies, as shown in this famous Hubble
deep field. From: http://arcturus.mit.edu/gallery/gifs/HDF-MosaicHalf.jpg.



50 Cosmic expansion and structure

Fig. 3.10 Stephan’s Quintet – an interacting group of galaxies. This small
group of galaxies is too small to be classified as a cluster though the five
galaxies are clearly interacting gravitationally. From: http://antwrp.gsfc.nasa.gov/
apod/ap030124.html. Credit: J. English (U. Manitoba), C. Palma (PSU), et al.,
NASA.

Clusters of galaxies

For well-defined clusters such as Coma

η ≈ 300 ≈ 30ηG .

An image of the Coma cluster is shown in Fig. 3.11.

The local supercluster

Similar measurements of the Virgo supercluster (we sit in its outskirts at d ≈
11 h−1

0 Mpc) yield

η ≈ (80 ± 30)h0.

Thus, we see that light-to-mass ratios of all structures larger than galaxies are much
greater than those of the individual galaxies.

Studies such as these have been used to estimate the amount of matter in the
Universe. These estimates suggest that

ΩG ≈ 0.3.
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Fig. 3.11 The Coma cluster of galaxies. Coma is one of the richest galaxy
clusters known. Most of the objects seen in this image are galaxies. From:
http://www.noao.edu/image gallery/html/im0118.html. Credit: “NOAO/AURA/
NSF”.

3.2.4 Hot and cold dark matter

The particle properties of dark matter determine what structural scales are formed
in the early Universe. Thus, it is important to review possible types of dark matter.
If the larger values of η prove to be correct, then the gravitational dynamics of the
Universe may have been driven entirely by dark matter. The visible matter may
simply have followed but not influenced the overall dynamics of the Universe.

Measurements of the microwave background fluctuations suggest that the fluc-
tuations are too small for visible matter to form the structures we see now. However,
if particles were present which did not interact well with photons or baryons, their
properties could well have determined these structural scales because they are
capable of dominating the gravitational dynamics of the Universe.

Suppose that another form of matter existed, some sort of dark matter. Initially,
the particles that make up the dark matter would be relativistic because of the rapid
expansion of the Universe. Relativistic particles fill and smooth out the matter
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distribution in a horizon sphere of size 2ct∗

R∗ ≈ ct∗ (71)

so that at epoch t∗, the largest mass structure is given by

M = 4

3
�R3

∗
( ε

c2

)
(72)

where ε is the energy density of the sphere.
As the Universe cools, the particles become sub-relativistic when the temperature

drops to

T∗ = m∗c2

k
(73)

where m∗ is the mass of the particle. The epoch corresponding to a temperature T∗
is given by

t∗ ∝ T −2
∗ (74)

and the energy density by

ε∗ ∝ (kT∗)4. (75)

Combining (72), (73), (74) and (75)

⇒ M ∝ m−2
∗ .

The exact solution is given by

M ≈ 1015

(
30 eV

m∗

)2

M� (76)

where m∗ is in electronvolt units. Thus, the mass of the dark matter particle has a
direct bearing on how small a fluctuation can exist in the matter-dominated Universe.

For a particle with mc2 ≈ 30 eV, → M ≈ 1015 M�. This is one prediction of
Hot Dark Matter.

On the other hand, for a particle with mc2 ≈ 1 MeV, → M ≈ 106 M�. This is
the prediction of Cold Dark Matter.

3.2.5 The Jeans’ mass and gravitational stability

Primordial density fluctuations are constrained to having a minimum mass because
the conditions at decoupling are such that the thermal pressure of matter can balance
gravitational collapse (Chapter 5). We now calculate the minimum mass based on
what we know about primordial fluctuations.
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In terms of the total energy we have the following three cases that define dynam-
ical stability

2Ek + EG = 0 static equilibrium

Ek < −1

2
EG collapse

Ek > −1

2
EG expansion.

In the case of galaxy clusters the kinetic energy refers to the motion of individual
galaxies. In the case of a clump of gas, it refers to the motion of the individual gas
particles, the atoms. Thus, for a parcel of gas, assumed to be ideal, we can rewrite
the condition for collapse as

Ek = 3

2
NkT < −1

2
EG

⇒ 3NkT <
G M2

〈R〉 Jeans’ Condition. (77)

From the Jeans’ condition we see that there is a minimum mass below which the
thermal pressure prevents gravitational collapse.

Mmin = MJ =
(

3NkT 〈R〉
G

)1/2

.

The number of atoms corresponding to the Jeans’ mass is given by

N = MJ

m pµ
(78)

where µ is the mean molecular weight of the gas and m p is the mass of the proton.
In terms of the mass density, ρ,

MJ = 4�

3
ρ〈R〉3. (79)

Combining (77), (78) and (79)

MJ = ρ−1/2T 3/2

(
5k

Gµm p

)3/2 (
3

4�

)1/2

.

As expected, high density favors collapse while high temperature favors larger
Jeans’ mass. In units favored by astronomers this condition becomes

MJ ≈ 45 M�T 3/2
k n−1/2

cm−3 . (80)
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At the era of decoupling, Tk ≈ 3000 and n ≈ 6 × 103. Inserting into equation
(80) yields

MJ (tD) ≈ 105 M�.

Thus, the smallest possible mass capable of collapse at the time of decoupling
was 105 M� (assuming that those scales exist). That is about the mass of a globular
cluster today. Nothing smaller could have formed. By contrast, in the interstellar
medium of our Galaxy where T ≈ 50 K and n ≈ 103 the Jeans’ mass is ≈ 500 M�.
Now, far smaller parcels of gas can collapse. That is why molecular clouds can
collapse and form individual stars. The Jeans’ mass at recombination is an important
constraint on models attempting to explain how galaxies formed.

3.2.6 Possible models of structure formation

Any theory that attempts to explain large-scale structure must account for:

(a) The presence of clusters, superclusters and voids.
(b) The r−1.8 scale-invariant correlation law.
(c) The minimum mass at decoupling.
(d) The role of dark matter.

There are two major competing models that attempt to explain the formation
of the large scale structure that we now see. One model begins with the largest
structures forming first and the smallest structures forming last. The other proposes
that smallest structures form first which then coalesce to form larger structures. The
two models are summarized below.

(A) The top-down scenario

� Largest structures form first because the expanding hot dark matter smoothes out all
smaller scales.

� Other, smaller structures result from subsequent fragmentation of the largest structures.
� Galaxies form last in this fragmentation process.
� The fragmentation follows the r−1.8 law.
� Hot dark matter is needed to form the large structures from the primordial fluctuations.

(B) The bottom-up scenario

� Objects with M ≈ 105−6 M� form first because that is the minimum mass allowed
according to the Jeans’ criterion.

� Larger structures result from gravitational interactions of the smaller structures.
� Galaxies form before larger-scale structure.
� The r−1.8 structure law is achievable.
� Structure exists on small scales because of the dominance of cold dark matter (CDM).



3.4 Further reading 55

In recent years, the realization that the cosmological constant may play a role in the
expansion of the Universe, has led to the development of models that incorporate
nonzero values of Λ. The favored models now are those that utilize CDM and
nonzero Λ. A more detailed discussion of the early Universe (the time before
decoupling of matter and radiation) is presented in Chapter 5.
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Part II

Statistical mechanics

There are about 1080 particles in the Universe. Most of them are concentrated in
stars though some can be found in interstellar and intergalactic space. At the centers
of stars, particle densities are sufficiently high to allow nuclear reactions to take
place. The energy liberated by these reactions heats the gas that makes up the star
to the point where the gas pressure balances the gravitational pressure leading to
hydrostatic equilibrium and long-term stability. Stars like the Sun are stable for
about 1010 years, a large fraction of the age of the Universe.

The radiation produced by the nuclear reactions achieves a near equilibrium with
the gas particles in the stellar interior, leading to local (but not global) thermody-
namic equilibrium. The presence of local thermodynamic equilibrium (LTE) means
that radiation inside the star is close to that of a black body at the local tempera-
ture. The absence of global equilibrium allows the radiation to leak out through the
surface of the star and into space. Thus, stars are objects which attain hydrostatic
equilibrium and radiate as near-black bodies for most of their lives.

The early Universe, just after the Big Bang, was much like the interior of the star.
The radiation from that epoch has the characteristics of black-body radiation and we
see it nowadays as the 2.7 K cosmic background radiation. The early Universe also
experienced a period of thermonuclear reactions when most of the hydrogen and
helium was produced. The Universe, of course, is not in hydrostatic equilibrium,
which has resulted in a variety of dynamical and physical changes as described
later in this book.

The thermodynamics that drive the evolution of the Universe and its constituents,
can be described in terms of the interaction of particles with radiation and with
themselves. The statistical properties of particles and their grouping into “bosons”
and “fermions” are key to understanding the statistical physics that underlie the
thermodynamics of the Universe. To that end, this part of the book is dedicated
to reviewing and using concepts from statistical mechanics to gain a better un-
derstanding of astrophysical objects. The part begins with a discussion of particle
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distributions which are subsequently used to describe the interior structure of stars,
the thermodynamics of the early Universe and the properties of radiation. Specific
topics include basic thermodynamics, Planck’s Law and black-body radiation, the
3 K background radiation and the Big Bang, nucleosynthesis and reaction equilibria
in the early Universe, stellar structure, properties of white dwarfs and the properties
of neutron stars and pulsars.



Chapter 4

Overview of statistical mechanics

4.1 Thermodynamics

Many astrophysical bodies are close to thermodynamic equilibrium. A proper un-
derstanding of them requires that we understand the basic thermodynamic processes
that control their properties. I begin with a review of classical and quantum me-
chanical statistical mechanics. The immediate goal of the review is to derive and
discuss the equations that define Bose–Einstein and Fermi–Dirac statistics, the two
distributions that govern the behavior of the particles that make up astrophysical
bodies.

Let us consider a simple thermodynamic system consisting of two subsystems
in physical contact as shown in Fig. 4.1. Each subsystem is characterized by the
thermodynamic variables of energy (E), volume (V ) and entropy (S). The system
is constrained by the conservation of total energy and volume. Once allowed to
interact the total system comes into equilibrium when the total entropy no longer
changes.

From the first law of thermodynamics

dE = T dS − P dV (81)

where T and P are the temperature and pressure, respectively. Solving for dS, and
setting it to zero,

dS = dE + P dV

T
= dE1

T1
+ P1 dV1

T1
+ dE2

T2
+ P2

T2
dV2

=
(

1

T1
− 1

T2

)
dE1 +

(
P1

T1
− P2

T2

)
dV1 = 0. (82)

We see that the entropy will stop changing when T1 = T2 and P1 = P2. In other
words, when the total system has achieved mechanical and thermal equilibrium the
entropy is maximized and stops changing.
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S1

V1

E1 E2

V2

S2 

S =  S1  + S2 dS = 0

V = V1 + V2   =  constant

E = E1 + E2   =  constant

Fig. 4.1 A system consisting of two subsystems. Energy is conserved in the system
but not within the subsystems. The two subsystems interact until the entropy stops
changing and equilibrium is achieved.

There are other means by which energy can be exchanged. Chemical reactions,
for example, can be added to (81), so that

dE = T dS − P dV + µ dN (83)

where we have introduced the chemical potential, µ, and the number of particles,
N . The result represented by (82) can now be generalized to

dS =
(

1

T1
− 1

T2

)
dE1 +

(
P1

T1
− P2

T2

)
dV1 −

(
µ1

T1
− µ2

T2

)
dN1 (84)

Thus, if µ1 > µ2, T1 = T2 and P1 = P2 ⇒ dN1 < 0 for dS > 0. With this many
variables there are many interrelationships that define how changes in one variable
affect other properties. A summary of commonly used thermodynamic terms is as
follows:

Energy E = T S − PV + µN → dE = T dS − P dV + µ dN (85)

Enthalpy H = E + PV → dH = T dS + µ dN + V dP (86)

Helmholtz free energy F = E − T S → dF = −S dT − P dV + µ dN (87)

Gibbs free energy G = E − T S + PV → dG = −S dT + V dP + µ dN (88)

Grand potential Ω = E − T S − µN → dΩ = −S dT − P dV − N dµ. (89)

Combining these equations yields the further relations

G = µN Ω = −PV .
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Fig. 4.2 The phase space AB. The individual phase spaces of A and B form a
combined phase space AB.

4.2 Classical statistical mechanics

Some basic concepts are now discussed. These are the grand canonical ensemble,
the partition function and the grand potential.

A grand canonical ensemble is an ensemble of a large number of systems. Each
system consists of a subsystem A surrounded by a much larger subsystem B, which
together form a closed system containing a large number of particles. Within the
subsystem A, the quantities N and E are not necessarily conserved. Consider the
schematic of the combined phase space of the system AB, as shown in Fig. 4.2. An
elemental volume in the phase space of A and B is given by

dΓA = d3qA d3 pA

dΓB = d3qB d3 pB .

Now, let DA+B be the density of system points in Γ space. The probability of a
specific macrostate is given by

DA+B = DA DB → ln DA+B = ln DA + ln DB

⇒ DA+B = constant. Density DA+B is a conserved quantity! In other words, the
system will eventually reach equilibrium, that is ln DA+B approaches a constant in
time.

From our previous discussion regarding conservation laws and the fact that this
is a constant sum that looks like a conservation law, we should be able to express
ln D as a linear combination of energy and particle number (since those are the
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quantities that must be conserved in the system AB) such that

ln DA = αA + βµNA − βE A.

Thus, for subsystem A

D = constant × eβ(µN−HN )

where HN = HN (q, p) is the Hamiltonian representing the total energy of all NA

particles and we have generalized the notation by replacing NA with N . Dimen-
sionally, β must also have units of energy. Identifying β as the inverse of the thermal
energy we have

D = constant × e(µN−HN )/kT .

This expression requires normalization which can be achieved through the definition

DN ≡ 1

Q
e(µN−HN )/kT . (90)

The normalization condition then becomes
∞∑

N=0

∫
DN dΓN = 1

Q

∞∑
N=0

eµN /kT
∫

e−HN (q,p)/kT d3Nq d3N p = 1.

Solving this for Q yields

Q(T, V, µ) ≡
∞∑

N=0

∫
e(µN−HN (q,p))/kT d3N q d3N p. (91)

The integral has the name canonical partition function while the summed quantity
Q(T, V, µ) is called the grand canonical partition function. We can make the
connection with the thermodynamic equations by setting

S = −k
∞∑

N=0

∫
DN ln DN dΓN . (92)

We can see that this is the correct choice by substituting (90) into (92) so that

S = −k
∞∑

N=0

∫
DN

[
1

kT
(µN − HN ) − ln Q

]
dΓN

= −µ

T
〈N 〉 + 1

T
〈HN 〉 + k ln Q (93)

where the angle brackets represent the operation

〈X〉 ≡
∞∑

N=0

∫
X DN dΓN
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known as the grand canonical ensemble average. Rearrangement of (93) gives

T S = −µN + E + kT ln Q. (94)

Comparing with (89) yields the definition of Q

Ω ≡ −kT ln [Q(T, V, µ)] (95)

the grand potential. Thus, the connection with the thermodynamic equations is
complete.

4.3 Quantum statistical mechanics

The transition to quantum mechanics requires that we recognize the discreteness
of energy levels associated with individual particles.

HN =
∑

j

N jε j (96)

where
∑

j N j = N , the total occupation number. The transformation from classical
to quantum statistical mechanics therefore requires

Q =
∞∑

N=0

∫
e(µN−HN )/kT dΓN ⇒

∑
{N j }

e
∑

j N j (µ−ε j )/kT . (97)

If we use the identity

e
∑

j x j = Π
j

ex j

(97) becomes

Q(T, V, µ) =
∑
{N j }

[
Π
j

y
N j

j

]
(98)

where

y j ≡ e(µ−ε j )/kT . (99)

If we now use the additional identity

∑
{N j }

[
Π
j

α j (N j )

]
≡ Π

j


∑

{N j }
α j (N j )




we end up with

Q(T, V, µ) = Π
j

∑
N j

y
N j

j . (100)
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This result places us in a better position to discuss Bose–Einstein and Fermi–Dirac
statistics.

4.3.1 Bose–Einstein statistics

Recall that power series can have convergent sums, so that
∞∑

N j =0

y
N j

j = 1 + y j + y2
j + · · · = 1

1 − y j
(101)

where y < 1. Combining (100) and (101)

⇒ Q = Π
j

1

1 − y j
.

Substituting into the definition of the grand potential and using (99) we obtain

Ω = −kT ln Q = kT
∑

j

ln
[
1 − e(µ−ε j )/kT

]
. (102)

From (89), N = − (∂Ω/∂µ)T,V so that

N =
∑

j

e(µ−ε j )/kT

1 − e(µ−ε j )/kT
=

∑
j

1

e(ε j −µ)/kT − 1
. (103)

Identifying the quantity inside the summation sign as the average occupation
number, we finally have

〈N j 〉 = 1

e(ε j −µ)/kT − 1
. (104)

4.3.2 Fermi–Dirac statistics

The Pauli exclusion principle requires that N j = 0, 1 only. Thus∑
j

y
N j

j = 1 + y j

so that

Ω = −kT ln Q = −kT
∑

j

ln
[
1 + e(µ−ε j )/kT

]
with

N = −
(

∂Ω

∂µ

)
T,V

≡
∑

j

〈N j 〉

⇒ 〈N j 〉 = 1

e(ε j −µ)/kT + 1
. (105)
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Fig. 4.3 Elemental surface. The beam direction, k̂, and the normal to the surface,
n̂, are shown.
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Fig. 4.4 Elemental volume. The relationship between the elemental momentum
volume and the elemental solid angle is shown.

We can see that the distribution functions, equations (104) and (105), reflect the
different constraints on the occupation number.

4.4 Photon distribution function

Let us define a function that describes the number of photons of spin state (polar-
ization) α, at time t , in a phase element centered at �x , �p. For photons

α = 1, 2 �p = h̄�k = hν

c
k̂. (106)

Thus the radiant energy per phase element is

dE =
2∑

α=1

hν Fα(�x, �p, t) d3x d3 p. (107)

For a beam of photons (Figs. 4.3 and 4.4)

dV = d3x = dxdA = k̂ · n̂c dt dA (108)

d3 p = p2 dΩ dp = h3ν2

c3
dΩ dν from (106). (109)
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Combining (107), (108) and (109)

⇒ dE =
2∑
1

hνFα(�x, �p, t)k̂ · n̂ c dt dA
h3ν2

c3
dΩ dν

= h4ν3

c2

2∑
1

Fα(�x, �p, t)k̂ · n̂ dA dΩ dν dt. (110)

Let us now compare (110) with the definition of specific intensity, Iν(k̂, �x, t),

dE = Iν(k̂, �x, t)k̂ · n̂ dA dΩ dν dt.

We see that

Iν =
2∑
1

h4ν3

c2
Fα(�x, �p, t). (111)

This places us in a position to define an occupation number for each spin state, that
is an occupation number per phase cell

Nα ≡ h3 Fα (112)

so that (111) can be rewritten as

Iν =
2∑
1

hν3

c2
Nα(�x, �p, t). (113)

Equation (113) represents a relationship between the intensity of a beam of
photons and the occupation number which describes the statistical behavior of the
photons with respect to the phase space. Under thermodynamic equilibrium, (111)
and (113) are constrained to specific functional forms. We now consider those.

4.5 Thermodynamic equilibrium

Kirchhoff showed that under thermodynamic equilibrium

Iν = Bν(T ) (114)

the spectrum of emitted radiation depends only on the temperature of the emitting
body. Planck showed that the specific functional form of Bν is given by

Bν = 2hν3/c2

ehν/kT − 1
. (115)

Proper derivation of (115) from (113) requires knowledge of Bose–Einstein statis-
tics given that photons are bosons. Since we defined the latter in the previous
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Fig. 4.5 The 3 K background spectrum. The measurements were made by the
FIRAS instrument on COBE. The best curve yields a temperature of 2.725 K. This
figure was obtained from http://space.gsfc.nasa.gov/astro/cobe.

subsection let us do that. Using (104) and the knowledge that for photons, µ = 0
we have

Nα = 1

ehν/kT − 1
. (116)

Substituting (116) into (113) yields (114) and (115). It is useful to examine these
results in limits of high and low photon energy.

For hν � kT

Nα = e−hν/kT

which represents the classical Boltzmann distribution. Photons act like particles.
For hν 	 kT

Nα = kT

hν
� 1

which is in the Rayleigh–Jeans Limit. In a single phase cell, E = hνNα = kT and
photons act like waves.

An example of a black-body spectrum is shown in Fig. 4.5. It is the spectrum
expected from a body in thermodynamic equilibrium at a temperature of 2.7 K.
It is also the best fit curve for measurements made of the cosmic background
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radiation with the FIRAS detector on the COBE satellite (see COBE homepage –
http://space.gsfc.nasa.gov/astro/cobe). The curve in Fig. 4.5 represents a perfect
black body to within the experimental errors, which tells us that the cosmic 3 K
radiation was originally emitted under conditions of thermodynamic equilibrium.
Since the modern day Universe consists of both matter and radiation, these two
components were, at one time, in equilibrium. When was that and what is the
implication of this result on galaxy formation? That is the subject of the next
chapter.

4.6 Further reading
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Chapter 5

The early Universe

5.1 The 3 K background radiation

According to the COBE results, the thermal properties of the cosmic background
radiation are characterized by a temperature of

T = 2.725 ± 0.006 K

and temperature fluctuations of

�T

T
= 6 × 10−6

which represent the spatial variation of temperature across the sky. These results
have fundamental importance with respect to our knowledge of the early Universe
and the formation of galaxies. Given our earlier discussion of the gravitational
dynamics of the Universe and given what we now know about the background radi-
ation, let us evolve the “radiation” Universe back in time to see what we can learn.

5.1.1 History of the background radiation

According to energy conservation and the equations developed in Section 3.1

ET = Ek + EG = 2�

5
ρH 2 R5 − 16�2

15
ρ2G R5 = constant. (117)

We know that ρ = M/( 4
3 �R3), H = v/R so that (117) can be cast into the form

ET = 0.3Mv2 − 3

5
G M2 R−1

⇒ v2 − 2G M

R
= ET

M

10

3
= E

⇒ dR

dt
=

√
E + 2G M

R
(118)
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⇒ dR√E + (2G M/R)
= dt

⇒
∫ R

0

dR′
√E + (2G M/R′)

=
∫ t

0
dt ′.

This equation represents the evolution of R(t) for a given energy and mass of the
Universe.

We can consider the three special cases corresponding to flat, open and closed
Universes.

Flat Universe (E = 0)

In this case, the integral is trivial

1√
2G M

∫ R

0
dR′√R′ = t

⇒ R(t) =
(

3

2

)2/3

(2G M)1/3t2/3 =
(

9

2
G M

)1/3

t2/3. (119)

The radius increases as t2/3.

Open Universe (E > 0)

When the Universe has a positive total energy its long-term evolution is determined
by the excess kinetic energy. In that case, the solution to (118) is more complex.
The author has used the software package MAPLE to obtain the solution below.√

R2

E + 2G M R

E2
− G M

E3/2
ln

[
2
√
E2 R2

2EG M R + 2ER + 2G M
] = t. (120)

Closed Universe (E < 0)

When the total energy is negative the gravitational attraction of the matter wins out
in the long term and the Universe eventually collapses. The solution, obtained in a
similar way, becomes

⇒ G M

E3/2
arcsin

[ ER

G M
− 1

]
−

√
2G M R

E2
− R2

E = t. (121)

5.1.2 Evolution of energy density

Recall that the quantity E represents energy density. Let us now consider the energy
density of the photons.

Eγ = nγ hν. (122)
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But the number density, Nγ has the behavior nγ ∝ R−3 and the frequency of a
photon goes as ν ∝ 1/λ ∝ 1/R as a result of being redshifted by the expansion.
Thus, according to (122)

Eγ ∝ R−4.

But, Eγ ∝ T 4 ⇒ T ∝ 1/R. Combining all of this, we have

⇒ T

T0
= R0

R
. (123)

Combining (123) and (119)

⇒ T

T0
=

(
t0
t

)2/3

(124)

for a flat Universe. This is a good scaling law even for E �= 0 so long as E is close
to 0. The scaling law is valid only for t > tD after the decoupling time. For times
before decoupling the radiation pressure of the photons dominated the dynamics of
the Universe.

It is now possible to evolve the Universe back in time using this scaling law.
As starting points we will use contemporary values of T0 = 2.7 K and t0 = 1.4 ×
1010 years. Let us evolve the Universe back in time when T = 3000 K, the era of
decoupling. The age of the Universe would then have been

tD =
(

T0

T

)3/2

t0 = 4 × 105 years.

Thus, for times t ≤ 4 × 105 years, radiation and matter would have been tightly
coupled because the photons were energetic enough to keep matter ionized. During
this time the Universe was radiation dominated in the sense that radiation energy
density was greater than the energy density of matter. Any clustering of matter
during this epoch would have to be accompanied by a clustering of radiation energy
density (i.e. a temperature enhancement).

5.2 Galaxy formation

In the hot-dark-matter (HDM) top-down scenario, the modern day structure requires
that

�ρ

ρ
> 10−4

at time of decoupling, where ρ is the matter density. Otherwise Hubble expansion
and gravitation alone could not produce the modern day large scale structure. Just



72 The early Universe

before decoupling, matter and radiation were coupled so that the density enhance-
ments must also show up as temperature enhancements

�ρ

ρ
= �(T 4)

T 4
= 4�T

T
(125)

so that the HDM model would predict

�ρ

ρ
> 10−4 ⇒ �T

T
> 2.5 × 10−5.

Now, according to COBE, �T/T ≈ 6 × 10−6 K, which argues against a purely
HDM model.

Now, some cold-dark-matter (CDM) models predict

�T

T
> 4 × 10−6 K

and they cannot be ruled out by the COBE observations. On the other hand, CDM
has difficulty accounting for the largest structures in the Universe. For these reasons
hybrid models, combining HDM and CDM, were introduced. However, the possi-
bility of a nonzero cosmological constant makes the hybrid models less relevant.
In fact, CDM, in conjunction with a nonzero Λ can satisfactorily account for the
large scale structure, as discussed in Chapter 3.

5.3 Local cosmology and nucleosynthesis

5.3.1 Overview

As noted in the previous section, the energy density of the Universe was much higher
in the past. Before decoupling, matter and radiation were in close equilibrium and
there were times during the early evolution of the Universe when the conditions were
similar to those found in the interiors of stars such as the Sun. In other words, the
density, temperature and pressure were high enough for thermonuclear reactions
to take place and for nucleosynthesis to occur. Consequently the following are
examples of cosmological questions.

� Why is 10−5 of the seawater “heavy”? In other words why is the ratio [D/H] ≈ 10−5?
� Why is 25% of the Sun’s mass in the form of 4He?

The reason the above are cosmological questions is that there is no known process in
the current Universe to account for the above ratios. There is simply too much 2D and
4He (and 7Li) around. Yet we know that these elements can be produced in simple
nuclear reactions whose physics are understood. With scaling laws in hand, we know
that if we evolve the Universe back in time the conditions for nucleosynthesis existed
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for t ≤ 1 ms. Having estimated these conditions and knowing how nuclear reactions
operate (they are governed by readily understood laws of physics) it is possible for
us to estimate how much 2D and 4He (and 7Li) could have been produced during
the Big Bang. Such calculations indicate that the currently observed abundances
of these elements can be entirely explained as resulting from the Big Bang. The
success of these calculations gives great weight to the Big Bang hypothesis and gives
researchers the confidence to examine the physics of the Universe back to t ≈ 10−35

seconds and to contemplate the birth of the Universe and its basic elements.
Despite the fact that BBN can account for the current abundances of 2D and

4He (and 7Li) we should still ask the question – can these elements be produced
in a more conventional manner? Could 2D and 4He (and 7Li) be products of stellar
nucleosynthesis (such as takes place in the core of the Sun)?

5.3.2 Primordial helium

All main-sequence stars produce 4He in their cores. These elements are dispersed
into the interstellar medium through stellar winds, ejection of planetary nebulas
and supernova explosions. So why cannot these processes account for the current
abundance of 4He in the Universe? Let us answer that question quantitatively by
examining how much energy is needed to make a 4He atom from 4 nucleons. We
start off with the definition of an atomic mass unit (amu),

1 amu = 931.478 MeV/c2.

Table 5.1 lists the mass defects of some simple elements.
When 4p → 4He + Q, the energy released is Q = 26.7 MeV, of which about

1.6 MeV is in the form of neutrinos. Thus, the formation of the 4He atom is accom-
panied by the release of > 25 MeV ≈ 4 × 10−5 ergs.

If we now take all the nucleons in the Universe

〈nnucleons〉 ≥ 10−7 cm−3

Table 5.1. Mass defects

Element (M − A) × amu c2 (M − A)/A

n 8.07 MeV 8.07 MeV
p 7.29 MeV 7.29 MeV
2H = D 13.14 MeV 6.57 MeV
3He 14.93 MeV 4.98 MeV
4He = α 2.42 MeV 0.61 MeV
12C 0 0
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we can make

→ 〈
n(4He)

〉 ≈ 0.25
nucleon

4
≥ 6 × 10−9 cm−3.

helium nuclei. The energy associated with making this many helium nuclei is then
given by

〈Eα〉 ≈ 4 × 10−5 erg × 6 × 10−9 cm−3 = 2 × 10−13 erg cm−3.

Now, most of the luminosity of the Universe arises ultimately from the
production of 4He. The mean luminosity density of the Universe is known to be
≈ 2 × 10−32 erg s−1 cm−3. Thus, in the 1010 years = 3 × 1017 seconds, during
which stars have existed, the amount of energy arising from 4He production is

〈EL〉 ≈ 6 × 10−15 erg cm−3.

Thus, the ratio of energy densities resulting from actual helium production to that
needed to account for the observed amount is

〈EL〉
〈Eα〉 ≈ 0.03.

Thus, if all the luminosity of the Universe were used to make 4He over the entire
age of the Universe it could change the present amount by only a few percent. Thus
the 4He must be primordial. What about D?

The number density of D is

〈nD〉 = 10−5〈nN 〉 ≈ 10−12 cm−3.

The element D is most easily made in the reaction

n + p → D + Q; Q = 2.2 MeV

p + p → Q + Q; Q = 3 MeV

so that the energy density associated with the formation of D is given by

〈ED〉 ≈ 3 MeV × 10−12 cm−3 ≈ 5 × 10−18 erg cm−3 � 〈EL〉.
There is no problem accounting for D given the current nuclear reactions going on in
the Universe. However, D is very hard to preserve once it is made. The environments
in which it is currently made (stellar interiors) are conducive to the destruction of
D. This can best be illustrated in the context of nuclear reaction rates which we
discuss now.
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5.4 Reaction rates

5.4.1 Introduction

Consider the generic reaction

a + X → Y + b + Q

where X is stationary and there is a flux of incident particles a having a density na

and velocity v. Then

flux = nav

cross-section = σ (v) ≡ reactions/time (per X particle)

flux of a (particles area−1 time−1)
.

So that the number of reactions volume−1 second−1 are

raX = nanX 〈σv〉
where v is the relative velocity and

〈σv〉 ≡
∫ ∞

0
σ (v)φ(v)v dv

where φ(v) is the normalized relative velocity distribution such that∫
φ(v) dv = 1.

For a non-degenerate gas (defined in Section 5.5)

φ(v) dv ∝ e−E/kT︸ ︷︷ ︸
Boltzmann factor

v2 dv︸ ︷︷ ︸
phase space factor

φ(v) =
( µ

2�kT

)3/2
e[−(µv2)/(2kT )] 4�v2

µ = mam X

ma + m X
= reduced mass.

The reaction cross-section is governed by nuclear attraction at small distances and
Coulomb repulsion at larger distances. The nuclear attraction represents a binding
energy which is typically around 8 MeV/nucleon (see Table 5.1). Thus, Qreaction is
always ≈ MeV.

The range of the attractive nuclear force is given by

R ≈ A1/3 × 10−13 cm = A1/3 fm.
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R

ro

E =kTVc

Q

E

r

Fig. 5.1 The Coulomb barrier. A particle with E = kT traveling leftward from
r = ∞ will see a Coulomb barrier of amplitude Vc and scale r0. The nuclear
potential well, depth Q and scale R is also shown.

On the other hand, Coulomb repulsion is described by

V = qaqX

r
= Za Z X × e2

R

= 1.44
Za Z X

R(fm)
MeV.

The excess energy is the result of having to overcome the Coulomb barrier.
Typically, the kinetic energies of the particles undergoing nuclear reactions have

Ek ≈ kT ≈ 1 keV (Sun)

Ek ≈ kT ≈ 10 keV (BBN).

We see that Ek � Vcoulomb so that classically nuclear reactions are impossible. The
distance r0 at which the Coulomb potential equals the kinetic energy of the incident
particle (Fig. 5.1) is then r0 ≈ 103 R. Classically the incident particle turns back
very far from the region where nuclear reactions can take place. The reason that
nuclear reactions take place at all is because of quantum mechanical tunneling. We
now review the concept of tunneling by discussing the QM 1-D potential barrier.
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n0

V

n1

Fig. 5.2 Quantum tunneling. A particle propagating from left to right has a finite
chance of tunneling through the potential barrier V .

5.4.2 Barrier penetration

We can represent the concept of Coulomb barrier penetration by considering
Fig. 5.2. Recall some basic quantum mechanical terms like wave function, Ψ and
the probability density, n ∝ Ψ 2. Writing down Schrödinger’s equation

EΨ = HΨ =
(

p2

2m
+ V

)
Ψ

where E is the particle energy, V is the barrier potential and p is the particle
momentum. Recall that the momentum can be thought of as an operator such that

p ≡ −i h̄
∂

∂x

in one spatial dimension. Thus, the Schrödinger equation can be recast into the
form

EΨ = − h̄2

2m

∂2

∂x2
Ψ + V Ψ

or

∂2

∂x2
Ψ = 2m

h̄2
(V − E)Ψ.

If there were no barrier, then

E = mv2

2
V = 0

and

∂2

∂x2
Ψ = −m2v2

h̄2
Ψ = −k2Ψ.
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This is just the equation for a traveling wave, meaning that the particle travels along
unimpeded. The wave function then becomes

Ψ = Ψ0 e±ikx

and particle motion is possible in either direction. The probability density is then
given by

|Ψ |2 = Ψ Ψ ∗ = |Ψ0|2 = constant

as expected.
With the barrier in place, V > 0 and we have

∂2

∂x2
Ψ = 2m

h̄2
(V − E)Ψ ≡ λ2Ψ

for which the solution is

Ψ = Ψ0 e−λx + Ψ1 e+λx︸ ︷︷ ︸
→0

since we require that the probability density be bounded over an infinite volume.
Thus, the probability density is given by

|Ψ |2 = |Ψ0|2 e−2λx .

The penetration is characterized by the parameter

P = |Ψ (xb)|2
|Ψ0|2 = e−2λxb .

where, xb = 1/(2λ) is the scale length for the penetration and

λ =
[

2m

h̄2
(V − E)

]1/2

.

The larger the V and the smaller the energy of the particle the harder it is for
barrier penetration to work. However, the exponential dependence of the effect
ensures that the probability for penetration is always finite.

Gamow Peak

In real life V = V (x) thereby complicating this simple picture. These results would
have to be generalized so that

ln P ≈ 2
∫

λ(x) dx .
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Consequently, the relevant integral is

ln P = 2
∫ R

r0

λ(r ) dr

= 2
∫ R

r0

[
2m

h̄2

(
Za Z X e2

r
− mv2

0

2

)]1/2

dr.

The classical turning point is defined by the condition

Za Z X e2

r0
≡ mv2

0

2
.

Thus

ln P = 2

[(
2m

h̄2

) (
mv2

0

2

)]1/2 ∫ R

r0

(r0

r
− 1

)1/2
dr

= 2

[(
2m

h̄2

) (
mv2

0

2

)]1/2

r0

∫ R/r0

1

(
1

x
− 1

)1/2

dx︸ ︷︷ ︸
convergent for x→0

where x = r/r0. Setting the integral to a finite value I , we have

ln P = 2

[(
2m

h̄2

) (
mv2

0

2

)]1/2
2Za Z X e2

mv2
0

I = 4I Za Z X e2

h̄v0
.

The exact solution, generalized for any v, is

P = e−(2�Za Z X e2)/(h̄v).

The convention for defining the cross-section in terms of the penetration param-
eter is given by the equation

σ (E) = S(E)

E
e−(2�Za Z X e2)/(h̄v).

The function S(E) depends on the nuclear physics and is weakly dependent on the
energy. Armed with this definition of σ let us turn our attention back to reaction
rates

〈σv〉 =
∫ ∞

0
σφv dv =

∫
σφ

dE

µ

where

σ (E) = S(E)

E
e−b/

√
E

φ =
( µ

2�kT

)3/2
e−E/kT

(
8�

µ

)
E
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e−E/kT

e−b/E 1/2

S (E )

<σv>

E

Fig. 5.3 Components of the reaction rate function. The shapes of the three func-
tions that make up the expression for 〈σv〉 are shown.

b ≡ 2�Za Z X e2

h̄

(µ

2

)1/2

〈σv〉 =
(

8

µ�

)1/2 1

(kT )3/2

∫ ∞

0
S(E) e[−(E/kT )−(b/

√
E)] dE .

Figure 5.3 illustrates the dependence of 〈σv〉 on energy. The exponential in the
integral is sharply peaked at some energy E0. Let us find out what E0 is. We begin
by searching for a local extremum in the argument of the exponential

d

dE

[
E

kT
+ b√

E

]
= 0 at E0

1

kT
− b

2E3/2
0

= 0

⇒ E0 =
(

bkT

2

)2/3

E0 = 1.2
(
Z2

a Z2
X AredT 2

6

)1/3
keV.

This represents the optimal energy for nuclear reactions. The sharp drop off in
energy on either side of E0 gives the cross-section a peaked geometry with respect
to energy. The region centered on E0 is known as the Gamow Peak.
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5.4.3 Estimating reaction rates

All that remains now is to estimate the integral in order to obtain a numerical
expression for the reaction rate. Integrals of the form

I =
∫ B

A
S(E) e− f (E) dE

where f (E) is peaked at E0 can be estimated by the method of steepest descent.
Part of the method involves an expansion of f (E) about E0 in a Taylor series.

f (E) ≈ f (E0) + ∂ f

∂ E
(E − E0) +

(
∂2 f

∂ E2

)
E0

(E − E0)2

2
+ · · ·

≈ f (E0) +
(

∂2 f

∂ E2

)
E0

(E − E0)2

2

= f (E0) +
(

E − E0

σ

)2

where

σ 2 = 2

(∂2 f/∂ E2)E0

I ≈ e− f (E0)S(E0)
∫ ∞

−∞
e−[(E−E0)/σ ]2

dE

= σ
√

�S(E0)e− f (E0).

In our case

f (E) = E

kT
+ b√

E

E0 =
(

bkT

2

)2/3

� kT

f (E0) = 3E0

σ = 2√
3

(E0kT )1/2 � E0

⇒ raX = nanX
7 × 10−19

Ared Za Z X
S0(keV barns)τ 2e−τ s−1 cm−3

where

τ = 42.5

(
Z2

a Z2
X Ared

T6

)1/3
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where

T6 = T/106 K Ared =
(

1

Aa
+ 1

AX

)−1

= Aa AX

Aa + AX

Note the very strong dependence on Za Z X . The factor of 42.5 also gives the reaction
rate a strong dependence on T6.

5.4.4 Destruction of D

It turns out that

D + p → 3He + �

is the most rapid nuclear reaction. If we examine the deuterium lifetime

1

tD
= 1

nD

(
∂nD

∂t

)
= n p〈σv〉Dp

we see that it is short because Z D Z p = 1 has the lowest possible value and protons
are the most abundant constituent. In any environment where D can be made it will
be destroyed. In the Sun

[D/H] ≈ 10−18

reflecting the fact that D is easily destroyed. The destruction of D is what makes it
difficult to preserve. Therefore, the observed cosmic abundance of D can only be
explained if it is primordial. How much D is produced in BBN is critically dependent
on the conditions that existed in the early Universe. Explaining its current abundance
tells us much about the nature of the early Universe.

5.4.5 Formation of D

When T < 109 K the following reaction forms deuterium

n + p → D + � .

However, the D that is formed then participates in a subsequent reaction

D + D →4 He + � .

Whereas, the former reaction produces D, the latter one destroys it. The relative
rates of the two reactions determine the equilibrium abundance of the deuterium.
Generally, the second reaction is the faster of the two and it therefore determines
the equilibrium value of D.

Using the preceding arguments, the timescale for the DD reaction is

tDD ∝ ρ−1
b .
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where ρb is the baryon mass density. The greater the mass density of the Universe,
for example, the faster the DD reaction proceeds and the lower the equilibrium
value of D. The lower the mass density the greater the D abundance. It is for this
reason that the D abundance is a sensitive tracer of the conditions (density) in the
early Universe.

5.4.6 Formation of 4He

Before Big Bang nucleosynthesis began, the early Universe had plenty of free
neutrons (see next section) and protons. The interaction of n and p leads to the
production of 4He, as we have noted. If the abundance of n is significantly lower
than the abundance of p essentially all the n go into making 4He. Thus, the abundance
of 4He is given by

4He ≈ n/2

(n + p)/4
= 2n

n + p
.

The contemporary ratio of neutrons to protons is about 0.12. Inserting that value
into the previous equation yields 4He ≈ 2/9, which is the approximate abundance
of 4He in the Universe today.

5.5 Particle equilibria in the early Universe

5.5.1 Overview

The formation of elements in the early Universe can best be understood by con-
sidering the environments in which current fundamental particles were in equilib-
rium. These particles include well-known baryons such as neutrons and protons,
leptons such as electrons, mu neutrinos, electron neutrinos, tau neutrinos and an-
tineutrinos, as well as photons. All the particles are, of course, fermions while the
photons are bosons. For the particles to be in equilibrium with each other their
kinetic energies must be comparable to their rest mass energies. Table 5.2 lists the
rest mass energies of some particles. For temperatures above about 1012 K all of
the particles are in equilibrium with each other.

Using the temperature scaling law appropriate for cosmic expansion before
decoupling

t = td ×
(

Td

T12

)2

is the time after the Big Bang when the temperature was 1012 K. Using the numbers
from Section 5.1.5, we obtain t12 = 10−4 seconds. Thus, it appears that 10−4 seconds
after the Big Bang there was an equilibrium between n, p, e+−, � , νe, ν̄e, νµ, ν̄µ,

ντ , ν̄τ .
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Table 5.2. Particle equilibrium temperatures

Particle species A Rest mass energy Teq

Electron/positron 511 keV 6 × 109 K
Muon/antimuon 107 MeV 1.2 × 1012 K
� and e neutrinos/antineutrinos 0 0
Proton/neutron 940 MeV 1013 K∗
Pions 140 MeV 1.6 × 1012 K

∗ Tn − Tp = 1.5 × 1010 K

N

ε

T = 0

T > 0

1

0
µ

Fig. 5.4 Fermion occupancies at T = 0 and T > 0. At T = 0 all states up to
µ are filled. At finite temperatures the sharp boundary at µ is softened and the
distribution assumes a more classical form.

The statistical distribution of the fermions is described by (105). Let us examine
the behavior of the occupation number in the limits of strongly negative and strongly
positive chemical potentials because this behavior will illustrate how fermions in
the Universe behave.

For µ � −kT equation (105) reduces to

N ≈ e(µ−ε)/kT = e−|µ/kT | e−ε/kT = α e−ε/kT

where α � 1. The behavior is exponential, as you would expect.
For µ � kT we have N ≈ 1 if ε � µ and N � 1 if ε � µ. The corresponding

distribution function is shown in Fig. 5.4 (T = 0).
The intermediate case, µ ≈ kT , is an interpolation between the two extreme cases

and is shown in Fig. 5.4 (T > 0). The number density follows from the occupation
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number according to

n =
∑

α

∫
d3p

h3
Nα(ε). (126)

In the low-density, non-degenerate limit µ � kT we have the Maxwell–Boltzmann
limit

n =
∑

α

∫
d3p

h3
eµ/kT e−ε/kT (127)

where

ε = εkinetic︸ ︷︷ ︸
εk=p2/(2m)

+ εinternal︸ ︷︷ ︸
εα

0︸︷︷︸
lowest level

+ εα
i︸︷︷︸

excitations

n =
∑

α

∫ ∞

0

4�p2 dp

h3
(eµ/kT ) e−εk/kT e−ε0/kT e−εα

i /kT

= 4� eµ/kT

h3

(∫
p2 dp e−εk/kT

)
︸ ︷︷ ︸∫

p(p dp) e−εk /kT

(∑
α

eεα
i /kT

)
︸ ︷︷ ︸

g≡internal partition function

e−ε0/kT . (128)

For non-relativistic particles

p = (2mεk)1/2 p dp = m dεk

so that ∫
p2 dp e−εk/kT = 1

2
(2mkT )3/2

∫ ∞

0

√
x e−x dx︸ ︷︷ ︸√
�/2

so that (128) becomes

n = eµ/kT

(
2�mkT

h2

)3/2

g e−ε0/kT .

Solving for µ/kT

µ

kT
= ln

[(
h2

2�mkT

)3/2
n

g

]
+ ε0

kT
. (129)

For the Maxwell–Boltzmann limit to hold we require

ln

[(
h2

2�mkT

)3/2
n

g

]
� −1
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which is the mathematical way of saying that phase space is not important. For
electrons without internal excitations g = 2, and the previous expression can be
re-expressed as

ne � 2

(
2�mekT

h2

)3/2

= 4.8 × 1015T 3/2 cm−3

or

ρ ≈ m pne � 10−8T 3/2 g cm−3.

We can apply this criterion to a number of astrophysical environments to see
whether the Maxwell–Boltzmann limit is justified. For the Sun, T ≈ 107 K →
ρ � 300 g cm−3 for complete non-degeneracy. The maximum density of the Sun
is ≈ 100 g cm−3 so the criterion is largely satisfied. This is the case for most normal
stars. The criterion is not satisfied in the case of white dwarfs which have degen-
erate cores. For the Universe as a whole when the electrons were non-relativistic
(T < 109 K)

ne ≈ 10−5

(
T

2.7

)3

⇒ ne

T 3/2
= 10−5 T 3/2

(2.7)3
=

(
T

109 K

)3/2

2 × 107 cm−3 � 1015.

The more massive particles have even lower chemical potentials. For nucleons

n � 4.8 × 1015T 3/2

(
m p

me

)3/2

≈ 3.7 × 1020T 3/2 cm−3

ρ � 6.1 × 10−4T 3/2 g cm−3 = 6.1 × 108

(
T

108 K

)3/2

. (130)

This criterion is satisfied everywhere except in neutron stars. Thus neutron stars and
white dwarfs are fully degenerate while some stars and Jovian planets are partially
degenerate. As far as the Universe is concerned it can be considered non-degenerate
which makes life a lot easier for describing particle reactions in the early Universe.
Let us do that now.

5.5.2 Chemical equilibrium

Consider particle species, A, B, C, D. The reaction,

A + B · · · � C + D · · ·
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has the chemical potential relating as:

µA + µB · · · � µC + µD · · ·
where µi is the chemical potential of species i and represents the energy change
from adding one particle of type i .

5.5.3 The early Universe

Let us now consider the chemical equilibrium at T = 1010 K. From the previous
table we know that electrons and positrons are in equilibrium. Since the two particles
interact via the pair production process we know that the following reaction will
occur under equilibrium conditions

� + � � e+ + e−.

For photons which can be emitted and absorbed in unrestricted quantities, the
chemical potential µγ = 0. Therefore

µe+ = −µe− .

We know from observations of the modern day Universe that

n p � nγ ≈ ne+ + ne− .

This means that the number density of electrons and positrons is very low relative to
their number before they produced all the photons. Thus, their chemical potential,
according to (129), must be relatively low. Thus, to a good approximation, µe+ ≈
µe− ≈ 0. A similar statement can be made for the protons, neutrons and neutrinos.

5.5.4 The neutron–proton ratio

The current ratio of neutrons to protons in the Universe can be estimated by ex-
amining the nuclei of the elements. To a good approximation this ratio is given by
comparing the abundances of H and He. Thus[

n

p

]
≈ 1

2

[
He

H

]
≈ 12%.

When the temperature of the Universe was 1010 K the neutrons and protons were
in equilibrium with the electrons and neutrinos according to these reactions

n + e+ � p + ν̄e

n + νe � p + e−

n → p + e− + ν̄e (one way).
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The above is characterized by the chemical balance

µn + µνe = µp + µe−

⇒ µn = µp. (131)

Given the previous discussion these chemical potentials are also close to 0.
However, let us use (131) to establish an important relationship between protons
and neutrons. Combining (129) and (131) we have

ln

[(
h2

2�mnkT

)3/2
nn

gn

]
+ ε0,n

kT
= ln

[(
h2

2�m pkT

)3/2
n p

gp

]
+ ε0,p

kT
.

Now, gn ≈ gp ≈ 2. Also, mn ≈ m p is a good approximation for the slowly varying
logarithmic term. Thus, this simplifies to

ln nn + ε0,n

kT
= ln n p + ε0,p

kT

⇒ ln

(
nn

n p

)
= ε0,p − ε0,n

kT
= − (mn − m p)c2

kT

so that the ratio of neutron to proton number densities is given by

nn

n p
= e−�mc2/kT .

Now, �mc2 = 0.78 MeV → �m/k = 9.1 × 109 K so that

nn

n p
= e−9.1×109/T . (132)

In order for this ratio to have the currently observed value of 0.12, the
temperature in (132) must be

T = 4.3 × 109 K.

So at T = 4.3 × 109 K the ratio froze out close to its current value. Why did that
happen?

5.5.5 Reaction freeze-out

If the timescale of a chemical reaction is longer than the expansion timescale
(over which the temperature cools sufficiently to change the reaction rate) then the
reaction stops. We know that in the early Universe

Ω = 8�ρG

3H 2
≈ 1.
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Thus

H = V

R
= 1

R

dR

dt
=

(
8�ρG

3

)1/2

.

We can now define the expansion timescale as

texp =
∣∣∣∣ ρm

dρm/dt

∣∣∣∣ .
Since ρm ∝ R−3

texp = 1

3

R

dR/dt
= 1

3H

texp =
(

1

24�ρG

)1/2

= 446 seconds√
ρm/g cm−3

. (133)

Equation (133) describes the non-relativistic expansion time. It is the character-
istic dynamic timescale for a gravitating system.

Relativistic expansion

The first part of (133) is the same in the relativistic case so long as the ρ refers to
the total mass-energy of the particles and radiation. For a single particle

Ei = (
p2

i c2 + m2
i c4

)1/2 ≈ pc

for a highly relativistic particle. The equivalent ρ is therefore given by

ρ = 1

c2

∑
vol

Ei = 1

c

∑
pi .

We now define the Fermi energy density (i.e. the “mass”) as

ρ f =
∑

2N p/c.

For the case: µ = 0 we have

ρ f = 2

c

∫
d3 p

h3

p

[epc/kT + 1]

⇒ ρ f c2 = u f = 2c

h3

∫
p

[epc/kT + 1]
4� p2 dp

= 8�

h3

(
kT

c

)4 ∫ ∞

0

x3 dx

ex + 1
. (134)
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For photons

uγ = 2

ch3

∫
d3 p

h3

p

epc/kT − 1

= 8�

h3

(
kT

c

)4 ∫ ∞

0

x3 dx

ex − 1︸ ︷︷ ︸
�4/15

⇒ uγ = 8�5k4

15c2h3
T 4 ≡ aT 4 (135)

where a is the Stefan–Boltzmann constant = 7.6 × 10−15 erg cm−3 K−4. Combining
(134) and (135)

u f

uγ

=
[∫ ∞

0 (x3 dx)/(ex + 1)∫ ∞
0 (x3 dx)/(ex − 1)

]
= 7

8
.

At T > 10 MeV ≈ 1011 K

ρtot = ργ + ρe+ + ρe− + ρνe + ρν̄e + ρνµ
+ ρν̄µ

+ ρντ
+ ρν̄τ

= aT 4

c2

[
1 + 7

8
(8)

]
= 8

aT 4

c2
.

Thus, turning back to (133) with ρ → ρtot we have

texp = 0.54 s

(T/106 K)2
≈ 0.5

T 2
10

seconds. (136)

5.5.6 Reaction timescale

The reaction timescale is defined by the expression

nσvt ≈ 1 (137)

For the weak-force reaction equilibria

n + e+ → p + ν̄

n + ν → p + e−

the reaction timescale is given by

→ treact = 1

ne+σwc
(138)
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where

ne+ ≈ aT 4

kT
≈ 5.5 × 1031T 3

10 (139)

and

σw ≈ 10−41T 2
10 cm2. (140)

Combining (138), (139) and (140)

treact ≈ 0.06

T 5
10

s.

Comparing with (136) the condition treact > texp is satisfied when 0.06/T 5
10 >

0.5/T 2
10. The timescales cross over at T10 = 0.5 and texp = 2 s.

Substituting this temperature into (132)

nn

n p
= e−9.1×109/5×109 ≈ 0.17

→ nn

nn + n p
≈ 0.14,

close to the abundances currently observed. However, free neutrons decay via

n → p + e+ + ν̄

on a timescale of 700 seconds. So why are there any neutrons left? Because stable
nuclei formed and the neutrons were no longer free.

5.5.7 Formation of deuterium

Deuterium formed according to

n + p � D + � .

At high temperatures the neutrons are fast and equilibrium is approached. Later T
decreases and there is a “freeze-out”. Early on the equilibrium is represented by

µn + µp = µD + µγ = µD.

Substituting (129) into the above yields

ln

[(
h2

2�mnkT

)3/2
nn

gn

]
+ ε0n

kT
+ ln

[(
h2

2�m pkT

)3/2
n p

gp

]
+ ε0p

kT

= ln

[(
h2

2�m DkT

)3/2
nD

gD

]
+ ε0D

kT
.



92 The early Universe

Rearranging terms,(
nnn p

nD

)
= gngp

gD

[
2�(mnm p/m D)kT

h2

]3/2

e−�E/kT (141)

where �E = E0n + E0p − E0D = (mn + m p − m D)c2. You may recognize the
above equation as the Saha equation.

The Saha equation indicates that systems tend to break apart even when super-
ficial estimates of binding energy suggest they should stay together. For the deu-
terium problem, gn = gp = 2, gD = 3, m D = 2m p = 2mn , �E = 8.07 + 7.29 −
13.14 = 2.22 MeV, �E/k = 2.6 × 1010 K.

Defining

R =
(

nnn p

nD

) / 1

nnucleon
(142)

when R � 1 most nucleons are free, when R � 1 most nucleons are in D. For

nN = nnucleon = 10−5

(
T

2.7

)3

= 5 × 1020T 3
9

combining (141) and (142), we get

R = 3 × 1048

T 3/2
9

e−26/T9 .

From the above

R ≈ 1 when T = 2.3 × 108 K.

Thus

treact = 1

nσv
≈ 3.4 seconds,

while

texp = 1.2 × 103 seconds.

All the nucleons would be in D if it were not for other reactions that tend to
destroy it, i.e.

D + p → 3He . . .

The early Universe is the site of exotic particle equilibria that lead up to the
nucleosynthesis of the basic elements. The various particle equilibria and freeze-
outs lead to the conditions we now see.
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Chapter 6

Stellar structure and compact stars

Stars like the Sun owe their stability to a balance between gravitational and inter-
nal forces, the latter generated by thermonuclear reactions. This balance uniquely
determines the internal structure of a star whose mass and chemical composition
is known. The bulk of the gas inside such stars can be described through the ideal
gas law. I will now present a very brief and very broad description of such stars.
However, the real goal of this chapter is to describe very different kinds of stars,
dead stars whose stability is owed not to thermonuclear reactions but to degenerate
gas pressure. These stars are called white dwarfs and neutron stars. In doing so I
will illustrate the interplay of gravitational dynamics and statistical mechanics.

6.1 Hydrostatic equilibrium

To be stable a star must be in mechanical equilibrium. It must not significantly
expand or contract. Consider an idealized star of uniform density T and temperature
ρ, radius R, mass M, as shown in Fig. 6.1. The gravitational pressure Pg can be
obtained from the gravitational force Fg using the relation

Pg = Fg

4�r2
. (143)

To calculate the net gravitational pressure we consider the interaction of thin
shells of matter with mass interior to each shell and add up contributions from
all shells. Thus

Pg = −
∫ R

0
G

(4�r2ρ dr )
(

4
3 �r3ρ

)
4�r2r2

= −2

3
�Gρ2 R2. (144)

94
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Pi

Pg
Pi  = −Pg

Fig. 6.1 Hydrostatic equilibrium. A star is stable when its internal gas pressure
matches its gravitational pressure.

But

ρ = M
4
3 �R3

→ ρ2 = 9

16

M2

�2 R6

⇒ Pg = − 3

8�
G

M2

R4
. (145)

The thermal pressure is provided by the kinetic motions of the gas particles and for
a normal star follows the ideal gas law. Thus

Pi ≈ nkT (assume a pure hydrogen star)

≈ MkT
4
3 �R3m H

, (146)

where m H is the mass of the hydrogen atom.
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For hydrostatic equilibrium to hold

Pi = −Pg.

Equating (145) and (146)

M = 2RkT

Gm H
. (147)

So, we see that an M(R) relation is a consequence of hydrostatic equilibrium.
Of course, real stars have gradients but this exercise serves to illustrate the basic
concept. This particular M(R) relation is dependent on the fact that the pressure is
derived from thermonuclear reactions and arises from a quasi-ideal gas. Suppose
the gas were degenerate? How would M(R) change? This implication is discussed
later in the chapter. What would happen if nuclear reactions were suddenly turned
off? The star would begin to collapse and generate its energy by gravitational
contraction. After some time we would expect the star to become sufficiently dense
that gas degeneracy would begin to play a role. We can estimate at what radius that
might happen as follows.

From the degeneracy condition (see below) for electrons

n � 5 × 1015T 3/2 → n > nc = 5 × 1016T 3/2

where n is the number density, we can define a critical density, nc, above which a
gas is considered fully degenerate.

For T = 107 K, nc ≈ 1027 cm−3. But

n = M
4
3 �m H R3

so that for M = 1 M� and m H ≈ 10−24 g

R < Rc ≈ 109 cm = 104 km.

About the size of the Earth!
So what happens now? The answer requires us to work out a new hydrostatic

equilibrium based on the degeneracy pressure.
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N

T = 0

T > 0

1

0
µ ∋

Fig. 6.2 The chemical potential. The chemical potential defines the energy at
which the occupancies are falling off. At T = 0 the fall-off is abrupt. At T > 0 the
fall-off is more gradual.

6.2 Fermion degeneracy

Fermi gases start to become degenerate when the finite volume of phase cells
becomes important. Recall how the volume of a phase cell is defined

dV = dx dy dz︸ ︷︷ ︸
dVs

dpx dpy dpz︸ ︷︷ ︸
dVp

= h3.

The total number of available phase cells is given by

N = 2Vs Vp

h3
= 8�

3h3
p3

m Vs (148)

and is defined by the spatial volume, Vs , and the maximum momentum, Pm , in the
ensemble. When the number of particles approaches the number of available phase
cells the particle momenta are no longer determined by classical kinetics.

In a differential momentum volume

dN = 2V

h3
4� p2

m dp = Z (p) dp (149)

represents the distribution of states in p. Recall the Fermi–Dirac expression for the
occupation number (105) which tells us what fraction of the available phase cells
are filled at a given energy ε (Fig. 6.2). The distribution is characterized by the
following limits.
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Quantum limit: ε � µ → N (ε) = 1/(e−µ/kT + 1) ≤ 1

Classical limit: ε � µ → N (ε) = e−ε/kT

For T = 0 (µ � kT ) → N (ε) = 1, (ε < µ) and N (ε) = 0, ( ε > µ).

From (149) the number density of available states is given by

Z(p) dp = Z (p) dp

V
= 8� p2

h3
dp. (150)

Comparing Z and N , see (105) and (150), requires that common parameters be
used. Let us proceed by converting p → ε in (150).

Recall

ε2 = p2c2 + m2c4 → dε = c2 p

ε
dp.

Substituting into (150) yields

Z(ε) dε = 8�

c3h3
(ε2 − m2c4)1/2ε dε. (151)

In the ultra-relativistic limit, ε � mc2

Z(ε) dε = 8�

c3h3
ε2 dε (relativistic). (152)

In the non-relativistic limit, mc2 ≤ ε � 2mc2

⇒ (ε2 − m2c4)1/2 = pc, ε =
√

p2c2 + m2c4 ≈ mc2

(
1 + 1

2

p2c2

mc2

)

⇒ Z(ε) dε ≈ 8�

ch3
mc3 p dε ≈ 4�

h3
(2m)3/2ε

1/2
k dε (non–relativistic).

(153)

Now we are in a position to determine the distribution of particle energies. We begin
by defining the number density of particles as a function of energy

n(ε) dε = Z(ε) dε N (ε). (154)

At T = 0 we have

→ n(ε) dε =
{
Z(ε) dε ε < µ

0 ε > µ.

We can now determine various quantities like mean and average energy of an
ensemble of particles at T = 0. For phase cells of energy, ε, the mean particle
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energy is defined as

ε̄ = εN (ε) = ε

e(ε−µ)/kT + 1
=

{
ε, ε < µ

0, ε > µ.

For all phase cells of all ε

〈ε〉 =
∫ ∞

0 Z(ε)N (ε)ε dε∫ ∞
0 Z(ε)N (ε) dε

=
∫ ∞

0 n(ε)ε dε∫ ∞
0 n(ε) dε

. (155)

For non-relativistic particles, from equations (153) and (155)

〈ε〉T =0 =
∫ µ

0 ε3/2∫ µ

0 ε1/2 dε
= 3

5
µ = 3

5
εF . (156)

Here, we have defined µ = εF , the Fermi energy.
Similarly, for ultra-relativistic particles

〈ε〉T =0 =
∫ µ

0 ε3 dε∫ µ

0 ε2 dε
= 3

4
µ = 3

4
εF . (157)

We see that the chemical potential (the Fermi energy) is related to the mean energy
of the particles. Let us now evaluate µ specifically.

The total number of particles in an ensemble is

n =
∫ ∞

0
n(ε) dε =

∫ µ

0
n(ε) dε at T = 0

= 8�

c3h3

µ3

3
(relativistic)

= 8�

3h3
(2m)3/2µ3/2 (non-relativistic)

so that

µ =
(

3c3h3

8�

)1/3

n1/3 (relativistic) (158)

µ = 1

2m

(
3h3

8�

)2/3

n2/3 (non-relativistic). (159)

In either case adding particles to the same volume increases the chemical potential
(which is a way of defining the chemical potential).
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6.2.1 White dwarf equation of state

These results make it possible to write down a relationship between pressure and
density. From (156) and (157)

P = 2

3
〈ε〉T =0 n = 2

5
µn (non-relativistic)

P = 1

4
µn (relativistic).

Using (158) and (159) to eliminate µ we get

P =
{

(1/8)(3c3h3/�)1/3n4/3 (relativistic)

(1/(10m))(3h3/8�)2/3n5/3 (non-relativistic).
(160)

What do we notice about (160)? It does not depend on T ! Remember this equation
holds not only for T = 0 but for any T such that µ � kT . Now let us make a white
dwarf.

6.2.2 Mass–radius relation for white dwarfs

Since we want the star to be stable we begin with the hydrostatic equilibrium
condition. From (145) and (160) we have

1

10me

(
3h3

8�

)2/3

n5/3 = 3G M2

8�R4
(non-relativistic).

Using nH = M/( 4
3 �R3m H ) = ne

⇒ M =
[

8�

30Gme

]3 [
3h3

8�

]2 [
3

4�m H

]5

R−3

⇒ M ≈ 1060 R−3 (non-relativistic). (161)

Repeating this for relativistic particles (a relativistic white dwarf)

M ≈
(

2�ch

3G

)3/2 (
3

4�m H

)2

≈ 1034 (relativistic). (162)

6.3 Internal structure of white dwarfs

We will now derive a more rigorous description of the structure of white dwarfs.
First, we clarify the relationship between pressure and density, then the relationship
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q
v

Fig. 6.3 Particle flux and the definitions of �v and θ .

between pressure and mass density. This will set the stage for solving the equations
of stellar structure.

6.3.1 Relationship between pressure and energy density

The microscopic approach

Consider Figs. 6.3 and 6.4. The momentum change of a single particle upon
reflection off a surface is

�p = −2p cos θ.

The pressure is the total change of momentum suffered by all particles incident on
unit area in unit time

P =
∫ ∞

0
dv

∫
�pv cos θ n(Ω, v) dΩ

=
∫ ∞

0
dv

∫ 2�

0
dφ

∫ �/2

0
�pv cos θ n(θ, φ, v) sin θ dθ
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dW

Fig. 6.4 Definition of the elemental solid angle.

where we have used the relation

[dΩ = sin θ dθ dφ].

For an isotropic distribution

n(θ, φ, v) = n(v) dv

4�

so that

P =
∫ ∞

0

n(v)v dv

4�

∫ �/2

0
�p cos θ sin θ dθ

∫ 2�

0
dφ

= 2
∫ ∞

0

n(v)v2 dv

4�

∫ �/2

0
m cos2 θ sin θ dθ

∫ 2�

0
dφ.

Now

2
∫ ∞

0

n(v)v2 dv

4�
= 1

2�
n〈v2〉
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0
dφ = 2�

m
∫ �/2

0
cos2 θ sin θ dθ = − m

3
cos3 θ

∣∣∣�/2

0
= m

3
.

Combining

⇒ P = 1

3
mn〈v2〉 = 1

3
ρ〈v2〉 = 2

3
U

⇒ P = 2

3
U.

For a relativistic gas

m〈v2〉 → γ mc2

⇒ P = 1

3
nγ mc2 = 1

3
U

⇒ P = 1

3
U.

Macroscopic approach

A star in hydrostatic equilibrium must satisfy

dP

dr
= −ρG M(r )

r2
.

Multiplying both sides by V (r ) dr = (4/3)�r3 dr

V (r ) dP = −1

3
4�r2ρ dr

G M(r )

r
= −1

3

G M

r
dM

⇒
∫ R

0
V (r ) dP = PV

∣∣R

0 −
∫ R

0
P dV = −PV .

While

−
∫

1

3

G M(r )

r
dM = 1

3
Ω.

We see that

PV = −1

3
Ω.

But, according to the Virial theorem

Ω = −2Ek

⇒ P = 2

3
U (U = Ek/V ),

where Ek is the kinetic energy.
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For relativistic systems

Ek ≈ 1

2

∑
mi 〈v2〉n → 1

2

∑
γi mi nc2

⇒ P = 1

3
U (relativistic).

Recall that for a degenerate gas

U = 3

5
µn (non-relativistic)

⇒ P = 2

3
U = 2

5
µn

⇒ P = 1

5me

[
3h3

8�

]2/3

n5/3 (non-relativistic).

Or

U = 3

4
µn

⇒ P = 1

3
U = 1

4
µn

P = 1

8

[
3c3h3

�

]1/3

n4/3 (relativistic).

It is conventional to cast this equation into functions of mass and density.

6.3.2 Relating electron number density to the mass density

Atoms other than hydrogen must be taken into account when describing the internal
structure of real white dwarfs. These atoms contribute multiple electrons and cannot
therefore be neglected. Thus, the electron density is

ne =
(

X + 1

2
Y + 1

2
Z

)
ρ

m H
,

where X , Y , and Z are the fractional abundances of hydrogen, helium and heavy
elements, respectively.
Since

X + Y + Z = 1

we have

ne = 1

2
(1 + X )

ρ

m H

For X = 0

⇒ ne = ρ

2m H
.
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6.3.3 Other sources of pressure

Although usually minor, other sources of pressure include ions and photons

Pion =
(

X + 1

4
Y

)
ρkT

m H

Prad = U

3
= n

3
〈hν〉 = σ T 4

3
.

6.3.4 Equation of state

Putting all of this together we have

P = αρ(n+1)/n

where

α =
{

(h2/(20mem H ))(3/(�m H ))2/3((1 + X )/2)5/3 (non-relativistic)

(hc/(8m H ))(3/(�m H ))1/3((1 + X )/2)4/3 (relativistic)

n =
{

3/2 (non-relativistic)

3 (relativistic).

Now we are set up to properly determine the internal structure of a white dwarf.

6.3.5 Internal structure of white dwarfs

There are three fundamental equations that govern the structure of white dwarfs.

Hydrostatic equilibrium In differential form we can describe the condition for
hydrostatic equilibrium as

dP

dr
= −ρ

G M(r )

r2
. (163)

Mass continuity

dM

dr
= 4�r2ρ(r ). (164)

Equation of state

P = αρ(n+1)/n. (165)

Combining (163) and (164) yields

1

r2

d

dr

(
r2

ρ

dP

dρ

)
= −4�Gρ(r ). (166)
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It is mathematically expedient to write the density as

ρ(r ) ≡ ρcφ
n(r ), (167)

where ρc = ρ(0) and φ(0) = 1. Substituting (167) into (165) and (165) into (166)
yields

(n + 1)αρ1/n
c

1

r2

d

dr

(
r2 dφ

dr

)
= −4�Gρcφ

n. (168)

We can further simplify things by defining the following parameters.

a ≡
[

(n + 1)αρ
(1−n)/n
c

4�G

]1/2

(169)

ζ ≡ r/a.

Combining with (169) and (168) we now have

1

ζ 2

d

dζ

(
ζ 2 dφ

dζ

)
= −φn. (170)

Equation (170) is known as the Lane–Emden equation.
Explicit solutions exist only for n = 0, 1 and 5. For our cases of interest (n =

3/2 and n = 3) there are no analytical solutions. Let us see what we can do.
Solving equation (170) requires boundary conditions for φ and dφ/dζ . An

obvious one for φ is

φ(r = 0) = 1 (ρ(0) = ρc).

However, we also need one for dφ/dζ . Let us see if we can determine what
(dφ/dζ )|ζ=0 should be.

In the vicinity of ζ = 0 we can expand

φn(ζ ) ≈ φ(0) + nφn−1(0)(ζ ) = 1 + nζφn−1(0) = 1 + cζ (171)

where c is a constant. Combining (171) with (164)

⇒ dM ∝ ζ 2ρc(1 + cζ ) ∝ ζ 2 + cζ 3

⇒ M ∝ ζ 3 + c′ζ 4. (172)

Substituting (172) into (163)

⇒ dP

dr
∝ ρcφ

n(ζ 3 + c′ζ 4)

ζ 2
→ 0 as ζ → 0.
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But P = αρ(n+1)/n = αρcφ
n+1 so that

dP

dr
∝ (n + 1)φn dφ

dr
⇒ dφ

dζ
(0) = 0.

Thus, the second boundary condition is

dφ

dζ

∣∣∣∣
ζ=0

= 0. (173)

We can now get an approximate solution to (170) by expanding the solution in a
power series for ζ < 1

φ(ζ ) ≈ c0 + c1ζ + c2ζ
2. (174)

Substituting (174) into (170)

1

ζ 2

d

dζ

(
ζ 2 dφ

dζ

)
= −(c0 + c1ζ + c2ζ

2)n ≈ −cn
0

[
1 + n

(
c1

c0
ζ + c2

c0
ζ 2

)]
.

From (174), dφ/dζ ≈ c1 + 2c2ζ so that

1

ζ 2

d

dζ
(c1ζ

2 + 2c2ζ
3) ≈ −cn

0

[
1 + n

(
c1

c0
ζ + c2

c0
ζ 2

)]
.

Simplifying

2c1ζ + 6c2ζ
2 ≈ −cn

0ζ
2 − cn−1

0 nc1ζ
3 + · · ·

Equating the coefficients on the left- and right-hand sides, c0 = 1 → c1 = 0,

c2 = −1/6, so that

φ(ζ ) ≈ 1 − 1

6
ζ 2 ζ < 1.

This solution satisfies both boundary conditions as can be readily verified. This
procedure can be repeated with as many terms as needed for a given accuracy.
However, the total solution, for all ζ requires the solution of (170) numerically for
ζ > 1. With the total solution it is possible to determine the mass and radius of the
white dwarf given a central density.

6.3.6 Estimating the radius and mass of a white dwarf

The first zero of φ(ζ ), corresponding to φ(ζ0) = 0, represents the radius of the white
dwarf, see (169)

R = aζ0. (175)
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The quantity

M(ζ ) =
∫ aζ

0
4�r2ρ dr =

∫ aζ

0
4�a3ρcφ

nζ 2 dζ

can be combined with (170) to yield

M(ζ ) = −4�a3ρc

∫ ζ

0

d

dζ
ζ 2 dφ

dζ
dζ = −4�a3ρcζ

2 dφ

dζ
,

is the mass within a given ζ . The total mass of the star is therefore

M(ζ0) = −4�a3ρcζ
2
0

dφ

dζ

∣∣∣∣
ζ=ζ0

. (176)

The numerical solution yields

n ζ0 ζ 2
0 (dφ/dζ )ζ=ζ0

3/2 3.65 −2.71
3 6.90 −2.02

For a relativistic white dwarf

RW D = aζ0 = 6.9a = 6.9

[
αρ

−2/3
c

�G

]1/2

from (169)

= 6.9
( α

�G

)1/2
ρ−1/3

c .

From page 105

α = hc

8m H

(
3

�m H

)1/3 (
1 + X

2

)4/3

.

For X = 0

α = 4.8 × 1014

so that

RW D = 3.3 × 1011ρ−1/3
c cm.

Now, we can estimate the mass from (176) and the previous table

MW D = −4�a3ρc(−2.02) = 8�
( α

�G

)3/2
.

= 2.76 × 1033 g = 1.4 M�. (177)
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Equation (177) represents the Chandrasekhar Limit. Consider now a non-relativistic
white dwarf. Referring to the previous table

RW D = aζ0 = 3.65a = 3.65

[
5αρ

−1/3
c

8�G

]1/2

= 3.65

(
5α

8�G

)1/2

ρ−1/6
c .

From page 105

α = h2

20mem H

(
3

�m H

)2/3 (
1 + X

2

)5/3

.

For X = 0

α = 3.1 × 1012

⇒ RW D = 1.1 × 1010ρ−1/6
c

⇒ RW D = 0.16R�ρ−1/6
c . (178)

Repeating this for the mass

MW D = 2.71 4�a3ρc = 9 × 1029ρ1/2
c g

⇒ MW D = 4 × 10−4 ρ1/2
c M�. (179)

Combining (178) and (179)

MW D

M�
= 1.6 × 10−6

(
R

R�

)−3

(non-relativistic). (180)

The above Mass–Radius relation is valid for the mass range, 0.2 ≤ M ≤ 0.5 M�.

6.4 Stability of compact stars

We can investigate the stability of compact stars by analyzing the total energy of
the star. In the process we will gain insight into why white dwarfs have an upper
mass limit and we will set the stage for understanding neutron stars.

6.4.1 Total energy

The total energy of a star is given by the energy conservation law

ET = EG + Ek = −G M2

Rc
+ U V .
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Let us examine how the total energy scales with radius. We know that

V ∝ R3
c ρ ∝ R−3

c U ∝ ρΓ ∝ R−3Γ
c .

From the previous discussion we know that

Γ = 5/3 non-relativistic

Γ = 4/3 relativistic.

Thus, the scaling of the total energy is described by

ET = − Eg0

Rc
+ Ek0

R3(Γ −1)
c

.

Thus, for non-relativistic gas

ET = − EG0

Rc
+ Ek0

R2
c

for which there is a minimum at a finite radius. The minimum represents stability
(Fig. 6.5).

In the relativistic case

ET = − EG0

Rc
+ Ek0

Rc

for which there is no minimum (Fig. 6.6).
Relativistic stars are unstable because the pressure does not increase fast enough

with density to achieve hydrostatic equilibrium. Physically, on the microscopic
scale, the relativistic electrons combine with the protons to form neutrons thereby
reducing the available electrons for pressure support. The combination of the “soft”
equation of state and the neutron production leads to the instability of relativistic
stars. Let us look at the neutron production in a little more detail now because it is
neutron production that leads to the formation of neutron stars.

6.4.2 Electron capture

In the laboratory neutrons are unstable and follow the usual decay process (Fig. 6.7)

n → p + e− + ν + 0.78 MeV.

In an environment in which the electrons are degenerate this process can only
occur if there are available states for the created electron to occupy. If such states
are not available, the decay does not take place. The highest energy electrons in a
degenerate gas have

εe = mec2 + εF .
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EK

ET

EG

E

0 Rc

Stable minimum

Fig. 6.5 Energy curve showing a stable point. When the total energy curve has a
local minimum with respect to R the star has a stable point where it can exist in
hydrostatic equilibrium.

When εF > 0.78 MeV > mec2 ≈ 0.51 MeV, the electrons are just relativistic. Thus,
the onset of electron capture is coincident with the equation of state becoming “soft”
(Fig. 6.8).

6.4.3 Maximum density

Electrons are relativistic when

pe ≈ mec = h̄k = h

λe

⇒ λce = h

mec
= 2.4 × 10−10 cm

is the Compton Wavelength.
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0 Rc

EK

EG

E

ET

Fig. 6.6 Energy curve with no stable points. When the energy curve has no local
minimum the star cannot attain hydrostatic equilibrium and it will collapse.

The mass density corresponding to a Compton wavelength and for matter with
A = 2Z is given by

ρrel ≈ 2m Pλ−3
ce ≈ 2.3 × 105 g cm−3.

A star of uniform density would have an upper density limit given by this density.
Real stars, however, have density gradients so that the centers become relativistic
before the other regions. Thus, for white dwarfs

(ρc)max ≈ 108 g cm−3.

As ρ increases past the above limit the ratio n/p grows, neutron matter forms and
the pressure is dominated by neutrons, not electrons. The degenerate neutrons are
non-relativistic, owing to their greater mass and the subsequent star is stable.
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decay

mnc
2

0.78 MeV

mec
2

mpc
2

n

E

p+e

Fig. 6.7 Beta decay. Beta decay occurs when the rest mass energy of the neutron
is greater than the combined energies of the electron and proton.

Thus

pn ≤ mnc = h

λcn

⇒ λcn ≈ h

mcnc
≈ 1.3 × 10−13 cm = 1.3 fm

ρn,rel ≈ mn/λ
3
cn ≈ 7 × 1014 g cm−3.

The corresponding maximum density is then

ρmax ≈ few × 1015 g cm−3.

At these densities nuclear reactions are strong and they play an important role in
determining the structure of the neutron star. Consequently, the P(ρ) relation for
neutron stars is not well modeled and there are great debates over its exact form.
Figure 6.9 summarizes the stability of compact stars.
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mnc
2

mpc
2

n

E

mec
2 + ef 

p+e

Fig. 6.8 Inverse beta decay (electron capture). Inverse beta decay occurs when the
combined energies of the electron and proton are greater than the rest mass energy
of the neutron. In this case it is the Fermi energy that causes the inverse process.

6.5 Structure of neutron stars

6.5.1 Overview

At the high densities and pressures characteristic of neutrons stars, the internal
structure is quite interesting. At and just above the surface, where P = 0, ordinary
matter can exist and there is no degeneracy. Just below the surface, it is believed
that there is a relatively thin liquid layer, an ocean of non-relativistic degenerate
matter. The interior is solid but the core may also be liquid as a result of a phase
transition. The unusual structure is the result of the high internal densities which in
turn is the result of the extremely strong gravitational potential.

The characteristic radius of a neutron star can be obtained from the maximum
density just derived

4

3
�ρmax R3

c ≈ 1 M�

⇒ Rc ≈ 7 × 105 cm.



6.5 Structure of neutron stars 115

M/M

2

1

ρ

(g cm−3)

white dwarfs

neutron stars

black holes

1010 1015105

Fig. 6.9 Stability regimes for white dwarfs and neutron stars. The solid curves
indicate regions of stability. The dashed curves represent regions of instability for
white dwarfs and neutron stars.

For real stars, with density gradients

8 < RNS < 20 km.

The surface gravity is then given by

gN = G M

R2
≈ 1014 cm s−2.

Compare that to the Earth where g ≈ 103 cm s−2.

6.5.2 Liquid layer

The liquid surface is the result of relatively low densities in the outer regions of
the neutron star. Here, there are still plenty of non-relativistic electrons and protons
and few neutrons. The situation is favorable (more later) for a liquid state when
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ρ < 106 g cm−3. We can get an approximate depth scale for the neutron star ocean
using the following equilibrium equation

dP

dz
= gρ (181)

which is just the equation of hydrostatic equilibrium where z is the depth. The
equation of state for neutron stars is given by

P ≈ 1013ρ5/3 = kρ5/3 (182)

as one would expect for a degenerate non-relativistic star. Substituting (145) into
(144) yields

dz = 5

3
ρ−1/3 k

g
dρ. (183)

With the boundary condition ρ(z = 0) = 0 we get

z = 5

2

k

g
ρ2/3 for (ρ < 106 g cm−3)

⇒ z = 25 meters

(
ρ

106 g cm−3

)2/3

. (184)

We see that the liquid surface layer has a characteristic depth of ≈ 25 meters.

Why is the surface layer liquid?

In the outer regions of the neutron star the nuclei are surrounded by a sea of electrons
(Fig. 6.10). The electrons are bound to the nuclei with an energy

Ec ≈ − Ze2

ri
≈ −

(
4�

3

)1/3

Ze2n1/3. (185)

At high densities the binding energy is high and the particles form a crystal lattice.
At lower densities the thermal energies of the particles can partially break down the
lattice and form a liquid. The parameter that controls when that happens is given by

Γ = Ec

kT
. (186)

Computer simulations show that when Γ < Γm ≈ 150, matter is liquid. The melting
temperature Tm can then be defined by combining (185) and (186)

Tm = Ec

kΓm
≈ 103ρ1/3 Z5/3 K for A = 2Z

⇒ Tm = 3 × 107

(
ρ

106 g cm−3

)1/3

(187)

for Z ≈ 30.
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Fig. 6.10 The liquid layer. The ions are shown as circles. They are imbedded in a
sea of electrons.

The internal temperature of a neutron star evolves with time so that

Tm > 108 K t < 103 years

Tm < 107 K t > 106 years.

According to (187) only a thin layer can be liquid after about a million years. That
liquid has an estimated thickness of 10–100 meters. A solid crust forms below the
ocean.

6.5.3 The crust

In the outer crust, electron capture alters the composition according to

e− + (Z , N ) → (Z − 1, N + 1) + ν.
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E

N

F

∋

Fig. 6.11 Electron capture brought on by degeneracy. The plot shows binding
energies for nuclei of a fixed atomic mass. The presence of a biasing Fermi energy
allows electron capture to occur to the right of the minimum.

Consider the plot of binding energies for nuclei of a fixed atomic mass in Fig. 6.11.
Electron capture should not be possible to the right of the minimum. However, the
high Fermi energies allow this to happen.

As the density increases with depth there is a corresponding increase in the Fermi
energy, εF . At high enough Fermi energies of εF ≈ 20 MeV and ρ ≈ 1012 g cm−3

neutrons begin to drip out of the nuclei according to

(Z , N ) → (Z , N − 1) + n.

Thus, the outer crust has an altered composition of electrons and nuclei while the
inner crust is a mixture of neutrons, nuclei and electrons.
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6.5.4 The core

In the core the density approaches ρ ≈ 2.8 × 1014 g cm−3, at which point the nuclei
are merging together to form a liquid core. This liquid consists of free neutrons,
protons and electrons. At this point the Fermi energies are approaching 100 MeV,
which is the rest mass energy of a muon. At the very center muons become a part
of the mixture. For T < Tc ≈ 109−10K, free neutrons in the crust and in the core
form a neutron superfluid. Free protons in the core form a superconductor. The
superfluid represents flow without viscosity while superconductivity represents
energy conduction without losses.

6.6 Pulsars

Pulsars, as the name suggests, emit repeated pulses of radiation. The frequency of
pulsation is rapid ranging from milliseconds to seconds of time. The pulse frequency
is also very regular. The combination of rapid pulsation and regularity is a severe
constraint on the physics of these objects. There are two possibilities. Pulsars are
either dynamical pulsators (they contract and expand periodically like pulsating
variable stars) or rapidly rotating objects.

The dynamical timescale for a stellar oscillation is given by

tdyn ≈ (24�Gρ)−1/2

which is related to the free fall time. The period of oscillation must exceed the
dynamical timescale, otherwise the star is destroyed.

P > tdyn = 446√
ρ

seconds.

If we use a typical period for a pulsar (say that of the Crab nebula) we can derive a
lower limit on the density of the star.

ρ >

(
446

0.033 s

)2

≈ 2 × 108 g cm−3

which is just above the maximum density of a white dwarf. For faster pulsars, white
dwarfs can be ruled out.

In the case of rotation

acent = Ω2 R agrav = G M

R2

and for the star to be stable against disruption

Ω2 R =
(

2�

P

)2

R <
G M

R2

⇒ (2�)2 P−2 <
G M

R3
= 4

3
G�ρ
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P >

(
3�

Gρ

)1/2

= 1200√
ρ

⇒ ρ >

(
1200

P

)2

= 1.3 × 109 g cm−3.

The density has to be greater than ≈ 109 g cm−3, especially for the faster millisecond
pulsars. This range of densities completely eliminates white dwarfs as candidates.
Thus it seems that regardless of whether pulsars are oscillating or rotating they are
probably neutron stars. So which is it? Are they oscillating or rotating?

The periods of pulsars can be measured so accurately that it is possible to measure
very small changes in pulse periods. In the case of the Crab pulsar

P = 0.03342 . . . s

Ṗ = 2.5 × 10−12 > 0

⇒ P

Ṗ
= 2650 years.

The deceleration timescale is 2650 years. All pulsars for which the deceleration
timescales have been measured have positive Ṗ . That is, they all slow down and
increase their periods.

If pulsars were oscillating sources their evolution would be determined by the
Virial theorem. Since they are emitting radiation and since they have no internal
heat generation their density should increase with time. But according to these
equations

Posc ∝ ρ−1/2

which predicts that the period should decrease with time, contrary to what is actually
observed.

A rotating star loses rotational energy as it radiates so that

d

dt

(
I

2
Ω2

)
= ΩΩ̇ I + Ω2

2

dI

dt
< 0

if I ≈ constant. Thus

Ω̇ < 0 ⇒ Ṗ > 0

as is observed.
Pulsars are rapidly rotating neutron stars. We will discuss pulsars in more de-

tail later, when we have reviewed EM. The radiation pulsars give off contains some
very interesting physics as we will see in Section 9.6.
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Part III

Electromagnetism

Observational astronomy is based on the detection of radiation emitted by astro-
physical objects. All morphological and physical information about astrophysical
sources is derived from observation and analysis of the emitted radiation. Contin-
uum radiation is a natural consequence of the principle that accelerating charges ra-
diate. In this part of the book I will review and apply principles of electromagnetism
to further our understanding of important astrophysical phenomena, demonstrating
in the process that important radiation processes can be derived from the basic prin-
ciple that accelerating charges radiate. To that end, I will develop the theory that
describes bremsstrahlung and synchrotron radiation. A theoretical understanding
of these two radiation mechanisms allows us to interpret the emission of a wide
range of objects, ranging from distant radio galaxies to nearby HII regions. The
specific astrophysical topics covered in this part of the book include: the radiative
properties of pulsars, dispersion and Faraday rotation of electromagnetic radiation,
active binary star systems, accretion disks, supernova remnants, particle accelera-
tion, cosmic rays and active galaxies.
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Chapter 7

Radiation from accelerating charges

A proper interpretation of the radiation detected from astrophysical sources requires
us to understand why radiation occurs and what the main radiation mechanisms are.
In this chapter I derive the Lienard–Wiechert (L–W) potentials, which form the basis
for describing radiating charges using basic principles of EM and relativity. The
L–W potentials are used to describe two of the most important continuum radiation
mechanisms in astronomy, thermal bremsstrahlung and synchrotron radiation.

7.1 The Lienard–Wiechert potential

7.1.1 Scalar and vector potentials

Recall the vector relation

�∇ · ( �∇ × �a) = 0

from which we can define a vector potential such that

�∇ · �B = �∇ · ( �∇ × �A) = 0

⇒ �B = �∇ × �A, (188)

where �B is the magnetic field and �A is the associated vector potential.
Substituting (188) into Faraday’s Law (from Maxwell’s equations (242)–(245))

�∇ × �E = −1

c

∂

∂t
( �∇ × �A) = −1

c
�∇ × ∂ �A

∂t
,

where �E is the electric field and φ is the associated scalar potential. But recall that
�∇ × ( �∇φ) = 0 which we are then free to add to the right-hand side

⇒ �∇ × �E = −�∇ ×
[

1

c

∂ �A
∂t

+ �∇φ

]

⇒ �E = −1

c

∂ �A
∂t

− �∇φ. (189)
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Generalizing this result

�A′ = �A + �∇Ψ

φ′ = φ − 1

c

∂Ψ

∂t
,

These equations represent gauge transformations. The gauge transformations give
us mathematical flexibility for solving various EM problems. They are useful be-
cause they do not change the underlying physics. A particularly useful gauge for
dealing with radiation is given by the Lorentz condition

�∇ · �A − 1

c

∂φ

∂t
= 0. (190)

Let us now substitute (188) and (189) into Coulomb’s and Ampere’s Laws (see
Maxwell’s equations (242)–(245))

⇒ −∇2φ − 1

c

∂

∂t
( �∇ · �A) = 4�ρe (191a)

�∇ × ( �∇ × �A) = 4�

c
�je − 1

c
�∇ ∂φ

∂t
− 1

c2

∂2 �A
∂t2

. (191b)

Combining (190) and (191) we obtain

�2

(
φ

�A
)

= −4�

(
ρe

�je/c

)
. (192)

This is known as the inhomogeneous wave equation where

�2 ≡ ∇2 − 1

c2

∂2

∂t2
.

It is possible to solve (192) with the help of Green’s function.

7.1.2 Green’s function solution

The first step is to solve the special case:

�2G(�x, t ; �x ′, t ′) = 4��(x − x ′)�(t − t ′) (193)

for G, then

φ(�x, t) =
∫

G(�x, t ; �x ′, t ′)ρe(�x ′, t ′) dx ′ dt ′ (194a)

�A(�x, t) =
∫

G(�x, t ; �x ′, t ′)
�je(�x ′, t ′)

c
d3x ′ dt ′. (194b)
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The solution to (193) is given by

Gret = �(t ′ − (t − |�x − �x ′|/c))

|�x − �x ′| (195)

so that (194) becomes

φ(�x, t) =
∫

�[t ′ − (t − |�x − �x ′|/c)]

|�x − �x ′| ρe(�x ′, t ′) d3x ′ dt ′

�A(�x, t) =
∫

�[t ′ − (|�x − �x ′|/c)]

|�x − �x ′|
�je
c

d3x ′ dt ′.

For t ′ = t − |�x − �x ′|/c, the retarded time, we have

φ(�x, t) =
∫

ρe(�x ′, t ′)
|�x − �x ′| d3x ′ (196a)

�A(�x, t) = 1

c

∫ �je(x ′, t ′)
|�x − �x ′| d3x ′. (196b)

These are known as the retarded potentials.

7.1.3 The L–W potentials

Consider a single charge q moving on a trajectory �r (t)

⇒ ρe = q�
[�x − �r (t)

]
(197a)

�j e = q�v�
[�x − �r (t)

]
. (197b)

Then, in terms of the preceding approach[
ρe(�x ′, t ′)
�j e(�x ′, t ′)/c

]
=

∫ [
q

q�v(τ )/c

]
�(�x ′ − �r (τ ))�(τ − t ′) dτ.

Substituting into (196) and integrating over �x ′

φ(�x, t) =
∫ ∫

q�(�x ′ − �r (τ ))

|�x − �x ′| �(τ − t ′) d3x ′ dτ

which is nonzero only for �x ′ = �r (τ )

⇒ φ(�x, t) =
∫

q�(τ − t ′)
|�x − �r (τ )| dτ . (198)
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Similarly

⇒ �A(�x, t) =
∫

q�v(τ )/c

|�x − �r (τ )| �(τ − t ′) dτ. (199)

Now let us define �R(τ ) ≡ �x − �r (τ )

⇒ t ′ = t − |�x − �x ′|/c = t − |�x − �r (τ )|/c (200)

t ′ = t − R(τ )/c. (201)

Now let τ ′ ≡ τ − t ′ = τ − t + R(τ )/c

⇒ dτ ′ = [1 + Ṙ(τ )/c] dτ. (202)

After some manipulation

dτ

R(τ )
= dτ ′

R(τ ) − �R(τ ) · �v(τ )/c
. (203)

Substituting (203) into (198) and (199)(
φ(�x, t)
�A(�x, t)

)
=

∫ (
q

q�v(τ )/c

)
�(τ ′) dτ ′

R(τ ) − �R(τ ) · �v(τ )/c
. (204)

Equation (204) is nonzero only for τ ′ = 0 so

φ(�x, t) = q

R(τ ) − �R(τ ) · �v/c

]
ret

(205a)

�A(�x, t) = q �v(τ )/c

R(τ ) − �R(τ ) · �v/c

]
ret

(205b)

where ]ret indicates that quantities are evaluated at the retarded time, that is,
for

τ = t − R(τ )/c. (206)

Equations (205) and (206) represent the Lienard–Wiechert potentials.

7.2 Electric and magnetic fields of a moving charge

The �E and �B fields can be evaluated according to

�E = −�∇φ − 1

c

∂ �A
∂t

and �B = �∇ × �A. (207)
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θt

(t − τ)

|R(τ)|
 = c(

t − τ)

R
(τ

) 
− 

(t
 −

 τ
)v

 =
 R

t

v

Fig. 7.1 Trajectory of a charge moving at constant velocity.

Now, from (206)

∂τ

∂t
= 1

1 + �̇R/c
= 1

1 − R̂ · �v/c
= 1

κ
. (208)

Combining (207), (208) and (205)

�E = q

(R − �R · �v/c)3

[(
1 − v2

c2

) (
�R − R�v

c

)
+

�R
c2

×
[(

�R − R�v
c

)
× �̇v

]]

(209)
�B = R̂ × �E .

Note that the first term in (209) ∝ 1/R2 and yields the Coulomb field. The second
term ∝ 1/R and represents the Radiation field.

7.2.1 Moving charge at constant velocity

When �̇v = 0 only Coulomb fields are possible. From Fig. 7.1

R −
�R · �v

c
= Rt

(
1 − v2

c2
sin2 θt

)1/2

=
[
| �Rt |2 −

∣∣∣∣ �Rt × �v
c

∣∣∣∣
2
]1/2

. (210)

For a proof see Shu (1992). Combining (207), (209) and (210)

⇒ �E = q(1 − (v2/c2)) �Rt

(| �Rt |2 − | �Rt × (�v/c)|2)3/2
and �B = �v

c
× �E . (211)
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v v=0

Decelerated Charge

Fig. 7.2 The fields of a decelerating charge. A charge is moving initially at
constant speed �v. It decelerates instantly to �v = 0. Portions of the resulting E fields
are shown.

Special cases

�v = 0 → �E = q

R2
t

r̂

�v ⊥ �R → �E = γ q

R2
t

r̂

�v ‖ �R → �E = 1

γ 2

q

R2
t

r̂ .

A qualitative picture based on (211) is shown in Fig. 7.2. Inspection of Fig. 7.2
shows that when a moving charge suddenly stops, corresponding to an instantaneous
acceleration, the static fields form two separate regimes. Causality demands that
the fields associated with the two regimes be connected, as shown. Given the finite
speed of light, an external observer first sees the initial field associated with the
moving charge. After a finite amount of time, corresponding to the time it takes for
the field of the stationary charge to reach the observer, a discontinuity in the E and
B fields sweeps over the observer. This discontinuous field is the EM wave asso-
ciated with the acceleration of the charge. Note that the �E field lines along the dis-
continuity are orthogonal to the direction of propagation and that the discontinuity
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propagates at the speed of light, both characteristics of propagating EM radiation.
Causality demands that accelerating charges radiate.

7.2.2 Radiation from accelerating charges – the far zone

Let us now investigate the second term in (209). In the far field, �R = k̂x .

⇒ �E = q

xc2κ3

{
k̂ ×

[(
k̂ − �v

c

)
× �̇v

]}
(212)

�B = k̂ × �E .

For v/c 
 1 → | �E | = (q|�̇v| sin θ )/xc2.
For v/c ≈ 1 → κ = 1 − (k̂ · �v)/c ≈ 1 − cos θ , demonstrating that there is

relativistic beaming around θ ≈ 0.

7.2.3 Angular distribution of radiation

Recall that

dP

dΩ
= x2 × | �S|︸︷︷︸

Poynting Vector

= c

4�
(x | �E |)2. (213)

Define

ḡ = 1

κ3

{
k̂ ×

[(
k̂ − �v

c

)
× �̇v

]}
(214)

with the help of Fig. 7.3, such that, from (212), (213) and (214)

dP

dΩ
= q2|ḡ|2

4�c3
.

Expanding the double product in (212)

ḡ = 1

κ3

[
(k̂ · �̇v)

(
k̂ − �v

c

)
− κ �̇v

]

⇒ �g · �g = g2 = 1

κ4
|�̇v|2 + 2

κ5
(k̂ · �̇v)

(
�̇v · �v

c

)
− 1

κ6

(
1 − v2

c2

)
(k̂ · �̇v)2 (215)

where we have used κ = 1 − (k̂ · �v)/c. We also note that

k̂ · �v
c

= v

c
cos θ

k̂ · �̇v = |�̇v|(sin θ cos φ sin i + cos θ sin φ cos i)

�̇v · �v
c

= |�̇v|v
c

cos i. (216)
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Fig. 7.3 Definition of coordinate system used to describe radiation patterns.

Armed with (215) and (216), two special cases can now be described.

Case 1 (�‖�̇v)

�v ‖ �̇v(i = 0) ⇒ k̂ · �v
c

= v

c
cos θ and k̂ · �̇v = |�̇v| cos θ and �̇v · �v

c
= |�̇v|v

c
.

Substitute into (215)

⇒ g2

|�̇v|2 = sin2 θ

(1 − (v/c) cos θ )6
.

The radiation pattern, corresponding to this equation, is shown in Fig. 7.4.

Case 2 ( �⊥�̇v)

�v ⊥ �̇v(i = 90◦) ⇒ k̂ · �v
c

= 0 and k̂ · �̇v = |�̇v|(sin θ cos φ) and �̇v · �v
c

= 0

⇒ g2

|�̇v|2 =
(

1 − v

c
cos θ

)−4
−

(
1 − v2

c2

) (
1 − v

c
cos θ

)−6
sin2 θ cos2 φ.

The radiation pattern, corresponding to this equation, is shown in Fig. 7.5.
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v/c << 1

v, v v, v

v/c < 1 ~

Fig. 7.4 Radiation pattern when �̇v ‖ �v.

v v

v v

v/c << 1 v/c < 1 ~

Fig. 7.5 Radiation pattern when �̇v ⊥ �v.

7.2.4 Total emitted power

We can obtain an expression for the total power emitted by the radiating charge if
we evaluate the following integral∫

dP

dΩ

dt

dτ
dΩ

where all angles are evaluated at time τ

⇒ P =
∫

q2|ḡ|2
4�c3

κ sin θ dθ dφ.

Substituting into (215) and identifying |�̇v|β sin i = |�̇v × �v/c| and after some
manipulation

Pem = 2e2

3c3
γ 6[|�̇v|2 − |�̇v × �v/c|2]. (217)

These equations describe the radiated power of a moving charge. Now we are in a
good position to describe specific radiation mechanisms because (217) tells us that
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the only thing we need to specify is the trajectory of the charge (its velocity and
acceleration). As we will see it is the trajectory which defines radiation mechanisms.
As examples, I will now describe two of the more important continuum radiation
mechanisms in astrophysics, thermal bremsstrahlung and synchrotron radiation.

7.3 Further reading

Jackson, J.D. (1998) Classical Electrodynamics, John Wiley and Sons, New York, NY,
USA.

Rybicki, G. B. and Lightman, A. P. (1985) Radiative Processes in Astrophysics, John
Wiley and Sons, New York, NY, USA.

Shu, F. H. (1992) The Physics of Astrophysics: Radiation, University Science Books, Mill
Valley, CA, USA.

Tucker, W. H. (1975) Radiation Processes in Astrophysics, MIT Press, Cambridge, MA,
USA.

Zhelezniakov, V. V. (1996) Radiation in Astrophysical Plasmas, Kluwer Academic
Publishers, Dordrecht, The Netherlands.



Chapter 8

Bremsstrahlung and synchrotron radiation

8.1 Bremsstrahlung

A thermal plasma in which the ionized particles follow a Maxwell–Boltzmann
distribution will undergo Coulomb interactions. The Coulomb forces cause the
charged particles to accelerate during the interactions (collisions) so that the parti-
cles give off radiation. In this chapter we will study the acceleration of electrons in
a thermal plasma and determine the characteristics of the emitted radiation using
equation (217).

8.1.1 Single particle collisions

We begin by considering the interaction of a free electron with a free ion, as shown
in Fig. 8.1.

me|�̈x | = Zi e2

b2 + v2t2
and �̇v ⊥ �v v

c
� 1.

Substituting this into (217) yields

P = 2e2

3c3
|�̇v|2 = 2Z2

i e6

3m2
ec3

1

(b2 + v2t2)2
. (218)

Integrating over the entire collision

Ptot =
∫

P(t) dt = 2e2

3c3

∫
|�̇vt |2 dt.

This integral has been expressed in the time domain. It can also be expressed in the
frequency domain if we recall Parseval’s theorem, namely∫ ∞

−∞
|�̇vν |2 dν =

∫ ∞

−∞
|�̇vt |2 dt.

135
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x

e v

b

θ

i
-Z  e

Fig. 8.1 A single particle collision. An electron, of velocity �v, incident on an ion of
charge Z is deflected by the Coulomb interaction. The impact parameter is shown
as the distance of closest approach (b). The deflection angle is θ .

where

|�̇vν | =
∫

|�̇vt | e2�iνt dt. (219)

Thus ∫
Pt dt =

∫
Pν dν

⇒ Ptot = 2e2

3c3

∫ ∞

−∞
|�̇vν |2 dν = 4e2

3c3

∫ ∞

0
|�̇vν |2 dν. (220)

The differential form of (220) represents the frequency spectrum resulting from
one encounter

Pν = 4e2

3c3
|�̇vν |2 dν. (221)

Combining (219) and (221)

Pν = 4e2

3c3

[∫
|�̇vt |2 e2�iνt dt

]2

. (222)

Combining (218) and (222)

Pν = 4e6 Z2
i

3m2
ec3

[ �

bv

]2
e−4�|ν|b/v. (223)
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Equation (223) represents the single particle spectrum resulting from a single
collision.

8.1.2 Radiation from an ensemble of particles

In reality we must consider the effect of many collisions. Since each collision
depends on velocity we must know the velocity distribution of the particles in the
plasma. For a thermal plasma that is given by the Maxwell–Boltzmann distribution.
What we need to do is to integrate (223) over all velocities and all possible impact
parameters. Thus

Pν =
∫ ∞

vmin

[ne f (v)4�v2 dv]

[
4�2 Z2

i e6

3m2
ec3v2

] ∫ ∞

bmin

e−4�|ν|b/v 2�b db

b2

where f (v) is usually a Maxwellian, in which case this simplifies to

Pν = ne

(
2me

�kT

)1/2 (
8�3 Z2

i e6

3m2
ec3

)
I (224)

where

I =
∫ ∞

xmin

e−x dx
∫ ∞

ζmin

e−ζ

ζ
dζ

where

ζmin ≡ 4�νbmin

v
and xmin ≡ mev

2
min

2kT
.

For xmin we require (1/2)mev
2
min = hν

xmin = hν

kT
. (225)

For bmin we require bminmev ≈ h̄ (QM limit) so that

bmin = h̄

mev
(226)

ζmin = 4�νh̄

mev2
.

Combining (224), (225) and (226) yields

Pν =
∫ ∞

hν/kT
e−x E1(ζmin) dx . (227)
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P -hν/kT
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Fig. 8.2 Theoretical bremsstrahlung spectrum. The radiation from a single particle
has this spectrum. The fall-off is determined by the thermal energy of the particle.

For

hν

kT
� 1 ⇒ Pν ≈ E1(1) e−hν/kT .

For

hν

kT
� 1 ⇒ Pν ≈ ln

[
γ

(
me Z2

i e4

2h̄2hν

) (
me Z2

i e4

2kT h̄2

)3/2
]

− 3

2
γ

where

γ = −
∫ ∞

0
ln x e−x dx .

The latter is a slowly varying function, therefore the overall spectrum can be approx-
imated according to Fig. 8.2: This, with (227), represent a thermal bremsstrahlung
spectrum. These spectra are characteristic of HII regions, supernova remnants and
galaxy clusters.

8.2 Synchrotron radiation

In the presence of a magnetic field, charged particles gyrate about the magnetic
field. The gyration results in continuous circular acceleration so that the particles
radiate. In this section we will describe the total power and frequency spectrum of
(a) a single gyrating particle and (b) an ensemble of particles. These results will be
applied to astrophysical sources.
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a

v

B0

Fig. 8.3 Definition of pitch angle.

8.2.1 Total power

In the presence of a magnetic field a charged particle experiences a Lorentz force

d

dτ
(γ m�v) = q

( �v
c

× �B0

)
(228)

Rearranging

d�v
dτ

= �v × ẑωB and ωB = q B0

γ c
(229)

which has the solution

�r (τ ) = ẑvzτ + vxy

ωB
(x̂ cos ωBτ + ŷ sin ωBτ )

where

vz = �v · �B0

B0
and vxy =

√
v2

x + v2
y = �v × �B0

B0

for �B0 = B0 ẑ. Letting cos α = �v · �B0/vB0 ⇒ R = (v/ωB) sin α. The angle α is
known as the pitch angle and is defined in Fig. 8.3. These descriptions of the
particle trajectory can be used to determine the radiation characteristics of the
particle through (217). The latter can be cast into a more convenient form

Pem = 2q2

3c3
γ 4(a2

⊥ + γ 2a‖). (230)
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B0

∆θ

∆θ

Fig. 8.4 Beamed radiation from a gyrating electron. The electron is moving toward
the observer at that particular instant.

Comparing (229) and (230)

a⊥ = ωBv sin α and a‖ = 0.

Substituting into (230)

Pem = 2e2

3c3
γ 2 e2 B2

0

m2
ec2

v2 sin2 α for electrons.

Why can we ignore protons? Because Pem scales as 1/m4 and protons are 1800
times more massive than electrons. Simplifying this equation

⇒ Pem = 2β2γ 2cσT UB sin2 α

where σT is the Thomson cross-section and UB = B2
0/(8�). For an isotropic prob-

ability distribution

〈Pem〉 = 4

3
β2γ 2cσT UB

where 〈sin2 α〉 = 2/3. For an ensemble of particles 〈Pem〉 = 〈P〉

⇒ 〈P〉 = 4

3
β2γ 2cσT UB (231)

which describes both emitted and received power.

8.2.2 The received spectrum

We will take the approach of examining the properties of the pulses emitted by
ultra-relativistic gyrating particles (Fig. 8.4). In terms of the retarded time τ

⇒ 
τ

P
= 
θ

2�
≈ 1

2�γ
.
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γ3ωB

P(t)

2π/ωB
2π

t

Fig. 8.5 Pulsed radiation from gyrating electron.

In terms of the observer’s time, recall

dt

dτ
= 1 − β cos θ ≈ 1 − β + (
θ )2

2
≈ 1

γ 2
(γ � 1)

⇒ 
t

P
= 1

2�γ 3
⇒ 
ν ≈ γ 3ωB .

Using standard pulse analysis we can predict emission at ω = ωB → γ 3ωB

(Fig. 8.5). Now let us define ωL = γωB = eB0/mec and let ν = ω/2�

⇒ 〈Pν(γ )〉 = 4

3
β2γ 2cσT UBφν(γ ) (232)

such that
∫ ∞

0 φν(γ ) dν = 1. From an ensemble of particles at energy γ we would
expect a discrete spectrum with a basic period of

2�

ωB
= γ

νL
.

But

νL = eB0

2�mec
≈ 20−30 Hz.

In astrophysical sources the basic period is too low to be detectable. In a typical
astrophysical spectrum where γ ≈ 104

⇒ νB = γ −1νL = 2 × 10−3 Hz

the spacing of the harmonics. The spectrum, in practice, is continuous, as shown in
Fig. 8.6.

8.2.3 Spectrum of a power-law energy distribution

Consider an energy distribution of electrons defined by

n(γ ) dγ → mec2γ − mec2(γ + dγ ).
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Fig. 8.6 Synchrotron spectrum of a single electron. The gyrating electron emits
radiation that is characterized by the spectrum shown. The fall-off frequency is
determined by the energy, γ , of the electron.

slope 
−(p − 1)/2

log jν 
log jν

log v log v

ν-0.75

ν-0.1

synchrotron

bremsstrahlung

Fig. 8.7 Synchrotron spectrum of an ensemble of electrons. A power-law energy
distribution of electrons yields a power-law synchrotron spectrum. The latter can
be thought of as the superposition of individual electron spectra, scaled by the elec-
tron energy. The slope of the resulting spectrum is shown in terms of the power-law
index of the energy distribution. The plot on the right shows typical spectra asso-
ciated with synchrotron and bremsstrahlung radio sources. The markedly different
slopes of the two spectra allow astronomers to differentiate between thermal and
non-thermal sources.

With (232) we can define a volume emissivity

ρ jν =
∫ ∞

1
〈Pν(γ )〉n(γ ) dγ. (233)

Empirical evidence indicates that

n(γ ) dγ = n0γ
−p dγ = n0γ

−2.5 dγ. (234)
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Now substitute (232) and (234) into (233), letting

φν(γ ) → �(ν − γ 2νL )

and let β ≈ 1, ν ′ = γ 2νL and integrate to get

ρ jν = 2

3
cσT n0UBν−1

L

(
ν

νL

)−(p−1)/2

. (235)

The basic result is independent of actual shape of φν . We can define a luminosity
Lν by integrating (235) over the volume of the source

Lν =
∫

V
ρ jν dV ∝ ν−(p−1)/2. (236)

The net result is a power-law spectrum, as shown in Fig. 8.7.

8.3 Further reading

Jackson, J. D. (1998) Classical Electrodynamics, John Wiley and Sons, New York, NY,
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Extragalactic Sources, Freeman, San Francisco, USA.

Rybicki, G. B. and Lightman, A. P. (1985) Radiative Processes in Astrophysics, John
Wiley and Sons, New York, NY, USA.

Shu, F. H. (1992) The Physics of Astrophysics: Radiation, University Science Books, Mill
Valley, CA, USA.

Tucker, W. H. (1975) Radiation Processes in Astrophysics, MIT Press, Cambridge, MA,
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Verschuur, G. A. and Kellerman, K. I. (1988) Galactic and Extragalactic Radio
Astronomy, Springer-Verlag, Berlin, Germany.

Zhelezniakov, V. V. (1996) Radiation in Astrophysical Plasmas, Kluwer Academic
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Chapter 9

High energy processes in astrophysics

Unlike the black-body radiation that characterizes stars and planets, the
bremsstrahlung and synchrotron processes are tracers mainly of high-energy phe-
nomena. The former often traces regions of hot ionized gas, the latter traces non-
thermal matter consisting of relativistic particles. As we will see later, both processes
are associated with supernova remnants and accreting neutron stars. I now examine
these phenomena in more detail.

9.1 Neutron stars

When matter accretes onto a neutron star, the energy gained by a particle (assume
a proton) is just the potential energy per particle at the neutron star surface

Up = −G Mm p

R
≈ 2 × 10−4 ergs ≈ 0.1 m pc2.

Thus, a thermalized particle at the surface has a temperature of

kT ≈ 108 eV ≈ 100 MeV.

In principle particles can radiate γ rays. However, the Eddington limit (more details
later) sets a maximum luminosity of

L = 4�R2σ T 4 ≈ 1037 erg s−1

⇒ T ≈ 107 K ⇒ kT ≈ 1 keV.

Matter at this temperature is a fully ionized plasma so that collisions are mediated
by Coulomb interactions. This, of course, is a recipe for thermal bremsstrahlung.

As noted in the previous chapters, bremsstrahlung is characterized with a high
energy cut-off defined by,

hν ≈ kT .

144
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Thus, for kT ≈ 1 keV → hν ≈ 1 keV. The accreting region should therefore emit
to hundreds of electronvolts, consistent with their designation as UV and X-ray
sources.

We can contrast this with HII regions (kT ≈ 1 eV). In this case bremsstrahlung
does not operate at the quantum limit and bmin ≈ Zi e2/mev

2. Comparing with
the quantum limit (189) we see that, in this case, bmin is larger by a factor of
Zi e2/h̄v ≈ 4 × 108. The photon energies are therefore smaller by a similar factor,
yielding frequencies of order 1 GHz. The HII regions are known to be radio sources.

9.2 Supernova remnants

Supernovas leave behind a neutron star (sometimes a black hole). They also eject
a shell of material which is called a supernova remnant (SNR). Detection of 1 keV
photons from SNRs suggests that

kT ≈ 103 eV ⇒ T ≈ 107 K.

The bremsstrahlung process operates here too! Since it depends on ne as well as T
the density can be evaluated once T is known. Typical values of ne are 0.1–10 cm−3,
averaged over the SNR.

How much energy does it take to ionize this much gas?
Consider a 10 pc SNR. Then

nekT Vsnr ≈ (10)(2 × 10−9)(3 × 1019)3

≈ 5 × 1050 ergs ⇒ blast energy!

Where does the energy come from?

ρv2

2
≈ nekT ⇒ v ≈

√
2kT

m p
≈ 5 × 107 cm s−1

≈ 500 km s−1.

But the sound speed

cs ≈ 30 km s−1 ⇒ M ≈ 17 → supersonic.

The supersonic shock from the explosion heats the interior of the SNR.

9.2.1 Particle acceleration

Given the large amount of kinetic energy associated with SNRs, is it possible that
SNRs are the source of most of the relativistic particles in the Galaxy? At the Earth
we detect these particles as cosmic rays. From all sky radio surveys (see Fig. 8.7)
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we know that the Galaxy is filled with cosmic rays because the radio emission is
almost entirely synchrotron.

Recall νc = eB

2�mec
γ 2.

For B = 5µG, γ = 2 × 104 ⇒ ν = 3 GHz. At radio frequencies, synchrotron-
emitting electrons are highly relativistic.

Observations of synchrotron emission in SNRs indicates that relativistic particles
are also present there. For SNRs to be the primary source of cosmic rays we need
a mechanism that taps the blast energy of the SNR. That mechanism is known as
diffusive shock acceleration (see Gaisser, 1990).

To determine whether SNRs are plausible sources of cosmic rays we need to
evaluate how much of an SNR’s energy is in the form of cosmic rays.

Minimum energy

Consider an SNR of volume V , containing a mixture of cosmic rays and magnetic
fields. The energy density of the magnetic field is simply

UB = B2
0

8�
. (237)

The energy density of the cosmic rays is a little more difficult to determine. For
electrons

Ue = n0

∫ ∞

γmin

(γ mec2) γ −p dγ = n0mec2

2 − p
γ

−(p−2)
min [p > 2] (238)

requiring knowledge of the electron energy density distribution. But, from syn-
chrotron theory, Pν ∝ n0 B−(p+1)/2

0 , so that

n0 = constant × B(p+1)/2
0 (239)

at a fixed frequency, ν, of observation.
Combining (238) and (239)

⇒ Ue = constantB−(p+1)/2
0 at fixed ν (fixed γ ). (240)

The total non-thermal energy can now be expressed in terms of the magnetic field
strength

U = UB + kUe = UB + UC R

⇒ U ∝ B2
0 + B−(p+1)/2

0 (241)
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Fig. 9.1 Minimum energy. The energy in particles and fields is plotted as a function
of B0. The curve has a well-defined minimum.

from (237) and (240) and where k = UC R/Ue (which can be estimated from obser-
vations of cosmic rays at the Earth). A plot of (241) is shown in Fig. 9.1. Equation
(241) has a minimum when

d

dB0
(UC R + UB) = − (p + 1)UC R

2B0
+ 2UB

B0
= 0

⇒ UC R = 4

p + 1
UB .

For p ≈ 2.5, UC R ≈ UB . There is an approximate balance between the cosmic ray
and magnetic field energy densities. This balance is known as equipartition.

From this we see that the minimum energy can now be expressed as

Umin = (UC R + UB)min ≈ 2UC R ≈ 2UB .

The equipartition condition allows the calculation of B0 which yields UC R , UB and
Umin . Regardless of assumptions about equipartition, Umin can always be calculated.
The non-thermal energy curve for a SNR in the nearby galaxy, M33, is shown in
Fig. 9.2. Arguments based on equipartition have been used to estimate how much
cosmic ray energy resides inside SNRs. These calculations suggest

〈Umin〉 ≈ 5 × 1049 ergs

which is a substantial fraction of the blast energy (estimated to be ≈ 1051 ergs).
On the basis of these numbers it seems plausible that SNRs convert a fair fraction
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Fig. 9.2 The minimum energy curve for a supernova remnant in M33. The vertical
axis has units of 1050 ergs. The horizontal axis has units of 10−4 gauss.

of their blast energy into cosmic rays (Fig. 9.3). The SNRs are therefore a leading
contender as the source of most cosmic rays with energies up to 1014 eV. A VLA
image of the SNR Cas A is shown in Fig. 9.4. The emission is dominated by
synchrotron radiation indicating the presence of cosmic ray electrons. Cosmic rays
are found throughout the Galaxy, as evidenced by the synchrotron emission from
the Milky Way plane (Fig. 9.5).

9.3 Radio galaxies

The center of our Galaxy is a powerful source of synchrotron radio emission
(Fig. 9.6). There is a debate as to whether the center is powered by a massive
black hole (105 M�) or by a concentrated cluster of stars. Although a formidable
source of energy, the center of our Galaxy pales in comparison with those of active
galaxies.

Perhaps the most powerful objects in the Universe, radio galaxies, are highly
active galaxies containing large reservoirs of non-thermal energy

Umin ≈ 1060 ergs > 109SNe
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Fig. 9.3 A histogram of minimum energies calculated for a sample of about
50 SNRs in M33. The energy is in ergs. The sample is complete above log
U ≈ 49.5.
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Fig. 9.4 A VLA image of the SNR, Cas A. The observing frequency is 1.4 GHz.
The radio emission is dominated by synchrotron radiation indicating that the
SNR contains relativistic electrons gyrating in magnetic fields. Image courtesy
of NRAO/AUI.

located hundreds of kiloparsecs from the power centers of these galaxies, their
nuclei. A VLA image of Cygnus A, a well-known radio galaxy, is shown in Fig. 9.7.

A simple light travel time argument illustrates that the relativistic particles filling
these reservoirs must be accelerated in situ.

The lifetime of a relativistic particle is ultimately dependent on the rate at which
it loses energy (emits synchrotron radiation).

mec2 dγ

dτ
= −Pem = −2β2γ 2cσT UB sin2 α

⇒ − γ

dγ /dτ
= mec/γ

2σT UB sin2 α
.
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Fig. 9.5 The radio sky at 408 MHz. The grey-scale represents intensity of radio
emission from the sky with black being most intense. The Galactic plane is horizon-
tal in this representation. Although radio emission is evident across the whole sky
there is a concentration of emission toward the plane and the center of the Galaxy.
From: http://www.mpe.mpg.de/∼hcs/Cen-A/Pictures/galaxy-radio408mhz-2.gif.

Fig. 9.6 A VLA image of the Galactic center. The observing frequency is 1.4 GHz.
The filamentary structures are not well understood but are believed to be related
to violent activity at the Galactic center. Image courtesy of NRAO/AUI.
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Fig. 9.7 A VLA image of the active galaxy Cygnus A. The observing frequency
is 1.4 GHz. The two outer lobes are intense sources of synchrotron emission
suggesting that the lobes are filled with relativistic electrons and magnetic fields.
The nucleus of Cen A is the relatively faint point source at the center of the image.
Image courtesy of NRAO/AUI (Perley, R. C., Carilli, C. and Dreher, J.).

Typically, B = 10−5 G, γ ≈ 104 → τe ≈ 107 years. For γ = 106 → τe ≈ 105

years. But the light-travel-time for a distance of l ≈ 1025 cm ⇒ τc ≈ l/c ≈ 107

years. So, how is energy transferred in radio galaxies? The particles must be accel-
erated within the lobes and perhaps all along the way from the nucleus to the lobes.
If that is the case, there is no need for the particles to be completely transferred to
the lobes. The acceleration occurs in situ.

9.4 Galactic X-ray sources

As we have discussed earlier, rotation powers some objects such as pulsars. In
binary stars, infalling matter can also power neutron stars and white dwarfs. The
latter are called accretion powered sources. They are among the most powerful
sources in the Galaxy and emit much of their radiation in the high-energy part of
the EM spectrum. They were discovered by the earliest X-ray telescopes (such as
Uhuru) and studied in great detail by subsequent X-ray and γ -ray satellites such
as Copernicus, Ariel 5, SAS-3, OSO-7.8, COS-B, HEAO-1, Einstein, EXOSAT,
ROSAT, ASCA, XTE and Chandra. These X-ray sources are characterized by X-ray
luminosities of Lx (2–10 keV) ≈ 1035–1037 erg s−1. Since they are always found
in binary star systems the source of the energy is believed to be mass transfer from
a companion star to the compact star (white dwarf, neutron star, black hole) hence
the name X-ray binaries.
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9.4.1 The energy source

Matter falling onto a compact star represents the conversion of gravitational poten-
tial energy into radiation. Thus, as discussed earlier,

Lx ≈ Ṁ
G Mc

Rc
= Ṁc2

(
G Mc

c2 Rc

)
= Ṁc2

(
2Rs

Rc

)

where, Mc, Rc are the mass and radius of the compact object and Rs is the
Schwarzschild radius of the compact object. For a white dwarf, Mc ≈ 1M�, Rc ≈
1 000 km. The efficiency of energy conversion is given by

≈
(

G Mc

c2 Rc

)
≈ 0.001

or about 0.1%. For neutron stars, Mc ≈ 1M�, Rc ≈ 10 km

⇒ efficiency ≈ 0.1

or about 10%. For a black hole the efficiency is also about 10%. These numbers
contrast with 0.7% for thermonuclear burning of hydrogen and 0.1% for burning of
heavier elements. Neutron stars and black holes are the most efficient astrophysical
engines known. In order for these engines to produce the observed X-ray luminosi-
ties of Lx ≈ 1037 erg s−1 the required rate of mass accretion is Ṁ ≈ 10−9 M�/year
for a neutron star and Ṁ ≈ 10−7 M�/year for a white dwarf.

9.4.2 Maximum luminosity/Eddington limit

It is no accident that X-ray binaries have a well-defined upper limit to their lumi-
nosities. As compact stars accrete more matter they become more luminous. The
increased radiation pressure opposes the gravitational infall of matter and even-
tually an equilibrium is reached at the so-called Eddington luminosity. This can
be investigated quantitatively. We begin with the simplifying assumption that the
infalling matter is pure, fully ionized hydrogen. Then

Fg = −G Mcρ

r2
= −G Mcnm p

r2

Fr = L

4�r2c
nσT spherical symmetry

where σT = 6.6 × 10−25 cm2 is the Thomson cross-section and Fg and Fr are the
gravitational and radiation forces respectively. An equilibrium is reached when

Fr = −Fg ⇒ L = L Edd = 4�G Mccm p

σT
= 1.3 × 1038

(
Mc

M�

)
erg s−1.



154 High energy processes

9.4.3 Characteristic temperature

What would the surface temperature of the compact star have to be in order to
thermally emit the required 1037 erg s−1? With

L = 4�R2
cσ T 4

c

and σ = 5.7 × 10−5 erg cm−2 degrees−4 s−1

T ≈ 107

(
R

10 km

)−1/2

K → kT ≈
(

R

10 km

)−1/2

keV.

Neutron stars and black holes are natural X-ray emitters. White dwarfs are natural
UV sources. The emission we have discussed thus far can be characterized as black
body and originates in the compact accretion disks that form around the compact star
(see Section 9.4.4 next). The black-body radiation is optically thick bremsstrahlung.
These sources also emit optically thin bremsstrahlung and synchrotron radiation.

9.4.4 Mass transfer

We now investigate how matter is transferred onto the compact object.

Roche Lobe overflow

In Fig. 9.8, matter from one star spills over the equipotential surfaces that define
the potential of the two-body system.

Stellar winds

A variant of the above picture suggests that the mass-carrying wind of the evolving
star is focused onto the compact object by the latter’s intense gravitational field
(Fig. 9.9). Upper main-sequence stars have

Ṁwind ≈ 10−7−10−6 M�/ year

⇒ Ṁacc ≈ 0.1% of Ṁwind

⇒ Ṁacc ≈ 10−9−10−10 M�/year, which is adequate.

9.5 Accretion disks

Matter falling onto the compact star forms an accretion disk. How? The obser-
vational evidence for white dwarfs comes in the form of cataclysmic variables
where we see Doppler shifts from gas corresponding to Keplerian velocities at the
Roche Lobe. In the case of neutron stars we observe X-ray binaries. The best case
is Hercules X-1 which shows evidence for a large precessing disk. A schematic
representation of the evolution of an accretion disk is shown in Fig. 9.10.
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Mc M0

Fig. 9.8 Potential surfaces of a binary star. The compact star is shown as Mc. Gas
spills over from M0 to Mc.

Mc M0

Fig. 9.9 Focused wind in a binary star system. The stellar wind of the evolving
star is focused by the gravitational field of the compact star, resulting in mass
accretion.
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Shock formation

Ring spreads because
of viscocity > disk

Ring formation

Fig. 9.10 Formation of an accretion disk. The formation of an accretion disk occurs
in stages, beginning with the formation of a shock as the material piles up during
infall, and ends with ring spreading into a disk because of gas viscosity.

r

ẑ

^Mc

h

Fig. 9.11 Cross-section of an accretion disk. The parameters used to define the
vertical structure of the disk are shown.

9.5.1 Disk hydrodynamics

Let us consider a steady-state axisymmetric thin disk (Fig. 9.11). We will briefly
discuss the vertical structure of the disk. A description of the full structure of the
disk requires consideration of the equations of mass conservation, conservation
of radial momentum, conservation of angular momentum and the conservation of
energy, which is beyond the scope of this book.
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Fig. 9.12 Pressure gradients in an accretion disk.

Vertical structure

The vertical (z direction) scale length is defined as

h ≡ 1

ρ0

∫ ∞

0
ρ(z) dz.

In order for the accretion disk to be in hydrostatic equilibrium

dP

dz
= −ρgz = −ρ(z)

G M

r2

z

r

P = G M

r3

∫ ∞

0
ρ(z)z dz ≈ G Mρh2

2r3(
h

r

)2

= 2
P/ρ

G M/r
≈ 2

c2
s

VP
≈ c2

s

Vk
.

Since cs � Vk , we see that h/r � 1. The accretion disk is very thin. Consequently

P

r
� G Mρ

r2
.

The pressure gradients are very small in the radial direction (Fig. 9.12).

9.5.2 The emission spectrum of the disk

In order to determine the emission spectrum of the accretion disk we begin by
crudely estimating the rate of energy deposition per unit area, Q (Fig. 9.13).

Q2�r�r = Ṁ

[
− G M

2(r + �r )
+ G M

2r

]
= G M Ṁ

2r2
�r

⇒ Q = G M Ṁ

4�r3
.
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Fig. 9.13 Functional dependence of Q, peak frequency and the area.

When viscosity is included (a form of energy transport)

Q = 3

8�

G M Ṁ

r3
.

The spectral signature of the accretion disk is the empirically determined Lν ∝ ν1/3

law. Let us see if we can model such a law theoretically. From the previous discussion

Q(r ) ∝ 1

r3
.

Thus, for black-body emission

Q = σ T 4 ∝ 1

r3
→ T ∝ r−3/4

and

νB B ≈ kT ∝ r−3/4

⇒ Lν = 2�

∫
r dr S(ν, r )∫ ∞

0
S(ν, r ) dν = Q(r ) = Q0

r3
.

Let us treat S(ν, r ) as a sharp function of frequency such that

S(ν, r ) ≈ Q0

r3
�

[
ν − ν0

(
r

r0

)−3/4
]

.
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We are using a similar approach to that we used when discussing synchrotron
emission.

Now, let us define

�

[
ν − ν0

(
r

r0

)−3/4
]

≡ � [ f (ν, r )]

so that

Lν ≈ 2�

∫
r

dr
Q0

r2
� [ f (ν, r )]

= 2�Q0

∫
1

r2 (d f/dr )
�( f )

(
d f

dr

)
dr

= 2�Q0

∫
1

r2 (d f/dr )
�( f ) d f.

Now, from this

d f

dr
= 3

4
ν0r3/4

0 r−7/4 ∝ r−7/4

so that

Lν ∝
(

r7/4

r2

)
f =0

= (r−1/4) f =0.

Since f = ν − ν0 (r/r0)−3/4 = 0

⇒ r−3/4 ∝ ν → r−1/4 ∝ ν1/3.

So, finally

Lν ∝ ν1/3.

The accretion disks around neutron stars are characterized by this spectrum which
incorporates black-body radiation (at low frequencies), a ν1/3 law at intermediate
frequencies and a high-frequency bremsstrahlung fall-off (Fig. 9.14).

9.6 Pulsars revisited

In addition to being astrophysically interesting, pulsars also represent interesting
applications of what we have learned in previous chapters. The reason for the latter
is that they have both static and radiation fields with a well-defined transition region
separating the two EM regimes.
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log Lv 

log v

Lv ∝ v1/3

Lv ∝ v2

Lv ∝ e−hν/kT

Fig. 9.14 Emission spectrum of an accretion disk. The optically thick regime is
shown as a dashed curve at low frequencies. The optically thin regime is shown
as a solid line while the fall-off is shown as a dotted line.

Ω

Fig. 9.15 Aligned magnetic field. The B field is said to be aligned with the rotation
axis of the pulsar.

9.6.1 The radiation field

Neutron stars have intense dipolar magnetic fields which are anchored to the star
and therefore rotate with it (Fig. 9.15). The rotating magnetic field is responsible
for generating a strong static electric field as well as radiation. To see that a rotating
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magnetic field does radiate let us consider its rotation.

B = B0

(
r

Rs

)−3

.

The rapid rotation of the B field ensures that at some radius, RL , the linear velocity
of the B field must be that of light, that is when

Ω = c

RL
.

Thus, inside RL we have v = rΩ < RLΩ = c and the fields are said to co-rotate
with the star. On the other hand, outside RL , v = rΩ > RLΩ > c and co-rotation
is not possible. For r > RL the rotating B field must radiate away energy in order
not to violate causality.

9.6.2 Radiated power

We can get an estimate of how much power must be radiated by examining the
energy density of the magnetic field at the light cylinder.

U ≈ B2

8�
= 1

8�

[
Bs

(
RL

Rs

)−3
]2

= B2
s

8�

R6
s

R6
L

.

From the definition of the Poynting vector

S = Uc

⇒ Ė ≈ −4�R2
LUc = 1

2
B2

s R6
s R−4

L c

= −1

2
B2

s R6
s Ω

4c−3.

Thus

d

dt

(
IΩ2

2

)
= IΩΩ̇ = − B2

s R6
s Ω

4

2c3
.

So that,

Ω̇ ∝ −Ω3

Ω ∝ t−1/2 if Ω � Ωinitial

P ∝ t1/2

⇒ t = P

2Ṗ
.
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For the Crab pulsar t = 1300 years. The predicted age of the Crab pulsar is not
far from its known age (we know the Crab supernova went off in AD 1054, almost
1000 years ago).

9.6.3 The Braking Index

It is conventional to characterize the spindown of a pulsar by the so-called Braking
Index, n defined by

Ω̇ = −kΩn

or

Ω̈Ω

Ω̇2
= n.

For magnetic dipole radiation n = 3.

9.6.4 The static magnetic field

We can use these equations to estimate the magnetic field strength of the Crab
pulsar.

B2 = − I Ω̇c3

R6
s Ω

3
= I

(2�)2

P Ṗc3

R6
s

B ≈ (P Ṗ)1/2 I 1/2c3/2

2�R3
s

≈ 3.3 × 1019(P Ṗ)1/2

(
I

1045 g cm−3

)1/2 (
R

10 km

)−3

.

For the Crab pulsar, for which P and Ṗ have been accurately measured,

B ≈ 3 × 1012 G.

The range for typical pulsars is given by

1011 < B < 1013 G.

9.6.5 The static electric field

A rotating magnetic field (Fig. 9.16) will generate an electric field according to

�E = �v
c

× �B
where

|�v| = RΩ.

A charged particle will accelerate along the E field and gain energy before leaving
the pulsar magnetosphere. The amount of energy gain for a particle of charge q is
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Ω

Fig. 9.16 Misaligned magnetic field. The axis of the B field is not aligned with
the axis of rotation.

given by

E = eEl ≈ eΩ R

c
Bl

= e2�R Bl

Pc
= 63 GeV

(
R

10 km

) (
B

1012 G

) (
l

cm

)

where l is the distance over which the particle is accelerated. For l ≈ R, E =
6.3 × 1016 eV. Thus, in principle, the electric field of a pulsar is so strong that it
can accelerate particles to almost 1017 eV. Such particles form the highest energy
cosmic rays. The origin of cosmic rays, in general, and the origin of the highest
energy cosmic rays, in particular, is a hot topic in astrophysics in 2003 and has yet
to be resolved.

9.7 Reference

Gaisser, T. K. (1990) Cosmic Rays and Particle Physics, Cambridge University Press,
Cambridge, UK.

9.8 Further reading

Clayton, D. D. (1998) Principles of Stellar Evolution and Nucleosynthesis, University of
Chicago Press, Chicago, USA.

Frank, J., King, A., Raine, D. (2002) Accretion Power in Astrophysics, Cambridge
University Press, Cambridge, UK.

Rybicki, G. B. and Lightman, A. P. (1985) Radiative Processes in Astrophysics, John
Wiley and Sons, New York, NY, USA.

Shapiro, S. L. and Teukolsky, S. A. (1983) Black Holes, White Dwarfs and Neutron Stars,
John Wiley and Sons, New York, USA.

Shu, F. H. (1992) The Physics of Astrophysics: Radiation, University Science Books, Mill
Valley, CA, USA.



Chapter 10

Electromagnetic wave propagation

So far we have assumed that the radiation we receive from astronomical sources
is unaltered en route to the observer. However, in some cases this assumption is
not correct. I will now examine the dispersion of EM radiation and the related
phenomenon of Faraday rotation, both of which are important at radio frequencies.

I begin with Maxwell’s Equations,

�∇ · �E = 4�ρe (242)

�∇ × �E = −1

c

∂ �B
∂t

(243)

�∇ × �B = 4�

c
�J + 1

c

∂ �E
∂t

= −4�

c
ρe �V + 1

c

∂ �E
∂t

(244)

�∇ · �B = 0. (245)

Consider also the force law for charged particles

ρm
∂ �V
∂t

= −ρe �E − ρe

c
( �V × �B). (246)

These equations describe the interplay between plasmas and EM waves.
Consider a plasma with no large scale �E and �B fields and an EM wave passing

through it. The plasma sees oscillating �E and �B fields

�E1 = �E10 ei(�k·�r−ωt) �B1 = �B10 ei(�k·�r−ωt). (247)

The electrons in the plasma, being lighter, oscillate in response. We therefore look
for electron velocity solutions of the form

�V = �V0 e−iωt . (248)
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10.1 EM waves in an un-magnetized plasma

When �B = 0,
⇒ �V × �B = 0 (in (246)).

Combine �∇ × (243) and ∂/∂t (244) and (246), and eliminate ∂ �Ve/∂t and �B

⇒ −c �∇ × ( �∇ × �E) = 4�ρ2
e

ρmc
�E + 1

c

∂2 �E
∂t2

.

Use identity �∇ × ( �∇ × �E) = �∇( �∇ · �E) − ∇2 �E .
Define ω2

e = 4�ρ2
e /ρm = 4�nee2/me – Plasma Frequency

⇒ c∇2 �E = ω2
e

c
�E + 1

c

∂2 �E
∂t2

. (249)

Consider the 1-D case

c
∂2 E

∂x2
= ω2

e

c
E + 1

c

∂2 E

∂t2
. (250)

Look for plane wave solutions described by (247)

−ck2 E = ω2
e

c
E − ω2

c
E

⇒ E

(
ω2

c
− ck2 − ω2

e

c

)
= 0

⇒ ω2 = ω2
e + c2k2

which is the Dispersion Relation. We can now define the index of refraction, the
phase speed and the group velocity.

Index of Refraction

η = ck

ω
=

√
ω2 − ω2

e

ω
=

√
1 − ω2

e

ω2

ωe < ω → 0 < η < 1

ωe = ω → η = 0

ωe > ω → η = imaginary → reflection and absorption

Phase Speed

Vp = ω

k
= 1

k

√
ω2

e + k2c2 (251)

ωe > 0 → Vp > c

ωe = 0 → Vp = c (vacuum)

ωe � kc → Vp = ωe/k
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Group Velocity

Vg = ∂ω

∂k
= c2k√

ω2
e + c2k2

(252)

ωe > 0 → Vg < c

ωe = 0 → Vg = c

ωe � ck → Vg = kc2/ωe → 0.

10.1.1 Dispersion measure

To relate these to astronomical phenomena, let us consider observations of radio
frequency signals emitted by pulsars. A pulse is a wave packet and its propagation is
therefore characterized by its group velocity. Dispersion has the effect of spreading
the pulse such that different pulse frequencies will arrive at different times. Consider
a pair of observations made at frequencies ω1 and ω2. The arrival times are therefore
t1 and t2 and are governed by the phase velocity. The difference in arrival times is

�t = t1 − t2 = l

V1
− l

V2
(253)

where V1 and V2 are the phase velocities at ω1 and ω2 and l is the distance to the
source. Rearranging (251)

Vp = c√
1 − (

ω2
e/ω

2
) . (254)

Normally, ω � ωe so that (254) becomes

Vp ≈ c

1 − 1
2

(
ω2

e/ω
2
) . (255)

Inserting (255) into (253), cross multiplying and neglecting high order terms in the
denominator, yields

�t ≈ lω2
e

2c

[
1

ω2
1

− 1

ω2
2

]
(256)

⇒ �t ≈ 2�e2

mec

[
1

ω2
1

− 1

ω2
2

]
nel = 1.35 × 10−3

[
1

ν2
1

− 1

ν2
2

]
DM seconds.

(257)

The quantity nel is referred to as the dispersion measure and is often denoted as
DM. Since ne is normally a function of l (257) is generalized so that

DM =
∫ l

0
ne dl ′ cm−2. (258)
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Fig. 10.1 Definition of coordinate system for EM wave propagating in a
magnetized plasma.

Application of (255) to observations of pulsars has allowed astronomers to deter-
mine the electron density of the ISM in the direction of the pulsars. Typical values
are found to be ≈ 0.03 cm−3.

10.2 EM waves in a magnetized medium

Consider an EM wave traveling along a magnetic field line, �B0, as shown in
Fig. 10.1. Treat EM wave fields as perturbations on the plasma fields

�E = �E0 + �E1 �B = �B0 + �B1.

Substitute into (243), (244) and (246) and retain terms to 1st order

i�k × �E1 = iω

c
�B1

i�k × �B1 = −4�n0e

c
�V − iω

c
�E1

−iωme �V = −e �E1 − e

c
�V × �B0.

A consistent solution must have �V1, �E1, �B1 in the x–y plane.
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Let

�k = kẑ �E1 = Ex x̂ + Ey ŷ �B1 = Bx x̂ + By ŷ �V = Vx x̂ + Vy ŷ.

Insert into the above to get

−ik Ey = iω

c
Bx (259)

ik Ex = iω

c
By (260)

−ik By = −4�

c
n0eVx − iω

c
Ex (261)

ik Bx = −4�

c
n0eVy − iω

c
Ey (262)

−iωmeVx = −eEx − e

c
B0Vy (263)

−iωmeVy = −eEy + e

c
B0Vx . (264)

Insert (259) and (260) into (261) and (262) to eliminate Bx , By

Vx = (iw/c) − (ik2c/w)

−4�n0e/c
Ex (265)

Vy = (iw/c) − (ik2c/w)

−4�n0e/c
Ey. (266)

Insert (265) and (266) into (263) and (264) to get


iwme
((iw/c) − (ik2c/w))

4�n0e/c
+ e

eB0

c

((ik2c/w) − (iw/c))

4�n0e/c

eB0

c

((iw/c) − (ik2c/w))

4�n0e/c

iwme((iw/c) − (ik2c/c))

4�n0e/c
+ e




×
(

Ex

Ey

)
=

(
0
0

)
.

Setting the determinant to 0 and letting Ωe = −eB0/mc(
1 + k2c2

w2
e

− w2

w2
e

)2

= Ω2
e

w4
e

(
w − k2c2

w2

)2

⇒ 1 =
(

w

w2
e

± Ωe

w2
e

) (
w − k2c2

w2

)

⇒ η2 ≡ k2c2

w2
= 1 − w2

e/w
2

1 ± Ωe/w
.

We can now define the R wave and the L wave.
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Fig. 10.2 Definition of Faraday rotation. The electric field vector rotates in
the x–y plane. The rotation can be in either the right-hand or the left-hand sense.

R wave:

η2 = c2

V 2
R

= 1 − w2
e/w

2

1 + Ωe/w
. (267)

Right circularly polarized.

L wave:

η2 = c2

V 2
L

= 1 − w2
e/w

2

1 − Ωe/w
. (268)

Defining the phase speeds, we see that(w

k

)
R

>
(w

k

)
L
.

The implication of this inequality is that the plane of polarization rotates (Fig. 10.2).

⇒ Faraday Rotation.
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10.2.1 Rotation measure

Connecting theory to astronomical observations we note that the amount of rotation
of the polarization vector depends on the difference in phase velocities of the
R wave and the L wave. We can therefore proceed as we did for the dispersion
measure.

�t = tR − tL = l

VR
− l

VL
(269)

where

c

VR
=

√
1 − w2

e/w
2

1 + Ωe/w

c

VL
=

√
1 − w2

e/w
2

1 − Ωe/w

from (267) and (268). In the limit of |Ωe| 	 ω

c

V
≈ 1 − 1

2

w2
e/w

2

1 ± Ωe/w
. (270)

Inserting into (269) yields

�t ≈ l

2c

ω2
e

ω2

[
1

1 − Ωe/w
− 1

1 + Ωe/w

]
. (271)

Cross multiplying and keeping the lowest order term in the denominator yields

�t ≈ ω2
eΩel

cω3

= 2�e3

ω3m2
ec2

ne B0l.

Now, the amount of rotation of E vector, in radians, is

Ψ = ω�t = 2�e3

ω2m2
ec2

ne Bl.

Generalizing the quantity ne B0l

Ψ = 2�e3

ω2m2
ec2

∫ l

0
ne B‖ dl ′ = 2.36 × 104

ν2

∫ l

0
ne B‖ dl ′.

In terms of the wavelength we can define

Ψ

λ2
= RM
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Fig. 10.3 Rotation measures measured toward known pulsars (from Rand, J. R.
and Lyne, A. G., 1994, MNRAS, 268, pp. 497–505) and plotted such that they are
viewed from the Galactic pole.

Fig. 10.4 Magnetic field strengths determined from the RMs in Fig. 10.3 (with
the help of DMs). The projection is on the Galactic coordinate system as projected
onto the sky (from Rand, J. R. and Lyne, A. G., 1994, MNRAS, 268, pp. 497–505).
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where RM is the rotation measure and is defined as

RM = 2.62 × 10−13
∫ l

0
ne B‖ dl ′ rad m−2. (272)

Rotation measures can be determined empirically from polarization measurements
made at different wavelengths, in the direction of pulsars (Fig. 10.3). They can
be used, in conjunction with the dispersion measure, to determine the magnetic
field along the line of sight to a pulsar, or for that matter any other radio source.
Since only the line-of-sight component is relevant the above B is usually denoted
as B‖. An example of how the Galactic magnetic field is measured, using rotation
measure, is given in Fig. 10.4.

10.3 Reference
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Part IV

Quantum mechanics

Astrophysical spectral lines offer two important insights into the workings of our
Universe. First, they are probes of the fundamental (QM) nature of matter be-
cause they originate from subatomic, atomic and molecular systems. Second, they
provide, via the Doppler effect, critical dynamical information on astrophysical
systems ranging in scale from planetary systems to superclusters of galaxies. Ex-
amples of major contemporary problems in astrophysics that can be addressed
through spectral line studies and the associated quantum mechanics include.

Missing mass and the halos of galaxies The most common element in the Universe
is hydrogen and much of it is in a cold state. Given the 10 eV gap between
the ground state and the first excited state of the simple Bohr atom, we should
have little direct knowledge of this gas, yet it is the best studied gaseous component
of the Universe. The reason is the 21 cm line corresponding to the hyperfine split-
ting of the ground state. The extremely low transition probability of this transition
and the consequently narrow width of this line have led to its widespread use in
measuring galaxy dynamics and kinematics. Studies of galaxy rotation have shown
evidence for missing matter and point to the possibility of dark-matter halos. The
nature of the dark matter and the implication on the long-term fate of the Universe
remain contentious issues in astrophysics. The nature of this line and its use in these
studies is discussed.

What is the ultimate fate of the stars? Analysis of debris left behind by dying stars
provides clues to the fate of our own Sun. Classically forbidden spectral lines play
a special role as diagnostics of these post-mortem plasmas which include planetary
nebulas and supernova remnants.

How are stars born? Stars are believed to originate in dense molecular clouds.
Molecular spectral lines are therefore instrumental in probing these stellar nurseries.
Examples include molecules such as CO, OH and H2.

173
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What are quasars? Among Nature’s most luminous beacons quasars can be seen
to the edges of the Universe but their true nature remains a mystery. I will explore
the latest studies on these objects including the mystery of the “Lyman Forest”.

Life in the Universe? Spectral lines are relevant because of the following two
questions: (1) What are the best frequencies to “listen” in on? (2) What evidence do
we have that the molecular chains, needed for life to form on Earth, exist elsewhere?



Chapter 11

The hydrogen atom

A good starting point for a quantum mechanical understanding of spectral lines is
the hydrogen atom. There are two good reasons for this approach. First, hydrogen
is the most abundant element in the Universe, making up the bulk of the Universe
both by mass and by volume. Any study of hydrogen is therefore relevant to much
of the Universe. Second, hydrogen is the simplest of all atoms, consisting of one
proton and one electron. Quantum theory assumes its simplest form and greatest
accessibility for this simple element. The combination of quantum simplicity and
the ubiquity of hydrogen makes the study of hydrogen a natural starting point for
this part of the book.

11.1 Structure of the hydrogen atom

Since the H atom consists of only a proton and an electron, the Coulomb field
experienced by the electron is spherically symmetric. Consequently, it is appropriate
to solve Schrödinger’s equation in spherical coordinates.

The time-independent Schrödinger equation is given by

Hφ = Eφ

H = − h̄2

2m
�2 +V (r ) (273)

where

∇2 =
(

∂2

∂r2
+ 2

r

∂

∂r

)
+ 1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]

= R + 1

r2
L2. (274)
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Since V (r ) depends only on r , we anticipate a solution with separated variables.
Thus, we can try something like

φ (r, θ, φ) = R(r )Y (θ, φ). (275)

Substituting (274) and (275) into (273)

⇒
[
− h̄2

2m
RR(r )

]
Y (θ, φ) − h̄2

2mr2
[L2Y (θ, φ)]R(r )

+ V (r )R(r )Y (θ, φ) = E R(r )Y (θ, φ). (276)

Multiplying each term by ((2mr2)/h̄2)(1/(R(r )Y (θ, φ)))

⇒ r2RR(r )

R(r )
+ 2mr2

h̄2 [E − V (r )] = −L2Y (θ, φ)

Y (θ, φ)
= Λ

⇒ RR(r ) + 2m

h̄2 [E − V (r )] R(r ) = Λ

r2
R(r ) (277)

L2Y (θ, φ) = −ΛY (θ, φ) (278)

where Λ = separation constant.
The function R(r ) carries important information on the electron’s energy while

Y (θ, φ) carries information about the angular momentum.
The solution of (278) yields spherical harmonics and can be found in standard

texts (for example Jackson, 1998) and we simply quote the result here.

Y (θ, φ) = Y�m(θ, φ)

Λ = �(� + 1) (279)

where � is a positive integer, which allows us to reformulate the solution for φ as

φ�m = R(r )Y�m(θ, φ). (280)

Now, V (r ) = −e2/r so that (277) becomes(
d2

dr2
+ 2

r

d

dr

)
R(r ) − 2m

h̄2

[(
�(� + 1)h̄2

2mr2
− e2

r

)
− E

]
R(r ) = 0. (281)

Solution of (281) yields the radial part of the wave function and the energy eigen-
states. The latter are crucial for constructing the energy level diagram of hydrogen.

Making the substitution R(r ) = g(r )/r

⇒ dR

dr
(r ) = dg(r )

dr
− g(r )

r2

d2 R(r )

dr2
= d2g(r )

dr2
− 2

r2

dg(r )

dr
+ 2g(r )

r3
.
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Substitute into (281)

∂2g(r )

∂r2
− 2m

h̄2

[
�(� + 1)h̄2

2mr2
− e2

r
− E

]
g(r ) = 0. (282)

Equation (282) cannot be solved in closed form.
Let us try some tricks. Let us construct solutions for the r → 0 and r → ∞

asymptotic limits then bridge the gap with a polynomial solution.

11.1.1 Case 1 r → ∞
Equation (282) simplifies to

∂2g(r )

∂r2
+ 2m

h̄2 Eg(r ) = 0

yielding the solution

g1(r ) ∝ e±(i/h̄)
√

2m Er . (283)

Since we are looking for bound solutions (E < 0)

⇒ ± i

h̄

√
−2m |E | = ∓1

h̄

√
2m |E | = ±λ

so that (283) becomes

g1(r ) ∝ e±λr ∝ e−λr [g(∞) = 0] .

11.1.2 Case 2 r → 0

Equation (282) becomes

∂2g(r )

∂r2
− �(� + 1)

r2
g(r ) = 0.

Because of the 1/r2 term it is tempting to try

g2(r ) ∝ r p

⇒ p(p − 1)r p−2 − �(� + 1)r p−2 = 0

which is only satisfied when

p = −� p = � + 1

⇒ g2(r ) ∝
{

r−�, � 	= 0

r �+1.
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But we want g(0) = 0

⇒ g2(r ) ∝ r �+1. (284)

11.1.3 What about the in-between?

Change to a dimensionless variable

ρ = 2λr

⇒ ∂2g(r )

∂r2
= 4λ2 ∂2g(ρ)

∂ρ2
.

Substitute into (282)

⇒ ∂2g(ρ)

∂ρ2
−

[
�(� + 1)

ρ2
− n

ρ
+ 1

4

]
g(ρ) = 0 (285)

where

n = me2

h̄2λ
= 1

a0λ

[
a0 = h̄2

m2
e

]

where a0 is the Bohr radius. Let us now try a general solution for g(r ) that is a
product of g1(r ), g2(r ) and a power series to cover the in-between. With (283) and
(284) we get

g(ρ) = e−ρ/2ρ�+1
∞∑
0

a jρ
j .

Substitute into (285) to get the recursion relation

ak+1 = ak
� + k + 1 − n

(k + 1)(2� + k + 2)
.

A satisfactory solution must be normalized so that the infinite power series must be
truncated to a polynomial. Truncation at the kth term → ak+1 = 0. Thus, according
to the previous recursion relation

ak+1 = 0 ⇒ n = � + k + 1.

Since k, � are integers, n must also be an integer. It defines the principal quantum
number of the atom and is restricted to the values

n = � + 1, � + 2, � + 3, . . .

which constrains � to the values

� = 0, 1, 2, 3, . . . , n − 1.
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The polynomial solution we are looking for takes the form of associated Laguerre
polynomials

L2�+1
n+� (ρ) =

(
d

dρ

)2�+1
[

eρ

(
∂

∂ρ

)n+�

(ρn+� e−ρ)

]

so that

g(ρ) ∝ e−ρ/2ρ�+1L2�+1
n+� (ρ)

⇒ R ∝ g

ρ
∝ e−ρ/2ρ�L2�+1

n+� (ρ)

where

ρ = 2λr = 2

na0
r.

11.1.4 Normalizing R(r )

We note the integral ∫ ∞

0
e−ρρ2�

[
L2�+1

n+� (ρ)
]2

ρ2 dρ

= 2n [(n + �)!]3

(n − � − 1)!
(286)

then ∫ ∞

0
[Rn�(r )]2 r2 dr =

(
1

2λ

)3 ∫ ∞

0
[Rn�(ρ)]2 ρ2 dρ

=
(na0

2

)3
∫ ∞

0
[Rn�(ρ)]2 ρ2 dρ. (287)

Combining the expression for g(ρ) with (286) and (287)

Rn�(r ) = −2

(
1

na0

)3/2
√

(n − � − 1)!

n [(n + �)!]3

(
2r

na0

)�

e−r/na0 L2�+1
n+�

(
2r

na0

)
. (288)

These are the radial components of the electron wave functions. Table 11.1 lists the
radial components up to n = 3. Figure 11.1 shows the geometry used to define the
spatial variables, r, θ, φ. Figure 11.2 shows, graphically, all possible radial wave
functions up to n = 3.
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Fig. 11.1 The coordinate system used to define the variables in Table 11.1.

11.2 Total wave function

Substituting (288) into (275) and (279) yields the total solution

φn�m = Rn�(r )Y�m(θ, φ). (289)

The simplest example corresponds to n = 1, l = 0, m = 0

⇒ φ100 = 1√
�

(
1

a0

)3/2

e−r/a0 .

The nomenclature associated with l is given by

� = 0, 1, 2, 3, 4 . . .

� = s, p, d, f, g . . .

The m’s represent degenerate states. Table 11.1 lists the total wave functions up to
n = 3, along with their radial and angular parts.

11.3 Probability functions

The probability of finding an electron in a unit volume dV is given by

P dV = φn�mφ∗
n�m dV .

“Images” of these probability functions are shown in Fig. 11.3.
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Fig. 11.2 Radial wave functions for the first three principal quantum numbers of
hydrogen.
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3d0, 3d1.

In the case of spherical geometry, we can evaluate the probability of finding an
electron in a shell of radius r , as follows

P dV = |φn�m |2 dV = |φn�m |2 r2 dr dΩ

⇒ P(r ) dr =
∫

Ω

|φn�m |2 r2 dr dΩ

= |Rn�(r )|2 r2 dr ×
∫

Ω

|Y�m |2 dΩ

P(r ) dr = r2 |Rn�(r )|2 dr. (290)

All possible radial probability functions, up to n = 3, are shown in Fig. 11.4.
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Fig. 11.4 The radial probability function r2 R2 which gives the relative probability
of finding the electron at a given distance r /a0.
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Fig. 11.5 The energy ladder for hydrogen based on its eigenstates. The well-known
series of transitions are shown.

11.4 Energy eigenstates and transitions

Recalling the definition of λ

λ = 1

h̄

√
2m |E | = 1

na0

⇒ E = En = h̄2

m2n2a2
0

⇒ En = 13.6

n2
eV. (291)

These are the energy eigenstates of the hydrogen atom. These states are shown
schematically in Fig. 11.5. Common transitions between these states are also shown.

11.5 Further reading

Anderson, E. E. (1971) Modern Physics and Quantum Mechanics, W. B. Saunders,
Philadelphia, PA, USA.



186 The hydrogen atom

Cohen-Tanoudji, C. (1992) Principles of Quantum Mechanics, John Wiley and Sons, New
York, NY, USA.

Griffiths, D. (1995) Introduction to Quantum Mechanics, Prentice Hall, Englewood Cliffs,
NJ, USA.

Hansch, T. S., Schawlow, A. L., Series, G. W. (1979) The Spectrum of the Hydrogen
Atom, Scientific American, March, p. 94.

Landau, L. D. and Lifschitz, E. M. (1977) Quantum Mechanics, 3rd edn, Pergamon Press,
Oxford, UK.

Landau, R. H. (1996) Quantum Mechanics II: A Second Course in Quantum Theory, 2nd
edn, John Wiley and Sons, New York, NY, USA.

Osterbrock, D. E. (1974) Astrophysics of Gaseous Nebulae, W. H. Freeman, San
Francisco, CA, USA.

Shu, F. H. (1992) The Physics of Astrophysics: Radiation, University Science Books, Mill
Valley, CA, USA.

Tucker, W. H. (1975) Radiation Processes in Astrophysics, MIT Press, Cambridge, MA,
USA.



Chapter 12

The interaction of radiation with matter

Now that we have discussed the structure of the hydrogen atom, we are able to
examine the interaction of hydrogen atoms with photons from a quantum mechan-
ical point of view. First, we begin with a non-relativistic treatment. Then, we will
describe the single particle Hamiltonian with time varying EM fields. Perturbation
analysis will then be used to separate the interaction part of the Hamiltonian from
the static part.

12.1 Non-relativistic treatment

Recall from the last chapter that the H atom in its ground state has a radius given
by the Bohr radius, a0

a0 = h̄2

mee2

so that

mev
2

2
= e2

2a0
→ v

c
= e2

h̄c
= α ≈ 1/137

⇒ v � c.

Thus, from the atom’s point of view, the non-relativistic treatment is justified. Now
let us examine the photon’s point of view.

The highest photon energies that can interact with the H atom correspond to the
ionization potential. Recall that

E0 = e2

2a0
= h̄ω

187
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so that

k = ω

c
= α

2

1

a0

⇒ ka0 = α

2
� 1

Since ka0 � 1, multipole expansions converge rapidly so that the radiation field
can be approximated by relatively few terms.

Now, let us find an expression for the single particle Hamiltonian that includes
the time varying radiation field.

12.2 Single particle Hamiltonian

Borrowing from classical mechanics we can express the equation of motion of a
particle in an EM field using the Lagrangian L so that

d

dt

(
∂L

∂ �̇x

)
= ∂L

∂�x . (292)

For a charged particle in a time varying EM field, the solution is given by

L = 1

2
me|�̇x |2 + eΦ(�x, t) − e �̇x

c
· �A(�x, t). (293)

Substitution of this into (292) yields

me �̈x = −e

(
�E + �̇x

c
× �B

)
. (294)

Now let us recall the definition of the canonical momentum

�p = ∂L

∂ �̇x = me �̇x − e

c
�A. (295)

To get the Hamiltonian, recall that

H ≡ �̇x · �p − L . (296)

Taking (293) and (295) and substituting into (296) we get

H = me|�̇x |2 − e

c
�̇x · �A − 1

2
me|�̇x |2 − eΦ + e

c
�̇x · �A = 1

2
me|�̇x |2 − eΦ. (297)

Using (295) again

H = 1

2me

∣∣∣ �p + e

c
�A(�x, t)

∣∣∣2
− eΦ(�x, t). (298)
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12.3 Separation of static and radiation fields

This Hamiltonian is cumbersome to use. However, as I will now show, we can
separate the static and radiation fields, which allows us to separate the Hamil-
tonian into a static part and radiative part. Consider an electron interacting with
(a) an electrostatic field associated with an external charge distribution (usu-
ally the field of the nucleus and other electrons) and (b) vacuum radiation fields
(photons).

Our goal is to choose a gauge in which the static and radiation fields can be
separated. The Coulomb Gauge will do that as I will now demonstrate. The Coulomb
Gauge is defined by the condition

�∇ · �A = 0. (299)

Note that under such a condition �A can be decomposed as

�A = �∇ P + �∇ × �Q = �A‖ + �A⊥.

We note the fact that we will usually deal with radiation fields that have transverse
E and B fields, so that �A‖ = 0.

With this in mind, we can expand and interpret (298)

H = 1

2me

[
�p + e

c
�A(�x, t)

]
·
[

�p + e

c
�A(�x, t)

]
− eΦ(�x, t)

= 1

2me
| �p|2 − eΦ(�x) + e

2mec
( �p · �A + �A · �p) + e2

2mec2
�A · �A (300)

= H0 + H1 + H2.

12.3.1 Relative importance of H0, H1 and H2

To demonstrate that we can use a perturbation analysis let us evaluate the ratios
H2/H1 and H1/H0.

H2

H1
≈ e2 A2/2mec2

ep A/mec
= α2a0 A

2ev/c
= αa0 A

2e
. (301)

For radiation we know that �B = ∇ × �A = i�k × �A so that

A = B

k
≈ 2a0 E

α
(B ≈ E).
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Also recall that k ≈ α/(2a0). Substituting into (301), we get

H2

H1
≈ a2

0 E

e
= Erad

Estatic

⇒ H2

H1
≈ [

2�n pha3
0

]1/2
(302)

where (n phe2)/2a0 = n phh̄ω = E2/4�.
Now, the number of photons in a Bohr cube is roughly n pha3

0 so when n pha3
0 � 1

the ratio in equation (302) is small

⇒ n ph � a−3
0 = 1024 cm−3.

In stars, n ph ≈ 1014 cm−3 so that the two-photon process is not that important.
As for the ratio H0/H1, note that

H0

H1
≈ e

a2
0 E


 1. (303)

In summary

H2 � H1 � H0 (304)

We see that we are fully justified in using a perturbation analysis. With that in mind
let us now derive an expression for H1 so that we can quantify the transitions that
result from the interaction of light with atoms.

12.4 Radiative transitions

12.4.1 Semi-classical approach

In this approach we treat the radiation field classically and the structure of the atom
quantum mechanically. The latter has already been done, the former is justified by
the conditions we have just derived.

The vector potential, �A, represents a time varying function associated with the
EM field of the radiation field. Since photons have a wave-like nature (they also
have a particle nature but in the above perturbation analysis we showed that k 
 a0

so the wave description is sufficient for the following analysis) we can decompose
�A into its Fourier components so that

�A(�x, t) =
∑

k

[ �a(�k) ei(�k·�x−ωt) + c.c
]
. (305)

Given the Coulomb Gauge, ∇ · �A = 0, we see from the above that �k · �a(�k) = 0. We
see that �a(�k) must have two components orthogonal to �k! These are, of course, the
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polarization (spin) states of the radiation field. Thus, a more complete description
of the above is

�A(�x, t) =
∑
k,α

[
êα(k̂)aα(�k) ei(�k·�x−ωt) + c.c

]
(306)

where c.c indicates the complex conjugate of the preceding term and ê1 and ê2 are
⊥ �k.

12.4.2 The Hamiltonian of the radiation field

Recall that the Hamiltonian measures the total energy which, for a radiation
field, is

Hrad = 1

8�

∫
(| �E |2 + | �B|2) d3x . (307)

To evaluate the Hamiltonian of the radiation field we must borrow from Maxwell’s
equations the relations relating �E and �B to the vector potential, �A

�E = −1

c

∂ �A
∂t

and �B = �∇ × �A.

Inserting (306) into this leads to the relations

�E =
∑
�k,α

[ �Eα(�k) ei(�k·�x−ωt) + c.c
]

(308)

�B =
∑
�k,α

[ �Bα(�k) ei(�k·�x−ωt) + c.c
]

(309)

where

�Eα(�k) = −1

c
(êαaα(−iω)) = ω

c
(i êαaα) = i�kaα(�k)êα

�Bα(�k) = i�kaα(�k)(k̂ × êα).

Combining (307), (308) and (309) yields

Hrad = 2V

8�

∑
�k,α

| �Eα(�k)|2 + | �Bα(�k)|2 =
∑
�k,α

|aα(�k)|2 k2V

2�
. (310)

If we now express Hrad in terms of the photon occupation number, Nα(�k) (the
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spectrum of the radiation field), we expect

Hrad =
∑
�k,α

h̄ωNα(�k). (311)

Comparing (310) and (311) we see that

|aα(�k)| = c

[
hNα(�k)

V ω

]1/2

. (312)

Equation (312) is relevant to the process of photon absorption by an atom. We
can write down a similar expression for emission but we have to remember that
emission can be spontaneous as well as stimulated. Without going through all the
details, the emission process requires the transformation

Nα(�k) → 1 + Nα(�k).

12.4.3 The perturbation Hamiltonian

We are now ready to define H1. Combining (298), (306) and (312), and noting that
�p · �A ∝ �∇ · �A = 0, we have

H1 =
∑
�k,α

[
H abs

α (�k) e−iωt + H em
α (�k) eiωt

]
(313)

where

H abs
α (�k) = e

me

[
h

ωV
Nα(�k)

]1/2

ei�k·�x êα(k̂) · �p (314)

and

H em
α (�k) = e

me

[
h

ωV
(1 + Nα(�k))

]1/2

e−i�k·�x êα(k̂) · �p. (315)

Finally, in the continuum limit

H1 =
2∑

α=1

V

(2�)3

∫ [
H abs

α (�k) e−iωt + H em
α (�k) eiωt

]
d3k. (316)

We have an expression for H1. We can now go ahead and construct the total Hamilto-
nian, H = H0 + H1 (neglecting the two-photon process) and solve the Schrödinger
equation. However, given the fact that an interaction of an atom with a photon is nec-
essarily a time-dependent process we must solve the time-dependent Schrödinger
equation.
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12.4.4 Time-dependent perturbation theory

The time evolution of the electron wave function is governed by Schrödinger’s
equation

HΨ = i h̄
∂Ψ

∂t
(317)

where H = H0 + H1 and H0 = −(h̄2/(2me))∇2 − eΦ(�x). Recall that H0 has
eigenfunctions of the form

Ψ j (�x, t) = φ j (�x) e−i E j t/h̄ (318)

where the energy, E j , of the j th eigenstate is an eigenvalue of the time-independent
Schrödinger equation

H0φ j = E jφ j . (319)

For H0, the set of all φ j ’s forms a basis for any possible wave function for stationary
atomic systems. It should therefore be possible to construct any perturbed (time-
dependent) Ψ from

Ψ (�x, t) =
∑

j

c j (t)φ j (�x) e−i E j t/h̄ (320)

where c j (t) are evaluated according to the constraint represented by (317).
Normally, Ψ is chosen to be normalized so that∫

Ψ ∗Ψ d3x = 1. (321)

In Dirac bra-ket notation this becomes

〈Ψ |Ψ 〉 = 1. (322)

The eigenfunctions form an orthonormal set such that

〈φl |φ j 〉 = �l j . (323)

With the bra-ket introduction out of the way let us go back to solving the coefficients,
c j . Substituting (320) into (317) we get

(H0 + H1)
∑

j

c j (t)φ j (�x) e−i E j t/h̄ = i h̄
∑

j

φ j (�x)
∂

∂t
c j (t) e−(i E j t)/h̄. (324)

Expanding and using (319) we end up with∑
j

H1c j (t)φ j (�x) e−i E j t/h̄ = i h̄
∑

j

ċ j (t)φ j (�x) e−i E j t/h̄. (325)
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Multiplying both sides by φ∗
f ei E f t/h̄ gets the final state into the equation. Integrating

over V results in∑
j

ei t(E f −E j )/h̄c j (t)
∫

φ∗
f H1φ j d3x = i h̄ċ j (t) ei t(E f −E j )/h̄

∫
V

φ∗
f φ j d3x

which simplifies to ∑
j

eiω f j t c j (t)〈φ f |H1|φ j 〉 = i h̄ċ f (t) (326)

where

ω f j ≡ (E f − E j )/h̄

is +ve for E f > E j (absorption) and −ve for E f < E j (emission).
If we take the initial conditions as

Ψ (�x, 0) = φi (�x) → c j (0) = � j i (327)

we can iterate by assuming that c j = � j i for all t . Substituting this into the left-hand
side of (326) leads to ∑

j

eiω f j t � j i 〈φ f |H1|φ j 〉 = i h̄ċ f (t)

⇒ eiω f i t〈φ f |H1|φi 〉 = i h̄ċ f (t).

Integrating,

c f (t) = − i

h̄

∫ t

0
〈φ f |H1|φi 〉 eiω f i t dt. (328)

Substitute the new value into (326) and continue iterating . . .

12.5 Absorption of photons

To see how the absorption of photons takes place, we will now derive an expres-
sion for the transition probability for absorption. We begin by considering one
component of the absorption part of H1,

H abs
α (�k) e−iωt . (329)

Replace H1 with (329) and substitute into (328)

⇒ c f (�k, t) = − i

h̄

∫ t

0

〈
φ f

∣∣H abs
α

∣∣φi
〉

ei(ω f i −ω)t = −1

h̄

〈
φ f

∣∣H abs
α

∣∣φi
〉ei(ω f i −ω)t − 1

ω f i − ω
.

(330)
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The absorption probability follows by squaring the above

|c f (�k, t)|2 = h̄−2
∣∣〈φ f

∣∣H abs
α

∣∣φi
〉∣∣2 sin2[(ω − ω f i )t/2]

[(w − ω f i )/2]2
(331)

which is the probability of absorbing a photon of frequency ω = ck!
To get the total transition probability we must sum over all k and α

Pi f =
∑
�k,α

|c f (�k, t)|2

= V

(2�)3
h̄−2

2∑
α=1

∫ ∣∣〈φ f

∣∣H abs
α (�k)

∣∣φi
〉∣∣2 sin2[(ω − ω f i )t/2]

[(ω − ω f i )/2]2
d3k. (332)

The above can be cast into a more revealing form by substituting the absorption
part of (316) and the relation d3k = k2 dk dΩ = ω2/c3 dω dΩ into

⇒ Pi f =
(

e

2�me

)2 2∑
α=1

∫
Nα(�k)

h̄ω
|〈φ f | ei�k·�x êα(�k) · �p|φi 〉|2

× sin2[(ω − ω f i )t/2]

[(ω − ω f i )/2]2

ω2

c3
dω dΩ. (333)

Notice how the dependence on V dropped out. Note that for t 
 2/ω f i this function
is strongly peaked. Thus

⇒
∫ ∞

0
F(ω)

sin2[(ω − ω f i )t/2]

[(ω − ω f i )/2]2
dω

≈ 2t F(ω f i )
∫ ∞

−∞

sin2 ζ

ζ 2
dζ = 2�t F(ω f i ) (334)

where F(ω) is any continuous function.
Applying (334) to (333) we get

Pi f = t

(
e2

hc3m2
e

) 2∑
α=1

∫
Ω

[ωNα(�k)〈φ f |ei�k·�x êα(�k) · �p|φi 〉2] f i dΩ. (335)

This predicts that the transition will eventually occur. What we really want to know
is what the transition probability rate is, so

∂ Pi f

∂t
=

2∑
α=1

∫
ωα dΩ (336)

where ωα = a constant probability rate per dΩ for the radiative transition, i → f .



196 Radiation and matter

So there we have it, a basis for calculating the transition rate between any two
levels of an atom. It boils down to evaluating the matrix element 〈φ f |ei�k·�x êα(�k) ·
�p|φi 〉. In general, though, this is tough to do. However, if we expand ei�k·�x êα(�k) · �p in

a multipole expansion, the problem is greatly simplified. We do that next, beginning
with the dipole approximation.

12.5.1 Absorption cross-sections

Now that we have an expression for the interaction Hamiltonian, H1, let us formalize
the expression for the absorption part of it by deriving expressions for the absorption
cross-section. The cross-section is what is normally quoted in the literature so this is
an attempt to connect our quantum mechanical development to tabulated properties
of atoms. In the process we will discuss bound–bound and bound–free (ionization)
absorption processes. The role of spontaneous emission and the natural line width
will also be discussed.

The essential step in deriving an expression for the absorption cross-section is
to evaluate the H abs

α operator

〈
φ f

∣∣H abs
α

∣∣ φi
〉 = e

mc

[
h

V ω
Nα(�k)

]1/2

× 〈φ f | ei�k·�x êα(�k) · �p|φi 〉. (337)

As noted earlier this expression is difficult to solve without making an approxima-
tion. The logical thing to do, in light of the fact that we are in the non-relativistic
regime, is to expand this complex exponential in a multipole expansion, so that

ei�k·�x = 1 + i�k · �x + · · ·
In the dipole approximation

ei�k·�x ≈ 1

because �k · �x � 1.
Substituting into this and rearranging terms we have the following matrix element

to solve

êα · 〈φ f |�p|φi 〉
which is much simpler than that we started with.

To simplify the calculation of the matrix element further we express �p in terms
of H0, �x .

Use [H0, �x] = H0�x − �x H0 = −h̄2/2me[∇2�x − �x∇2]=−h̄2/me �∇ = −i h̄/me �p
so that �p = (ime/h̄)(H0�x − �x H0).
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φ
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e1

k̂

^
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Xfi

^

Fig. 12.1 The coordinate system associated with �X .

Thus

〈φ f |�p|φi 〉 = imeω f i �X f i

where

�X f i ≡ 〈φ f |�x |φi 〉 (338)

and

−e �X f i = 〈φ f |�d|φi 〉.
All we have to do now is to insert the above into (335) and (336) to get the transition
probability rate.

12.5.2 Dipole transition probability

Substituting into (336) yields

dPi f

dt
= e2

hc3

2∑
α=1

∮
[Na(�k)ω3|êα(�k) · �X f i |2] f i dΩ. (339)

We now have to consider the geometry of the interaction (Fig. 12.1). The vector
�X f i represents the orientation of the atomic charge distribution while �k, ê1 and ê2
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describe the orientation of the photon field and propagation vectors. Projecting �X f i

into the (ê1 , ê2) plane yields

ê1 · �X f i = | �X f i | sin θ cos φ

ê2 · �X f i = | �X f i | sin θ sin φ.

For an isotropic, unpolarized field N1 = N2 ≡ N (ω)/2.
If we now substitute this information into (339) and integrate over the angular

variables we end up with

dPi f

dt
= 4�e2ω3

f i

3hc3
N (ω f i )| �X f i |2. (340)

Now we are in a position to define the bound–bound absorption cross-section,
σbb(ω), by comparing (340) with the standard definition of the cross-section.

12.5.3 Bound–bound absorption cross-section

It is conventional to define σbb(ω) such that

dPi f

dt
=

∞∫
0

σbb(ω) cN (ω)
4�ω2 dω

(2�)3c3
. (341)

Comparison with (340) yields

σbb(ω) = 4�2

3

(
e2

h̄c

)
| �X f i |2ω �(ω − ω f i ). (342)

The expression for the classically derived absorption coefficient is

αν = �e2

mec
f12φ12(ν). (343)

If we now equate (342) and (343) we can identify the following relationships

φ12(ν) = ω�(ω − ω f i ) = 2�ν�(ν − ν f i )

⇒ f12 = (4�me/3h̄)ν21| �X21|2 = 2me(ω21| �X21|)2/3h̄ω21. (344)

We now have a QM interpretation of oscillator strengths. This however is not quite
complete because the expression for the line profile φ12 is suspect.
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12.6 Spontaneous emission

What we failed to consider previously is that emission processes compete with the
absorption processes so that the absorption rate is affected by the transition rate for
spontaneous emission. Let us try and add that to get a more complete picture.

We begin by introducing the A coefficient as A f i = dPf i/dt . Let Nα → 1, re-
verse i f → f i and proceed as before

A f i = e2

hc3

2∑
α=1

∮
[ω3|êα(�k) · �X f i |2] f i dΩ. (345)

Given that | �X f i | = | �Xi f | and integrating

A f i = 4e2ω3
f i

3h̄c3
| �X f i |2.

Now let us go back to time-dependent perturbation theory and let us set the transition
rate

d

dt
(|c f |2)|spon = −A f i |c f |2 = −Γ |c f |2

⇒ ċ f = −Γ c f

2
.

We can use this result to modify ċ f (t) (absorption)

ċ f (t) ⇒ − i

h̄

〈
φ f

∣∣H abs
α

∣∣ φi
〉
ei(ω f i −ω)t−Γ

2
c f .

absorption emission
(346)

Integrating

c f (t) = −1

h̄

〈
φ f

∣∣H abs
α

∣∣ φi
〉 [ei(ω f i −ω)t − e−Γ t/2

ω f i − ω − iΓ/2

]
. (347)

Multiplying by c.c

⇒ |c f (t)|2 = h̄−2
∣∣〈φ f

∣∣H abs
α

∣∣ φi
〉∣∣2

[
1 + e−Γ t − 2e−Γ t/2 cos(ω f i − ω)t

(ω f i − ω)2 + (Γ/2)2

]
. (348)

In the limit t → ∞ we have

|c f (t)|2 = h̄−2
∣∣〈φ f

∣∣H abs
α

∣∣ φi
〉∣∣2

(ω f i − ω)2 + (Γ/2)2
. (349)

We can now define σbb(ω) as

σbb(ω) = 4�2

3

(
e2

h̄c

)
| �X f i |2ω f iL(ω)



200 Radiation and matter

where

L(ω) ≡ 1

�

[
Γ/2

(ω − ω f i )2 + (Γ/2)2

]

which is the Lorentzian profile associated with the natural line profile. The above
represent the definition of the absorption cross-section which we have now defined
in terms of the dipole transition element and the Lorentzian. I now consider a natural
extension of this discussion, the bound–free transition. I first discuss the concept of
photoionization and then we determine an analogous expression for the bound–free
cross-section.

12.7 Photoionization

Let us now consider the bound–free process. Let us begin with

dPi f

dt
= e2

hc3m2
e

2∑
α=1

∮
[ωNα(�k)|〈φ f |ei�k·�x êα · �p|φi 〉|2] f i dΩ. (350)

We now need to define the initial and final states. With an atom at the origin of the
coordinate system, the initial state

φi = (
�a3

z

)−1/2
e−|�x |/az (351)

represents the bound state where

az = h̄2

Zmee2
effective size of atom.

To determine the final state, we use the Born approximation which makes the
assumption that the electron is isolated in a vacuum once it is liberated from the
atom, so that

φ f = V −1/2 ei �ke·�x ⇒ φ∗
f = V −1/2 e−i �ke·�x . (352)

Furthermore

h̄ω = p2

2me
=

(
h̄

λ

)2 1

2me
= E ⇒ |�ke| = (2m E f )1/2

h̄
(353)

where E f = h̄ω f i − Ze2/2az .
Substituting (351), (352) and (353) into (350) and using �p = −i h̄ �∇, we get

⇒ h̄2

�a3
z V

∣∣∣∣
∫

V
ei(�k−�ke)·�x êα · �∇(e−|�x |/az ) d3x

∣∣∣∣
2

the “square of the matrix element”.
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Integrating by parts

⇒ h̄2

�a3
z V

(�ke · êα)2

∣∣∣∣
∫

V
ei(�k−�ke)·�x−|�x |/az d3x

∣∣∣∣
2

where �k · êα = 0 was used.
Let �q = �k − �ke ⇒ h̄�q = momentum not transferred. Using spherical polar

coordinates

�q · �x = qr cos θ, d3x = 2�r2 sin θ dr dθ, µ = cos θ, V → ∞
⇒

∫
ei �q·�x−|�x |/az d3x = 2�

∫ ∞

0
r2 e−r/az

∫ +1

−1
eiqrµ dµ dr = 8�a3

z /
(
1 + q2a2

z

)2
.

Collecting all expressions

|〈φ f |ei�k·�x êα · �p|φi 〉|2 = 64�
h̄2a3

z

V

(�ke · êα)2(
1 + q2a2

z

)4 .

Substituting into (350) and dropping the f i subscripts on the right-hand side

⇒ dPi f

dt
= 32e2h̄a3

z

V c3m2
e

2∑
α=1

∮
[ωNα(�k)(k̂e · êα)2][(
1 + |�k − �ke|2a2

z

)]4 dΩ. (354)

For an ensemble of randomly oriented atoms, photons appear isotropic with respect
to e− ejection �ke (Fig. 12.2) so that,

�ke · êα = ke sin θ cos φ

|�k − �ke|2 = k2 + k2
e − 2kke cos θ.

Combine with (353) and ω = ck

k2
e = 2meck

h̄
− 1

a2
z

(355)

where

az = h̄2

Zmee2
.

Collecting expressions again

1 + |�k − �ke|2a2
z = a2

z

2meck

h̄

(
1 + h̄k

2mec
− h̄ke

2mec
cos θ

)

≈ a2
z

2meω

h̄
(non-relativistic).

Now we are in a position to evaluate the angular integral in dPi f /dt .
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φ

θ

eα

k

ke
^

^

^

Fig. 12.2 The geometry that defines k̂e.

Thus ∫ 2�

0
dφ

∫ �

0
sin2 θ cos2 φ sin θ dθ = 4�

3
(356)

⇒ dPi f

dt
= 8�e2a3

z

3V h̄m2
ec3

ω−3 N (ω)(h̄ke)2

(
h̄

mea2
z

)4

↑ ↑ ↑
photons electron atom

12.7.1 Bound–free cross-sections

Our goal is to determine a σb f analogous to σbb.

Let dN f be the number of final free electron states between ke and ke + dke

so that

dN f = V

(2�)3
4�k2

e dke. (357)

Define σb f (ω) via

dPi f

dt
dN f = σb f (ω)

[
cN (ω)4�ω2

(2�)3c3
dω

]
. (358)

Let ke dke = (me/h̄) dω and use (84) and (86)

⇒ σb f (ω) = 8�

3

(
e2

mec

) (
h̄

mea2
z

)4

ω−5 (keaz)
3 (359)
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M L edge
ν

σbf (ν)  

K

Fig. 12.3 Bound–free absorption cross-sections. These plots correspond to the M,
L and K shell electrons. Note the abrupt rise at the ionization frequency followed
by the 1/ν3 fall-off.

where k2
e = (2me/h̄2)(h̄ω − (Ze2/2az)) = +ive if h̄ω > IP and IP is the ioniza-

tion potential. To use the Born approximation, let h̄ω 
 Ze2/2az

⇒ ke ≈
[

2meω

h̄

]1/2

which leads to

σb f (ω) = 8�

3
√

3

Z4mee10

ch̄3(h̄ω)3

[
48

Ze2

2azh̄ω

]1/2

. (360)

The above can be compared to the standard formulation,

αν(n) = n−5 8�

3
√

3

Z4mee10

ch̄3(hν)3
gbf (ν).

Now we have a QM basis for b–b and b–f transitions. Plots of σb f are shown in
Fig. 12.3.

12.8 Selection rules

Now that we have workable expressions for the interaction Hamiltonian and the
structure Hamiltonian we are well placed to work out and understand the selection
rules associated with electronic transitions. In the process we will discuss selection
rules for electric dipole and quadrupole and magnetic dipole transitions, and the
concept of forbidden transitions.
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12.8.1 Dipole selection rules

Consider a radiative transition n�m → n′�′m ′. To describe it we need to evaluate

〈φ f |êα · �x |φi 〉
which can be split into

〈φ f |z|φi 〉
1√
2
〈φ f |x ± iy|φi 〉

by considering the geometry of the interaction. In spherical coordinates

z = r cos θ and x ± iy = r sin θ e±iφ.

Let

µ = cos θ and d3x = r2 dr dµ dφ

⇒ 〈φ f |z|φi 〉 ∝
[∫ ∞

0
r3 Rn′�′ Rn� dr

] [∫ +1

−1
µP |m ′|

�′ (µ)P |m|
� (µ) dµ

]

×
[∫ 2�

0
ei(m−m ′)φ dφ

]

where we have expressed the eigenfunctions explicitly. In order for the integral over
φ not to vanish, ⇒ m = m ′. Now consider the recursion relation

µP (m)
� (µ) = 1

2� + 1

[
(� − |m|) P |m|

�+1(µ) + (� + |m|) P |m|
�−1(µ)

]
and substitute into the µ integral, above, and use the orthogonality relationship of
associated Legendre polynomials. The condition for the θ integral not to vanish is
then given by

�′ = � + 1
�′ = � − 1

}
�� = ±1.

Thus

〈
φ f |z| φi

〉 =
{

0, �� �= ±1, �m �= 0
> 0, �� = ±1, �m = 0.

Similar consideration of
〈
φ f |x ± iy| φi

〉
yields

〈
φ f |x ± iy| φi

〉 =
{

0, �� �= ±1, �m �= ±1
> 0, �� = ±1, �m = ±1.

These electric dipole selection rules limit the amount of momentum the photon can
take away.
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12.8.2 Electric quadrupole transitions

Transitions whose dipole moments are zero are said to be forbidden. Consideration
of higher order terms of the multipole expansion, however, indicates that this is true
only in the dipole approximation. The higher terms, such as the electric quadrupole,
can yield finite, though usually much lower, transition probabilities. Recall that the
general expression for the transition matrix element is given by

〈φ f |ei�k·�x �p|φi 〉 · êα

where

ei�k·�x = 1 + i�k · �x + · · ·
For the next higher term, we must evaluate

i�k · 〈φ f |�x �p|φi 〉 · êα.

↑ dyad

Proceed as with classical multipoles

�x �p = 1

2
(�x �p + �p�x) + 1

2
(�x �p − �p�x).

Then note the following identities

�x �p + �p�x = ime

h̄
[H0, �x �x]

�k · (�x �p − �p�x) · êα = (�k × êα) · (�x × �p).

Given that

�k · êα = 0

⇒ �k · (�x �x) · êα = �k ·
(

�x �x − |�x |2
3

Ĩ

)
· êα

= (1/3e)�k · (−e[3�x �x − |�x |2 Ĩ ]) · êα

= (1/3e)�k · Q̃ · êα

where

Q̃ ≡ −e(3�x �x − |�x |2 Ĩ )

Q33 = −e(2z2 − x2 − y2) = (−er2)2(4�/5)1/2Y2,0

Q31 ± i Q23 = −e3z(x ± iy) = (±er2)3(8�/15)1/2Y2,±1

Q11 ± 2i Q12 − Q22 = −e3(x ± iy)2 = (−er2)12(2�/15)1/2Y2,±2
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are sufficient to specify a traceless, symmetric Q̃. The selection rules that follow
are governed by �� = 0, ±2, �m = 0, ±1, ±2.

To calculate the transition matrix elements, we also need to evaluate∮
Y ∗

�3m3
Y�2m2Y�1m1dΩ =

[
(2�1 + 1) (2�2 + 1)

4� (2�3 + 1)

]1/2

× 〈�1�200|�1�2�30〉 〈�1�2m1m2|�1�2�3m3〉 .

The symbols inside the angle brackets are known as the Clebsch–Gordon coeffi-
cients.

12.9 Numerical evaluation of transition probabilities

As an illustration of how we calculate dipole transition probabilities and absorption
cross-sections we will calculate some numbers for the 2 ↔ 1 transition of hydrogen,
the so-called Lyman � transition. We will begin in general terms by considering
any downward transition, (n′, l ′, m ′) → ( n, l, m) where n′ > n.

The essential computation is the calculation of the dipole matrix element, 〈i |�x | f 〉,
where

|nlm〉 = Rnl(r )Ylm(θ, φ).

Recall that for the H atom

Rnl(r ) =
{

(n − l − 1)!

2n [(n + l)!]3

(
2

na0

)3
}1/2

e−r/na0

(
2r

na0

)l

L2l+1
n+1

(
2r

na0

)

and

Ylm(θ, φ) =
[

(l − |m|)!(2l + 1)

4�(l + |m|)!
]1/2

P |m|
l (cos θ ) eimφ.

The vector, �x = xêx + yêy + zêz , can be cast into the form

�x = 1

2
[(x + iy)(êx − i êy) + (x − iy)(êx + i êy) + zêz].

This format has a useful physical interpretation. The case êα · �x = z represents
interaction with a wave polarized in the z direction (and therefore propagating
in the x–y plane). The case êα · �x ∝ x ± iy represents a wave traveling in the z
direction and having right or left circular polarization.

The polarization directions can be expressed in terms of Ylm so that

z = r cos θ =
(

4�

3

)1/2

rY10
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and

x ± iy = r sin θ e±iφ =
(

8�

3

)1/2

rY1,±1.

Now we are ready to evaluate the square of the dipole matrix element,
|〈n′l ′m ′|�x |nlm〉|2.

Substituting all of this, and rearranging terms, we get∣∣〈n′l ′m ′|�x |nlm〉∣∣2 = a2
0Yl ′m ′lmR2

n′l ′nl

where

Yl ′m ′lm ≡ 4�

3

[∣∣∣∣
∮

Y ∗
l ′m ′Y11Ylm dΩ

∣∣∣∣
2

+
∣∣∣∣
∮

Y ∗
l ′m ′Y10Ylm dΩ

∣∣∣∣
2

+
∣∣∣∣
∮

Y ∗
l ′m ′Y1,−1Ylm dΩ

∣∣∣∣
2
]

and

Rn′l ′nl ≡ 1

a0

∫ ∞

0
Rn′l ′ Rnl r3 dr.

The volume integral was separated according to dV = dA dr = r2 dΩ dr .

12.9.1 The Lyman � transition

Let us now evaluate the specific transition (2, 1, m ′) → (1, 0, 0). Recall that there
are three possible values of m ′ because the range in m is given by 2l + 1. Thus for,
l = 1, m = −1, 0, 1. For each of these cases, Y must be evaluated separately. As it
turns out the Y’s are identical and equal to 1/3 (check it out yourself). Thus

Y1,1,0,0 = Y1,0,0,0 = Y1,−1,0,0 = 1/3.

In the case of the radial wave functions

R1,0(r ) = 2a−3/2
0 e−r/a0

R2,1(r ) = (24)−1/2a−3/2
0

(
r

a0

)
e−r/2a0

so that

R2,1,1,0 = 1

a4
0

∫ ∞

0
6−1/2r4 e−3r/2a0 dr.
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Now, let us change variables so that x = r/a0, and

R2,1,1,0 = 1√
6

∫ ∞

0
x4 e− 3

2 x dx = 1√
6

(
2

3

)5

4!

Substituting into the above yields

|〈211|�x |100〉|2 = |〈210|�x |100〉|2 = |〈21, −1|�x |100〉|2 = 215

310
a2

0 .

Taking a0 = Bohr radius = 5.29 × 10−9 cm, we finally have

|〈21m ′|�x |100〉|2 = 1.55 × 10−17.

Substituting into (54) now yields the transition rate

A2p1s = 1.55 × 10−17 4e2

3h̄

(ω21

c

)3
s−1.

In the case of the Lyman � (Ly-�) transition

h̄ω21 = 13.6 × 1.6 × 10−12

(
1

n2
− 1

n′2

)
→ ω21 = 1.6 × 1016 s−1.

Thus

A2p1s = 6.8 × 108 s−1.

Is this the actual transition rate? To answer that question we must ask how many
possible states the electron could occupy in the n = 2 level. It can occupy the three
degenerate states already described but it can also occupy the 2s state (2, 0, 0).

Effective transition rate

To get the effective transition rate we must average over all possible transition rates
for all possible state changes in the n′ → n transition. Generally, since level n has
m2 possible states, we have

An′n =
n−1∑
l=0

n′−1∑
l ′=0

2l ′ + 1

n′2 An′l ′nl .

In the case of the Ly-� transition

A21 = 1

4
[3A2110 + A2010] = 1

4
[3A2p1s + A2s1s].

Thus, we must evaluate the A2s1s transition.
If we proceed as before we quickly find that

Y0000 ∝ Y ∗
00Y11Y00 + Y ∗

00Y10Y00 + Y ∗
00Y1,−1Y00 = 0

so that, A2s1s = 0, consistent with the dipole selection rules.
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As we have seen, there are three states corresponding to A2p1s whereas there is
only one state corresponding to A2s1s . Thus

A21 = 3

4
A2p1s = 5 × 108 s−1.

Cross-section for Ly-� absorption

We can now calculate the cross-section for Ly-� absorption. At the line center

L(ω = ω12) = 2

�Γ
= 2

A21

so that

σ12(ω = ω12) = 8�

3

(
e2

h̄c

)
ω12| �X12|2/A21.

Using these numbers we get

σ12(ω = ω12) = 3 × 10−11 cm2.

The Ly-� absorption rate

The relationship between photon occupation number, Nα(ω), and the Planck curve
in the case of black-body radiation is given by

I (ω) =
2∑
1

h̄ω3

(2�)3c2
Nα(ω).

The transition rate is defined by

∂ P12

∂t
= B12 I (ω = ω12)

so that

B12 = 2e2

3(2�)2c
| �X12|2 = (2�)2c2

2h̄ω3
A21.

Numerically, the above yields

B12 = 8.3A21 = 4.2 × 109 s−1.

12.9.2 Bound–free absorption cross-section

Substituting the physical constants into (341) yields

σb f = 0.7 × 1032ω−3

for the H atom.
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A photon which can just ionize the H atom has h̄ω = 13.6 eV → ω = 2 ×
1016 s−1 so that

σ1 f = 9 × 10−18 cm2.

A 100 eV, soft X-ray photon has ω = 1.5 × 1017 s−1 yielding

σ1 f = 2 × 10−20 cm2.

A 5 keV, hard X-ray photon has ω = 7.5 × 1018 s−1 yielding

σ1 f = 1.5 × 10−25 cm2.

We see that soft X-rays are attenuated much more than hard X-rays as the photons
propagate through the interstellar medium.

12.10 HII regions

We will now apply some of what we have learned thus far to examine the interesting
effects associated with the interaction of a star with a surrounding nebula. Probably
the most famous example is the Orion nebula (Fig. 12.4). We begin by examining the
properties of a star that lead to such an interaction. Then, we will examine the
ionization process that leads to the formation of an HII region. Finally, the properties
of the HII regions are discussed.

Fig. 12.4 The Orion nebula in the light of H �. This image was made by recording
the H � photons emitted by the photo-ionized nebula.
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dA n̂

dW k̂

Fig. 12.5 The geometry that defines the intensity,

12.10.1 Ionizing stars

Stars with photospheric temperatures in excess of 104 K emit a significant number
of photons whose energies are greater than 13.6 eV, the ionization potential of
hydrogen. Consequently, if such a star is immersed in a cloud of neutral hydrogen,
some of that cloud will be ionized, leading to the formation of an HII region, that
is, a region of ionized hydrogen.

The spectrum of a star, to a good approximation, is that of a black body whose
temperature is that of the star’s photosphere. The spectrum can therefore be de-
scribed with the Planck law

Iν = 2hν3/c2

ehν/kT + 1
erg cm−2 s−1 Hz−1 sr−1

where ν is the frequency of the emitted radiation and T is the temperature of the
photosphere. The intensity, Iν is defined by

dE = Iν k̂ · n̂ dA dΩ dν dt

where k̂ is the direction of the emitted radiation and n̂ is the direction of the normal
of the surface from which the radiation is emitted (see Fig. 12.5).

In order for a star to ionize HI, it must produce reasonable quantities of Lyman
continuum photons (photons with hν > 13.6 eV or ν > ν0 = 3 × 1015 Hz). In terms
of photons, the Planck curve can be rewritten as

Ṅε = 1.6 × 1022 2ε2

eε/kT + 1
cm−2 s−1 eV−1 sr−1 (361)

where ε is the energy of the photon in electronvolts. Thus the number of photons
emitted with ε > 13.6 eV is given by

Ṅi = 1.6 × 1022
∫ ∞

13.6 eV

2ε2

eε/kT + 1
dε cm−2 s−1 sr−1.
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The fraction of a star’s emitted photons that can ionize HI is therefore given by

fi =
∫ ∞

hν0

2ε2

eε/kT + 1

/∫ ∞

0

2ε2

eε/kT + 1
= Ṅi/Ṅ .

For the Sun, which has a photospheric temperature of 5600 K, the fraction is
4 × 10−10. For an A0 star with a temperature of 10 000 K, the fraction is 3 × 10−5.
For a B0 star with T = 30 000 K, 12% of the emitted photons are ionizing. In the
case of the hottest stars, the O5 stars, the fraction is more like 45%.

Integration of (361) with respect to dA, dΩ and dε yields the luminosity of the
star in photons per second. For a spherically symmetric star

Ṅ = (4�)2Ṅ R2
∗

and

Ṅi = (4�)2Ṅi R2
∗ = 1046 fi (R∗/R�)2 s−1

where R∗ is the radius of the star.

12.11 Ionization of a pure hydrogen nebula

The ionizing radiation of the star interacts with the surrounding HI atoms. The
number of such photons incident on the atoms per unit area per unit time is obtained
by integrating (361) with respect to the solid angle, dΩ . The ionization rate per unit
volume is then given by the product of the atom number density, the ionization rate
and the cross-section for bound–free absorption

1.6 × 10224� nH

∫ ∞

13.6 eV

2ε2 σb f (ε)

eε/kT + 1
dε cm−3 s−1.

The cross-section can be approximated by recognizing that almost all of the H
atoms are in the ground state when neutral. One way to see that is to consider the
spontaneous transition probabilities for hydrogen. Some of the various transitions
are shown in Fig. 12.6.

The transition rate between any two levels can be approximated by the formula

Ann′ ≈ 1.6 × 1010[n3n′(n2 − n′2)]−1.

Some examples

A2,1 = 5 × 108 s−1

A5,4 = 3.6 × 106 s−1

A10,9 = 9.3 × 104 s−1

A110,109 = 0.5 s−1.



12.11 Ionization of a pure hydrogen nebula 213

1s

2s 2p

3s 3p 3d

4s 4p 4d 4f

Fig. 12.6 The energy level diagram for hydrogen. Energy levels to n = 4 are
shown. The dashed lines indicate all permitted transitions to n = 3 and lower.

We see that there is a strong tendency for the electron to descend into the ground
state. Thus, the approximation that all electrons are in the ground level is a reason-
able one. We therefore make the approximation that σb f (ν) = σ1 f (ν) = σν so that
(360) can be used. The electrons freed by the ionizations will recombine at a rate
given by

n pneαA

where αA ∝ veσ f b is the recombination coefficient and has units cm3 s−1. It is
defined by

αA =
∑
n,l

αnl

and

αn,l =
∫ ∞

0
vσnl f (v) dv

where

f (v) = 4√
�

( m

2kT

)3/2
v2 e−mv2/2kT .

See tabulated values of α in Table 12.1.
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Table 12.1. Recombination coefficients for T = 104 K in units of 10−15cm3 s−1

α1s α2s α2p α3s α3p α3d α4s α4p α4d α4 f → αA αB

160 23 54 7.8 20 17 3.6 9.7 11 5.5 → 420 260

An equilibrium is established so that the ionization rate equals the recombination
rate

1.6 × 10224� nH

∫ ∞

13.6 eV

2ε2 σb f (ε)

eε/kT + 1
dε = n pneαA.

The ionizing photons are first absorbed by the H atoms. The subsequent recombi-
nations can produce additional ionizing photons which in turn are absorbed. Thus,
as we proceed away from the star, the local radiation field will be determined by
a combination of diluted star light and local emission from the atoms that are re-
combining. The intensity of the radiation as a function of distance from the star
is therefore defined by a differential equation called “the equation of radiative
transfer” which can be written as

dIν
dr

= −nHσν Iν + jν

where the two terms on the right-hand side represent absorption and emission per
unit volume respectively, and where Iν = Iνs + Iνd represent the stellar and diffuse
(from the gas) radiation. Thus, for the stellar field alone

Iνs(r ) = Iνs(R∗) e−τν

where

τν(r ) =
∫ r

0
nH (r ′)σν dr ′. (362)

For the diffuse radiation field we must include a source term (for the local recom-
bination), so that the equation of transfer is

dIνd

dr
= −nHσν Iνd + jν

where

jν = 2hν3

c2

(
h2

2�mkT

)3/2

e−h(ν−ν0)/kT n pne (ν > ν0)

(see Osterbrock, 1974). Since every photon created by a recombination to the ground
level is an ionizing photon it will eventually be absorbed (as long as there is enough
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Fig. 12.7 Fractional ionization as a function of distance from the center of an HII
region. Note the sharp fall-off that defines the edge of the HII region.

gas around). Thus, any such photons must be local in origin so that dIνd/dr = 0
and

Iνd = jν
nHσν

and

4�

∫ ∞

ν0

jν
hν

dν = n pneα1.

Thus, for any point in the nebula

4�nH

∫ ∞

ν0

Iν
hν

σν e−τν (r ) dν + n pneα1 = n pneαA.

But αA = αB + α1, so we finally have

4�nH

∫ ∞

ν0

Iν
hν

σν e−τν (r ) dν = n pneαB . (363)

Equations (362) and (363) can be used to solve for nH (r ) and ne(r ) given an input gas
density distribution, n(r ) = nH (r ) + ne(r ). A typical solution is shown in Fig. 12.7.
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Note that the HII region has a very sharp boundary. The gas is fully ionized inside
the boundary and fully neutral outside.

12.11.1 Radius of HII region

Equations (362) and (363) can also be combined to solve for the radius of the HII
region. Taking the differential form of (362)

dτν

dr
= nHσν.

Combining with (363) yields

4�

∫ ∞

ν0

Iν
hν

dν
dτ

dr
e−τν (r ) = n pneαB .

Integrating over all space and assuming spherical symmetry

4�

∫ ∞

ν0

Iν
hν

dν

∫ ∞

0
d (−e−τν )4�r2 dr =

∫ r0

0
n pneαB4�r2 dr.

On the right-hand side we have recognized that there is no ionized gas outside r0.
Evaluating these integrals and rearranging terms, we have∫ ∞

ν0

(4�)2r2 Iν/hν dν = 4

3
�r3

0 n pneαB .

But Lν = (4�)2r2 Iν , so that∫ ∞

ν0

Lν/hν dν = Ṅi = 4

3
�n pneαBr3

0 .

Solving this for r0

r0 =
[

3Ṅi

4�n2
eαB

]1/3

= 104 Ṅ 1/3
i

( ne

1 cm−3

)−2/3
. (364)

The quantity r0 is often referred to as the Stromgren radius and the quantity
(4/3) �r3

0 as the Stromgren sphere.
According to (364), Ṅi can be calculated for any star. Table 12.2 lists the size of

the Stromgren sphere predicted for four different types of star.

12.12 Quasars and the Lyman � forest

Quasars are compact, stellar-like objects when imaged on photographic plates or
by CCD cameras. What makes them unique is their often tremendous redshifts.
Figure 12.8 shows the spectra of four distant quasars.
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Table 12.2. Stromgren spheres. The table shows the size of the
ionizing star in solar radii, the log of the ionization rate and the

size of the corresponding Hll region in parsecs. An ambient
density of one particle per cubic centimeter is assumed.

Spectral type R/R� log Ṅi r0 (pc)

O5 10 50.0 142
B0 7.0 48.7 50
A0 2.5 42.7 0.6
G2 1.0 36.3 5 × 10−3

Fig. 12.8 Spectra of four quasars with z > 4. The spectral lines are annotated.
Note the observed wavelengths of the Ly-� line compared to the rest wavelength
of 1216Å. From Schneider, D. P., Schmidt, M. and Gunn, J. E. 1997, AJ, 114, pp.
36–40.

The most distant quasars also show complex absorption spectra which contain the
same line observed over a wide range of wavelengths. For example, Fig. 12.9 shows
a large number of Lyman � lines spaced out over a wide range of wavelengths. It is
doubtful that a single source could account for the range in velocity (and therefore
distance). It has therefore been proposed that the absorption line system (the forest)
is caused by intervening galaxies or clouds of gas. The intervening objects, although
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Fig. 12.9 Lyman � forest. The observations are taken from Crotts, A. P. S. and
Fang, Y. (1998, ApJ, 502, pp. 16–47).

closer than the quasar in question, are probably also in their earlier phases of
evolution. The distribution of these objects in velocity space provides an important
clue on the distribution of matter in the distant Universe. This is particularly true
given that the matter sampled in the Lyman � forest is fairly old, that is the Lyman
� photons left the scene billions of years ago. Did the Universe at that time have
similar structure to the modern Universe?

12.12.1 Correlation studies

Features in the Lyman � forest are separated in velocity space by amounts ranging
from the instrumental spectral resolution to the entire range in velocities observed.
The question is whether the distribution of possible values of �v is different from
a random distribution.
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Fig. 12.10 Correlation statistics for a Lyman � forest. The figure is taken from
Crotts, A. P. S. and Fang, Y. (1998, ApJ, 502, pp. 16–47).

Let

�v = c
[(

�λ
λ0

)
1 − (

�λ
λ0

)
2

]
1 + 〈

�λ
λ0

〉
where the subscripts 1 and 2 refer to any pair of Lyman � lines. We can then define
a two-point correlation function, ζ , such that

ζ (�v) = Nobs(�v)

Np(�v)
− 1

where Nobs(�v) is the number of observed pairs at a given �v and Np(�v) is the
number expected from a purely random distribution.

Figure 12.10 is taken from Crotts and Fang (1998) and shows a correlation plot.
Note that the excursions from ζ = 0 are not significant, suggesting that there is no
strong clustering of Lyman � lines in the forest. Such results suggest that if the
lines arise from intervening galaxies, the galaxies are not as strongly clustered as
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they have become. Some astronomers have taken this to mean that the intervening
matter is not galaxies at all but rather a general intergalactic medium in the form of
clouds. The issue is not yet totally settled. If there is an intergalactic medium it is
fairly tenuous as the following estimate shows.

12.12.2 Column density of the HI responsible for the Ly − � forest

Using our definition of optical depth we write down the opacity arising from one
cloud as

�τ = n1σ12�r = dN1σ12

where n1 represents the number density of hydrogen atoms in the ground state, σ12 =
3 × 10−11 cm2 is the Lyman � absorption cross-section as defined on page 209 and
�r is taken to be the dimension of the cloud responsible for a specific Lyman �

feature. The column density associated with one cloud is �N1.
If the clouds are moving as a result of the Hubble flow then we can relate �r to

the line spacings in the Ly-� forest

dv = H �r

where dv is the minimum resolved line spacing in velocity space.
The observed absorption lines are unsaturated suggesting that �τ < 1 so that

dN1σ12 ≤ 1 → dN1 ≤ 3 × 1010 cm−2.

Summing over the entire Lyman � forest

NH =
∫ r0

0
n1 �r =

〈
dN1

�r

〉
r0 ≈ 〈dN1〉 v0

dv

where v0 is the recession velocity of the quasar. Using these numbers

NH ≤ 3 × 1010 2.7 × 1010

5 × 106
≈ 2 × 1014 cm−2

which is about six orders of magnitude smaller than the column density of HI in
our own Galaxy.
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Chapter 13

Atomic fine structure lines

13.1 Electron spin

Some of the most important astrophysical transitions involve electron spin. Perhaps
the most famous example is the 21 cm line. We will now consider the role of electron
spin in atomic transitions. The non-relativistic Hamiltonian, introduced earlier, con-
tains no spin-specific terms (it allows only for orbital angular momentum through
the operator L). As I will now demonstrate, the relativistic Hamiltonian provides
additional degrees of freedom so that effects like spin (nuclear and electron) can
be incorporated into the Schrödinger equation. To that end we now discuss Dirac’s
postulate, spin angular momentum, Dirac’s equation, the non-relativistic limit, rel-
ativistic corrections, transitions involving spin, the Zeeman effect and spin–orbit
coupling. Discussion of these topics will give us an understanding of atomic fine
structure.

13.1.1 Relativistic Hamiltonian

Recall the form of the relativistic Hamiltonian (see, for example, Shu, 1992).

H = [|c �P|2 + m2c4]1/2 + qΦ (365)

where

�P = �p − q

c
�A.

It is difficult to use the above as an operator because it is nonlinear. Let us therefore
square the operators of

HΨ = i h̄
∂Ψ

∂t
→ H 2Ψ = −h̄

∂2

∂t2
Ψ.

222
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With no scalar potential the above reduces to[
(|c �P|2 + m2c4) − h̄2 ∂2

∂t2

]
Ψ = 0.

With no vector potential we get the Klein–Gordon (K–G) equation[(
∇2 − 1

c2

∂2

∂t2

)
−

(
mc

h̄

)2
]

Ψ = 0. (366)

Note that Ψ is not a wave function. It is a scalar field which must be described
using Quantum Field theory.

13.2 Dirac’s postulate

To circumvent the problem with the K–G equation, Dirac proposed a Hamiltonian
of the form

H = �a · �Pa + bmc2 + qφ (367)

where �a and b are constants.
To make (367) equivalent to (365) requires

axax = ayay = azaz = bb = 1

axay + ayax = ayaz + azay = azax + axaz

= ax b + bax = ayb + bay = azb + baz = 0.

This can only hold if ax , ay , az and b form 4 × 4 matrices. Thus

ax =
(© σx

σx ©
)

and ay =
(© σy

σy ©
)

az =
(© σz

σz ©
)

and b =
(

I ©
© −I

) (368)

where

© ≡
(© ©

© ©
)

and I ≡
(

1 ©
© 1

)

and the Pauli matrices are

σx =
(© 1

1 ©
)

and σy =
(© −i

i ©
)

and σz =
(

1 ©
© −1

)
. (369)
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See Shu (pp. 268–9 in that book) for suggestions on proof. The properties of the
Pauli matrices can be summarized as

σiσk − σkσi = 2iεikmσm
(370)

σiσk + σkσi = 2�ik .

Rotation and angular momentum

We can write (370) in operator form, so that

�σ × �σ = 2i �σ .

Note the analogy to

�L × �L = i h̄ �L
⇒ let �s = h̄

2
�σ ⇒ �s × �s = i h̄�s.

13.2.1 The Dirac equation

The Dirac equation gives us a mathematical feel for the extra degrees of freedom
that allow us to include spin in the definition of the wave function, Ψ .

To make use of (367) we need a four-component Ψ because the operators are
4 × 4 matrices,

Ψ ⇒ χ ≡




χ1

χ2

χ3

χ4




so that

⇒
[
c�a ·

(
i h̄ �∇ + e

c
�A
)

+ bmec2
]
χ =

(
i h̄

∂

∂t
+ eφ

)
χ. (371)

It follows that the probability density is given by

g = χ †χ = |χ1|2 + |χ2|2 + |χ3|2 + |χ4|2

where † = Hermitian complex conjugate.

13.2.2 Free particle at rest

Normally, the Dirac equation is too complicated to be solved analytically. However,
there exists a simple but important application of the Dirac equation. It will serve
to illustrate how the Dirac equation is used in practice.
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For a free particle, φ, �A = 0, so that the Dirac equation becomes

⇒ [−i h̄c�a · �∇ + bmec2]χ = i h̄
∂χ

∂t
. (372)

Let us try a solution of the form

χ = χ0(�ke) ei(�ke·�x−Et/h̄). (373)

Given that �ke = 0, substitute (373) into (372) to yield

mec2

(
I ©
© I

) (
Ψ+
Ψ−

)
= E

(
Ψ+
Ψ−

)

where

χ0 =
(

Ψ+
Ψ−

)
2 × 2-component spinors

spinor:
Ψ+ = ψ+

+α+ + ψ+
−α−

Ψ− = ψ−
+α+ + ψ−

−α−

}
α+ =

(
1

0

)
, α− =

(
0

1

)
.

Thus

mec2Ψ+ = EΨ+ ⇒ E = mec2

−mec2Ψ− = EΨ− ⇒ E = −mec2

}

E = 2mec2.

The negative rest mass energy led Dirac to propose the existence of the positron. The
energy difference is the difference in rest mass energies of electrons and positrons.

13.2.3 Non-relativistic limit of Dirac’s equation

By examining the behavior of the Dirac equation in the non-relativistic limit we
can simplify the Hamiltonian but retain the effects of spin. Let

E ≡ i h̄
∂

∂t
− mec2 (374)

�P ≡ −i h̄ �∇ + e

c
�A. (375)

Consider the limit of (371) when E and �P are small compared to mec2 and mec
respectively.

Let us define wave function χ such that

χ =
(

Ψ+
Ψ−

)
(376)
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so that (371) becomes

(E + eφ)Ψ+ − c�σ · �PΨ− = 0 (377)

(E + 2mec2 + eφ)Ψ− − c�σ · �PΨ+ = 0 (378)

where

�σ ≡ σx x̂ + σy ŷ + σz ẑ.

Equation (378) can be written as

Ψ− = [2mec2 + (E + eφ)]−1c�σ · �PΨ+. (379)

For E + eφ � 2mec2

⇒ [2mec2 + (E + eφ)]−1 ≈ 1

2mec2

(
1 − E + eφ

2mec2

)
.

Substituting this into (377)

⇒
[

(E + eφ) − �σ · �P
2me

(
1 − E + eφ

2mec2

)
�σ · �P

]
Ψ+ = 0 (380)

correct to order v2/c2!
To simplify further we factor out the dependence on rest energy so that

EΨ+ = E(Ψ (�x, t) e−imec2t/h̄) = i h̄
∂Ψ

∂t
e−imec2t/h̄.

Substituting into (380) with the definition of E and after a little manipulation all
the mec2 terms cancel out so that

⇒ SΨ = 0 S = S0 + S2 (381)

where

S0 =
(

i h̄
∂

∂t
+ eφ

)
− (�σ · �P)2

2me

and

S2 = �σ · �P
2mec

(
i h̄

∂

∂t
+ eφ

) �σ · �P
2mec

.

In the fully non-relativistic limit S0 	 S2 so that

⇒ S0Ψ = 0. (382)
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Since σ operates in a different space than �P
(�σ · �P)2 = �P · �σ �σ · �P (383)

⇒ σiσk = 1

2
[(σiσk + σkσi ) + (σiσk − σkσi )]

= �ik + iεikmσm

which implies

�P · �σ �σ · �P = | �P|2 + i �σ · ( �P × �P) (384)

where

�P = −i h̄ �∇ + e �A
c

⇒ �P × �P 
= 0.

We are now in the position of working out two do-able cases.
Case A: Discard terms of ≈ v2/c2. Radiative transitions involving spin.
Case B: Consider terms of ≈ v2/c2 but let �A = 0.

The former allows us to describe radiative transitions involving spin (Section
13.3), the latter describes spin–orbit coupling (Section 13.4).

13.3 Radiative transitions involving spin

Recall

�P = �p + e �A
c

= −i h̄ �∇ + e �A
c

�A 
= 0

so that (384) becomes

�P · �σ �σ · �P =
∣∣∣ �p + e

c
�A
∣∣∣2

+ eh̄

c
�σ · ( �∇ × �A). (385)

So take (381) for S0 and put it into Hamiltonian form

⇒ S0Ψ = 0 ⇒ (H0 + H1 + H2 + HBS) Ψ = i h̄
∂Ψ

∂t
(386)

where, as before

H0 + H1 + H2 = 1

2me

∣∣∣�p + e

c
�A
∣∣∣2

− eφ

and HBS contains the spin term in (385)

HBS = eh̄

2mec
�σ · ( �∇ × �A) = eh̄

2mec

(
2

h̄
�s
)

· �B

⇒ HBS = e

mec
�s · �B. (387)
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As we noted earlier, �s acts as a spin-angular-momentum operator, so that(
s2

x + s2
y + s2

z

)
α± = 3

4 h̄2α ±
szα± = ± 1

2 h̄α ±
(sx ± isy)α∓ = h̄α ±
(sx ± isy)α± = 0.

Define ± 1
2 terms with ms = 1

2 (spin up), = − 1
2 (spin down). Now suppose

�A = �Arad + 1

2
�B0 × �x . (388)

The modified potential still satisfies the Coulomb gauge but �∇ × �A → static field

⇒ HBS = H rad
BS + Hzs

H rad
BS = (e/mec)�s · ( �∇ × �Arad) (389)

HzS = (e/mec)�s · �B0.

The H rad
BS does not contribute to the transition matrix element in the same multipole

order as the largest term present in H . Note the parallel between k̂ × êα and �∇ ×
�Arad = �Brad. We see that magnetic dipoles interact only with the �B part of the EM

field.

13.3.1 Zeeman effect

The previous discussion allows us to describe the Zeeman effect. We begin by
examining the static B0 portion of H1, and express the Hamiltonian as

HzL = e

2mec
( �B0 × �x) · �p = e

2mec
�B0 · �L.

Then, we add HzS to get the total Hz ,

Hz = −eB0

2mec
· (�L + �s) = − �B0 · ( �M + �m). (390)

The Zeeman effect is an example of spin coupling.

13.4 Relativistic correction with A = 0

Letting A = 0 reduces �P to the canonical momentum, �p, so that

�P = �p ⇒ �p · �σ �σ · �p = | �p|2.
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Retaining the relativistic corrections to v2/c2 yields

S = S0 + S2 → S ′ = S0 + 1/
(
8m2

ec2
){eh̄(∇2φ) + | �p|4/me

+ 2eh̄ �σ · [( �∇φ) × (�p)]}
⇒solve S ′Ψ ′ = 0.

(391)

In Hamiltonian form S ′ = H − i h̄(∂/∂t), so if we compare with (391)

⇒ HS = S0 − i h̄
∂

∂t
= i h̄

∂

∂t
+ eφ − | �p|2

2me
− i h̄

∂

∂t

we get

⇒ HS = | �p|2
2me

− eφ (392)

the structure Hamiltonian

Hk = | �p|4
8m2

ec2
(393)

the relativistic correction for kinetic energy

H0 = −eh̄2

8m2
ec2

∇2φ (394)

the relativistic correction for the potential, affecting only the � = 0 term and

HSO = −e�s · [( �∇φ) × �p]

2mec2
(395)

the term representing spin–orbit coupling where �s = (h̄/2)�σ . Note that spin–orbit
coupling is like a self induced Zeeman splitting because it is the motion of the
electron in the potential that produces a local B field (recall Ampere’s law). Spin–
orbit coupling accounts for the fine structure of atoms.

13.5 Atomic fine structure

I now examine the nature of the spin–orbit interaction. In the process, I will solve
for the energy eigenvalues of the spin–orbit Hamiltonian. I conclude by describing
the fine structure of the atomic energy levels of hydrogen.
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13.5.1 Spin–orbit interaction

The total angular momentum is now the sum of spin and orbital angular momenta

�J = �L + �S
which requires a change of counters: m → m�, and addition of ms, j so that the
new eigenket is |n, �, j, m�, ms〉.

13.5.2 Time-independent perturbation theory

Spin lifts the degeneracy with respect to � and m�.
We want to solve

(H0 + HSO ) Φ = EΦ

where, from (395)

HSO ∝ �S · ( �∇φ × �p) ∝ �S ·
(

1

r

dV

dr
�r × �p

)
∝ 1

r

dV

dr
�S · �L

so that

HSO = 1

2m2
ec2

(
1

r

dV

dr

)
�S · �L. (396)

Let Φ be a linear superposition of unperturbed states

Φ =
∑

m ′
�,m

′
s

C(m ′
�, m ′

s)|n, �, m ′
�, m ′

s〉

where

|n, �, m ′
�, m ′

s〉 = 1

r
Rn,�(r )Y�,m ′

�
α±.

Substituting the above into (396) yields∑
m ′

�,m
′
s

(En� − E + HSO )|n, �, m ′
�, m ′

s〉C(m ′
�, m ′

s) = 0.

Left multiply by 〈n, �, m�, ms |∑
m ′

�,m
′
s

(−ESO�m�,m ′
�
�ms ,m ′

s
+ 〈n, �, m�, ms |HSO |n, �, m ′

�, m ′
s〉)C(m ′

�, m ′
s) = 0

where

ESO ≡ E − E0 = E − En�.
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Since α± is a two-column matrix we can cast the above as(
A++ A+−
A−+ A−−

) (
C+
C−

)
= 0. (397)

Each A has (2� + 1)2 matrix elements from the 2� + 1 values of ml in C . Thus

A++ =




H++
�� − ESO H++

�,�−1 . . . H++
�,−�

H++
�−1,� H++

�−1,�−1 − ESO . . . H++
�−1,−�

. . . . . . . . . . . .

H++
−�,� H++

−�,�−1 . . . H++
−�,−� − ESO


 (398)

where

H±±
m�m ′

�
≡ 〈n, �, m�, ±1/2|HSO |n, �, m ′

�, ±1/2〉 (399)

and

C+ ≡




C(�, +1/2)
C(� − 1, +1/2)

.

.

.

C(−�, +1/2)




C− ≡




C(�, −1/2)
C(� − 1, −1/2)

.

.

.

C(−�, −1/2)




. (400)

The requirement for solving (397) is∣∣∣∣ A++ A+−
A−+ A−−

∣∣∣∣ = 0 (401)

which yields a characteristic equation for ESO as a polynomial of order 2(2� + 1).
The roots are eigenvalues corresponding to the perturbation energies.

13.5.3 The jm representation

Substituting (396) into (399) yields

H±±
m�m ′

�
=

[
1

2m2
ec2

∫ ∞

0

1

r

dV

dr
R2

n�(r ) dr

]
〈Y�m�

α(ms)| �S · �L|Y�m ′
�
α(m ′

s)〉 (402)

where

�S · �L ≡ Sx Lx + Sy L y + Sz Lz.

Note that Sx Lx + Sy L y = 1
2 [(Sx + i Sy)(Lx − i L y) + (Sx − i Sy)(Lx + i L y)].

These are raising and lowering operators so that

(Lx ± i L y)Ylm = [(l ∓ m)(� ± 1 + m)]1/2 h̄Y�,m±1
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and

(Sx ± i Sy)α∓ = h̄α±

so that

〈Y�,m�
α(ms)|Sx Lx + Sy L y|Y�,m ′

�
α(m ′

s)〉 = 0

unless m ′
s + m ′

� = ms + m�, while

〈Y�,m�
α(ms)|Sz Lz|Y�,m ′

�
α(ms)〉 = 0

unless m ′
s = ms and m ′

� = m�, consistent with the above constraint. Thus

H±±
m�m ′

�
=

{
0, m ′

s + m ′
� 
= ms + m�


= 0, m ′
s + m ′

� = ms + m� = m

⇒ m = ms + m� is a good quantum number.
Since J 2Φ = j( j + 1)h̄2Φ, j is also a good quantum number.
Given that J 2 = S2 + L2 + 2 �S · �L we have

[ j( j + 1)]max = s(s + 1) + �(� + 1) + 2�s

[ j( j + 1)]min = s(s + 1) + �(� + 1) − 2�s

so that � − s ≤ j ≤ � + s in increments of 1!
Thus, in the jm representation, the new eigenket becomes |n, �, j, m〉.

13.5.4 Solution for ESO

We can now drop the n� from the eigenket so that Φ = | jm〉. Substituting into the
Schrödinger equation yields

E = 〈 jm|H0| jm〉 + 〈 jm|HSO | jm〉 = E0 + ESO

where

ESO =
[

1

2m2
ec2

∫ ∞

0

1

r

dV

dr
R2

n� dr

]
〈 jm| �S · �L| jm〉.

But �S · �L = 1/2[J 2 − L2 − S2] is diagonal in the jm representation

⇒ 〈 jm| �S · �L| jm〉 = 1

2
[ j( j + 1) − �(� + 1) − s(s + 1)]h̄2

=
{

(�/2)h̄2, j = � + 1
2

−(� + 1)h̄2/2, j = � − 1
2 .
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n = 2

n = 3 j = 1/2 j = 1/2

j = 3/2

j = 3/2

j = 5/2

j = 1/2 j = 1/2

j = 3/2

} 2s
2p

1/2
1/2

Lamb shift
l = 0 l = 1l = 0 l = 1

l = 2

Fig. 13.1 The fine structure associated with the Hα transition. The expanded
region shows the Lamb Shift which is not predicted by Dirac theory.

For a hydrogen atom, V = −e2/r . Substituting into the previous equation and
grouping terms

⇒ ESO = |En| α2

n�
(
� + 1

2

)
(� + 1)

{
�/2, j = � + 1

2

−(� + 1)/2, j = � − 1
2 .

The corresponding perturbation from the relativistic correction is

Ek = −|En|α
2

n2

(
n

� + 1
2

− 3

4

)
.

Adding ESO and Ek yields


E = Ek + ESO = −|En|α
2

n2

(
n

j + 1
2

− 3

4

)
. (403)

For j = 1/2, 3/2, . . . , n − (1/2).
We see that levels are still degenerate with respect to m but not with respect to

j . Applying (403) to the n = 4 level of hydrogen, as an example, we see that there
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are now four levels


E = −|E4|α2




13
16 , j = 1

2

5
64 , j = 3

2

7
176 , j = 5

2

1
64 , j = 7

2 .

Spin–orbit coupling produces fine structure of the order of α2 of the unperturbed
energy. The new dipole selection rules are


m = 0, ±1 
� = ±1 
 j = 0, ±1.

The fine structure associated with the Hα transition is shown in Fig. 13.1.
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Chapter 14

Atomic hyperfine lines

In expanding the relativistic Hamiltonian we noted two do-able cases. In the first
case, we demonstrated that interactions of spin and orbital momentum with mag-
netic fields can take place thereby producing fine structure. In the second case, we
showed that an electron’s spin can interact with its orbital momentum (self induced
Zeeman effect) to produce atomic fine structure. Of special interest in Case A is the
spin–spin interaction. In that case the electron’s spin interacts with the magnetic
field produced by the spin of the nucleus. The spin–spin interaction is therefore an
example of the Zeeman effect which leads to hyperfine structure. We now proceed
to examine the spin–spin interaction in the ground state (1S1/2) of hydrogen. Note
that spin–orbit coupling alone does not split this state.

14.1 The 21 cm line of hydrogen

The spin magnetic moments of the electron and nucleus are given by

�m = − gee

2mec
�s (404)

�M = gpe

2m pc
�S (405)

respectively, where ge and gp are the so-called g factors of the electron and nucleus.
Associated with �M is a magnetic field. Recall that for a dipole field

�B = 3( �M · k̂)k̂ − �M
|�x |3 (406)

where �k represents the direction of the dipole moment and �x is the distance from
the center of the dipole.

235
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F = 1n = 1

n = 1 F = 0

E = h ν}
Fig. 14.1 Hyperfine splitting of the ground state of hydrogen. Transitions between
the F = 1 and F = 0 states lead to the 21 cm line. Shown are the relative alignments
of the proton and electron spins.

According to our earlier discussions we can calculate the Zeeman effect

Hm = HzS = e

mec
�s · �B = − �m · �B. (407)

Since the proton (nucleus) and electron each have a spin of 1/2 there are four
possible combinations for the combined wave function. We define a total spin �F
such that �F = �S + �s. Therefore there are three possible states that produce F = 1
and one state that produces F = 0 (Fig. 14.1)

Σ F2

Fz
= Σ1

±1, Σ
1
0 , Σ0

0 (408)

where

Σ1
±1 = α±(p)α±(e)

Σ1
0 = 1√

2
[α+(p)α−(e) + α−(p)α+(e)] (409)

Σ0
0 = 1√

2
[α+(p)α−(e) − α−(p)α+(e)].

The energies of the levels can be calculated in the usual way by taking the expec-
tation value of the Hamiltonian

Em = 〈φΣ |Hm |φΣ〉 (410)

where φ is the unperturbed wave function for the ground state of hydrogen and is
given by

φ = 2r−3/2
0 e−r/r0Y00 (411)

while Σ corresponds to the four spin states previously described.
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Direct substitution of equations (404) and (411) into (410) results in a divergent
integral. We therefore have to resort to a trick first formulated by Fermi.

Fermi’s trick

We know that for a magnetic dipole (see Jackson, 1998)

�A = �∇ ×
( �M

r

)
(412)

so that the B field can be written as

�B = �∇ × �A → ∇ ×
[

�M × �∇
(

1

r

)]
. (413)

From (407), Hm = − �m · �B. Inserting (413) yields

Hm = ( �m · �M)∇2

(
1

r

)
− [( �m · �∇)( �M · �∇)]

1

r
.

Subtracting one-third of the first term from the first term and adding this to the
second term yields

Hm = H (0)
m + H (2)

m

where

H (0)
m = 2

3
( �m · �M)∇2

(
1

r

)
(414)

and

H (2)
m = −[( �m · �∇)( �M · ∇) − 1/3( �m · �M)∇2]

1

r
.

We see that the bad behavior at r = 0 is localized to H (2)
m . However, when inserted

into (410) it yields only spherical harmonics, but because it is operating on a
spherically symmetric function (411) the net result from the operation is 0. Thus〈

φΣ
∣∣H (2)

m

∣∣φΣ
〉 = 0

and takes away the bad behavior at r = 0. Thus the remaining expression is

Em = 〈
φΣ

∣∣H (0)
m

∣∣φΣ
〉
.

Using ∇2(1/r ) = −4��(�x) with (404) and (414), this reduces to

Em = 2gegpe2

3mem pc2a3
0

〈Σ |�S · �s|Σ〉 = 2

3

E0

h̄2
〈Σ |�S · �s|Σ〉. (415)
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Now, �S · �s = 1
2 ( �F · �F − �S · �S − �s · �s) so that

〈Σ | �S · �s|Σ〉 = 1

2
[〈Σ | �F · �F |Σ〉 − 〈Σ | �S · �S|Σ〉 − 〈Σ |�s · �s|Σ〉]

= 1

2
[F(F + 1)h̄2 − S(S + 1)h̄2 − s(s + 1)h̄2].

For F = 1, Em1 = (1/6)E0 and for F = 0, Em2 = −(1/2)E0, where E0 can be
rewritten as

E0 = gegpα
4

(
me

m p

)
mec2.

The net energy difference between the F = 1 and F = 0 states is given by

�E = Em1 − Em2 = 2

3
E0 = 6 × 10−6eV.

For hν = �E → ν = 1.420 405 752 × 109 Hz → λ ≈ 21 cm.

14.1.1 Transition rate

Recall that it is the total angular momentum that contributes to the Zeeman effect.
In this case the total momentum is S + s. Thus, in analogy to the electric dipole
transition, we can define a magnetic dipole transition as

Ai f = 4ω3

3h̄c3
|〈 f | �M + �m|i〉|2 (416)

which we get by setting e�x → �M + �m. Now recall that the spin can be expressed
in terms of the Pauli spin matrices. Thus

�M = µp �σ p and �m = −µe �σe

where

µp = gpeh̄

4m pc
and µe = − geeh̄

4mec
.

For the F = 1 → 0 transition

A10 = 4ω3

3h̄c3

∣∣〈Σ0
0 |µp �σp − µe �σe|Σ1

〉∣∣2
. (417)

Recall that σ = σx x̂ + σy ŷ + σz ẑ, where σzα± = ±α± and σxα± = α±, σyα± =
±iα∓ so that ∣∣〈Σ0

0 |µp �σp − µe �σe|Σ1
±1

〉∣∣ = − 1√
2

(x̂ ± i ŷ)(µp + µe)

∣∣〈Σ0
0 |µp �σp − µe �σe|Σ1

0

〉∣∣ = ẑ(µp + µe).
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Table 14.1. Transitions involving hyperfine structure

Atom Spin Transition Frequency (Hz) A (s−1)

HI 1/2 2S1/2, F = 0 − 1 1.420405751 × 109 2.85 × 10−15

D 1 2S1/2, F = 1/2 − 3/2 3.27384349 × 108 4.64 × 10−17

HeII 1/2 2S1/2, F = 1 − 0 8.66566 × 109 6.50 × 10−13

NVII 1 2S1/2, F = 1/2 − 3/2 5.306 × 107 1.49 × 10−19

NI 1 4S3/2, F = 3/2 − 5/2 2.612 × 107 1.78 × 10−20

F = 1/2 − 3/2 1.567 × 107 3.84 × 10−21

H+
2 1 F2, F = 3/2, 5/2 − 1/2, 3/2 1.40430 × 109 2.75 × 10−15

F2, F = 3/2, 3/2 − 1/2, 3/2 1.41224 × 109 2.80 × 10−15

NaI 3/2 2S3/2, F = 1 − 2 1.77161 × 109 5.56 × 10−15

Recalling that the transition rate is independent of the upper level state we choose
(when states are degenerate), we have

A10 = 4ω3

3h̄c3

∣∣〈Σ0
0 |µp �σp − µe �σe|Σ1

〉∣∣2 = 4ω3

3h̄c3
(µp + µe)2. (418)

But µe 	 µp so that

A10 = ge

12

(
1 + gpme

gem p

)2 (reω

c

) (
h̄ω

mec2

)
ω (419)

⇒ A10 ≈ 3 × 10−15s−1.

The lifetime of the excited state is ≈ 107 years.
Note that the hyperfine structure scales as α4 while the fine structure scales

as α2. The 21 cm line represents the most famous astrophysical transition arising
from hyperfine structure. Other hyperfine transitions are also possible and these are
summarized in Table 14.1.

In direct analogy to (384) for the fine structure, the general formula for calculating
energy hyperfine splitting is given by

ESS = gN (mem p)
α2hcRZ3

n3

[
F(F + 1) − S(S + 1) − j( j + 1)

j( j + 1)(2 j + 1)

]
. (420)

14.1.2 The 21 cm line profile

The natural width of the 21 cm line is Γ ≈ A10 = 3 × 10−15 s−1. The extremely
narrow width follows from the uncertainty principle because of the extremely long
lifetime of the excited state. The lifetime is ≈ A−1

10 = 107 years. The naturally
narrow width of this line makes it an ideal diagnostic of interstellar hydrogen
because the strength of the line depends on the density and temperature of the
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∗

v x ′

θ ′

^

Fig. 14.2 The geometry associated with the Doppler effect.

hydrogen gas. The latter broadens the line because of differential Doppler shifts
from randomly moving hydrogen atoms. In the next section we review the Doppler
effect and then apply it to determine the profile of the 21 cm line.

14.2 The Doppler effect

Consider the motion of an observer relative to a star, as shown in Fig. 14.2. Recall
from special relativity that energy, E , and momentum, �p, make up a four-vector.
The E is the fourth component of such a four-vector and therefore transforms as

E = γ (V )[E ′ + V p′
x ]

in analogy to

t = γ (V )

[
t ′ + V

c2
x ′

]

where the primed coordinates refer to the frame of the star. Thus

⇒ E = γ (V )

[
E ′ + E ′

c
V||

]

where the radial velocity with respect to the star is defined as

V|| = V cos θ ′

so that

E = γ (V )E ′
[

1 + V

c
cos θ ′

]
.

For photons we can let E = hν, E ′ = hν ′

ν = ν ′γ (V )[1 + β cos θ ′].



14.2 The Doppler effect 241

All that remains is to transform θ ′ → θ , which we can do by using the aberration
formulae, so that

= ν ′γ
[

1 + β

(
cos θ − β

1 − β cos θ

)]
.

Now, let us consider some special cases

θ = 0 : ν = ν ′γ (1 + β) = ν ′ [(1 + β)/(1 − β)]1/2

θ = �/2 : ν = ν ′γ (1 − β2) = ν ′[1 − β2]1/2.

We see that at relativistic velocities there is a significant transverse Doppler shift
in addition to the regular radial shift. The transverse shift is always a redshift. In
the non-relativistic limit, β � 1

ν = ν ′
{

1 + β, θ = 0

1 − 1
2β

2, θ = �/2.
(421)

Thus, to first order in β there is only a radial Doppler shift.

14.2.1 Doppler broadening of the 21 cm line

The 21 cm line emissivity of HI gas is given by

jν = hν

4�
n1 A10φν

where n1 is the number density of HI in the F = 1 state and φν is the normalized
line profile such that ∫ ∞

0
φν dν = 1.

Since HI atoms are in collisional equilibrium with each other they follow a
Maxwell–Boltzmann velocity distribution. The probability, therefore, of an atom’s
radial velocity being between v and v + dv at a temperature T is given by

4� f (v)v2 dv = 4�
( m H

2�kT

)1/2
e−(m H v2)/(2kT )v2 dv (422)

where

4�

∫ ∞

0
f (v)v2 dv = 1.

At interstellar temperatures the HI gas is not relativistic so that (421) can be used
for the Doppler shift, in which case

�ν

ν0
= v

c
.
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Combining with (422)

f (ν) =
( m H

2�kT

)3/2
e−(m H c2�ν2)/(2kT ν2

0 ). (423)

Similarly

4�v2 dv → 4�

[
�νc2

ν2
0

]
c

ν0
dν = 4�

[
2kT

m H

]
c

ν0
dν.

Combining the last two equations, and insuring normalization, finally yields

φν =
[

m H c2

2�kT ν2
0

]1/2

e−(m H c2(ν−ν0)2)/(2kT ν2
0 t). (424)

This is a Gaussian whose 1/e halfwidth is given by

σν =
√

2kT

m H

ν0

c
. (425)

For T = 100 K, σν = 7 kHz for the 21 cm line.

14.3 Neutral hydrogen in galaxies

Observations of 21 cm emission can be used to probe neutral hydrogen in galaxies.
I begin with a discussion of the equation of transfer for HI emission and its use
in determining gas distributions in galaxies. The shape of the 21 cm line provides
important information on the dynamics of the detected gas. We will therefore discuss
how gas dynamics are measured. In the process, we will highlight the problem of
missing mass and dark matter.

14.3.1 Equation of transfer for HI emission

Earlier, we introduced the equation of transfer. If we now define the volume ab-
sorption coefficient as

κν = nHσν cm−1 (426)

we can express the equation of transfer as

dIν = jν dr − κν Iν dr. (427)

Recall that the optical depth is defined as dτν = κν dr , so that

dIν
dτν

= −Iν + jν
κν

(428)
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which has the solution

Iν = Iν(0)e−τν + e−τν

∫ τν

0

jν
κν

eτ ′
ν dτ ′

ν. (429)

For the 21 cm line

jν = hν

4�
n1 A10φν erg cm−3 s−1 sr−1 Hz−1. (430)

Assuming thermodynamic equilibrium

jν = κν Bν. (431)

Recall that the relationship between B and A is given by

B10 = c2

2hν3
A10. (432)

Combining (430) and (432) we get

jν = hν

4�
n1

2hν3

c2
φν B10. (433)

Combining (431) and (433) and recognizing that B01 = 3B10

κν = jν
Bν

= hν

4�
n1φν(ehν/kT − 1)B10. (434)

Now, from the Boltzmann relation

n1

n0
= 3 e−hν/kT . (435)

Combining (434) and (435)

⇒ κν = hν

4�
φνn0 B01

(
1 − n1

3n0

)
. (436)

Now let us look at the extreme cases of high and low optical depth.

Case A τν 	 1

Iν ≈ jν
κν

= 2hν3/c2

3n0/n1 − 1
. (437)

We can now define the spin temperature by setting Iν = Bν which leads to

n1/n0 = 3 e−hν/kTs . (438)

Typically, Ts ≈ 100 K.
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At 21 cm, hν � kTs so that

n0/n1 ≈ 1/3

(
1 + hν

kTs

)
. (439)

Combining with (437) and (438) we get

Iν = 2kTsν
2

c2
. (440)

Equation (440) is known as the Rayleigh–Jeans Approximation.

Case B τν � 1
If we set Iν(0) = 0 and integrate over all ν we get

I =
∫

Iν dν = hν

4�
A10

∫
n1 dr = 3hν

16�
A10

∫
nH dr. (441)

Use of this equation in interpreting observations of HI emission indicates that the
average density of HI, nH ≈ 0.5 cm−3.

14.3.2 Emission or absorption?

If we assume jν = κν Bν and Ts is constant throughout the observed region, then
the equation of transfer becomes

Iν = Iν(0) e−τν + Bν(1 − e−τν ). (442)

Inserting the Rayleigh–Jeans Approximation (440), this becomes

Tb = T e−τν + Ts(1 − e−τν ). (443)

Typically, T represents a background source and Ts represents the foreground HI.
An emission line is observed when Tb − T > 0, which occurs when T < Ts . A line
is seen in absorption when Tb − T < 0 requiring that T > Ts , as you would expect
from Kirchhoff’s laws.

14.4 Measuring HI in external galaxies

The HI traces the building material from which stars and planets are made. External
galaxies provide the optimal perspective on the distribution and kinematics of this
material.
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14.4.1 Integral properties of galaxies

The hydrogen mass of a galaxy can be estimated by integrating under the observed
HI line profile. From (441) and (443) and τν � 1 the surface density of HI atoms
radiating in a 1 km s−1 Doppler interval is given by

Nν = 1.82 × 1018Tsτν. (444)

Since Tb ≈ Tsτν for an optically thin gas

NH = 1.82 × 1018
∫

V
Tb dV (445)

which is the column density of hydrogen obtained by integrating over the line
profile. Integration over the surface, S, of the galaxy yields the total number of HI
atoms

NH =
∫

S
NH dS = 1.82 × 1018

∫
Tb dV

∫
dS

⇒ NH = 1.82 × 1018d2
∫ ∫

Tb dV dΩ

where d is the distance to the galaxy and dS = d2 dΩ . In more convenient units

M

M�
= 2.36 × 105

(
d

Mpc

)2 ∫
Fv

Jy

dV

km s−1
. (446)

The total gravitating mass of a galaxy can be calculated by treating the HI as test
particles and assuming that the galaxy is in rotational equilibrium so that

v2(r )

r
= G M(r )

r2
→ M(r ) = rv2(r )

G
(447)

⇒ Mtotal = rv2
max

G
.

14.4.2 Kinematics of the HI

Consider a circular disk defined by the coordinates r, θ which is inclined with
respect to the plane of the sky by an angle i . The observed line-of-sight velocity
u(r, θ ) is given by

u(r, θ ) = v0 + v(r, θ ) sin i cos θ + w(r, θ ) sin i sin θ + z(r, θ ) cos i (448)

where, v0 is the systemic velocity, v(r, θ ) is the tangential velocity in the plane of
the galaxy, w(r, θ ) is the radial velocity in the plane of the galaxy and z(r, θ ) is the
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Fig. 14.3 Model of a Keplerian rotation curve expected from a thin circular disk,
tilted at an angle i with respect to the line of sight. The top view shows isovelocity
contours for the tilted disk. The bottom plot shows the radial velocity curve obtained
by azimuthal integration of the velocity.

velocity out of the plane. For purely circular rotation, w and z = 0 so that

v(r ) cos θ = constant

represents the lines of constant observed radial velocity along the line of sight.
Azimuthal averaging produces the rotation curve shown in Fig. 14.3. Figure 14.4
shows the HI emission of the galaxy M33. The radial distribution of the HI is shown
in Fig. 14.5. The velocity field is displayed in Fig. 14.6 and the corresponding
rotation curve is shown in Fig. 14.7.

14.5 Probing galactic mass distributions

In this Section we will discuss the use of spectral lines to determine the mass
distributions within galaxies as well as the distribution of matter on cosmological
scales. The first part deals with masses of individual galaxies and addresses the
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Fig. 14.4 The HI emission of M33. The intensity of the 21 cm line emission
is shown in a grey-scale representation such that intensities increase with shade
darkness. From: Wright, M. C. H., Warner, P. J., Baldwin, J. E., 1972, ApJ, 155,
pp. 337–356.

issue of missing mass and dark matter. The second part deals with the distribution
of HI on scales that can help us understand the evolution of the Universe as a whole.

14.5.1 HI rotation curves

For the purpose of interpreting rotation curves of galaxies, let us make the simpli-
fying assumption that spiral galaxies have thin circular disks and central spherical
bulges such that RB , Rd and h represent the bulge radius, disk radius and disk
thickness respectively (Fig. 14.8).
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Fig. 14.5 The radial distribution of HI in M33. The HI distribution was determined
through azimuthal integration of the emission map shown in Fig. 14.4 and the use
of equation (445). The distribution of optical light is shown for comparison. From:
Wright, M. C. H., Warner, P. J., Baldwin, J. E., 1972, ApJ, 155, pp. 337–356.

It is assumed that mass elements in the disk of a spiral galaxy have circular orbits
about the center of the galaxy.

The bulge

If the bulge has a constant density ρB , independent of radius, then

M(r ) = 4

3
�r3ρB (r < RB)

represents the mass distribution as a function of the radius, r , out to the edge of the
bulge, r = RB . From (23) and the following, we have

v2(r ) = G M(r )

r
= 4

3
�ρB Gr2 (r < RB).

Thus, we see that

v(r ) ∝ r and θ̇ (r ) = constant
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Fig. 14.6 The radial velocity field of M33. The observed velocity field is deter-
mined from measurements of the Doppler shift of the HI line and the use of
equation (448). From: Warner, P. J., Wright, M. C. H., Baldwin, J. E., 1973,
MNRAS, 163, pp. 163–182.

the linear velocity increases with r and the angular velocity is constant indicating
rigid body rotation. This kind of rotation is observed in all spiral galaxy bulges and
is consistent with the rotation of the inner disk as shown in Fig. 14.3.

The disk

Suppose that a point is reached where most of the disk is encompassed within an
orbit of an outer mass element. Then we expect that mass element to respond as if
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Fig. 14.7 The rotation curve obtained from the velocity field shown in Fig. 14.6.
From: Warner, P. J., Wright, M. C. H., Baldwin, J. E., 1973, MNRAS, 163,
pp. 163–182.

  |

  |
h

RdRB

Fig. 14.8 The bulge and disk components of a spiral galaxy.

it were orbiting a point of mass. In the limit of large r equation (63) yields

v(r ) ∝ 1√
r

and θ̇ ∝ r−3/2

consistent with M(r ) = constant and Keplerian rotation. These are indicative of
differential rotation, a characteristic shared by many astronomical bodies that are
not solid or rigid.

Thus, it is expected that in the outer-most regions of a spiral galaxy there should
be a turnover where v(r ) begins to decline according to Keplerian orbital motion.
Figure 14.9 shows a sample of observed rotation curves. It is evident that the ex-
pected turnover is rarely observed in spiral galaxies! In fact, most rotation curves
appear to be flat, that is v(r ) = constant. Why is that? One explanation is that the
ρ(r ) ∝ 1/r which would yield v(r ) = constant at large radii (see previous equa-
tions). If that were the case we would expect that the surface brightness of a galaxy
would also fall off as 1/r . Figure 14.10 shows the typical surface brightness profile
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Fig. 14.9 Observed rotation curves. From: Rubin, V. C., Thonnard, N., Ford,
W. K. Jr., 1980, ApJ, 238, pp. 471–487.

of a galaxy (in this case the spiral galaxy NGC 5055). The surface brightness falls
off exponentially, too steeply to produce the required 1/r density law. Exponential
surface brightness profiles characterize almost all spiral galaxies. The explanation
must lie somewhere else, but where? Well, if we assume that Kepler’s laws are
valid on kiloparsec scales then we must conclude that the true mass distribution
is different from that which is actually visible. The unseen mass may not radi-
ate but it still provides a gravitational potential to which any mass element must
respond.
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Fig. 14.10 The surface brightness profile of the galaxy NGC 5055. Note the bulge
and disk components.

V(r)

RB Rd Rh r

Fig. 14.11 A hypothetical rotation curve that includes a dark matter halo.
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The halo

Let us therefore suppose that there is a massive, spherical and invisible halo of
material surrounding a spiral galaxy such that

M(r ) = 4

3
�r3ρh (r < Rh)

and let us suppose that the halo dominates all other components in terms of total
mass. It turns out that such massive halos are gravitationally stable if ρh ∝ 1/r2 in
which case

M(r ) ∝ r

v2(r ) ∝ M(r )

r
= constant

⇒ v(r ) = constant.

We see that massive halos of dark matter can flatten rotation curves of spiral galaxies.
This fact is the main contention that individual galaxies are surrounded by dark
matter. In a following chapter we discuss evidence for dark matter in clusters of
galaxies. If these dark matter halos exist then the true rotation curves of galaxies
might look something like the sketch in Fig. 14.11.
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Chapter 15

Transitions involving multi-electron atoms

Thus far, I have discussed only hydrogenic atoms, those with a single electron. In
order to expand our understanding to atoms with multiple electrons we will do two
things. First, we will discuss the necessary issue of the symmetry of multi-particle
wave functions. Second, we will consider the structure of the helium atom in consid-
erable detail. Understanding the helium atom lays the foundation for understanding
the general case of the multi-electron atom.

15.1 Symmetry of multi-particle wave functions

Recall that there are four ways to construct a two-particle spin wave function from
the individual spin wave functions.

χ =




χ+(1)χ+(2)
χ−(1)χ−(2)

1√
2
(χ+(1)χ−(2) + χ−(1)χ+(2))

1√
2
(χ+(1)χ−(2) − χ−(1)χ+(2)).

(449)

The first three functions are said to be symmetric because the interchange of particles
1 and 2 does not lead to a change in sign of χ . The fourth function is antisymmetric
because the interchange leads to a change in sign of χ .

The total wave function for an electron, ψn = φnχ±, is the product of the spatial
and spin wave functions. Thus, the total wave function of two electrons can be
defined as the product of the two-electron spatial function and the two-electron
spin function.

ψ = φχ = 1√
2

[φn(1)φn′(2) ± φn′(1)φn(2)] χ

where χ is given by (449). We see that there are potentially eight possible wave
functions (possibly more if n and n′ are degenerate).

254
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In the case of electrons, being fermions they must satisfy the Pauli exclusion
principle which states that no two electrons can occupy the same state. Thus, if the
two electrons are in the same spatial state they must be in different spin states. This
is another way of saying that the total wave function must be antisymmetric. Thus, if
the spatial two-electron wave function is symmetric, the two-electron spin function
must be antisymmetric and if the spatial function is antisymmetric the spin function
must be symmetric. According to these constraints the above functions become

ψ = 1√
2




[φn(1)φn′(2) − φn′(1)φn(2)]




χ+(1)χ+(2)
χ−(1)χ−(2)

1√
2

[χ+(1)χ−(2) + χ−(1)χ+(2)]

[φn(1)φn′(2) + φn′(1)φn(2)]
[

1√
2
(χ+(1)χ−(2) − χ−(1)χ+(2))

]
.

There are four possible two-electron wave functions that satisfy the Pauli exclusion
principle. We are now ready to discuss the helium atom.

15.2 The helium atom

The helium atom consists of two electrons and a nucleus made up of two protons
and two neutrons. The two electrons interact with the nucleus via the Coulomb
potential. In addition, the electrons feel a Coulomb repulsion between themselves,
and one electron always screens some of the nuclear charge that the other electron
“sees”. Finally, the constraints imposed by the Pauli exclusion principle, that is
the required antisymmetry of the two-electron wave function, introduce a subtle
force-like effect called the exchange force or sometimes called the correlation force.
All these effects (plus other even more subtle ones from quantum field theory) act
together to determine the structure of the helium atom. We now describe the ground
and first excited state of helium in light of these various effects.

15.2.1 The ground state

We begin with the strongest effect, that of the electron Coulomb interaction with
the nucleus. In that case we can write the Hamiltonian as

H =
(

− h̄2

2m
∇2

1 − 2e2

r1

)
+

(
− h̄2

2m
∇2

2 − 2e2

r2

)
= 2H0. (Z = 2).

The subscripts 1 and 2 refer to the electrons 1 and 2. For a hydrogenic atom

H0 = −Z2 E0 = −54.4 eV.
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Thus, for helium

HHe = 2H0 = −108.8 eV (450)

some way from the measured value of −78.62 eV.
Clearly, we need to add the electron–electron Coulomb repulsion because it will

raise the total energy of the system. Treating the electron–electron repulsion as a
perturbation we can modify the Hamiltonian so that

H = 2H0 + e2

r12
r12 = |�r1 − �r2|.

We can now define the energy of the ground state by taking the expectation value
of H , so that

〈0|H |0〉 = −2Z2 E0 +
〈
0

∣∣∣∣ e2

r12

∣∣∣∣ 0

〉

where

〈
0

∣∣∣∣ e2

r12

∣∣∣∣ 0

〉
= e2

�2

(
Z

a0

)6 〈
e−(Z/a0)(r1+r2)

∣∣∣∣ 1

r12

∣∣∣∣ e−(Z/a0)(r1+r2)

〉
〈s, ms |s, ms〉

= e2

�2

(
Z

a0

)6 ∫
Ω1

dΩ1

∫ ∞

0
dr1r2

1 e−2Zr1/a0

∫
Ω2

dΩ2

∫ ∞

0
dr2

r2
2

r12
e−2Zr2/a0

= 5e2 Z

8a0
= 5

4
Z E0 (451)

Adding (450) to (451), we get the modified energy of the ground state

Eg = −2Z2 E0 + 5

4
Z E0 = −11

2
E0 = −74.8 eV.

This is closer! Now let us consider a further correction associated with the partial
screening of the nucleus by the electrons. This can be done with a variational
approach in which we try to minimize the energy with respect to the effective value
of Z which is allowed to vary as a free parameter.

The expectation value of the ground state energy can be written as

〈
0

∣∣∣∣2H0 + e2

r12

∣∣∣∣ 0

〉
= 2〈0|H0|0〉 +

〈
0

∣∣∣∣ e2

r12

∣∣∣∣ 0

〉
. (452)
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The latter we have already calculated. Evaluation of the former leads to

2〈0|H0|0〉 = 2(Z2 − 4Z )E0.

Substituting into (452) yields

〈Eg〉 = 2(Z2 − 4Z )E0 + 5

4
Z E0. (453)

All we have to do now is minimize the above and solve for the Z at the minimum.
Thus, setting (d/dZ )〈Eg〉 = 0 we get

Z = 27

16
.

Substituting into (453) leads to the newest estimate of the ground state energy

〈Eg〉 = −5.7E0 = −77.5 eV.

15.2.2 Lowest excited states

The lowest possible excited state occurs when one electron remains in the ground
(1s) state while the other is excited into the 2s or 2p state. As discussed earlier,
for a pair of electrons, there are four possible spin wave functions and in this case
four possible spatial wave functions (the ψ100ψ200, ψ100ψ210, ψ100ψ21,±1 states).
Thus, there are sixteen possible states. The Coulomb interactions lift some of the
degeneracy of these states. I now demonstrate this explicitly. Let us begin by writing
the two-electron wave functions for the 1s, 2s excited state as

ψ = 1√
2

[ψ1s(1)ψ2s(2) ± ψ2s(1)ψ1s(2)] s, ms〉.

The first order correction to E2 is then given by

E (1)
2 =

〈
ψ

∣∣∣∣ e2

r12

∣∣∣∣ ψ
〉

= e2

2

〈
ψ1s(1)ψ2s(2) ± ψ2s(1)ψ1s(2)

∣∣∣∣ 1

r12

∣∣∣∣ ψ1s(1)ψ2s(2)

±ψ2s(1)ψ1s(2)

〉
〈s, ms |s, ms〉

= K ± J

where

K = e2

〈
ψ1s(1)ψ2s(2)

∣∣∣∣ 1

r12

∣∣∣∣ ψ1s(1)ψ2s(2)

〉
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and

J = e2

〈
ψ1s(1)ψ2s(2)

∣∣∣∣ 1

r12

∣∣∣∣ ψ1s(2)ψ2s(1)

〉
.

The K correction is known as the ordinary Coulomb integral while J is the exchange
Coulomb integral and represents the so-called exchange force.

The first order correction to E2 is therefore given by

E2 = E (0)
2 + K ± J.

The K correction acts as a d.c. offset, raising the energy of the level by a fixed
amount. The J correction (from the exchange force) actually splits the level into
two. The antisymmetric spin state is raised while the triplet of symmetric spin states
is lowered with respect to K . A similar effect occurs in the case of the 1s, 2p state,
although in this case the value of K is higher. The net effect is to split the Bohr
n = 2 level into four levels. The values of K and J associated with the various
splittings are summarized in Fig. 15.1.

K1s,2p = e2

〈
ψ1s(1)ψ2p(2)

∣∣∣∣ 1

r12

∣∣∣∣ ψ1s(1)ψ2p(2)

〉
≈ 10.0 eV

K1s,2s = e2

〈
ψ1s(1)ψ2s(2)

∣∣∣∣ 1

r12

∣∣∣∣ ψ1s(1)ψ2s(2)

〉
≈ 9.1 eV

J1s,2s = e2

〈
ψ1s(1)ψ2s(2)

∣∣∣∣ 1

r12

∣∣∣∣ ψ1s(2)ψ2s(1)

〉
≈ 0.4 eV

J1s,2p = e2

〈
ψ1s(1)ψ2p(2)

∣∣∣∣ 1

r12

∣∣∣∣ ψ1s(2)ψ2p(1)

〉
≈ 0.1 eV.

15.2.3 Summary

The basic interactions that lead to the structure of the helium atom are Coulomb
interactions combined with the Pauli exclusion principle, the latter leading to the
exchange force. There is additional structure arising from the fact that the split-
tings are affected by the orbital angular momentum of the electrons and the fine
and hyperfine structure already discussed in the case of single-electron atoms. It
must be remembered that in many cases, when dealing with multi-electron atoms,
the Coulomb interactions and the exchange force lead to greater splittings than
spin–orbit coupling. These effects cannot be ignored, in general, for multi-electron
atoms. There is a methodology that describes the structure of multi-electron atoms,
which incorporates all these effects. It is called the LS coupling or Russell–Saunders
coupling scheme.
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Fig. 15.1 Energy levels of the helium atom. The diagram shows the splittings
arising from Coulomb and exchange interactions.

15.3 Many-electron atoms

The LS coupling scheme is based on the following sequence of “corrections” to a
level of a given principal quantum number. These are known as Hund’s Rules.

1. The higher the S (total electron spin), the lower the energy. These splittings arise from
the exchange force.

2. The higher the L (total electron orbital momentum), the lower the energy of the exchange
splitting. This results from the fact that at high orbital momenta the electrons “keep apart”
better thereby enhancing the effect of the exchange force.

3. The higher the J the higher the energy associated with spin–orbit splitting. This is true
for electron shells that are less than half filled. For shells that are more than half filled
the opposite is true.

Figure 15.2 summarizes these results schematically.
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Fig. 15.2 The LS coupling scheme. The splittings for the n = 4 level are shown.

15.3.1 The Hartree–Fock procedure

To actually calculate the energies of all the split levels it is necessary to invoke either
numerical procedures or analytical approximations. The Hartree–Fock procedure
utilizes both.

For an N -electron atom we can express the Hamiltonian as

H = Hcf + Hee + HSO

where Hcf represents the basic central field approximation (assume each electron
acts as if it is in a hydrogenic atom) so that

Hcf =
N∑

a=1

Ha

where

Ha ≡ − h̄2

2m
∇2

a + Va(ra)



15.4 Forbidden lines in astrophysics 261

and

Va(ra) = − Ze2

ra
+ Wa(ra).

The function Wa(ra) is meant to be a spherical approximation for a smeared-out
electron cloud distribution.

The second term, Hee, represents the electron–electron repulsion in excess of
any spherically symmetric effects (which cancel out),

Hee = e2

2

N∑
a 
=b

1

rab
−

N∑
a=1

Wa(ra).

Finally, HSO represents the spin–orbit interaction

HSO =
N∑

a=1

1

2m2c2

(
1

ra

dVa

dra

)
�Sa · �La.

One proceeds by constructing an antisymmetric wave function using combinations
of unperturbed single-particle wave functions. The functions are taken to be trial
functions. The expectation of H is then minimized with respect to the trial functions,
which yields an estimate of the wave function.

15.4 Forbidden lines in astrophysics

Some multi-electron atoms have low lying energy levels that are easier to excite
collisionally than in the case of the hydrogen atom. Examples include OII, NII,
SII and OIII (Fig. 15.3). The first few energy levels of these atoms have energies
comparable to the kT of most astrophysical nebulas and even active galactic nuclei
(such as Seyferts) and quasars. Thus, the spectral lines associated with these low-
lying energy levels are ideal diagnostics of the physical conditions in these regions.
In this portion of the chapter we will describe how density and temperature are
measured from ratios of spectral line intensities.

15.4.1 Collisional equilibria

We begin by considering the process of collisional excitation and de-excitation of
the low lying energy levels. In analogy to radiative cross-sections we discussed
earlier we define the collision cross-section as

σ12(v) = �h̄2

m2v2
1

Ω12

g1

1

2
mv2 > χ12 (454)
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where Ω12 is the quantum mechanical collision strength and is approximately con-
stant near the threshold energy. The statistical weight, g1 = 2J (1) + 1, is the statis-
tical weight of the level being depopulated. The energy gap between the two levels
is given by χ12, the threshold energy.

The impacting particles tend to be electrons because they have the highest cross-
section for interacting with ions. Since the nebulas are usually thermal in character
we can describe the electron velocity distribution as Maxwellian. Consider a 2-level
system with n = 1, n = 2. There is a balance between collisions which is such that
for every excitation there is a de-excitation

Ne N1v1σ12(v1) f (v1) dv1 = Ne N2v2σ21 f (v2) dv2 (455)

where N is the population of each level, �v = v1 + dv1 is the velocity range for
an electron producing an excitation, �v = v2 + dv2 for an electron producing a
de-excitation. Combining with the Boltzmann relation

N1

N2
= g2

g1
e−χ12/kT (456)

we can derive the relation

g1v
2
1σ12(v1) = g2v

2
2σ21(v2) (457)

where (1/2)mv2
1 = (1/2)mv2

2 + χ12 so that v1 dv1 = v2 dv2.
Combining (454) and (457) yields

σ21(v2) = �h̄2

mv2
2

Ω12

g2
(458)

and we see that Ω12 = Ω21. We are now in the position of being able to calculate
the total rate of collisional de-excitations per unit volume

Ne N2q21 = Ne N2

∫ ∞

0
σ21(v)v f (v) dv

= Ne N2

(
2�

kT

)1/2 h̄2

m3/2

Ω12

g2
= Ne N28.6 × 10−6

T 1/2

Ω12

g2
(459)

for a constant Ω12 and units of cm3 s−1. The rate of excitations is similarly given
by Ne N1q12 where

q12 = g2

g1
q21e−χ12/kT . (460)

Tables 15.1 and 15.2 list the collisional strengths for a variety of ions and transitions.
We now examine, in light of the previous discussion, how spectral lines are formed
in astrophysical nebulas.
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Table 15.1. Collisional strengths for doubly ionized atoms

Ion Ω(3P,1 D) Ω(3P,1 S) Ω(1D,1 S) Ω(3P0,
3 P1) Ω(3P0,

3 P2) Ω(3P1,
3 P2)

NII 2.99 0.36 0.39 0.41 0.28 1.38
OIII 2.50 0.30 0.58 0.39 0.21 0.95
SIII 3.87 0.75 1.34 0.94 0.51 2.32

Table 15.2. Collisional strengths for singly ionized atoms

Ion Ω(4S,2 D) Ω(4S,2 P) Ω(2D3/2,
2 D5/2) Ω(2D3/2,

2 P1/2)

OII 1.47 0.45 1.16 0.29
SII 5.66 2.72 5.55 1.96

15.4.2 Line emission and cooling of nebulas

Consider a simple two-level ion in the limit of low density. Every collisional ex-
citation is followed by a radiative de-excitation. The line emissivity is then given
by

j21 = N2 A21hν21 = Ne N1q12hν21 (461)

since

N2 A21 = Ne N1q12.

When the density is significant enough to make collisional de-excitation important
the excitation balance becomes

Ne N1q12 = Ne N2q21 + N2 A21 (462)

so that

N2

N1
= Neq12

A21

[
1

1 + Neq21/A21

]
(463)

and the line emissivity now becomes

j21 = N2 A21hν21 = Ne N1q12hν21

[
1

1 + Neq21/A21

]
. (464)

If we let Ne → 0 we recover (461). If we let Ne → ∞ we get

j21 → N1
q12

q21
hν21 A21.
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Fig. 15.3 Energy levels of OII, OIII, SII and NII. Note the low lying states that are
only 2–3 eV above the ground state. These states can be populated collisionally.

Combining with (460) yields

j21 → N1
g2

g1
e−χ12/kT hν21 A21 (465)

which is what we would expect under conditions of thermodynamic equilibrium (in
the limit of high density). Examination of (461) and (465) shows that at low densities
the strength of a line grows as N 2 while at high densities it grows as N. Also, at
low densities there is no dependence on A21. This means that forbidden lines are
treated on an equal footing with the permitted lines. However, at high densities the
forbidden lines are “quenched” by the ratio of the permitted to forbidden transition
rates, a ratio that is at least six orders of magnitude smaller than 1. The levels
that would normally be populated for the forbidden lines are depopulated by the
combination of collisions and permitted transitions. Figure 15.3 shows the lowest
levels of OII, OIII, SII and NII.

Only the bottom five levels are normally active since their energies are near
kT ≈ 1eV, typical of HII regions and other nebulas. Note that all possible transitions
in the optical violate the dipole selection rules for multi-electron atoms. Thus all
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Table 15.3. Transition rates for O[II] and S[II]

O[II] S[II]

Transition A (s−1) λ (Å) A (s−1) λ (Å)

2P1/2–3P3/2 6.0 × 10−11 – 1.0 × 10−6 –
2D5/2–2P3/2 1.2 × 10−1 7319.9 2.1 × 10−1 10320.5
2D3/2–2P3/2 6.1 × 10−2 7330.2 1.7 × 10−1 10286.7
2D5/2–2P1/2 6.1 × 10−2 7319.9 8.7 × 10−2 10370.5
2D3/2–2P1/2 1.0 × 10−1 7330.2 2.0 × 10−1 10336.4
4S3/2–2P3/2 6.0 × 10−2 2470.3 3.4 × 10−1 4068.6
4S3/2–2P1/2 2.4 × 10−2 2470.3 1.3 × 10−1 4076.4
2D5/2–2D3/2 1.3 × 10−7 – 3.3 × 10−7 –
4S3/2–2D5/2 4.2 × 10−5 3728.8 4.7 × 10−4 6716.4
4S3/2–2D3/2 1.8 × 10−4 3726.1 1.8 × 10−3 6730.8

Table 15.4. Transition rates for N[II], O[III] and S[III]

N[II] O[III] S[III]

Transition A (s−1) λ (Å) A (s−1) λ (Å) A (s−1) λ (Å)

1D2–1S0 1.1 5754.6 1.6 4363.2 2.5 6312.1
3P2–1S0 1.6 × 10−4 3070.8 7.1 × 10−4 2331.4 1.6 × 10−2 3797.4
3P1–1S0 3.4 × 10−2 3062.8 2.3 × 10−1 2321.0 8.5 × 10−1 3721.7
3P2–1D2 3.0 × 10−3 6583.4 2.1 × 10−2 5006.9 6.4 × 10−2 9531.8
3P1–1D2 1.0 × 10−3 6548.1 7.1 × 10−3 4958.9 2.5 × 10−2 9069.0
3P0–1D2 4.2 × 10−7 6527.1 1.9 × 10−6 4931.0 9.1 × 10−6 8830.9
3P1–3P2 7.5 × 10−6 – 9.8 × 10−5 – 2.4 × 10−3 –
3P0–3P2 1.3 × 10−12 – 3.5 × 10−11 – 4.7 × 10−8 –
3P0–3P1 2.1 × 10−6 – 2.6 × 10−5 – 4.7 × 10−4 –

transitions we will be considering are forbidden. Tables 15.3 and 15.4 list the
transition rates for the more common spectral lines of multi-electron ions.

Let us now discuss the OIII ion and ions like it. Since these are not simple two-
level systems as previously discussed we need to examine the general equation of
statistical equilibrium.

15.4.3 Statistical equilibrium for N levels

For each level i of a multi-level atom it is necessary to consider all possible paths
for populating and depopulating level i . Thus∑

j 
=i

N j Neq ji +
∑
j>i

N j A ji =
∑
j 
=i

Ni Neqi j +
∑
j<i

Ni Ai j . (466)
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Table 15.5. Critical densities

Ion Level Ne (cm3)

NII 1D2 7.8 × 104

NII 3P2 2.6 × 102

NII 3P1 41
OII 2D3/2 3.3 × 103

OII 2D5/2 6.3 × 102

OIII 1D2 6.5 × 105

OIII 3P2 4.9 × 103

OIII 3P1 6.7 × 102

The above is subject to number conservation,
∑

j N j = N . Equation (466) can be
solved to yield equilibrium populations for any level i . Once the populations are
determined the line emissivity follows from

jik = Ni Aikhνik .

The above is greatly simplified in the low density limit because jik can be expressed
as terms of the form

Ni Neqki hνik

making the previous equation a lot easier to solve. The low density approximation
is valid so long as

Ne < Nc = Aik/qik .

For typical interstellar conditions, Nc ≈ 105 cm−3. Table 15.5 lists critical densities
for a variety of ions and transitions.

For most nebulas the densities are below the critical density and the low density
approximation can often be used. We will now use that approximation to discuss
how OIII lines can be used to estimate temperatures of astrophysical gases.

15.4.4 OIII lines as probes of temperature

The most common way of estimating temperatures of nebulas is to use the ratio of
spectral line intensities such as

j(λ5007) + j(λ4959)

j(λ4363)
= j(1D2→3P2) + j(1D2→3P1)

j(1S0 →1D2)

where the corresponding transitions are indicated. Note that all three transitions
violate the dipole selections rules and are therefore forbidden. Can you find any
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permitted transitions in the OIII energy level diagram? Let us now set up an exci-
tation balance equation for each transition in the low density limit.

For the doublet in the numerator

Ne N1q12 = Ne [N1aq21a + N1bq21b + N1cq21c]

= N2 A21 = N2 [A21a + A21b + A21c]

where the radiative population of the n = 2 level is negligible. We can further
simplify this by noting that the collisional excitations from the ground triplet are
more or less independent of level (because the �E is essentially the same for all
three) so that an average q12 can be used. The downward 1D2→3Px transitions
are represented by the subscripts a, b and c for x = 1, 2, 3 respectively. Since
A21c � A21b, A21a the equation reduces to

Ne N1q12 = N2 [A21a + A21b] .

Similar considerations with regard to the 1S0→1D2 line yield

Ne N1q13 = N3 [A31 + A32] .

The cross-section for photon absorption is proportional to A so that it is very
small for forbidden transitions and can be ignored. That, in fact, is the reason why
forbidden lines are important as coolants in nebulas allowing them to maintain an
equilibrium temperature. We are now in the position of evaluating the line ratio
presented above.

j(λ5007) + j(λ4959)

j(λ4363)
= N2 [A21ahν21a + A21bhν21b]

N3 [A32hν32]
. (467)

From the preceding discussion

N2 = Ne N1q12

A21a + A21b

N3 = Ne N1q13

A31 + A32
.

Substituting into (467) yields

j(λ5007) + j(λ4959)

j(λ4363)
= q12

q13

A21ahν21a + A21bhν21b

A21a + A21b

A31 + A32

A32hν32
.

Combining with (459) and (460) allows us to rewrite the above as

j(λ5007) + j(λ4959)

j(λ4363)
= Ω21

Ω31
eχ32/kT A21ahν21a + A21bhν21b

A21a + A21b

A31 + A32

A32hν32
.
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Fig. 15.4 Line ratios as functions of temperature for [OIII] and [NII]. For each
element, the lower curve is associated with the low densities limit, while the upper
curve represents the high density limit.

Using the A’s and Ω’s from Tables 15.1 to 15.4 we get

j(λ5007) + j(λ4959)

j(λ4363)
= 8.3 e3.3×104/T .

We see that the line ratio is very sensitive to the temperature. Application of this
procedure to measurements of nebulas yields temperatures generally in the range
of 8 × 103–1.2 × 104 K. Figure 15.4 shows the dependence of the line ratio on
temperature (along with an analogous ratio for NII).
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15.4.5 Line ratios as density probes

Consider the energy level diagram of SII. The line ratio j(λ6716)/j(λ6731) is
potentially a useful estimator of density because it has almost no dependence on
temperature since the two lines have almost identical excitation requirements. Al-
lowing for any possible range of density we have to evaluate the ratio by considering
excitation equilibria that include collisional de-excitation. Thus,

j(λ6716)

j(λ6731)
= N2a A2a1hν2a1

N2b A2b1hν2b1
≈ N2a A2a1

N2b A2b1
(468)

where the higher energy level in the doublet is labeled 2a and the lower level is 2b,
and where we have taken advantage of the fact that the ratio of photon energies is
almost unity. From (463)

N2a

N1
= Neq12a

A2a1

[
1

1 + Neq2a1/A2a1

]

and

N2b

N1
= Neq12b

A2b1

[
1

1 + Neq2b1/A2b1

]
.

Combining these two equations with (468) we get

j(λ6716)

j(λ6731)
= q12a

q12b
· 1 + Neq2b1/A2b1

1 + Neq2a1/A2a1
(469)

which represents the relationship between Ne and the line ratio. We have ignored
all other levels because they are generally too hard to excite for the range of tem-
peratures typical of nebulas.

In the low density limit, Ne � A2a1/q2a1 so that

j(λ6716)

j(λ6731)
= q12a

q12b
= Ω2a1

Ω2b1
eχ2a2b/kT ≈ Ω2a1

Ω2b1
= g2a

g2b
. (470)

For the 2 D5/2 (= 2a) and 2 D3/2 (= 2b) levels, g2a = 6 and g2b = 4 so that the line
ratio → 3/2 in the low density limit.

In the high density limit, Ne  A2a1/q2a1 so that (469) reduces to

j(λ6716)

j(λ6731)
= g2a

g2b

A2a1

A2b1
≈ 0.38

(see Tables 15.1 to 15.5). Figure 15.5 is a graphical representation of the dependence
of the line ratios of OII and SII on density. We see that the line ratio is indeed
sensitive, particularly in the vicinity of the critical density.
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Fig. 15.5 Line ratios as functions of density for OII and SII. Note the great sensi-
tivity to density in the range Ne =10–104.

15.4.6 Observations of nebulas

Using techniques such as those previously described, the temperatures and densities
of various astrophysical nebulas have been measured. Table 15.6 summarizes the
properties of some well-known nebulas.

15.4.7 Observations of active galactic nuclei

Distant, active galaxies have very bright nuclei which can be detected to great
distances. Analysis of the light from these active galactic nuclei (AGNs) can be
performed in the same way as in the case of the nebulas. These measurements have
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Table 15.6. Physical parameters derived from observations

Te (K) Ne (cm−3)

Nebula OIII NII Tk (K) OII SII

Orion 8600 10 200 7000–12 000 100–3000 1000
Trifid – – 8000–10 000 100–200 300–1000
Lagoon 8300 8 100 7000–10 000 100–1000 1000–3000
Omega 9000 7 000 – – –
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ing chapters can be seen here. Note the range from 1200 Å to 6900 Å.
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led to a better understanding of the Seyfert and quasar phenomena. The spectrum
shown in Fig. 15.6 illustrates the diverse spectral features found in AGNs.
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Chapter 16

Molecular lines in astrophysics

The phase of the interstellar medium that is predominantly molecular contains many
clues to the formation of stars and planets and may provide the link that connects
molecular astrophysical gases to the formation of life. The fact that molecules are
multi-nuclear and multi-electronic gives them a rich structure of energy levels.
The complex structure is fortunately mediated by the existence of separate regimes
of energy corresponding to the rotational, vibrational and electronic degrees of
freedom. I will now discuss the energy level structure of molecules starting with a
detailed discussion of the simplest systems, the diatomic molecules.

16.1 Diatomic molecules

16.1.1 Inter-nuclear potential

Given that atoms are characterized by the spatial scale length, a0, we expect that two
atoms will interact strongly when they are separated by a distance that is roughly
a0. Figure 16.1 shows that the inter-nuclear potential of two atoms has a minimum
near �r ≈ a0.

16.1.2 Electronic transitions

The energy scale of electronic transitions is given by the ionization potential

Eel ≈ e2

a0
= h̄ω

⇒ ωel → visible and UV.

273
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E∆

RR 0

E

Fig. 16.1 The inter-nuclear potential of a diatomic molecule. The figure on the
left shows the two nuclei surrounded by “electron clouds”. The figure on the right
shows a minimum in the potential for a separation near the Bohr radius.

16.1.3 Vibrational transitions

For a pair of nuclei, A and B, we can use a harmonic oscillator treatment

Mω2
viba2

0 ≈ Eel

⇒ ωvib =
(

Eel

Ma2
0

)1/2

=
(

h̄2

me Ma4
0

)1/2

so that

Evib = h̄ωvib ≈ h̄2

m1/2
e M1/2a2

0

≈
(me

M

)1/2
Eel .

We see that the energy range is reduced by the factor(me

M

)1/2

relative to the electronic energy range. For me/M ≈ 10−3–10−4 → ωvib → IR.
The resulting transitions are in the infrared.

16.1.4 Rotational transitions

The rotation of the molecule represents a form of angular momentum which must
also be quantized. The moment of inertia is defined as

I ≈ Ma2
0

so that the angular momentum of rotation becomes

L ≈ Iωrot = Ma2
0ωrot .
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Since the basic unit of L is h̄ we have

Ma2
0ωrot = h̄

⇒ Erot = h̄ωrot ≈ h̄2

Ma2
0

≈
(me

M

)
Eel .

Typically, ωrot is in the radio portion of the spectrum.

16.1.5 Summary

We see that the ratio of Erot to Evib to Eel has increments of (M/me)1/2 >∼ 40 so
that the whole problem is amenable to perturbation analysis. In light of that we will
now discuss the Born–Oppenheimer Approximation.

16.2 Diatomic molecules with two valence electrons

Consider a molecule with the indicated separations (Fig. 16.2). Since we are inter-
ested in the basic structure of the molecule let us neglect effects such as spin–orbit

A

R

B

1
2

r1A

r1B

r2B

r12

r2A

Fig. 16.2 The interaction associated with two valence electrons.
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coupling and spin–spin interactions. The Hamiltonian now becomes

H = HAB + Hel = −h̄2

2MA
∇2

A − h̄2

2MB
∇2

B − h̄2

2me

(∇2
1 + ∇2

2

) + V (471)

where the A and B refer to the nuclei A and B and where V represents all the
potentials

V = − Z Ae2

r1A
− Z Be2

r1B
− Z Ae2

r2A
− Z Be2

r2B
+ Z A Z Be2

R
+ e2

r12
.

We must be careful to keep track of all the spatial variables and recognize
that �∇A, �∇B, �∇1, �∇2 operate on �xA, �xB, �x1, �x2 respectively. We also note the
relationships

R = |�xA − �xB |, ri j = |�xi − �x j |.

16.2.1 The Born–Oppenheimer Approximation

Whenever we have used perturbation theory we have tried to separate wave functions
into products of wave functions corresponding to the separate energy regimes. Since,
HAB ≈ (me/M)Hel we can try

φ ≈ φel(�x1, �x2, R)φAB(�xA, �xB). (472)

We can now set up a time-independent Schrödinger equation using (471) and (472)
so that

φAB Helφel + HABφelφAB = EφelφAB . (473)

If we now recall Leibnitz’s rule

HABφelφAB = φel HABφAB − h̄2

MA

�∇Aφel · �∇AφAB

− h̄2

MB

�∇Bφel · �∇BφAB + φAB HABφel . (474)

The second and third terms can be combined to read

h̄2 ∂φel

∂r
R̂ ·

(
1

MB

�∇B − 1

MA

�∇A

)
φAB (475)

because, �∇Aφel = R̂(∂φel/∂ R) = −�∇Bφel [ �R = �xA − �xB].
For a bound molecule the quantity (475) → 0, on average. Furthermore, the

fourth term in (474) is much smaller than the left-hand side of (473). Thus, the only
important term is

HABφelφAB ≈ φel HABφAB .
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Fig. 16.3 The electronic energy levels of H2. The labeling of the energy states
is as follows. The ground state (n = 1) is labeled as X , while the excited states,
n = 2, 3, 4, . . . , are labeled B, C, D, . . . , respectively. The corresponding unbound
states are labeled b, c, d. . . The electronic orbital angular momentum is denoted by
Λ and represents the momentum about the internuclear axis. Values are given by
Λ = Σ, Π, � for 0, 1, 2, respectively. The left superscript represents the number
of spin states (e.g. triplet, singlet). The right superscript refers to the symmetry of
the electronic wave function upon reflection about any plane containing the two
nuclei. The right subscript refers to the symmetry of the electronic wave function
relative to the center of the molecule, which, in the case of H2, is the center of
symmetry of the electric field through which the electrons move. (From Shull, M.
T. and Beckwith, S., 1982, ARA&A, 20, pp. 163–190.) With permission, from the
Annual Review of Astronomy and Astrophysics, Volume 20 C© 1982 by Annual
Reviews www.annualreviews.org.



278 Molecular lines in astrophysics

Substituting into (473) yields

Helφel

φel
= − 1

φAB
HABφAB + E .

Note that the right-hand side now depends only on �xA and �xB while the left-hand
side depends only on �x1 and �x2. The equation can be separated according to

Helφel = Eel(R)φel (476)

HABφAB + Eel(R)φAB = EφAB . (477)

Equation (476) describes the energy states of the electrons and can be solved
using Coulomb and exchange integrals in a manner similar to that we used in the
case of the helium atom. Figure 16.3 illustrates the first few electronic energy levels
of the H2.

Equation (477) describes the states associated with the motion of the nuclei (the
vibrational and rotational degrees of freedom). We see that the Born–Oppenheimer
Approximation has yielded the desired result of separating the Schrödinger equa-
tions. We now go on to show that (477) can be further separated according to
translational, vibrational and rotational degrees of freedom.

16.3 Translational and internal degrees of freedom

To separate the internal degrees of freedom from bulk translational motions we
need to consider the behavior of the molecule relative to its center of mass. We
begin by introducing the center-of-mass (CM) coordinate

�XC M ≡ MA �X A + MB �X B

MA + MB
.

Defining the relative displacement, �R = �X A − �X B , the total mass, M = MA + MB

and the reduced mass µ = (MA MB)/(MA + MB) allows us to transform HAB to
CM coordinates such that

HAB = − h̄2

2M
�∇C M − h̄2

2µ
∇2

R

where, �∇C M and �∇R operate separately on �XC M and �R respectively. We therefore
look for eigenfunctions of the form

φAB = φtrans( �XC M )φint ( �R).
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Fig. 16.4 The geometry used to define the angular momentum.

Substitution into (477) yields

1

φtrans

(
− h̄2

2M
∇2

C Mφtrans

)
= 1

φint

(
h̄2

2µ
∇2

Rφint

)
− Eel(R) + E . (478)

Since ∇2
C M and ∇2

R operate independently, both sides must equal a constant

⇒ − h̄2

2M
∇2

C Mφtrans = Etransφtrans (479)

− h̄2

2µ
∇2

Rφint + Eel(R)φint = Eintφint (480)

where Eint = E − Etrans .
We see that we have achieved our goal of isolating the internal degrees of freedom.

All that is left now is to separate them into vibrational and rotational degrees of
freedom.

16.3.1 Vibrations and rotations

To separate (480) into vibrational and rotational components we begin by introduc-
ing spherical coordinates for R (Fig. 16.4)

∇2
R = 1

R2

[
∂

∂ R

(
R2 ∂

∂ R

)
− L2

h̄2

]
(481)

where �L = �R × (−i h̄ �∇R), as usual.
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Fig. 16.5 Rotational degrees of freedom.

Eel depends only on |R| so that (480) can be separated into radial and angular
parts so that

φint (R, θ, φ) = 1

R
Zvib(R)YJm(θ, φ)

where J, m are analogous to �, m. Thus

L2YJm = J (J + 1)h̄2YJm

L Z YJm = mh̄YJm

also in analogy to the angular momentum operator in atomic physics.
If we now substitute (481) into (480) using these relations we get

− h̄2

2µ

d2 Zvib

dR2
+ Eel(R)Zvib =

[
Eint − J (J + 1)h̄2

2µR2

]
Zvib (482)

which is Schrödinger’s equation for anharmonic oscillators in which YJm represents
the two independent degrees of freedom for directional orientation of the diatomic
molecules, that is two rotations (Fig. 16.5).

Now let us consider the radial degree of freedom, the vibrations, and we will
have separated out the three regimes of motion.

16.3.2 Vibrations – harmonic oscillator approximation

Let us assume small excursions relative to the mean separation, R0, where
E ′

el(R0) = 0, using a Taylor series expansion so that

Eel(R) = Eel(R0) + E ′′
el(R0)

2
(R − R0)2 + · · ·



16.4 Dipole transition probability 281

If we now define µω2
0/2 = E ′′

el(R0)/2 and x = R − R0 we can write the radial part
of (482) as

− h̄2

2µ

d2 Zvib

dx2
+ µ

2
ω2

0x2 Zvib = Evib Zvib. (483)

In (483) we have defined

Evib = Eint − Eel(R0) − J (J + 1)h̄2

2µR2
0

that is Eint = Eel(R0) + Evib + Erot .
Thus, we identify

Erot = J (J + 1)h̄2

2µR2
0

= J (J + 1)B J = 0, 1, 2, . . .

where B is the rotational constant of the molecule.
Equation (483) is the Schrödinger equation for a harmonic oscillator. The eigen-

values are therefore

Evib =
(

v + 1

2

)
h̄ω0 v = 0, 1, 2, . . .

Now that we have defined the energy level structure of diatomic molecules let us
consider transition rates in order to determine what transitions are actually possible
on these energy ladders.

16.4 Dipole transition probability

In the dipole approximation we can define a perturbation Hamiltonian as follows

Hd = − �E · �d
where �d is the dipole moment and �E is the electric field of the radiation field. The
dipole moment of a diatomic molecule is defined as

�d ≡ �del + �dnuc =
N∑

a=1

�da + Z Ae �X A + Z Be �X B

where �da ≡ −e �Xa is the dipole moment of the ath electron relative to the center of
mass of the molecule. The dipole transition matrix element can be defined in the
usual way so that

〈Ψ f |Hd |Ψi 〉 = −〈Φ f | �Eω · ( �del + �dnuc)|Φi 〉 (484)
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where

Φ = 1

R
Zvib(R)YJm(θ, φ)φtransφelΣ

where Σ is the electron spin wave function.

16.4.1 Pure rotational spectra

Let us consider the lowest energy transitions first. These are the transitions in which
the initial and final vibrational and electronic states are the same. Equation (484)
then becomes

〈Ψ f |Hd |Ψi 〉 =
∫ 2�

0
dφ

∫ �

0
Y ∗

Jm(θ, φ)〈Zvib|HD|Zvib〉YJ ′m ′(θ, φ) sin θ dθ (485)

where

〈Zvib|HD|Zvib〉 ≡ −
∫ ∞

0

�Eω · �d(R, θ, φ)|Zvib(R)|2 dR

and where

�D(R, θ, φ) ≡
∫

( �del + �dnuc)|φel( �X1, �X2, . . . , �X N ; R)|2 d3 X1 d3 X2 . . . d3 X N .

The symbol �D is commonly referred to as the permanent dipole moment. Thus, for
a transition to have a nonvanishing probability the permanent dipole moment must
not be zero.

For a diatomic molecule, the rather specific geometry allows a simple expression
for the nuclear dipole moment

�Dnuc = �dnuc = e

M
(Z A MB − Z B MA) �R = D(R)

�R
R

.

Consider now the case where

�Eω · �D = | �Eω|D(R) cos θ ≈ | �Eω|D0 cos θ

where θ is the angle between the electric vector and the z-axis and where we
have made the approximation that D(R) = D(R0) ≈ D0 which is valid when the
molecule is in the vibrational and electronic ground state.

Equation (485) now becomes

〈Ψ f |Hd |Ψi 〉 = −| �Eω|D0

∫ 2�

0
dφ

∫ �

0
cos θY ∗

Jm(θ, φ)YJ ′m ′ sin θ dθ.
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Table 16.1. Molecular transition rates

Molecule Transition Rest frequency (MHz) A (sec−1)

12C16O J = 1 → 0 115271.2 6 × 10−8

J = 2 → 1 230542.4 –
13C16O J = 1 → 0 110201.4 –
1H12

2 C16O JK − K + = 110 → 111 4829.66 3 × 10−8

211 → 212 14488.65 3 × 10−7

202 → 101 145602.97 –
212 → 111 140839.53 5 × 10−5

211 → 110 150498.36 –
16O1H J = 2/3, F = 1 → 2 1612.231 1.3 × 10−11

1 → 1 1665.402 7.7 × 10−11

2 → 2 1667.359 7.7 × 10−11

2 → 1 1720.530 9 × 10−12

The above allows us to construct the transition dipole moment

| �d J+1,J |2 ≡
J∑

m=−J

D2
0

∣∣∣∣
∫

Y ∗
Jm cos θYJ+1,m ′ dΩ

∣∣∣∣
2

= J + 1

2J + 3
D2

0 . (486)

With the transition dipole moment defined we can now use the standard formula
for A to get the transition probability

AJ+1,J = 4ω3

3h̄c3
| �Di f |2 = 4(J + 1)ω3

3(2J + 3)h̄c3
D2

0 . (487)

Equations (486) and (487) allow us to calculate the dipole transition rate between
adjacent rotational levels of molecules. Some rotational transition rates are listed
in Table 16.1.

The selection rule for rotational transitions is �J = ±1.

16.5 Transitions between vibrational levels

Similar considerations apply for vibrational levels. We proceed by replacing
the vibrational integral in (485) with 〈v′|HD|v〉. The selection rule is given by,
�v = ±1.

In general we have to allow for a change in rotational as well as vibrational levels.
The energy level associated with the transition is therefore given by

Ev J =
(

v + 1

2

)
h̄ω0 + J (J + 1)B.
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For the transition v′ → v such that �v = ±1, J can change by either +1 or −1.
Thus, the frequency of the emitted photon has two sets of possibilities

ω = ω0 + 2(J + 1)B/h̄ J ′ = J + 1 → R branch

ω = ω0 − 2J B/h̄ J ′ = J − 1 → P branch.

Paradoxically the natural vibrational frequency, ω0, is not possible because it re-
quires �J = 0 and it would violate the dipole selection rules. Instead there is a
band of rotational transitions associated with each ω0. The band is made up of the
P and R branches.

The dipole selection rules for rotational–vibrational transitions are �v = ±1,
�J = ±1.

16.6 Transitions between electronic levels

The retention of φel in (484) and (485) allows the calculation of transition rates
between levels having different electronic, vibrational and rotational states.

Electronic transitions do not require the molecule to have a dipole moment be-
cause the electronic dipole moment is governed by the charge distributions associ-
ated with the electronic levels as in the atomic case.

E

R

n'

n"

1
0

2

0
1

3
2

Fig. 16.6 Electronic transitions. Note the splittings that arise from the available
vibrational levels.
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Consequently, the �J can be 0 (so long as �Λ �= 0) and there is no restriction
on �v. The dipole selection rules are therefore �J = 0, ±1, �m = 0, ±1, �Λ =
0, ±1 and �S = 0.

The �J = 0 possibility introduces another branch, the Q branch which com-
plements the P and R branches and adds to the wealth of the band structure in
molecular spectra. Thus, for every electronic transition n′ → n, there is fine struc-
ture associated with the unrestricted vibrational transitions (see Fig. 16.6).

Each vibrational transition, in turn, consists of a band of rotational transitions
adding even finer structure. The final result is a rich structure of lines associated
with each electronic transition.

We now examine two specific molecules to illustrate some of these concepts and
to describe how their spectra are used as diagnostics of the interstellar medium.

16.7 The H2 molecule

We now examine the simplest possible molecule, H2. According to (483), the J =
1 → J = 0 rotational energy transition should have an energy gap of 2B, where
the rotational constant

B = h̄2

2µR2
0

= 10−14

for H2. Thus, h̄ω = 2 × 10−14 ergs = 0.014 eV so that the emitted frequency is
ν ≈ 1.6 × 1012 Hz (λ ≈ 200 µm).

There are no radio-frequency lines. The expected transitions fall into the far IR
window of the spectrum. Do we see these transitions? According to (484), the dipole
transition rate depends on the permanent dipole moment of the molecule. For H2

this dipole moment is 0 because of the obvious symmetry in the nuclear charge
distribution and the consequent symmetry of the charge to rotations. Furthermore,
the H2 molecule is not detectable at radio frequencies, which is unfortunate because
radio frequencies are the only ones immune to galactic extinction (attenuation by
interstellar dust). Thus, once in the molecular form, hydrogen becomes very difficult
to detect. We must turn to vibrational transitions. Recall from (483) that

Evib =
(

v + 1

2

)
h̄ω0

where ω0 is the natural or fundamental vibrational frequency of the molecule which
can be measured in the laboratory. For H2, therefore, ω0 = 3.3 × 1014 radians per
second and ν = 5 × 1013 Hz which is in the near IR part of the spectrum (wavelength
of 6 micrometers). Figure 16.7 illustrates the vibrational levels of H2. These are
subject to the selection rule, �v = ±1. Vibrational transitions can involve changes
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Fig. 16.7 Vibrational levels of H2.

Fig. 16.8 Observed spectrum of H2 in the UV portion of the spectrum near 1000 Å.
(From Spitzer, L. and Jenkins, J. B., 1975, ARA&A, 13, 133–164.) With permis-
sion, from the Annual Review of Astronomy and Astrophysics, Volume 20 C© 1982
by Annual Reviews www.annualreviews.org.

in rotational levels so that an overall modulation of the vibrational transition leads
to multiple spectral lines.

The electronic transitions have even greater energy gaps. Figure 16.8 shows
the UV spectrum of the electronic transition B1Σ+

u → X1Σ+
g . Note the bands in

the UV caused by the blending of lines from the P and R branches. Figure 16.9
illustrates schematically some of the lines visible in Fig. 16.8. The spectrum is
obtained by observing UV absorption in the direction of luminous blue stars.
These kinds of observations have revealed the presence of a diffuse interstellar
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Fig. 16.9 Examples of rotational transitions associated with a single electronic
transition. The labeled transitions correspond to rotational fine structure lines seen
in Fig. 16.8.

molecular gas. Observations of IR lines from vibrational transitions have con-
firmed the widespread existence of H2. Analysis of the H2 spectra has shown that
the diffuse molecular hydrogen has a density of n = 10–103 cm−3 and a temperature
T = 102–103 K.

The absence of radio lines in the spectra of H2 precludes probing the distribution
of H2 in the centers of molecular clouds where dust extinction is severe. Conse-
quently, studies of H2 tell us relatively little about the interiors of molecular clouds.
We must turn to a molecule that has rotational radio-frequency transitions.

16.8 The CO molecule

The CO molecule consists of a 12C and a 16O nucleus along with the associated
electrons. Its reduced mass is therefore (12 × 16/28) = 6.9 nucleons so that its B is
13.8 times smaller than that of H2. The resulting J = 1 → 0 transition frequency is
1.15 × 1011 Hz or a wavelength of 2.6 mm. This transition does fall into the radio
portion of the EM spectrum. Furthermore, since the molecule has a permanent
dipole moment there is a finite dipole transition rate so that the transition can be
actually observed.
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Fig. 16.10 The energy ladder of CO. The corresponding spectral lines from the
Orion and Trifid nebulas are also shown. Reprinted by permission of the publisher
from FRONTIERS OF ASTROPHYSICS, edited by Eugene Avrett, Cambridge,
Mass,: Harvard University Press, Copyright c© 1976 by the Smithsonian Institution
Astrophysical Observatory.

For CO, D = 0.112 × 10−18 esu cm so that the transition rate according to (217)
is A10 = 6 × 10−8. The value of A is low only because of the low frequency of
the transition. It is not a forbidden transition, it satisfies the dipole selection rule,
�J = ±1. Figure 16.10 shows observations of this transition from the Orion and
Trifid nebulas. Observations of the line strength provide information about the
temperature and density of the molecule’s environment since the rotational levels
are populated by collisions with neighboring molecules (mainly H2 as it turns out).
Figure 16.11 shows the dependence of the line strength on the temperature and
density. Observations of the spectral lines of the isotope 13C 16O yield additional
estimates of the ambient density. Thus, CO observations are excellent probes of
molecular clouds.

Vibrational–rotational transitions of CO illustrate nicely the band structures as-
sociated with the P and R branches as shown in Fig. 16.12 for the v = 1 → 0
transition. Transitions associated with J as high as 23 are noticeable. These lines
are found near a wavelength of 5 µm. Modern observations allow maps of emission
to be made, as shown in Fig. 16.13.
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Fig. 16.11 The dependence of line strength on temperature and density.

Fig. 16.12 Observed vibrational–rotational transitions of CO. (From: Mitchell,
George F.; Curry, Charles; Maillard, Jean-Pierre; Allen, Mark, 1989, ApJ, 341,
pp. 1020–1034.)



290 Molecular lines in astrophysics

Fig. 16.13 Maps of CO emission from the Orion nebula. The grey-scale repre-
sentation shows the distribution of line intensities for the J = 1 → 0 transition of
CO. (From: http://rst.gsfc.nasa.gov/sect20/A5.html.)

16.9 Other molecules

There is a great diversity of molecular lines arising from a plethora of molecules
which, when taken together, yield a complete picture of the conditions inside
molecular clouds. Fig. 16.14 shows spectral features arising from H2CO. The study
of molecules such as CO, OH and H2CO and others has led to a detailed under-
standing of the environments in which stars are born. Such studies are crucial to
an understanding of how stars (like our Sun) and planets (like our solar system)
are born. In the 1980s and 1990s the conventional view that stars form from a
symmetric collapse of a spherical cloud has been turned on its head. We now know
that molecular clouds form flat disks inside which the forming stars drive massive
outflows of molecular gas out of the collapse regions. These YSOs (young stellar
objects) are beacons of star formation in much the same way that radio continuum
jets and lobes are indicators of active galactic nuclei and quasars.
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Fig. 16.14 The energy ladder of H2CO. Also shown are the spectral lines from
the Orion and Trifid nebulas. Reprinted by permission of the publisher from
FRONTIERS OF ASTROPHYSICS, edited by Eugene Avrett, Cambridge, Mass,:
Harvard University Press, Copyright c© 1976 by the Smithsonian Institution
Astrophysical Observatory.

16.10 Life in the Universe

I close out the book by briefly discussing the question – is there other life in the
Universe? I discuss this from two points of view. First, we ask whether formation
of life is a universal process. Does it occur as a natural process or is it a fluke?
Secondly, I explore the optimal way to attempt communication with other potential
civilizations.

16.10.1 The building blocks of life

The fundamental basis of life on Earth is the complex carbon-based organic
molecules that are found in all terrestrial life forms. The interactions of these
molecules are optimized by the presence of water. Molecular clouds are so dense
that complex molecules can form and be protected from dissociation. The identifi-
able features include absorption bands (like the P , Q and R branches I previously
discussed) of silicate grains (the same as that found in minerals on Earth) and water
ice (H2O). The formation of water, at least, appears to be a ubiquitous process.
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Fig. 16.15 The radio spectrum of emission from the Galaxy and the Earth’s at-
mosphere. Note the emission minimum near 1 GHz. The minimum represents a
natural observing window optimized for the HI and OH lines.

What is even more astonishing is the evidence for organic molecules, which are
required to explain the details of the water bands seen in these spectra.

The presence of water and organic molecules in molecular clouds does not in-
dicate that these are then incorporated into stars and planets (they are not, because
they are destroyed near the forming star) but rather that these molecules are a natural
by-product of universal processes. Thus, if such molecules can be formed in molec-
ular clouds they can certainly form on the surfaces of newly formed planets. This
does not of course prove that life itself is a universal process but it is evidence in
that direction.

16.10.2 Communicating with other civilizations

We are technologically capable of sending and receiving communication signals
to a distance of a few tens of parsecs. Such distances encompass many Sun-like
stars. If there are technologically advanced civilizations among them we should
be able to communicate with them. The question is – what is the best way? The
radio part of the spectrum is the obvious place to begin because radio waves are
not attenuated by atmospheres and other gases and dust between us and the source.
However, the radio spectrum itself suffers from two major sources of noise. Radio
emission from the Earth’s atmosphere is strong at wavelengths shorter than 3 cm.
Radio emission from the Milky Way is strong at wavelengths longer than 30 cm.
Thus, the obvious window to which we can narrow our search is between 3 and 30
cm (see Fig. 16.15).
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It turns out that the neutral hydrogen line (HI) lies at 21 cm while strong lines of
OH can be found at 18 cm. Perhaps these are natural wavelengths at which to search
for artificial signals. Alternatively, one might attempt to search for signals between
these wavelengths since this region is relatively free of natural signals. Multi-
channel searches of this region for artificial signals are currently being carried out.
So far there are no results but we have only just begun.

16.11 Further reading
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