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Editor’s preface to the
Manchester Physics Series

The first book in the Manchester Physics Series was published in 1970, and other
titles have been added since, with total sales world-wide of more than a quarter
of a million copies in English }anguage editions and in translation. We have been
CAtremely encouraged by the response of readers, both colleagues and students. The
books have been reprinted many times, and some of our titles have been rewritten
as new editions in order to take into account feedback received from readers and
to reflect the changing style and needs of undergraduate courses.

The Manchester Physics Series is a series of textbooks at undergraduate level. It
grew out of our experience at Manchester University Physics Department, widely
shared elsewhere, that many textbooks contain much more material than can be
accommodated in a typical undergraduate course and that this material is only rarely
S0 arranged as to allow the definition of a shorter self-contained course. In planning
these books, we have had two objectives. One was to produce short books: so that
lecturers should find them attractive for undergraduate courses; so that students
should not be frightened off by their encyclopaedic size or their price. To achieve
this, we have been very selective in the choice of topics, with the emphasis on the
Udblb puy'SiCS lﬁgelllE‘T Wllll S0me 1llbl[UL[lVC, bllIIlUldling anu UbCIUI appllcaliﬁﬁs
Our second aim was to produce books which allow courses of different length and
difficulty to be selected, with emphasis on different applications. To achieve such
flexibility we have encouraged authors to use flow diagrams showing the logical



X Editors’ preface to the Manchester Physics Series

connections between different chapters and to put some topics in starred sections.
These cover more advanced and alternative material which is not required for the
understanding of later parts of each volume. Although these books were conceived
as a series, each of them is self-contained and can be used independently of the
others. Several of them are suitable for wider use in other sciences. Each author’s
preface gives details about the level, prerequisites, etc., of his volume.

We are extremely grateful to the many students and colleagues, at Manchester
and elsewhere, whose helpful criticisms and stimulating comments have led to many
improvements. Qur particular thanks go to the authors for all the work they have
done, for the many new ideas they have contributed, and for discussing patiently,
and often accepting, our many suggestions and requests. We would also like to
thank the publishers, John Wiley & Sons, who have been most helpful.

F. MANDL
R. J. ELLISON
January, 1987 D. J. SANDIFORD



Author's Preface

Astrophysics is of natural interest to students and provides an ideal framework for
demonstrating the power and elegance of physics. It is not surprising, therefore,
that astrophysics is playing an increasing part in physics education. Despite this,
there is a shortage of suitable textbooks for advanced undergraduates and beginning
graduate students. For the most part, existing books are either too elementary and
descripuve or too technical and encycmpacum

This book is based on lectures prepared for a one semester course on stars for
final-year undergraduates at Manchester University. To a large extent, the selection
of topics covered has been based on a personal judgement as to whether the topic is
important and whether it is also interesting to understand in terms of basic physics.
The book is unusual in two respects.

First, there is a strong emphasis on explaining the underlying fundamental
physics. Second, simple theoretical models are used to illustrate clearly the
connections between fundamental physics and stellar properties. The overall aim
is a self-contained, concise explanation of some of the most interesting aspects of
stellar structure, evolution and nucleosynthesis.

In organizing the material in this book, I have recognized that the reader’s
motivation to understand physics is enhanced if the astrophysical application is
near at hand and that an understanding of astrophysics requires a clear and concise
reminder of physical principles. Thus, I have attempted to maintain a balance
between physics and astrophysics throughout.

The first chapter introduces basic astrophysical concepts using elementary
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physical ideas which should be familiar to students pursuing a course on stars.
Subsequent chapters rely on more advanced physical ideas which are normally met
in the latter part of an undergraduate course. These ideas are carefully explained
before they are applied. The properties of matter and radiation are considered in
Chapter 2, heat transfer in Chapter 3, thermonuclear fusion in Chapter 4, stellar
structure in Chapter 5, and the end-points of stellar evolution, namely white dwarfs,
neutron stars and black holes, in Chapter 6. At the end of each chapter there are
a number of problems aimed at testing understanding and extending knowledge.
Hints for the solution of these problems are given at the end of the book.

In preparing the manuscript 1 have consulted many books and articles on
astrophysics, particularly those listed in the Bibliography. It is important to mention
here a subset books and articles which have been particularly influential. My interest
in stellar physics was initially stimulated many years ago by the deep insight and
directness of the articles by Salpeter, Weisskopf and Nauerberg. I have learnt much
from two superb books: Black Holes, White Dwarfs, and Neutron Stars by Shapiro
and Teukolsky, and Neutrino Astrophysics by Bahcall. In addition, Clayton’s elegant
article on Solar Structure Without Computers had a strong influence in Chapter 5.
I have also found very useful the wealth of detail in Cauldrons in the Cosmos,
Nuclear Astrophysics by Rolfs and Rodney, and in Astrophysics I, Stars by Bowers
and Deeming.

Finally, I would like to express my thanks to colleagues at Manchester University.
First, Franz Kahn and Franz Mandl read the early, primitive draft of the book, and
their envouragement and help led me to take the idea of writing this book seriously;
in particular, Franz Mandl’s advice as Editor of the Manchester Physics Series was
invaluable. Second, Judith McGovern and Mike Birse were very patient with me
when I sought their help after doing stupid things with the word processor.

May, 1993 A. C. PHILLIPS



CHAPTER

Basic concepts in astrophysics

The aim of this book is to explore the properties of stellar interiors and hence
understand the structure and evolution of stars. This exercise is largely based on
the application of thermal and nuclear physics to matter and radiation at high
temperatures and pressures. However before developing and applying this physics
it is useful to consider the subject as a whole using elementary physics. In this
brief and rapid overview we shall introduce some concepts which are fundamental
to stellar evolution, fix the order of magnitude of some important astrophysical
quantities and identify the basic observational information on stars. Many of the
topics mentioned are covered in more detail later in the book and in the references
listed at the end of the book. We begin by considering the processes which produced
the raw material used in the construction of the first stars.

1.1 BIG BANG NUCLEOSYNTHESIS

To a first approximation matter in the universe consists of hydrogen and helium,
with a smidgen of heavier elements such as carbon, oxygen and iron. It is now
recognized that the bulk of this helium was produced by nuclear reactions which
occurred during the first few minutes of the universe, a process called primordial
or big bang nucleosynthesis. We shall begin this introductory chapter by giving a
very brief outline of big bang nucleosynthesis so that the reader is aware of the

origin and nature of the raw material used in the construction of the first stars.
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A brief history of the universe

In order to understand the history of the universe it is necessary to account for
two important facts regarding the present universe: firstly the universe is expanding
in such a way that if we extrapolate back in time it appears that the universe had
infinite density some 10 to 20 billion years ago. Secondly the whole of space is
filled with a thermal radiation at a temperature of about 3 K, the cosmic microwave
background radiation discovered by Penzias and Wilson in 1965. These facts are
consistent with the idea that the universe began with a sudden decompression, a
big bang.

The big bang is not a local phenomenon with matter being expelled in all
directions from a point in space. The big bang happened simultaneously everywhere
in space. Everywhere was a point at the time of the big bang if the universe is
closed; i.e. a finite volume of space with no boundary. But if the universe is open,
the big bang occurred all over a space of infinite extent. According to the standard
model of the big bang, the universe developed along the following lines:

e Nanoseconds after the big bang the universe was filled with a gas
of fundamental particles: quarks and antiquarks, leptons and antileptons,
neutrinos and antineutrinos, and gluons and photons. When the temperature
fell below 10'* K, the quarks, antiquarks and gluons disappeared, annihilating
and transforming into less massive particles. Fortunately because the number
of quarks slightly exceeded the number of antiquarks, a few quarks were left
behind to form the protons and neutrons present in today’s universe. The
heavier leptons and antileptons were also annihilated as the temperature fell.

e In the interval between a millisecond to a second after the big bang the
universe consisted of a gas of neutrons and protons electrons and positrons
neutrinos and antineutrinos, and photons. As the temperature fell, the density
of the universe became too low for the neutrinos to interact effectively with
matter; this occurred when the temperature was about 10'® K. These non-
interacting, decoupled neutrinos now form a universal gas which, because of
the expansion of space, has cooled to a temperature of about 2 K. As yet it
has not been possible to detect this universal background of neutrinos. Soon
after the decoupling of the neutrinos, the annihilation of electron-positron pairs
removed all of the positrons and most of the electrons.

e After 100 seconds, neutrons combined with protons to form light nuclei,

ultimately leading to a universe in which approximately 75% of the mass

consists of hydrogen and 25% is helium. We shall explain later how these
percentages were determined by the ratio of neutrons to protons in the universe
when the neutrinos deooupled

After 300,000 years the temperature feil to 4000 K, low enough for the

formation of stable atoms. Hydrogen and helium nuclei combined with

electrons to form neutral hydrogen and helium atoms. As a result, the photons
in the universe ceased to interact strongly with matter; in other words, the
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universe became transparent to electromagnetic radiation. This radiation, freed
from interaction with matter at a temperature near 4000 K, has now cooled to
a temperature of about 3 K because of the expansion of the space. It is the
cosmic microwave background radiation which was first detected by Penzias
and Wilson. This radiation is slightly warmer than the as yet undetected
neutrino background at 2 K because, unlike neutrinos, photons were warmed
by the heat generated by electron—positron annihilation in the early universe.

e The universe continued to expand and cool until it reached its present lumpy
condition with most of the matter assembled in stars, galaxies and clusters of
galaxies.

This history of the universe is summarized in Table 1.1.

TABLE 1.1 A history of the universe according to the big bang. As the universe cooled
quarks produced protons and neutrons, protons and neutrons formed helium and other
light nuclei, and then nuclei and electrons combined to form neutral atoms. This led to
today’s thermal universe in which matter is assembled in stars and galaxies with a universal
background of photons and neutrinos at temperatures of about 3 and 2 K, respectively.

Cosmic time Temperature Events

t~107%s kT = 10° MeV Quarks form neutrons and protons
t~1s kT =~ 1 MeV Neutrinos decouple

tr~4s kT ~ 0.5 MeV Electron—positron annihilation

{ ~ 3 min kT ~ 0.1 MeV Helium and other light nuclei formed
123 x 10° years kT ~ 0.3 eV Atoms formed and photons decouple

The synthesis of helium

We shall now focus on the processes which led to the formation of helium
and other light atomic nuclei. To understand these processes we shall follow what
happened to the gas of neutrons and protons as the universe expanded and cooled
from around 10'° to 10° K. At temperatures above 10'° K, any deuteron formed
from a neutron—proton collision was quickly disrupted by a collision because the
thermal energies involved often exceeded the 2.2 MeV binding energy of the
deuteron. The only nuclei existing at these temperatures were single protons and
Neutrons.

In normal circumstances a neutron beta decays with a mean life of about 15
minutes to a proton, an electron and an anti-neutrino,

n—p+e +v..

However at high temperature and density, neutrons can be transformed to protons,
and protons can be transformed to neutrons in collisions involving thermal
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neutrinos, anti-neutrinos, electrons and positrons. In particular, neutrons and protons
in the early universe were continually transformed into one another by the reactions:

Vetn=e +p and V.+tp=c¢e" +n. (1.1)

Because neutrons are more massive than protons, more energy had to be borrowed
from the gas to make a neutron than a proton. Hence the neutrons were outnumbered
by the protons. Indeed, the ratio of neutrons to protons at equilibrium at temperature
T is given by a Boltzmann factor:

Nn _ exp[—Am c¢* /kT), (1.2)
NP

where Am is the neutron—proton mass difference, 1.3 MeV/c?.

The Boltzmann factor in Eq. (1.2) implies that the neutron—proton ratio decreased
rapidly as the expanding universe cooled. But as the temperature and density
decreased the neutrino reactions (1.1) became less frequent, and neutrons and
protons were transformed into one another at a slower rate. Eventually, the reaction
rates became too slow to maintain thermodynamic equilibrium. The neutrino
reactions fizzled out, and the numbers of neutrons and protons ceased to change
rapidly. Calculations indicate that the neutron—proton ratio became almost frozen
at a value of about 1/5 when the temperature was just below 10'° K. In fact, this
ratio continued to decline slowly because neutrons are unstable; they beta-decay to
protons with a mean life of about 15 minutes.

After a few minutes, when neutron decay had reduced the neutron—proton ratio
to about 1/7, the universe was cool enough for a sequence of two-body reactions

to construct bound states of nentrons and nrotons, At about 1ﬂ9 K deuteron nuclei

LASIITLE WL LIRSRALINE DRGSR RAWLARIRURED Qaile pAINSRRIRES. 4 A LEL WA WAl AL LA AWE

began to be present in significant amounts as neutron—proton radiative capture,
n + p — d + v, competed successfully with deuteron photodisintegration,
v + d — n + p. Capture of neutrons and protons by deuterons led to the formation
of tritons and helium-3. These nuclei in turn captured protons and neutrons to form
helium-4. Since helium-4 is by far the most stable nucleus in this region of the
periodic table, nearly all the neutrons that existed when the temperature was 10° K
were converted into helium-4. Moreover, the absence of stable nuclei with mass 5
and 8 prevented the formation of more massive nuclei, apart from small amounts
of lithium-7.

Thus big bang nucleosynthesis took a gas of neutrons and protons and made
helium-4 and a smattering of other light nuclei, namely deuterons, helium-3 and

lithium-7 nuclei. All the neutrons were used in this construction, but many of
the nrotons were left over. In fact. the theorv of big bano nucleosvnthesis makes

SiAv pra RS Awin Aad AKERLy LAEW LAEWRSR Y AR UAliE LiAAWRS Y LiviAWiRio LliGd s

a clear-cut prediction for the abundance of helium-4, but the predictions for the
other light nuclei are less certain, being dependent on the uncertain density of the
universe; see, for example, Bernstein et al. (1989).



1.2 Gravitational contraction 5

We can estimate the helium-4 abundance produced in the big bang by noting
that it is determined by the neutron to proton ratio in the universe just before
nucleosynthesis. Because this ratio was about 1/7 we shall focus on 2 neutrons
and 14 protons. These formed a single helium-4 nucleus containing 2 neutrons
and 2 protons, and there were 12 protons left over. Thus 16 atomic mass units of
neutrons and protons produced one helium nucleus of mass 4. The fraction of the
mass converted into helium was 4/16 or 25%.

Hence, big bang nucleosynthesis led to a universe in which about 25% of mass
was helium. The remaining 75% of the mass was mostly hydrogen formed from
the left-over protons. This material was the raw material for the first stars.

1.2 GRAVITATIONAL CONTRACTION

Gravity is the driving force behind stellar evolution, Most importantly it leads
to the compression of matter and thence to the formation of stars. It leads to the
conditions where nuclear forces play a constructive role in thermonuclear fusion.
The transformation of hydrogen to helium in the hot compressed centres of stars
is often followed by a further compression and the transformation of helium into
more massive elements such as carbon, oxygen and iron, the star dust out of which
we are all made.

In order to identify some simple and general features of gravitational contraction,
we consider in Fig. 1.1 a spherical system of mass M and radius R, in which the
only forces acting are due to its self-gravity and the internal pressure. To keep
the analysis as simple as possible we shall assume spherical symmetry and no

rotational motion. The density and pressure at a distance r from the centre of the

system will be denoted by p(r) and P(r).

We begin by finding an expression for the acceleration of a mass element located
at a distance r from the centre. The matter enclosed by a spherical shell of radius
r has mass

m(r) = / o(r'y 4nr’? dr',
0

and acts as a gravitational mass situated at the centre giving rise to an inward
gravitational acceleration equal to

Gm(r)
r2

g(r) =

Thara to alan T camaen n Frma aricime Ermin tha meacciten mradiamt Ta femd ithic
LIC 1> didU, 11 gC 1cidl, d 1OUICC dllblllg 11Ul LLIIC pICbbulC 5[dulClll. A0 LU LIS
we consider a small volume element located between radii r and r + Ar, of cross-
sectional area AA and volume Ar AA, as illustrated in Fig. 1.1. A net force arises

if the pressure on the outer surface of the volume is not equal to the pressure on the
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gAM | (P+APYAA
—

Fig. 1.1 A spherical system of mass M and radius R. The forces acting on a small element
with volume Ar AA at distance r from the centre due to gravity and pressure are indicated.
The gravitational attraction of the mass m(r) within r produces an inward force which is
equal to g(r) p(r) Ar AA = g(r) AM. If there is a non-zero pressure gradient at r, the
difference in pressure on the inner and outer surfaces leads to an additional force which can
oppose gravity.

inner surface. Indeed, the inward force on the volume element due to the pressure
gradient is

dP dP
P(r)+~d—r Ar —P(r)| AA = P Ar AA.

Bearing in mind that the mass of the volume element is AM = p(r) Ar AA, we
deduce that the inward acceleration of any element of mass at distance r from the
centre due to gravity and pressure is

2

dpr
_9r ey = (1.3)
a2 S T e dr /

Note that to oppose gravity the pressure must increase towards the centre.

Free fall

We shall now assume that there is m ssure gradien avi
collapse. In this case each mass element at r moves towards the centre with an
acceleration g(r) = Gm(r)/r*. Spherlcal symmetry implies that each spherical shell

of matter converges on the centre. In particular, a shell of matter enclosing a mass
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my collapses under gravity with an inward acceleration Gmg/r?, and the kinetic
energy of the shell increases as its gravitational potential energy decreases. To find
the inward velocity of the shell when its radius is r, we assume that the shell is
initially at rest at a radius rg, and that it encloses a mass which remains constant

during collapse. The inward velocity can then be found from the conservation of
energy equation:

1 {drr _Gmg  Gmy

| r  n

It follows that the time for free fall to the centre of the sphere is given by

0 0 —-1/2
dt 2G 2G
IrF =f —dr = —f [ Mo _ mo} dr.
r dr ro ¥ o

This may be simplified by introducing the parameter x = r/ry to give

t _ rg 1/2/1 x 1/2dx
= 12Gmyg o [1—x '

The integral in this equation may be evaluated by substitution of x = sin® § to give
/2.

We have shown that the free-fall time for a shell of radius ry enclosing mass
my depends on my/r] ; i.e. it is determined by the average density of the matter
enclosed. It follows that, in the absence of an internal pressure gradient, a sphere

with an initial, uniform density of p will collapse as a whole in a time given by
1/2
t 3 1 (1.4)
FF = .
32Gp

Collapse under gravity is never completely unopposed. In practice the energy
released by the gravitational field of the collapsing system is usually dissipated
into random thermal motion of the constituents, thereby creating a pressure which
Opposes further collapse. However, free fall is a relevant approximation if energy
is easily lost by radiation, or if the constituents of the collapsing system can absorb
energy by excitation or dissociation. For example, an interstellar cloud of molecular
hydrogen can collapse rapidly as long as it is transparent to its own radiation, or as
long as hydrogen molecules can be dissociated into atomic hydrogen, or as long as
atomic hydrogen can be ionized. But the gravitational energy released in an opaque
cloud of ionized hydrogen will be trapped as internal thermal motion. The internal
pressure will rise and slow down the rate of collapse. The cloud will then approach
hydrostatic equilibrium.
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Hydrostatic equilibrium

Figure 1.1 and Eq. (1.3) indicate that an element of matter at a distance r from
the centre of a spherical system will be in hydrostatic equilibrium if the pressure
gradient at r is

dP __Gm(rp(r) 1)
dr r?
The whole system is in equilibrium if this equation is valid at all radii, r. In this
case it is possible to derive a simple relation between the average internal pressure
and the gravitational potential energy of the system.

To derive this relation we multiply Eq. (1.5) by 47r° and integrate from r = 0

to r = R to obtain

R R 2
/ 47rr3%£dr = — / Gm(r)pr)dnr dr.
0 0

¥ ¥

Both sides of this equation have simple physical significance. The right-hand side
is simply the gravitational potential energy of the system:

m=M
Egr = — / Gm(r) dm, (1.6)

m=0 r

where dm is the mass between r and r + dr; i.e. p(r) 4mr? dr. The left-hand side
can be integrated by parts to give

The first term is zero because the pressure on the outside surface at r = R is zero.
The second term is equal to —3(P)V, where V is the volume of the system and
{P) is the volume averaged pressure. Hence, we conclude that the average pressure
needed to support a system with gravitational energy Egg and volume V is given
by
1 Egg

P)=——-—. 1.7

(P) = ~32 (1.7
In words, the average pressure is one third of the density of the stored gravitational
energy. This expression for the average pressure needed to support a self-gravitating

£ 1 MNad tha Vieial TL
System 15 Caiicd the Viriai ineorem.

The physical origin of this pressure depends on the system. Later in the book, in
Chapter 2, we shall consider the pressures generated by classical and quantum gases
of both non-relativistic and ultra-relativistic particles. But at this stage we would
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Jike to focus on the relation between the pressure and the internal energy density
due to the translational motion of the particles, and in so doing we shall emphasize
the profound difference in the behaviour of non-relativistic and ultra-relativistic
systems.

To derive this relation we consider a gas of N particles in a cubical box of
volume L3 with its edges orientated along the x, y and z axes. Initially we shall
focus on a gas particle with velocity v = (v, vy, v;) and momentum p = (p,, p,, p;).
As this particle bounces around the box it strikes the sides at regular intervals. In
particular, the rate at which it strikes one of the sides perpendicular to the z axis
is v;/2L, and in so doing it imparts a momentum 2p, with each strike. Hence the
rate of momentum transfer to unit area of the side is p,v,/L>. We now consider all
N particles in the box. The pressure due to these particles on a side perpendicular
to the z axis is

N
P= F(Pz%);

where the brackets denote an average over all the particles. If the gas is isotropic
all directions of motion for the particles are equally likely and

(Pxvx) = (Pyvy) = (p2vz) = (P V)/3,

where

p . V = px’Ux +pyvy +pzvzn
Thus, the pressure on each side of the box is the same and equal to

P=3(p-V) (1.8)

where 7 is the number of particles per unit volume.

Even though this expression for the pressure in an ideal gas has been derived
using classical physics, it is also valid when quantum effects are important, as in
a degenerate electron gas; see Section 2.1. Furthermore, it is also valid when the
kinematics of the gas particles are described by special relativity.

We shall now compare and contrast two types of ideal gas, a gas of non-
relativistic particles and a gas of ultra-relativistic particles. The general relation
between the energy €p and the momentum p of a particle of mass m is

eg = p*c? + m*c?,

and the velocity of the particle is v = pc?/ep. The familiar non-relativistic limit
is found by assuming p << mc, so that ¢, = mc* + p?/2m and v = p/m. The
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less familiar ultra-relativistic limit is found by assuming p >> mc, so that ¢, = pc
and v = ¢. The general expression (1.8) for the pressure in an ideal gas takes the
following forms in the the non-relativistic and ultra-relativistic limits:

e For a gas of non-relativistic particles of mass m, p- v = mv* and the pressure
becomes

2 1 2
P= gn(imvz) =3 of the translational kinetic energy density. (1.9)

e For a gas of ultra-relativistic particles p- v = pc and the pressure becomes

1 1
P= gn(pc) =3 of the translational kinetic energy density. (1.10)

We shall now show that the replacement of the factor of % by % when the particles
become ulira-relativistic has a profound effect on the hydrostatic equilibrium of
gases under gravity.

Equilibrium of a gas of non-relativistic particles

Consider a gas of volume V held together by gravity. If the gas is ideal and if
the gas particles are non-relativistic, then the average pressure implied by Eq. (1.9)
is

where Exr is the kinetic energy due to the translational motion of all the particles
in the entire gas. Comparison with the average pressure needed for hydrostatic
equilibrium, Eq. (1.7), shows that the gravitational and kinetic energies of an ideal
gas of non-relativistic particles in hydrostatic equilibrium under their own gravity
are related by

2Exp + Egr = 0. (111)

If the particles have no internal excited degrees of freedom, the total energy
of the gas is the sum of the kinetic and gravitational energies of the particles,
Eror = Exe + Egr. Equation (1.11) implies that this total energy can be expressed
in terms of either the kinetic energy or the gravitational energy of the particles; in
particular

1
EIOT = _EKE and EIOT = EEGR. (112)
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Equations (1.11) and (1.12) are of fundamental importance in astrophysics. They
can be used to describe the hydrostatic equilibrium of a system of self-gravitating
non-relativistic particles.

The first point to note is that if such a system is in hydrostatic equilibrium, it
is bound with a binding energy, —E7or, equal to the internal kinetic energy due to
the translational motion of the gas particles. This implies that tightly bound clouds
of gas have gas particles with high kinetic energy; in other words they are hot.

The second point to note is that if the system evolves slowly and remains close
to hydrostatic equilibrium, the change in the gravitational and kinetic energies are
simply related to the change in the total energy; for example, a 1% decrease in the
total energy would be accompanied by a 2% decrease in the gravitational energy
and a 1% increase in the kinetic energy.

Such changes characterize the behaviour of many astrophysical systems, For
example let us consider a cloud of gas which is losing energy from its surface by
radiation. If the energy loss from the surface of a gas cloud is supplied by the release
of gravitational energy, the gravitational energy decreases and the internal thermal
energy increases; the cloud will contract and get hotter. Indeed, for contraction
close to hydrostatic equilibrium, half the gravitational energy released is lost from
the surface and the other half is dissipated as heat; this heat provides the increase
in pressure needed to oppose the increasing forces of gravity in the contracting
cloud. However, if the energy loss from the surface can be supplied by the release
of nuclear energy by thermonuclear fusion, the total energy Exr + Egr remains
constant and there is no need for the cloud to contract; the sun behaves in this
way. But if nuclear fusion releases excess energy, there is an increase in the total
energy. This implies an increase in the gravitational energy and a decrease in the
kinetic energy; the cloud expands and cools. Conversely, nuclear reactions which

ahonel amarccr 31 anica o gac ~leaid fem o mrirant o koot e
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Equilibrium of a gas of ultra-relativistic particles

We shall now show that the situation with regard to hydrostatic equilibrium
is markedly different when a gas of ultra-relativistic particles is held together
by gravity. In this case the pressure inside the gas is given by Eq. (1.10), and
consequently the average pressure in the system is one third of the average kinetic
tnergy density. If we equate this pressure to the average needed for hydrostatic
equilibrium, Eq. (1.7), we find that the kinetic and gravitational energies are now
related by

Exp +Egr = 0. (113)
In words, hydrostatic equilibrium is possible only if the binding energy is zero. We

have a system which is on the cusp of being bound and unbound. Indeed, as the
ultra-relativistic limit is approached the binding energy decreases and the system
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is easily disrupted. This type of instability occurs in stars in which a substantial
fraction of the pressure arises from radiation; i.e. from a gas of ultra-relativistic
particles called photons. It can also occur in stars supported by the pressure of a gas
of degenerate electrons if these electrons become very energetic. These instabilities
are considered in detail in Sections 5.4 and 6.1.

Equilibrium and the adiabatic index

The stability of hydrostatic equilibrium is often described in terms of the
adiabatic index, ~, of the gas. This is particularly useful when the constituents
of the gas have vibrational and rotational degrees of freedom.

The adiabatic index ~ is used to describe the relation between the pressure and
the volume of a gas during an adiabatic compression or expansion. For such a
process, PV? is a constant; i.e. for small adiabatic changes in the volume and
pressure

d dP
¥ 7V+F=o, or d(PV) =P dV+V dP=—(y— 1)P dV.

As there is no heat transfer in an adiabatic compression or expansion, the change
in the internal energy of the system is determined solely by the work done. If
we denote the internal energy due to translational kinetic energy and the excited
internal degrees of freedom of the gas particles by Eyy, then

dEy = —P dV
and hence

1
dEjy = ——d
IN po— (PV).

If the adiabatic index + is constant, we can deduce the following useful relation
between the internal energy and the pressure of the gas:

We now consider a self-gravitating gas with adiabatic index ~, which is in
hydrostatic equilibrium. The average pressure in such a gas can be expressed in
terms of the internal energy and ~, and, by using the virial theorem Eq. (1.7), in
terms of the gravitational potential energy:

Enn 1 Egr
P)=(~— 1) =& = __ 2R
() (7 ) vV 3 Vv



1.3 Star formation 13

Thus, a sclf-gravitating gas with adiabatic index v is in hydrostatic equilibrium if
3("}/ - 1) EIN + EGR =0. (114)

Equations (1.11) and (1.13) are particular cases of this more general relation
between the internal and gravitational potential energies of a gas. These particular
cases can be obtained from Eq. (1.14) by specializing to a gas of particles with
no excited internal degrees of freedom so that Ejy = Exg, the internal kinetic
energy due to translational motion of the particles, and then setting v = 5/3 for
non-relativistic particles and ~ = 4/3 for ultra-relativistic particles.

The total energy of a gas with adiabatic index ~ in hydrostatic equilibrium is
given by

Eror = Eiv +Egr = —(37 — 4) Ep. (1.15)

We note that the gas is bound if v > 4/3. Furthermore, the binding energy is
small if v is near to 4/3, and when this is the case a small change in the total
energy is accompanied by much larger changes in the internal and gravitational
energies. For example, if v is 1% bigger than 4/3, a 1% decrease in the total
energy is accompanied by a 25% increase in the internal kinetic energy and a 26%
decrease in the gravitational potential energy. It is clear that the stability of such a
system is precarious. Indeed, instability is expected whenever y is reduced towards
4/3. In this context, we note that for particles with no excited internal degrees
of freedom ~ = 5/3 when they are non-relativistic, but -y approaches 4/3 as they
become predominantly ultra-relativistic. The adiabatic index can also approach 4/3
when there are processes which provide new ways of absorbing heat, such as the
Aicgmniaiimi f st e rntiem A At SR, TR K AL ISR .
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nuclei or the production of particles. Such processes will tend to render hydrostatic
equilibrium precarious.

L3 STAR FORMATION

It seems that most stars are formed in clusters. There are two characteristic
kinds of clusters, globular and open. Globular clusters are compact aggregations of
many thousands of stars. Studies of their spectra indicate that the member stars are
deficient in heavy elements, such as carbon, oxygen and iron. This lack of heavy
clements suggests that these stars are old stars formed from primordial hydrogen
and helium. In contrast, open clusters are loose collections of 50 to 1000 stars.
These stars are rich in heavy elements, indicating that they are oomparatlvely young

Starc faremaad Cominn cannddae ae L U ¥ oann i Somceinn o R 3
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generations of stars.

There is as yet no complete understanding of how stars emerge from interstellar
gas clouds. These clouds seem to have too much kinetic energy and too much



14 Basic concepts Chap. 1

angular momentum to condense into stars, and there is much interest in how this
excess energy and angular momentum can be shed. Despite this uncertainty some
general features of star formation can be identified. To do this we shall give a
qualitative description of the gravitational contraction of clouds of uniform density.

Conditions for gravitational collapse

In order to begin the process of the condensation into a cluster of stars, a gas
cloud must be sufficiently compact so that the attractive forces due to gravity are
not overwhelmed by the dispersive effects of the internal pressure. In particular, the
cloud becomes bound if the magnitude of the gravitational potential energy is larger
than the internal kinetic energy. We shall determine an approximate condition for
condensation by considering a cloud of radius R and mass M containing N particles
with average mass m at a uniform temperature T, for simplicity we shall assume
that the cloud consists predominantly of hydrogen.

The gravitational potential energy can be evaluated with the aid of Eq. (1.6) to
give

GM?
Egr = —fT, (1.16)

where f is a numerical factor which depends on the density distribution within the
cloud. It is straightforward to show that f = % for a spherical cloud of uniform
density, but a larger value is obtained if the density is higher towards the centre;
in our rough calculation we shall adopt a value of unity for f. The thermal kinetic
energy of the cloud is found by noting that each particle contributes %kT . Hence

3
Exg = SNAT. (1.17)

The critical condition for the onset of condensation is

’EGRI > Em. (1.18)

This condition implies that a cloud of radius R can condense if its mass exceeds
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The subscript J has been used because these critical values for the mass and density
are often called the Jeans mass and density.

In fact, it is most useful to express the condition for condensation in terms of
the average density of the cloud. We note that the critical density given by Eq.
(1.19) is low and hence more easily achieved if the mass of the cloud is large. For
example, a cloud of molecular hydrogen at a temperature of 20 K with a mass of
2 x 10°3 kg, which is equivalent to 1000 solar masses, could condense if its density
reaches 10~%% kg m: i.e. about 10° molecules per cubic metre. The critical density
for a similar cloud with a mass equal to 1 solar mass is a million times higher !

These considerations suggest that it is natural to regard the condensation of gas
clouds into stars as taking place in several stages. First, a massive extended gas
cloud contracts; its mass may be thousands of times the solar mass. When the cloud
has compressed and its density has become high enough, smaller parts of it will be
able to contract independently. Ultimately, the cloud will be able to fragment into
many parts, each with a mass comparable to the solar mass. These fragments may
then condense to form a cluster of primitive stars, protostars.

Contraction of a protostar

Equation (1.19) implies that, when a cloud at a temperature of 20 K reaches a
density of 1071® kg m—, a fragment with a mass comparable with the solar mass
(i.e. 2 x 10°° kg) is capable of contracting independently. At this stage the fragment
forms a protostar with a radius of the order of 10'*> m, about a million times larger
than the sun. It collapses freely, unopposed by internal pressure, if the gravitational
energy released is not converted into random thermal motion. This is possible as
long as a substantial fraction of the energy released is absorbed by the dissociation

PRy Ty R I I PR -, U

of hydrogen molecules and by the ionization of hydrogen atoms.

The energy needed to dissociate a hydrogen molecule is ¢p = 4.5 €V, and the
energy needed to ionize a hydrogen atom is ¢y = 13.6 eV. Hence the energy needed
1o dissociate and ionize all the hydrogen in a protostar of mass M is approximately

M M
— €p+ — €,
2mH nmy

where my; is the mass of the hydrogen atom. If we assume that this energy is
supplied by the gravitational collapse of a protostar from an initial radius R, to a
final radius R,, then

GM?* GM? M M
— — R Lo ept+ —— €. (1.20)
ny n ZIMH my

In particular, the energy needed to dissociate and ionize the hydrogen in a protostar
with a mass equal to the solar mass is 3 x 10°° J. Such a protostar will collapse
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freely from its initial radius of R, =~ 10" m to a radius Ry ~ 10'! m ; i.e. the
radius shrinks 10,000 fold to a size equal to a hundred times the solar radius. The
time scale for this collapse is set by Eq. (1.4), which gives the free-fall time for an
object of initial density p. In this case p = 1071® kg m~* and the time scale is of
the order of 20,000 years.

When most of the hydrogen is ionized, and as the protostar becomes increasingly
opaque to its own radiation, the gravitational energy released is converted into
random thermal energy of electrons and ions. The internal pressure rises and the
collapse of the protostar is slowed down, and hydrostatic equilibrium is approached.

It is easy to estimate the average internal temperature of a protostar at the time
when the rapid collapse under gravity is replaced by slow contraction. To do so, we
use the virial theorem (1.11) to relate the internal kinetic energy and gravitational
energy of a protostar when it is near to hydrostatic equilibrium. The thermal kinetic
energy of the hydrogen ions and electrons in the protostar at an internal temperature
T is

M

Exr ~ — 3kT. (1.21)
my

The gravitational energy at the end of the period of rapid collapse is given by
Eq. (1.20); because Ry >> R, we have

GM? M M
Er~ ———~—|— ep+ — 1.22
o R, [ZmH P my GI} (122
According to the virial theorem (1.11),
2Exr + Egr =0.

Hence, a protostar approaches hydrostatic equilibrium at a temperature given by
1
kT =~ E[eD +2¢]~2.6€V. (1.23)

This corresponds to an average internal temperature of 30,000 K. Note that this
estimate is independent of the mass of the protostar.

The subsequent slow contraction of the protostar is governed by the opacity of the
ionized interior. This opacity controls the rate at which energy is lost as radiation
from the surface, and hence the rate of release of gravitational energy. The time scale
for the contraction is of the order of 107 to 108 years. The virial theorem can again
be used, because the protostar remains close to a state of hydrostatic equilibrium.
According to Eq. (1.11) and Eq. (1.12), half the gravitational energy released is lost
from the surface; the other half is stored as internal kinetic energy. The temperature

and pressure at the centre of the protostar increase until the conditions are suitable
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for the thermonuclear fusion of hydrogen. The energy released by nuclear fusion
lessens the need for the release of gravitational energy, and the protostar ceases
to contract. True stardom is reached when the nuclear reaction rate is sufficient to
supply the radiant energy lost from the surface.

Conditions for stardom

Not all self-gravitating bodies achieve stardom. A hot gas of classical electrons
and ions is not the only way to resist gravity. Gravitational contraction can also be
opposed by a cold, dense gas of degenerate electrons. In such a gas, the electrons
are governed by the laws of quantum mechanics and occupy the lowest possible
energy states in accordance with the Pauli exclusion principle. A degenerate electron
gas resists compression, not because of random thermal energy of the electrons,
but because the total kinetic energy of the electrons has a minimum value which
increases as the density rises. In fact, the temperature of a contracting body ceases
to rise if the electrons become degenerate. This occurs if the average distance
between electrons in the contracting system becomes comparable with the typical
de Broglie wavelength of the electrons.

The quantum mechanical de Broglie wavelength of an electron is given by
A = h/p, where h is Planck’s constant and p the momentum. Since the kinetic
energy of an electron in a classical gas at temperature T is approximately T, the
momentum is about (m.4T)'/?, and the typical de Brogliec wavelength is

h

AR —m(mekT) 5

(1.24)

Classical mechanics will be valid provided the wave functions of the electrons do
not overlap; in other words, the average separation between the electrons has to be
large compared with A. This condition is satisfied if the density of the ionized gas
satisfies the inequality

m__ (mkT)*/?
p << F ~m —h?’_—

(1.25)
Here 7 is the average mass of the particles in the ionized gas; for ionized hydrogen
M =0.5 amu, the average mass of a proton and an electron.

‘ It is straightforward to show that the internal temperature of the protostar will
Initially rise as the internal density increases. Substitution of the approximate
CXpression for the gravitational energy, Eq. (1.16), and the classical expression for
the internal kinetic energy, Eq. (1.17), into the condition for hydrostatic equilibrium,
2Exr + Eg = 0, gives

kT =~ G3—A§"_’ ~ GmM?/3p'/3, (1.26)
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We see that the temperature is proportional to p'/3. This will be the case as long
as the density is low enough to satisfy the inequality (1.25) so that the electrons
are governed by classical mechanics.

When the density reaches the value

_ (mkT)3/?

quantum mechanics becomes important and the electrons will begin to become
degenerate. As a result the temperature of the gas no longer increases markedly
if it is compressed. We can estimate the temperature at which the electrons in the
contracting protostar become degenerate by substituting the critical density given
by Eq. (1.27) into Eq. (1.26). We obtain

1/2
kT = GmM>/¥m' (mekZ) /

>

which can be rearranged to give
kT = | ——— | M/, (1.28)

Around this temperature degenerate electrons begin to resist compression and
further contraction under gravity no longer causes the temperature to rise.

Equation (1.28) gives an estimate for the maximum value of the average internal
temperature reached by a contracting protostar Notice the key role played by the
mass M of the protostar. If the solar mass of 2 x 10°° kg is substituted we obtain
a maximum temperature of &7 ~ 1 keV. In other words, a solar mass, if it were
allowed to contract under gravity, could reach an average internal temperature of
about 10 million K, and a central temperature which is even higher; this is more
than sufficient to trigger thermonuclear reactions and the fusion of hydrogen to
helium. But the contraction of protostars less massive than the sun lead to lower
internal temperatures. Detailed calculations indicate that the minimum mass needed
for thermonuclear ignition, and hence true stardom, is about 0.08 solar masses.
Protostars with masses less than this value evolve into objects where gravity is
countered by the pressure of degenerate electrons; such objects are often called
brown dwarfs,

We shall consider the possible range of masses for stars in Chapter 5. The
minimum mass for a star will be examined in more detail, and we shall also
arguc that there is a maximum as well as a minimum mass for stardom. In
particular, it will be shown that the pressure generated by radiation inside a star
is significant if the mass is much larger than the solar mass. This implies that the
hydrostatic equilibrium of a massive star is dependent on radiation pressure, i.e.
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on the pressure due to a gas of photons. But, as we have already seen in Section
1.2, hydrostatic equilibrium becomes precarious as the gas particles become ultra-
relativistic: according to Eq. (1.13) the binding energy becomes small, and small
changes in the total energy are accompanied by large changes in the internal and
gravitational energies. These considerations suggest that stars with a mass greater
than 50 to 100 solar masses are easily disrupted. And indeed such stars are rare.

1.4 THE SUN

As our nearest star the sun has a special role as a source of precise astrophysical
information. For example, we know its mass, radius, geometric shape and age, and
also the Tuminosity and spectrum of electromagnetic radiation from its surface. This
observational information is used in theoretical models of the sun to predict the
physical characteristics of the solar interior. The most detailed model of the sun is
the Standard Solar Model which is described by Bahcall (1989). Some of the input
parameters for this model and some of the calculated solar properties are listed in
Table 1.2.

Our aim in this section is to consider the sun in its simplest terms in order
to illustrate basic astrophysical concepts and to fix the order of magnitude of
astrophysical quantities.

TABLE 1.2 The main physical properties of the sun. The measured properties are the mass,

radius, oblateness, photon luminosity, and surface temperature. The estimate for the age is

largely based on geological studies. The properties at the centre of the sun are calculated
with the aid of the Standard Solar Model; see Bahcall (1989) for more detail.

Property Value

Mass Mg =199 x 10°% kg
Radius Rg =696 x 105 m
Photon luminosity Lg = 3.86 x 1020 W
Effective surface temperature Tp= 5780 K

Age to =2 4.55 x 10° years
Central density pe =148 X 10° kg m~>
Central temperature T. =156 X 10°K
Centra] pressure P. =229 x 10! Pa

Pressure, density and temperature

The sun is a star of mass Mg =~ 2 x 10°® kg. The gravitational contraction of the
Sun was halted about 5 billion years ago by the ignition of ‘hydrogen burning’; i.e.
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the thermonuclear fusion of hydrogen to form helium. During its current hydrogen
burning phase the solar radius is Ry ~ 7 x 10° m and the average density (p) is
1.4 x 10° kg m~>, The time for free fall under gravity for an object of this density
is given by Eq. (1.4),

3r 1Y2 1
Iy = | — ~ — h .
. [32G<p>] 2 o

As this time bears no relation to the sun we observe, we safely conclude that the
sun is not in free fall and that the internal pressure gradient within the sun must
play an essential role in opposing gravity. Indeed, as there is no evidence for major
changes in the sun during the geological lifetime of the earth, we can conclude
that the sun has been close to hydrostatic equilibrium for at least 4.5 billion years.
Hydrostatic equilibrium implies we can use the virial theorem to find the average
pressure supporting the sun; using Egs. (1.7) and (1.16) we find

1 Egr N GM?,

P) = ——
Pl==-375 4TRL

~ 10" Pa. (1.29)

Hence the interior of the sun provides an environment in which matter and
radiation interact at high temperature such that, on average, the pressure is about
a billion times atmospheric pressure and the density is comparable with normal
water. The thermal physics needed to understand matter and radiation under these
extreme conditions will be reviewed in Chapter 2; the ionization of gases and the
equations of state for non-relativistic, ultra-relativistic, classical and quantum gases
will be discussed. This discussion indicates that we are justified in making the
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an ideal classical gas of electrons and ions. Thus, the average pressure inside the
sun is given by

(P) = —kTy, (1.30)

m
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particles. For ionized hydrogen m = 0.5 amu, the average mass of a proton and an
electron. In fact, the Standard Solar Model assumes that the sun was formed from
material which was 71% hydrogen, 27% helium and 2% of heavy elements, such
as carbon, oxygen and iron. When fully ionized this yields an average gas particle
mass of m ~ 0.61 amu.

It is easy to combine Eqs. (1.29) and (1.30) to estimate the typical temperature
inside the sun. We obtain

GM i

kT; ~
'™ T3Rs

~05keV or T;=~6x10° K. (1.31)
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Of course the actual temperature inside the sun, like the density and the pressure,
increases towards the centre. The central temperature, density and pressure given
by the Standard Solar Model are listed in Table 1.2.

Solar radiation

The total power radiated by the sun, its luminosity L, is about 4 x 10°° W,
Moreover, to a first approximation the sun appears to be a black body radiator with
arca 471'R2@ and effective surface temperature 7x of about 6000 K. Thus

Lg = 4nR% 0T}, (1.32)

where ¢ is Stefan’s constant, 5.67 x 1078 W m=2 K~4. Since kT =~ 0.5 eV the
bulk of the radiation is in the visible part of the electromagnetic spectrum.

We note that the effective surface temperature, Tg ~ 6000 K, is three orders of
magnitude less than the typical interior temperature of 7y ~ 6,000,000 K given
by Eq. (1.31). We can understand this difference by examining the mechanism by
which radiation escapes from the sun.

As the electrons and ions interact inside the sun they emit electromagnetic
radiation which in turn interacts with electrons and ions. Indeed, to a first
approximation we can consider the sun as a globe of electrons and ions in
equilibrium with electromagnetic radiation at a temperature 7;. If this radiation
were free to escape, without disturbing thermodynamic equilibrium, then the sun
would appear to be a black body radiator at a temperature of 7;. The luminosity
of the sun would be

L}, =~ 4nR%0T}, (1.33)
and the radiation would be in the X-ray region of the electromagnetic spectrum
because k7, ~ 0.5 keV.

Fortunately for the inhabitants of planet earth, this radiation is not free to escape;
to a very large extent it is trapped within an opaque sun and the earth is not
Icinerated by X-rays. The radiation inside the sun is continually scattered, absorbed
and emitted by electrons and ions. A temperature gradient is set up and the radiant
tnergy slowly diffuses towards the surface where it escapes as visible radiation.

¢ underlying mechanism for radiative diffusion is a random walk in which the

Photons are scattered, absorbed and emitted, as shown in Fig. 1.2.
. We shall let / represent a free path for a photon within the sun. In practice there
1S a distribution of free paths with a mean which depends on the region within
the sun. To keep the analysis as simple as possible we will take / to be a constant
length characteristic of photons within the sun as a whole. After N interactions, and
af?er N vector displacements in random directions, the radiant energy associated
With the photon has travelled a vector distance
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D=h+h+ - +ly

e

Fig. 1.2 A random walk mechanism for radiative diffusion. A sequence of N steps in
random directions leads to a vector displacementof D =1; + 12 + - - - + ly.

D=1+bL+- -+]Iy
as shown in Fig. 1.2. The square of the net distance travelled in N steps is
DP=B+B+ +B+2( -+l -+--)

If we average over many random walks, the terms involving scalar products cancel
because the direction of each step is random. Hence the mean square distance

travelled is simply 2+ B + - - - + §, or NP,

To escape from the sun, a photon must diffuse a distance which is comparable
with the solar radius. On average this requires about R%, /I* steps. Because the time
for each step is I/c, where c is the speed of light, the random-walk escape time is
approximately

2
—
[
(e
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In contrast, the time to escape directly from the sun is R /c, which is a factor
of I/R., shorter than the random-walk escape time. Thus, radiative diffusion
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via a random walk slows down the rate at which energy escapes from the sun
by a factor of I/R. It follows that the actual luminosity of the sun given by
Eq. (132) is a factor of [/R; smaller than the luminosity given by Eq. (1.33),
the luminosity that would arise if radiation were free to escape unhindered. This

implies that the effective surface temperature and the typical internal temperature
of the sun are approximately related by

l 1/4
Tr ~ | — T;. 1.35
g {Rel ! (1.35)

Using Tz =~ 6000 K and T; ~ 6,000,000 K, we find that the effective mean free
path for radiative diffusion in the sun is about 1 mm; i.e. the sun is very opaque.
And using Eq. (1.34), we find that the typical time for radiation to diffuse from
the centre and escape from the sun is about 50,000 years.

We can also use this simple but approximate analysis to reveal how the luminosity
of a star like the sun depends on its mass. An approximate expression for the
luminosity can be found (Eq. 1.32) by using Eq. (1.35) and the relation between
the internal temperature and the mass and radius of the sun given in Eq. (1.31).
We find

[ 4m)?
Lo ~ 47rR2®chI4R—® R (37;) %G“ m* (p)l M. (1.36)

This equation indicates that the luminosity of a sun-like star is expected to be a
rapidly increasing function of its mass.
Radiative diffusion will be considered in more detail in Chapter 3. We shall end

this preliminary discussion hy emphnqi'ﬂ'nu that radiative diffusion restricts the flow
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of radiation and prevents the sun from losing heat catastrophically. It determines the
luminosity and hence the rate at which energy must be released by thermonuclear
fusion at the centre of the sun.

Thermonuclear fusion in the sun

Thermonuclear fusion will be considered in detail in Chapter 4. At this point
WE note that the solar luminosity is currently being supplied by a chain of

thermonuclear reactions called the proton—proton chain. The dominant reactions
are:

p+tp—d+e +u, (1.37)
p+d — He + 4, (1.38)

*He +’He —*He +p +p, (1.39)
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where d denotes a deuteron or 2H, an isotope of hydrogen with mass 2. Each
of these reactions is exothermic and the total thermonuclear energy release is
about 26 MeV per *He nucleus formed. This energy must be released at a rate of
4 x 10*® W in order to power the solar luminosity.

All the reactions in the proton—proton chain are hindered because a Coulomb
barrier tends to keep the positively charged nuclei apart. However, there is a
significant probability that nuclei can tunnel, quantum mechanically, through a
Coulomb barrier if the temperature is high. The interaction required to effect
fusion is different for each of the reactions; Eq. (1.37) relies on the weak nuclear
interaction, Eq. (1.38) relies on the electromagnetic interaction and Eq. (1.39)
relies on the strong nuclear interaction. As a result, the first reaction in the chain,
Eq. (1.37), is by far the slowest. As we shall see in Chapter 4, a proton at the
centre of the sun takes, on average, about 5 billion years before it fuses with
another proton to produce a deuteron. The deuteron so produced is snapped up to
form a *He in about a second and the average time needed for two *He to collide
and form a ‘He nucleus is approximately 300,000 years.

It follows that the first reaction in the chain, the slow weak reaction Eq. (1.37),
governs the rate at which energy is released by the proton—proton chain. This
reaction forms a bottle-neck through which an immense store of hydrogen fuel is
gradually processed. One consequence is that, even though the total power released
is huge, 4 x 10?® W, the power density is very modest. On average each kilogram
of the sun generates only 0.2 of a milliwatt; this is about 10,000 times less than
the power density generated by the metabolic activity in the human body.

We note that the weak reaction, Eq. (1.37), implies that, as protons are consumed,
neutrinos are emitted. Four protons are needed to produce a *He nucleus and release
26 MeV, i.e. 26 x 1.6 x 107'% J. Hence the rate of consumption of protons needed

7
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(4 x 4 x 10°)/(26 x 1.6 x 107'%), or 4 x 10°® protons per second.

The fusion of these protons is also accompanied by the emission of at least 2 x 10%®
neutrinos per second. These weakly produced neutrinos can subsequently interact
but only weakly via the weak nuclear interaction. Unlike photons, they pass through
the sun and escape almost unhindered and, if detected on earth, they could provide
direct inside information on the thermonuclear reactions occurring at the centre
of the sun. Needless to say, the detection on earth of particles which can pass
almost unhindered through the sun is a formidable exercise. The detection of solar
neutrinos and the solar neutrino problem will be considered in Chapter 4.
Thermonuclear fusion not only postpones the contraction of the sun, it also acts
as a solar temperature regulator, a thermonuclear thermostat. If the temperature
rises, the nuclear reaction rate will increase and release more energy than can
escape. Because the sun remains close to hydrostatic equilibrium we can apply the
virial theorem to see what happens when the total energy is increased in this way.
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Equations (1.11) and (1.12) show that there will be an increase in the gravitational
energy and a decrease in the internal energy; in other words the sun will expand
and cool. A parallel set of events will occur if the temperature falls: the energy
released by the nuclear reactions will not be high enough to supply the energy lost
by the sun and the total energy will be reduced, and this reduction in the total
energy Will cause the sun to contract and heat up.

This thermonuclear thermostat has postponed gravitational contraction and kept
the sun steady for at least 4.5 billion years. It will continue to do so until there is
insufficient hydrogen at the centre of the sun to fuel the proton—proton chain and
supply the required solar luminosity of 4 x 10°® W. There are approximately 7 x 10°°
protons in the sun, and, as they are being consumed at a rate of 4 x 10°® every
second, 10% will be consumed in the next 6 billion years. In total, the hydrogen
burning phase of the sun will last for about 10 billion years, after which the central
core of the sun will contract and heat up until the temperature and density are high
enough to ignite the thermonuclear fusion of helium. The outer layers of the sun
will expand to form a red giant, and the sun will begin its next stage of stellar
evolution.

L5 STELLAR NUCLEOSYNTHESIS

Stellar evolution involves the release of gravitational potential energy through
contraction, with pauses whenever nuclear fuels are ignited so as to supply the
energy flow from the surface of the star. The ashes of one set of nuclear reactions
may become the fuel for the next set. For example, the helium produced by the
fusion of hydrogen may be ignited in a subsequent gravitational contraction to
produce carbon. In fact, there is a sequence of thermonuclear stages. Each stage
can be effective in calling a temporary halt 10 gravitational contraction provided it
leads to the release of energy through the formation of more tightly bound nuclei.

The binding energy per nucleon for atomic nuclei is illustrated in Fig. 1.3. The
broad maximum at a mass number near 56 implies that the nuclei near iron in
the periodic table are the most tightly bound. Thus, the sequence of thermonuclear
reactions in stars is expected to terminate when nuclei near iron are produced.
These nuclei, isotopes of Cr, Mn, Fe, Co and Ni, form a nuclear ash which cannot
be burnt,

The main stages of thermonuclear fusion in stars and the approximate
temperature needed to ignite each stage are listed in Table 1.3.

Stellar mass and the extent of thermonuclear fusion
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thermonuclear fusion and progress to the synthesis of iron. We recall that the
internal temperature of a contracting star ceases to rise when the electrons within
the star become degenerate; i.e. when the average distance between the electrons
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BINDING ENERGY PER NUCLEON (MeV)
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Fig. 1.3 Binding energy per nucleon for atomic nuclei. There is a broad maximum at mass
number 56 which implies that energy is normally released when two light nuclei fuse to
form a heavier nucleus provided the nucleus formed has a mass number less than 56.

TABLE 1.3 The main stages of nuclear buming in stars, The ashes of one stage of burning

may become the fuel for the next stage provided the contracting star is massive enough to
reach the approximate ignition temperature indicated.

Process Fuel Products Approximate ignition temperature
Hydrogen burning  Hydrogen Helium 1 x 107K
Helium burning Helium Carbon 1 x 108K
Oxygen
Carbon burning Carbon Oxygen 5 x 108K
Neon
Sodium
Magnesium
Neon burning Neon Oxygen 1 x 10°K
Magnesium
Oxygen burning Oxygen Magnesium 2 x 10° K
to sulphur
Silicon burning Silicon Iron and 3 x 10° K

nearby elements
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pecomes comparable with the typical de Broglie wavelength of the electrons.
In particular we found in Section 1.3 that the maximum temperature possible
is approximately proportional to M*/3; see Eq. (1.28). Thus the mass of a
contracting star determines the maximum temperature achievable and hence which
thermonuclear fusion stages can be reached.

We have already mentioned that only stars with a mass greater than 0.08M,
can attain true stardom and ignite hydrogen. There are in fact two mechanisms
for hydrogen burning. The proton—proton chain is important in stars like the sun.
But in more massive stars hydrogen is fused to helium via a set of reactions in
which carbon acts as a catalyst, the so-called carbon—nitrogen cycle; an important
by-product of this type of hydrogen burning is nitrogen. These, and other aspects
of thermonuclear fusion, will be considered in more detail in Chapter 4.

When hydrogen burning ceases in the centre of the star, the helium core contracts
under gravity and grows hotter. The increased temperature promotes hydrogen
burning in a shell surrounding the core. It also leads to an increase in pressure and a
large expansion of the outer layers of the star. As hydrogen burning continues in the
shell, more helium is produced and deposited onto a helium core which becomes
hotter and denser. If the star is massive enough, the core becomes sufficiently hot
and dense for helium nuclei to fuse together to form carbon nuclei. Helium burning
releases energy which causes the core to expand and cool, and a cooler core leads
to a partial contraction of the outer layers of the star. The star is now a red giant
with a luminosity dominantly powered by helium burning in a hot, dense central
core. The temperature and density of this core is between 1 and 2 x 10 K and
10° and 10® kg m—>. To achieve these conditions the initial mass of the star must
exceed a value of about 0.5M,.

In fact, helium burning is severely hindered by the absence of stable nuclei with
mass 5 and mass 8. The only way forward involves the fusion of three *He nuclei
to produce 'C via the three-body reaction:

‘He +*He +*He —'2C.

This three-body reaction actually takes place in two stages: Two “He nuclei fuse to
form an unstable ®Be nucleus whose brief existence is just long enough to permit
an occasional capture of a third “He nucleus to form '2C. This requires both a high
flensity and a high temperature. We note that helium was produced but not burnt
in big bang nucleosynthesis; the temperature was hot enough but the density was
00 low. The high density and temperature needed for helium burning had to await
the formation and evolution of massive stars.

Helium burning not only produces carbon it also leads to another vitally important
element, namely oxygen, via the reaction

‘He +2C -'°0 + .
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In addition, small amounts of *°Ne are also formed by
“He +1°0 —-*'Ne + 7.

As helium is consumed in the centre of the star, helium burning migrates to a
shell surrounding a central core of carbon and oxygen, leading to an onion-like
structure for the star in which there is an outer hydrogen burning layer, an inner
helium burning layer and a core of carbon and oxygen; the outer layers of the star
expand markedly during this phase of evolution.

Stars with a mass greater than 8M,, or thereabouts, can progress beyond helium
burning and ignite carbon at a temperature of about 5 x 10® K to form elements
such as neon, sodium and magnesium. If the temperature exceeds 10° K, carbon
burning can be followed by the photodisintegration of neon to produce oxygen and
helium nuclei; the helium nuclei are then captured by undissociated neon nuclei to
form magnesium. Oxygen burning can then take place at about 2 x 10° K to produce
elements between magnesium and sulphur. Stars with a mass greater than 11M,
or thereabouts, are able to achieve the high temperature of about 3 x 10° K which is
necessary for the ignition of the final stage of thermonuclear fusion. This is silicon
burning which leads to the formation of nuclei near iron in the periodic table.
Such stars develop a structure consisting of concentric layers composed mostly of
hydrogen, helium, carbon, neon, oxygen and silicon surrounding a core of iron and
nearby elements.

In summary, the mass of a star governs the extent to which it converts hydrogen
to heavier elements. Contracting stars with a mass approximately between 0.1Mg
and 0.5M, will reach the required temperature to ignite hydrogen but they do not
get hot enough to ignite helium. Stars with mass roughly between 0.5M, and 8M¢,
will ignite hydrogen and helium, and stars in the mass range around 8 to 11Mp
will progress beyond helium burning to carbon burning. Finally, stars with a mass
greater than 11M are able to achieve the high temperatures necessary for the
ignition of every stage of thermonuclear fusion.

Neutron capture

Thermonuclear fusion provides a mechanism for the release of energy and the
production of elements up to iron in the periodic table. We also need a mechanism
to account for the existence of elements heavier than iron. In general, energy is
needed to produce these elements and fusion of charged nuclei is not effective.
These elements owe their existence to neutron capture.

Neutrons are released by nuclear collisions and photodisintegration, particularly

. . .
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during the later stages of stellar evolution. Because neutrons are electrically neutral,
they are easily captured by a nucleus to form a more massive nucleus with the same
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charge. Thus the presence of neutrons can lead to the production of neutron-rich
isotopes. Such isotopes will eventually decay by beta decay; a neutron within
the nucleus is converted into a proton and the atomic number of the nucleus
increases by one unit, It is believed that the elements heavier than iron have been

Ar AR

produced by sequences of neutron capture reactions followed by sequences of beta
decays.

The production of neutrons in an evolved star is normally a slow process, and
any nucleus formed by neutron capture will have plenty of time to beta decay.
This process of forming atomic nuclei is called the s-process where s stands for
stow. However, neutron production may become very rapid during the final stage
of evolution of a massive star. We shall see that this stage involves the collapse of
a central core of iron which, amongst other things, can lead to the ejection of the
outer layers of the star to form a supernova. During this explosive stage, nuclei can
capture many neutrons before beta decay becomes effective. This process is called
the r-process where r stands for rapid. The types of nuclei produced by these two
processes differ significantly. For example, no element beyond bismuth (Z = 83)
can be formed by the s-process, whereas the r-process can produce elements beyond
this.

1.6 STELLAR LIFE CYCLES

The big bang led to a universe composed of hydrogen and helium with traces
of light elements, This primordial matter has been enriched with heavier elements
by a cycle of stellar formation and evolution in which matter has been transferred
back and forth between stars and interstellar matter. One of the main aims of
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in the universe today.

Rate of stellar evolution

In our discussion of the sun in Section 1.4 we saw that the luminosity of the sun
determines the rate at which it consumes its nuclear fuel. In particular, Eq. (1.36)
indicates that the luminosity of a star is a rapidly increasing function of its mass.
Indeed, if the mean free path for radiative diffusion, I, is inversely proportional to
the density, the luminosity given by Eq. (1.36) is proportional to the cube of the
Mass of the star. Figure 1.4 illustrates the actual relation between the mass M and
}UmlnosnyL of representative hydrogen burnlng stars like the sun. We note that the
lumii’iﬁsﬁy is pi‘OpOruGﬁEu to M™ 5 where « is about 3 for massive stars and about
3.5 for stars less massive than the sun.
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Fig. 1.4 The mass—luminosity relation for hydrogen bumning stars with a chemical
composition similar to the sun. The data on representative main sequence stars is taken
from Table 3.13 in the Astronomy and Astrophysics section of the Physics Vade Mecum
compiled by Fredrick (1989).

This rapid increase of luminosity with mass has an important implication: it
implies that massive stars have shorter lives despite their greater resource of fuel.
Since the fuel reserves are proportional to M, the hydrogen burning lifetime is
proportional to M 2 for high mass stars and M —2- for low mass stars. Given that
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a star of mass 10M will burn hydrogen for about 100 million years, whereas
the hydrogen burning lifetime of a star of mass 0.5M; will exceed 50 billion

years,



1.6 Stellar life cycles 31

In fact, the overall rate for all nuclear fusion processes inside a star, and hence
the rate at which the star evolves, is largely determined by its mass; more massive
stars evolve more quickly. Since the lifetime of the universe is between 10 to 20
pillion years, there has been ample time for many generations of massive stars, but

there has been insufficient time for the evolution of stars with a mass much smaller
than the sun.

The end-points of stellar evolution

The ultimate fate of a star depends crucially on the mass that remains in the
central core when nuclear fusion can no longer maintain the pressure needed to
prevent gravitational contraction. At this stage, the star must rely on a non-thermal
source of pressure for support, namely a gas of degenerate electrons. However, we
recall that hydrostatic equilibrium becomes precarious if gravity is opposed by the
pressure generated by ultra-relativistic particles. This general principle imposes an
upper limit on the mass that can be supported by a degenerate electron gas. In
particular, we shall show in Chapter 6 that if the mass of a stellar core exceeds
a critical value, the degenerate electrons become sufficiently relativistic to render
hydrostatic equilibrium impossible. This critical mass is about 1.4M, and is called
the Chandrasekhar mass.

Thus the fate of an evolved star depends crucially on whether the mass of its
central core is less than or greater than the Chandrasekhar mass. A star like the sun
will develop a stellar core with a mass less than 1.4M,, which can be supported
by the pressure of degenerate electrons. After it loses its outer tenuous layers it
forms a white dwarf, a compact object with a radius of about 10’ m and a density
of about 10° kg m—>, which slowly cools without appreciable contraction because
its mechanical support is due to a pressure which is insensitive to temperature.

As already mentioned, massive stars develop an onion-like structure with a central
core of iron. The mass of this inert core grows as silicon burning deposits more
iron. Eventually the core will collapse catastrophically when its mass exceeds the
Chandrasekhar limit; this collapse is considered in Section 6.2 of Chapter 6. To
a first approximation the collapse is a free fall under gravity, unopposed by an
internal pressure gradient because energy is absorbed by processes such as the
Photodisintegration of iron and inverse beta decay. The bulk of the gravitational
energy released is carried away by a pulse of neutrinos. But a small fraction of this
gravitational energy may be used to eject a substantial fraction of the stellar mass
into interstellar space to form a supernova. Stellar nucleosynthesis is completed
during these final stages of stellar evolution. In particular, elements heavier than
ifon are produced by neutron capture.

The eventual mass of the L‘DuapSEu core is crucial to the final outcome of the
evolution of a massive star. The most likely result is the formation of a neutron star,
a compact star consisting primarily of degenerate neutrons. There is a maximum
possible mass for such an object which is analogous to the Chandrasekhar mass
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for a star supported by degenerate electrons. This limit is discussed in Section 6.3
of Chapter 6. It is probably about 3M,, but the exact value is uncertain because
of the uncertain compressibility of nuclear matter at high densities. It is thought
that if the mass of the collapsed core at the heart of a supernova exceeds this limit
there is no possibility of halting gravitational collapse. A black hole is produced.

One of the uncertainties in tracing the evolution of a star is the uncertainty in
the amount of matter ejected into interstellar space as the star evolves. This mass
loss can affect both the rate and the ultimate destination of stellar evolution. Stars
lose matter even during the hydrogen-burning phase of evolution; the solar wind,
for example, carries away about 107 '°M, of the solar mass every year. As stars
evolve, even more intense flows occur as the tenuous outer layers expand. Further,
the final stages of evolution are often characterized by significant mass loss. As
intermediate mass stars, like the sun, exhaust their nuclear fuel, they shed their outer
layers in an expanding cloud called a planetary nebula. In contrast, more massive
stars often end their lives with an explosive ejection of matter in a supernova. This
matter, together with the matter ejected as planetary nebulae by less massive stars
and the matter lost during the earlier stages of stellar evolution, then forms the raw
material for future generations of stars.

Abundances of the chemical elements

The cycle of stellar formation, evolution and death has led to an enrichment of the
primordial hydrogen and helium with heavier elements. In particular, the chemical
elements observed in the solar system are largely a reflection of the combined effect
of nucleosynthesis during the big bang and of nucleosynthesis during the stellar
evolution of earlier generations of nearby stars.

The relative abundances of clements in the solar system are plotted against th
atomic number Z in Fig. 1.5. The most notable features

e The dominance of hydrogen and helium, largely a left-over from
nucleosynthesis during the big bang.

e A distinct lack of abundance between helium and carbon, reflecting the
difficulty of building elements from hydrogen and helium in the absence of
stable mass 5 and mass 8 atomic nuclei.

e Peaks corresponding to the major products of stellar nucleosynthesis; namely
carbon, oxygen, neon, silicon and elements near iron. The high abundance of
nitrogen, the element between carbon and oxygen, is due to hydrogen burning
by the carbon—nitrogen cycle.

In general, thermonuclear fusion, i.c. hydrogen helium, carbon, oxygen, neon
and silicon Uuri‘iiﬁg, is respﬁnswrc for the abundances of elements with atomic
number in the range 12 < Z < 30. Elements with atomic number Z > 30 owe
their existence to neutron capture particularly during the terminal stages of stellar

evolution. In addition, small quantities of elements throughout the periodic table are
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produced by cosmic ray collisions; indeed a substantial proportion of the elements
petween helium and carbon have been formed in this way.

For each element there are often several naturally occurring isotopes. Their
relative abundance provides further insight into the mechanisms of nucleosynthesis.
In addition, some of these isotopes are unstable. Indeed, the continuing presence
of radionuclides, such as ?>U , 238U and “°K , all with lifetimes comparable with
10° years, enables us to estimate that the solar system was formed some 4.5 billion

years ago.

1.7 THE HERTZSPRUNG-RUSSELL DIAGRAM

We shall end this introductory chapter by briefly considering some observational
properties of stars. It is important to note that stars are opaque to electromagnetic
radiation and astronomers are therefore limited to recording superficial information.
Moreover, the angular size of even the nearest stars is only a few thousandths of a
second. Hence, with rare exceptions, a star appears as a point source of radiation
from which the observer can deduce a luminosity and a surface temperature.

Luminosity

The observed brightness of a star is usually expressed as a magnitude. The
faintest stars visible to the naked eye have a magnitude of 6, and brighter stars
have a smaller magnitude. The scale is logarithmic such that each 10-fold increase
in brightness decreases the magnitude by 2.5. Thus if the energy flux received from
two stars is f; and f,, the magnitudes differ by

m —m= —2.5 lOglO(fl /fz) (140)

Astronomers worry about absolute, apparent, visual and bolometric magnitudes.
The absolute bolometric magnitude, Mpo; , is the most difficult to determine and the
most useful. It corresponds to the brightness of a star as measured at a distance of
10 parsecs by a hypothetical detector which responds to the entire electromagnetic
Spectrum.,

The parsec is the standard astronomical unit of distance. It is the distance at
Wwhich one second of arc is subtended by a bascline whose length is equal to the
Mmean separation of the earth and the sun. The numerical value of a parsec is

1 pc = 3.086 x 10" m = 3.26 light years. (1.41)

We note that the accurate determination of distance has always been and remains
today one of the central problems in astronomy, and that such a determination is
Needed to deduce the absolute bolometric magnitude of a star.
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he ab s of elements in the solar system relative to the abundance of
hydrogen. Data is from Table 3.06 in the Astronomy and Astrophysics section of
the Physics Vade Mecum compﬂed by Fredrick (1989). The dominance of hydrogen and
helium is a result of nucleosynthesis during the big bang. Thermonuclear fusion in stars
preferentially produces helium, carbon, oxygen, neon, silicon and elements near iron. The
abundances of elements beyond iron in the periodic table are low; e. g the abundances of
silver, gold and lead relative to hydrogen are 1 x 107 6 x 107 and 1 x 10710

Elements like these are produced in the latter stages of stellar evolution by the capture of
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Because the absolute bolometric magnitude Mpoy represents the brightness of
a star at a specific distance, it provides an absolute measure of the luminosity. In
fact, a star with luminosity L has an absolute bolometric magnitude given by

MBOL =-2.5 IOglO(L/L@) +4.72, (142)

where Ly ~ 4 x 10%° W is the luminosity of the sun. Notice that the absolute
bolometric magnitude of the sun is equal to 4.72, and that, as luminosities range
from 10 %L, to 10°L,, bolometric magnitudes decrease from about +15 to —10.

Surface temperature

The effective surface temperature of a star, Tg, is defined as the temperature of
the black body of the same size which would give the same luminosity. For a star
of luminosity L and radius R

L = 4nR*0 T}, (1.43)

where ¢ 1S Stefan’s constant. For the sun T¢ ~ 6000 K.

The surface temperature can be deduced from a spectral analysis of the radiation
from the star. In particular, if the star acts like a black body radiator, the colour
of the radiation would give a precise indication of the temperature; the spectrum
would peak at a frequency given by hv = 2.82 kTg. In practice one must take into
account that the star is not a perfect black body in deducing the temperature from
the colour.

An additional source of information on the surface temperature is provided by

absorption lines in the spectrum. As radiation passes through the photosphere,
the surface region from which most of the observed radiation originates, certain
frequencies are absorbed by particular ions and atoms to give a spectrum containing
dark absorption lines. The absorption lines in the spectrum permit a classification
of stars according to spectral type. The spectral type depends on the degree of
excitation and ionization of atoms and ions in the photosphere. It is denoted by a
letter O, B, A, F, G, K or M, a sequence which largely reflects a steady decrease
in surface temperature from 30,000 K to 3000 K. The sequence is remembered by
a4 mnemonic which these days is considered sexist.

Luminosity and surface temperature

The main observational properties of a star, its luminosity and its surface
temperature, are not uncorrelated. The correlation is usually illustrated in a two-
dimensional plot called an Hertzsprung—Russell diagram in which the vertical axis
represents the luminosity and the horizontal axis represents the surface temperature;

for historical rcasons the temperature decreases to the right. When stars are
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Fig. 1.6 A schematic Hertzsprung—Russell diagram. This diagram provides a snapshot
of the luminosity and surface temperature of stars at different stages of their evolution.
Most of the observed stars are grouped along a band called the main sequence; these are
hydrogen burning stars like the sun. As stars evolve the contraction of the central core is
accompanied by an expansion of the outer layers of the star to form luminous stars with
low surface temperature; e.g. red giants. The end-point of stellar evolution of a star with a
mass comparable to the sun is a compact object supported by degenerate electrons, a white
dwarf. The evolution of a more massive star can lead to the formation of a neutron star or
a black hole.

represented by a point with coordinates (Tg, L) on this diagram, certain regions are
more densely populated than others. The different regions of the H-R diagram are
illustrated in Fig. 1.6.

In interpreting the H-R diagram it is important to remember that star formation
and evolution is an on-going process. An H-R diagram for stars in a particular
region of space provides a snapshot of stars at different stages of their evolution.

As stars evolve they spend most of life burning hydrogen. Hence hydrogen
burning stars, like the sun, should give rise to a densely populated region of the
H-R diagram. This region is called the main sequence. About 80 to 90% of observed

stars are main sequence stars.
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The relation between the mass and luminosity of a hydrogen burning star can
pe used to deduce the mass of a star from its position on the main sequence. We
recall from Section 1.5 and Fig. 1.5, that the luminosity of a star of mass M is
prgportional to M*, where « is between 3 and 3.5. This mass—luminosity relation
can be used to show that the masses range from about 50M, at the upper left side
of the main sequence to about 0.1M, at the lower right. This result is particularly
useful because there is no direct method of measuring the mass of an isolated star;
j.e. one that does not belong to a binary or multiple system.

A star does not evolve along the main sequence. It evolves onto the main
sequence when a protostar contracts and ignites hydrogen. The star evolves off
the main sequence, and moves into the red giant region of the H-R diagram,
when the hydrogen in the central nuclear burning region is depleted. Theoretical
models indicate that hydrogen burning in the core ceases but continues in a thin
shell which moves outwards. The core contracts and heats up, but the outer layers
expand to form a star of high luminosity and low surface temperature. We can use
Eq. (1.43) to show that a star in the red giant region of the H-R diagram with
L =1000L, and Tr = 4000 K has a radius of about 70R;,. Such a star will stand
out conspicuously in the sky. A famous example is Betelgeuse in the constellation
Orion.

As the temperature and density at the centre of the star increase, helium and
subsequently other nuclear fuels are ignited, but the number of nuclear burning
stages depends on the mass of the star. Stars in advanced stages of nuclear
burning occupy the top, right hand region of the H-R diagram. Since the time
scale for these stages is brief, this region of the H-R diagram is not densely
occupied.

Observations indicate that intermediate mass stars end their life by shedding their
outer layers to form a planetary nebula which merges with the interstellar medium
to leave a remnant with low luminosity and high surface temperature in the white
dwarf region of the H-R diagram. The best known white dwarf is Sirius B, which
forms a binary system with the bright main sequence star, Sirius A. In fact, the
existence of Sirius B was postulated by Bessel in 1834 in order to explain the fact
that Sirius A appeared to wobble in the sky; it was later observed to be a star
with a low luminosity and high surface temperature. A typical white dwarf has a
luminosity of L = L, /100 and surface temperature Tr = 16,000 K, and hence a
radius given by Eq. (1.43) of about R, /70. Such a star shines merely because it
evolved from the hot core of a red giant. In time it will cool and fade away; sce
Section 3.4 of Chapter 3.

The Hertzsprung-Russell diagram is of great practical and historical significance
in astronomy. In particular, H-R diagrams for different types of star clusters
Provided the observational framework for the development of our understanding
of stetlar evolution. Accordingly, H-R diagrams are extensively discussed in books
which emphasize the link between observations and theoretical calculations of
stellar evolution.
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SUMMARY

Big bang nucleosynthesis

Nuclear reactions in the early universe led to a universe in which about 25% of
the mass was helium and the remainder mostly hydrogen. This proportion of
helium to hydrogen was largely determined by the ratio of neutrons to protons
that existed when neutrons and protons ceased to be continually transformed
into each other by neutrino reactions described by Egs. (1.1).

Gravitational contraction

Bodies can collapse rapidly if the gravitational energy released is easily
absorbed or radiated away. The time for free fall under gravity of a body
of uniform density p is

3 1/2
trp = 1.4
r [32(;,9} (4

The pressure gradient needed for hydrostatic equilibrium is given by

dP
L= ) (1.5)

The average pressure needed to support a system with gravitational energy
Egr and volume V is given by

(P) = —==5% (1.7)

The internal kinetic energy and gravitational energy of a gas of non-relativistic
particles in hydrostatic equilibrium are related by

N I N
LLKE + LGR = V.

o~
o
o
—
S’

The most important consequence of this relation is that, as a self-gravitating
system loses energy, its gravitational energy decreases and its internal kinetic
energy increases. Indeed, half the gravitational energy released supplies the
energy loss and the other half is used to increase the kinetic energy.

The corresponding relation for an ultra-relativistic gas is given by

EKE +EGR = (. (1.13)
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This relation implies that hydrostatic equilibrium becomes precarious as the
constituents of the system become ultra-relativistic.

Star formation

e A gas of mass M consisting of particles of average mass m at a temperature
T is gravitationally bound if its average density exceeds a critical value given
by

3 [3T7°

e The temperature of a contracting body ceases to rise when the electrons
become degenerate. The maximum temperature attained by a contracting body
of mass M is approximately given by

kT =~ (1.28)

h2

G2m8/3m6 ] M4/3

As a result, only bodies with a mass greater than 0.08M, can achieve the
necessary temperature to ignite hydrogen fusion and become genuine stars.
There is also a maximum mass for a normal star which is in the region
of 50 to 100M,. This arises because radiation pressure, a pressure due to
ultra-relativistic particles, becomes increasingly important in massive stars and
hydrostatic equilibrium becomes precarious.

The sun

e The mass and radius of the sun are Mg, ~ 2 x 10*° kg and Ry, =~ 7 x 10® m.
® The average pressure inside the sun is given by

1Ecr _ GME

(P =3
3V 47rRé)

~ 10'* Pa. (1.29)

® The typical internal temperature inside the sun is given by

GM o7

S \@

kT; ~ ~05keV or T;=6x10°K. (1.31)

® The effective surface temperature, 7z = 6000 K, is three orders of magnitude
less than the typical internal temperature.
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e The luminosity of the sun is L, ~ 4 x 10°° W and is approximately given by

(4'”)2 it
Lo~ 7% FG4 (p)IM, (1.36)

where [ is the effective mean free path for radiative diffusion in the sun.

¢ The luminosity fixes the rate of thermonuclear fusion within the sun. Hydrogen
is fused to helium by the reactions of the proton—proton chain, and the
dominant reactions are given by

p+p—dte +u, (1.37)
p+d — He + 1, (1.38)
*He +°*He —*He +p + p. (1.39)

e A solar luminosity of 4 x 10%° W implies that about 4 x 10°® protons are
consumed per second and that at least 2 x 10°® neutrinos are radiated every
second.

Stellar nucleosynthesis

¢ The observed chemical elements in the solar system are largely a product
of nucleosynthesis during the big bang and nucleosynthesis during stellar
evolution.

e The extent of thermonuclear fusion in a star is determined by its mass.
Hydrogen is burnt if the mass is above 0.08M. This will be followed by
helium burning if the mass is above 0.5M,, or thereabouts. Stars with masses
roughly between 8 and 11M, will progress to carbon burning. Every stage of
nuclear fusion up to the synthesis of elements near iron occurs in stars with a
mass greater than 11M,.

e Neutron capture in the final stages of stellar evolution leads to the formation
of elements heavier than iron.

e The mass of a star determines the rate of its evolution, and its ultimate fate.
Stars like the sun evolve slowly and end their life as white dwarfs. Massive
stars evolve rapidly and end their life with a castastrophic collapse when the
mass of the central core of iron exceeds the Chandrasekhar limit of about
1.4M,. The outer layers of the star can be ejected as a supernova and the
remaining matter forms a neutron star or black hole. The interstellar medium is
enriched with heavier elements by mass loss from evolving stars; the formation
of planetary nebulae by intermediate mass stars and the supernova of massive

stars are of particular importance in this regard.
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The Hertzsprung—Russell diagram

e The H-R diagram displays the two basic observational properties of a star, its

luminosity and its surface temperature. Certain regions of the H-R diagram
correspond to stars at particular stages of their evolution; e.g. hydrogen burning
stars are on the main sequence. The H-R diagram has played a key role in
the link between observations and theoretical calculations of stellar evolution.

PROBLEMS 1

1.1

1.2

13

14

1.5

[a—
=)

1.7

Consider a sphere of mass M and radius R. Calculate the gravitational potential energy
of the sphere assuming (a) a density which is independent of the distance from the
centre, and (b) a density which increases towards the centre according to

pr) = pc(L = r/R).

In both cases, (a) and (b), write down the average internal pressure needed for hydrostatic
equilibrium, and determine how the pressure within the sphere depends on the distance
from the centre.

The globular cluster M13 in Hercules contains about 0.5 million stars with an average
mass of about half the solar mass. Use the Jeans criteria (1.19) to check whether this
cluster could have been formed in the early universe just after the time when the universe
was cool enough for the electrons and nuclei to form neutral atoms; at this time the

density of the universe was p =~ 10~ kg m~> and the temperature was T =~ 10% K.
As the sun evolved towards the main sequence, it contracted under gravity whilst
remaining close to hydrostatic equilibrium, and its internal temperature changed from
about 30,000 K, Eq. (1.23), to about 6 x 10° K, Eq. (1.31). (This stage of stellar
evolution is called the Kelvin—Helmholtz stage.) Find the total energy radiated during
this contraction. Assume that the luminosity during this contraction is comparable to the
present luminosity of the sun and estimate the time taken to reach the main sequence.
The main sequence of the Pleiades cluster of stars consists of stars with mass less than
6 M ; the more massive stars have already evolved off the main sequence. Estimate the
age of the Pleiades cluster.

The binding energy per nucleon for *%Fe is 8.8 MeV per nucleon. Estimate the energy
released per kilogram of matter by the sequence of reactions which fuse hydrogen to
iron,

Given that the luminosity of the sun is 4 x 10?® W and that the absolute bolometric
magnitude of the sun is Moy = 4.72, estimate the distance at which the sun could just
be seen by the naked eye. (The naked eye can detect a star of apparent magnitude 6.)
Estimate the number of photons incident on the eye per second in this situation.
Useful bounds can be set on the pressure at a centre of a star without detailed stellar
structure calculations. Consider a star of mass M and radius R. Let P(r) be the pressure
at distance » from the centre and m(r) be the mass enclosed by a sphere of radius r.
Show that in hydrostatic equilibrium the function

P(r) + Gm(r)* /8nr*

decreases with ». Hence show that the central pressure satisfies the inequality
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P, > —
‘763
where (p) is the average density.
If you assume that the density p(r) decreases with r, it is possible to derive a tighter
lower bound and, in addition, a useful upper bound for the central pressure. Show that

1/3
1 {4__%] G o)/ *M??,

P, >

1 1an
203

1/3
jl G(,O>4/3M2/3.

In addition, show that

1 [4x]'/
P. < 5 {_3’{} Gp?;/3M2/3,

where pc is the central density.



CHAPTER

Properties of matter and radiation

A stellar interior is an environment in which matter and radiation at high
temperature produce a pressure to oppose gravitational contraction. The conditions
are extreme: the atoms are ionized, the electrons can be degenerate and ultra-
relativistic, and the pressure due to radiation can be significant. Nevertheless,
despite this complexity, many of the properties of stellar interiors can be understood
by considering the simplest thermodynamic system, the ideal gas. However we shall
need to go beyond the familiar ideal gas in which the particles are both classical and
non-relativistic, and consider the ideal gas in its most general form. We shall give
particular attention to the properties of electron and photon gases and consider their
relevance to stellar structure. In addition, we shall consider the thermodynamics of
the dissociation of molecules, the ionization of atoms, the photodisintegration of
atomic nuclei and the production of particle anti-particle pairs.

2.1 THE IDEAL GAS

The ideal gas is a large number of particles occupying quantum states whose
energy is unaffected by the interaction between the particles. The particles we have
in mind may be atoms, ions, clectrons, photons, neutrinos, ..., etc. The effects
of quantum mechanics and special relativity will often be important in the gas;
only in particular circumstances will it be an appropriate approximation to treat the
Particles as classical and non-relativistic.
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Density of states

The gas particles can act like waves and we can use these wave-like properties
to enumerate the possible quantum states that can be occupied by the particles,
We assume that the particles are confined in a cubical box of volume V = L7
Confinement to such a box implies that the quantum states can be represented by
standing waves of the form sink.x sink,y sink,z with wave vector k given by

k = (ky ky, k) = (1 1y, 1) % (2.1)
where ny,n,,n, are positive integers; in other words, an integer number of half-
wavelengths can be accommodated between opposite faces of the box.

The quantum numbers n,,n,,n, can be used to count the quantum states with
different wave vectors. For example, (L/m)dk, distinct values of n, are encountered
if k. is increased to k, + dk,. Hence the number of quantum states with a wave
vector k with components between &, and &, + dk,, k, and &, + dk,, &, and k; + dk;
is

L 3
{ _] dkx dky dkz «
™

This result can be interpreted geometrically by thinking of a k-space defined by
positive coordinates &, &y, k; in which any volume element contains many quantum
states with a density of [L /7]® states per unit volume.,

We shall be interested in the quantum states with a wave vector k with a
magnitude between k and k + dk. These states occupy the k-space volume (with
positive k., k,, k;) between two spheres of radius £ and & + dk. This volume is
4mk*dk /8, and the number of states with wave vector magnitude between k and
k+dkis

= T (2.2)

{Lr 4rk>dk

The particle-like properties of these states become apparent if the momentum
of the particle is measured. The de Broglie relation, p = h/), implies that if the
wave vector has a magnitude & then the momentum has a magnitude p =#Ak, where
hi = h/2m. Accordingly, if we set p = fik in Eq. (2.2) we obtain the following
expression for the number of quantum states with a momentum with a magnitude

P S

) I g PR | PR | .
petween p and p + dp:

| 4
8(p)dp = T54mp dp.
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This result has to be modified if the particles have intrinsic angular momentum or
spin. For each state with definite momentum, there can be several quantum states
corresponding to different orientations of the spin of the particle, or, in other words,
1o different polarizations of the particle. Thus, when g, is the number of independent

polarizations of the particle, the number of quantum states with a momentum with
a magnitude between p and p + dp becomes

Vv
gp)dp = gszg”rﬂpzdp- (2.3)

We note that protons, neutrons and electrons are spin 5 particles with g, = 2.
Neutrinos also have spin % but have only one polarization; i.e. g; = 1. Photons
have spin 1 and g, = 2, corresponding to the two independent polarizations of an

electromagnetic wave.

Internal energy

The internal Kinetic energy of the gas depends on three factors: the density of
states, the energy of each quantum state, and the number of particles in each state.
The density of states, g(p)dp, is given by Eq. (2.3). The energy, ¢,, of a particle
of mass m in a quantum state with momentum p is, according to special relativity,
given by

612] = p*c? + mic*. (2.4)

If we represent the average number of particles in a state with energy ¢, by f(¢,),
we can write the internal energy of the gas as

E= [ o1 0. @.5)

Similarly, the total number of particles in the gas is

[
-
T
S~
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The macroscopic, thermodynamic properties of the gas may be described by
T, P and u, the temperature, pressure and chemical potential. In particular, these
Parameters determine how the internal energy of the gas is changed by a transfer
of heat or entropy, by a compression or expansion, and by a transfer of particles;

lf thp antrnny nl'\aﬂnaa I-\‘r rl(' i-]'\a ‘7/‘““‘“‘3 ]nw A‘] am el l-]'\cn ﬂl1l‘ﬂ]'\clr r\F nnffi'n]nc l'\(r
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dN, then

dE = TdS — PdV + udN. 2.7)
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The approach to thermodynamic equilibrium is characterized by processes which
lead to a uniform temperature, pressure and chemical potential, which, when
equilibrium is established, are related by an equation of state.

From the microscopic viewpoint, the temperature, pressure and chemical
potential determine the equilibrium distribution of the particles in the quantum
states. This distribution depends on whether the particles are identical fermions or
bosons:

e Identical fermions obey Fermi-Dirac statistics in which the occupation of
states is restricted by the Pauli exclusion principle; not more than one particle
can be in a given quantum state and the average number is

1
exp[(e, — ) /KT] + 1

flep) = (2.8)

¢ Identical bosons obey Bose—Finstein statistics in which any number of particles
may be in a given quantum state. The average number is

1
expl(e, — 1)/AT] — 1

flep) = (2.9)

These distribution functions are illustrated in Fig. 2.1, which shows that the
average occupation of every state decreases as the chemical potential decreases
or as the temperature increases. As this happens, the fermion and the boson
distribution functions approach the same distribution function, a distribution which
is appropriate for a dilute classical gas. In a dilute classical gas, even the states of

xragd nimnsorrr txzadhe nra ganenaley Anndiemiad Tew A il PR ; ~ e

}U'VVCDL CllClBy wuu (:p = FiC™ 4ic DWIWIy UWUPICU 11 E‘:u tiie OCcu «p ion O1 Dut,h
states becomes very much less than one when

exp[(mc* — p)/kT] >> 1. (2.10)

In this case, the +1 in the fermion distribution function, Eq. (2.8), and the —1 in
the boson distribution function, Eq. (2.9), can be neglected, and in both cases the
average number of particles in a quantum state becomes

f(ep) = exp[—(ep, — w)/KT] << 1. (2.11)

It follows that a gas of bosons and a gas of fermions have similar properties
when the occupation of every quantum state is low. The fact that there can be at
most one fermion but any number of bosons in a given state is of no relevance
since the average occupation of any state is very much less than one. Furthermore,

dilute gases act as classical systems of particles because the separation between the
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Fig. 2.1 The average number of bosons and fermions in a quantum state with energy ¢,
for different values of the chemical potential. The energy scale has been fixed by setting
kT = I, c.g. the average occupation of a state at ;4 = —2 and ¢, =2 on the graph represents
the average occupation at (4 = —2kT and ¢, = 2k7.

Particles allows an observer to keep track of their motion and distinguish particles
which are really identical. In particular, there are no quantum effects arising from

the identity of the particles. In this situation bosons and fermions obey classical,
Maxwell-Boltzmann statistics; they behave like maxwellions. We shall see that the
quantum and classical behaviour of electron gases play an essential role in stellar

physics.
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Pressure in an ideal gas

In Section 1.2 we used classical arguments to derive relations between the
pressure and internal energy density of an ideal gas. These were used to show
that the hydrostatic equilibrium of a self-gravitating gas becomes more precarious
as the gas particles become more relativistic. Here we shall confirm that these
relations are also valid when quantum physics is appropriate.

From the fundamental thermodynamic relation, Eq. (2.7), we note that the change
in the internal energy brought about by a volume change dV at constant entropy
and particle number is equal to —PdV, the work done on a system. In such a
process, the number of particles in each quantum state remains constant, and the
internal energy changes because the energy of each quantum state depends upon
the volume. Thus, by using Eq. (2.5), we find that pressure in an ideal gas is given
by

OFE > de
Pe-Gp=— [ GH oxp (212)

In order to find the dependence of the quantum state energy on the volume
confining the particles, we consider €, as a function of p, and p as a function of
V, and write

de, _ dep dp
dv  dp dV’

According to Eq. (2.1), the wave vector, and hence the momentum, is inversely
proportional to L. Since V=L>, p ox V~1/ and

o __r
dv 3V’

Also, the relation (2.4) between energy and momentum gives

d 2
do _pet
dp €p
where v, is the speed of a particle with momentum p. Hence we find
d _ _PY
v~ 3V’

Substitution of this result into Eq. (2.12) gives the following expression for the

pressure in an ideal gas:

1 [ N
P=5 . P f(e) 80)dp = 35 {Pvp), (2.13)
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where the brackets, { ), denote an average over the N particles in the gas. We note
that Eq. (2.13) agrees with Eq. (1.8) which was derived using classical physics.

It is easy to show that, when the gas particles are non-relativistic or ultra-
relativistic, the pressure is directly proportional to the kinetic energy density of
the gas. For non-relativistic particles €, = mc® + p?/2m and v, = p/m, and the
pressure is

2
P = 2_N<§_m> = ; of kinetic energy density. (2.14)

For ultra-relativistic particles €, = pc and v, = ¢, and the pressure is

N

P=—{(pc
3V

1
) = 3 of kinetic energy density. (2.15)

We emphasize that these expressions for the pressure are applicable to an ideal
gas in its most general form. It is immaterial whether the gas particles are bosons
or fermions, or whether they form a dense gas where quantum effects are important
or a dilute gas where classical physics is appropriate.

The ideal classical gas

The reader will be familiar with many of the properties of an ideal classical gas.
Our purpose here is twofold: to focus on the effects of relativistic kinematics and to
understand when the gas particles are no longer described by classical mechanics.
We begin by showing that the familiar equation of state for a classical ideal gas is
valid even when the particles are relativistic.

A gas is classical when the average occupation of any quantum state is small and
given by Eq. (2.11). The pressure in such a gas can be found by the substitution
of Egs. (2.3) and (2.11) into Eq. (2.13) to give

1 o)
P = o explu/kT] f pup exp[—e, /kT] gshzs47rp2dp. (2.16)
0

We now use the relativistic relation between energy and momentum, Eq. (2.4), to
obtain de, = v,dp and rewrite the integral in Eq. (2.16) as follows

/0 h p’ exp[—¢,/kTv,dp = —kT /0 B p d(exp[—e, /kT]).

o0

] p> expl—e, /kT|v,dp = 3kT/ exp[—e,/kT] prdp.
0 0
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Substitution of this result into Eq. (2.16) gives the following expression for the
pressure In an ideal classical gas:

—~
.}
o
~J

—

We now compare this expression with the equation for the total number of particles
in the gas, Eq. (2.6), which for a classical gas has the form

°° vV
N = exp[,u/kT]] exp[—e,/kT] gszg47rp2dp. (2.18)
0

This comparison leads directly to the equation of state
N
P= ‘—/kT = nkT. (2.19)

We emphasize that this equation of state is valid for classical particles even when
they are relativistic. However, as the particles become more energetic there will be
additional contributions to the pressure due to particle production. The equation
of state can be usefully compared with the relations between the pressure and the
kinetic energy density, Eq. (2.14) and Eq. (2.15). We find that the average kinetic
energy of a particle in a classical gas is equal to %kT if it is non-relativistic and
equal to 3&T if it is ultra-relativistic.

We now turn to the condition for the particles to form a classical gas. The gas is
classical if the average occupation of every quantum state is small compared with
unity. This will be the case if the chemical potential satisfies the inequality given

by Eq. (2.10). This inequality can be cast in a more useful form by deriving an
explicit expression for the chemical potential of a classical gas.

The chemical potential for a classical gas of non-relativistic particles can be
found by substituting €, = mc® + p*/2m into the expression for the total number of

particles in a gas, Eq. (2.18). Integration then gives

14
N = exp[(u — mc*)/kT] gSEE(ZkaT)"’/ g (2.20)
This may be rearranged to give

(= me® = —kT'In [8—5”—9—] , (2.21)
1

where n is N/V, the density of particles in the gas, and ng is defined by

(2.22)
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We shall see that np is an important parameter in statistical physics; it is called the
quantum concentration.

A similar calculation can be carried out for a classical gas of ultra-relativistic
particles. If we neglect the rest energy, mc?, of the particles and substitute €p = PC

Al tl

into Eq. (2.18), we obtain the chemical potential

j= —kTIn [gS"Q] : (2.23)
R
where the quantum concentration is now given by
kT’
=8m|—| . 2.24
ng = 8w [ p C] (2.24)

Where necessary, we shall distinguish between the quantum concentrations for a
non-relativistic gas and an ultra-relativistic gas by using the notation npyg and
HOUR-

These expressions for the chemical potential can be used to reveal the physical
significance of the inequality (2.10), the condition for a gas to be classical. We see
immediately that the inequality,

exp[(mc® — u)/kT] >> 1

is satisfied if the actual particle concentration » is small compared with the quantum
concentration ng. It is easy to see that this is just a more precise way saying that
the average separation of the gas particles is large compared with their typical
de Broglie wavelength. For non-relativistic particles, A\ = k/p ~ h/(mkT)'/? and
the particle separation is large compared with \ if n << [mkT/h*]*/? ~ ngyg.
For ultra-relativistic particles, A\ = h/p & hc/kT and their separation is large if
n << [kT/hc) = ngug. In the simplest terms, gas particles are only classical if
their de Broglie wavelengths are small. We shall see in Section 2.3 that photons
never form a classical gas because the chemical potential for photons is fixed and
equal to zero. However, gases formed from particles with mass, such as electrons
and ions, can behave classically or quantum mechanically, depending on their
density. The required density for the breakdown of classical physics is lower in a
gas of light particles because lighter particles have longer de Broglie wavelengths.
Thus, as a star contracts and as its density increases, the electrons, the lightest
particles in the ionized interiors, are the first to exhibit the breakdown of classical
Physics. Flectrons are the first to form a quantum gas. Many aspects of stellar
structure are affected by this quantum mechanical behaviour.

2.2 ELECTRONS IN STARS

As stellar matter is compressed, electrons are the first particles to change their
role. They initially form a dilute classical gas and then a dense quantum gas.
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Moreover they become increasingly relativistic as the density increases. We can
illustrate this trend by considering the electrons in the sun.

In Chapter 1 we assumed that the sun was a body with an average density
1.4 x 10° kg m—3 composed of electrons and ions which form an ideal gas of
non-relativistic, classical particles. By considering the pressure needed to support
the sun, we found that the typical temperature of this classical gas is 6 x 10° K.
It is easy to confirm that the electrons in the sun are indeed non-relativistic and
classical. First, the electrons are non-relativistic because the typical thermal energy,
kT, is small compared with the rest energy of the electron; in fact, kT ~ 107> mc?,
Second, an average solar density of 1.4 x 10° kg m~? implies an average electron
concentration n of about 6 x 10 m—3. This should be compared with the quantum
concentration, ng, for electrons at a temperature 6 x 10° K. Using Eq. (2.22), we
find that ng is about 3 x 10>! m~>. Thus, on average the electrons in the sun form a
dilute gas with a concentration much less than the quantum concentration. In other
words, they form a classical gas. When we focus our attention on the electrons in
the central core of the sun, we shall find that even in this dense region the electrons
still form a gas which is approximately classical.

Thus at present, the electrons in the sun form a gas of non-relativistic, classical
particles. However, it is easy to see that quantum effects will eventually become
important when the central core of the sun contracts. According to Eq. (1.11), the
thermal kinetic energy increases as the solar core contracts. The typical temperature,
T, inside a contracting solar core of mass M increases as the radius R of the core
decreases. In analogy with Eq. (1.31), we expect
_ GMm

N —. 2.25
kT 3R (2.25)

According to Eq. (1.22), the quantum concentration for the electrons in the core
increases as the temperature increases; in fact, np o 7°/2. If this temperature
dependence is combined with Eq. (2.25), we find that np o< R=3/2, In comparison,
the actual concentration of the electrons increases as # & R~°. Thus, n increases
more rapidly than ng as the core contracts, and eventually » will exceed ng. In other
words, the process of contraction will lead to an electron gas in which quantum
effects are important. Moreover, we shall see that, if this quantum gas becomes
more dense, the electrons will become relativistic.

Hence, electrons obey different rules at different times during stellar evolution.
We are already familiar with the equation of state for a classical gas of electrons.
We now need to find the equation of state for a quantum gas of electrons.

The degenerate electron gas

Quantum effects dominate when the concentration of electrons becomes large
compared with the quantum concentration, This high density requirement can also
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be viewed as a low temperature requirement. In particular, n >> ng is equivalent
to kT << h*n*7/27m, if ng is given by the non-relativistic Eq. (2.22). Thus, a
quantum gas is a cold gas, but the standard of coldness is set by the density of the
gas; a temperature of a billion degrees can be cold in a very dense gas.

A cold gas of electrons is called a degenerate gas because the electrons have fallen
into quantum states with the lowest possible energy. Electrons are identical fermions
and obey the Pauli exclusion principle. Hence the electrons must be distributed so
that each of the quantum states up to a certain energy are occupied fully by one
electron and quantum states with higher energy are unoccupied. Such a distribution
of electrons must be the zero temperature limit of the Fermi-Dirac distribution
(2.8). Indeed, if we set the chemical potential at zero temperature equal to an
energy €r, Eq. (2.8) gives the following for the average number of electrons in a
quantum state with energy e,:

fle)=1 if ¢ <ep, and fle)=0 if €, > ep.

The energy of the most energetic electrons in a cold electron gas, ef, is called the
Fermi energy; the corresponding momentum, pg, is called the Fermi momentum.

Because every state up to those with a momentum pg is occupied by one electron
and all other states are unoccupied, the total number of electrons in a degenerate
gas is the number of states with momentum less pr. Using Eq. (2.3) for the density
of states, we find

oy 8TV
N= [ g34mp°dp = —<pp (2.26)
o Sh 3h

electron. This equation for the number of electrons may be rearranged to give the
Fermi momentum in terms of the electron density,

where we have used g, = 2 to account for the two independent spin states of the

3,71/
pF{.éﬂ h. (2.27)

We note that this expression for the Fermi momentum implies that the de Broglie
Wavelength of the most energetic electrons in a degenerate gas, A = h/p, is
Comparable with n=1/3, the average distance between the electrons.

The equation of state for a degenerate gas can be found by evaluating the internal
Cnergy. We shall consider two special cases corresponding to non-relativistic and
ultra-relativistic electrons:

The electrons in a degenerate gas are non-relativistic if pr <<mc which is
®quivalent to n << (mc/h)?, where h/mc is the Compton wavelength of the electron,
2.4x10~12 m_ In this case the internal energy of the gas can be found by substituting
@ =mc + p2/2m into
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PF %4 5
E = epgsh—347rp dp (2.28)
0
to give
3pk
E=N SR i 2.29
Imc 10m} (2.29)

We now recall that, according to Eq. (2.14), the pressure in a non-relativistic
ideal gas is two-thirds of the kinetic energy density. Hence the pressure in a non-
relativistic, degenerate gas is

Pt
P=n—. 2.30
o (2.30)
The Fermi momentum can be expressed in terms of the electron density using
Eq. (2.27), to give an equation of state of the form
P=K R here Kyg = — | — . 2.31
wir, e k- E[27 e
The equation of state takes a different form when the degenerate electrons are
predominantly ultra-relativistic. In this case n >> ngyg and n >> (mc/h)?, and

an approximate expression for the internal energy can be obtained by substituting
€, = pc into Eq. (2.28). This gives

E = N%ppc (2.32)
4

and the pressure, which now, according to Eq. (2.15), equals one-third of the kinetic
energy density, is

1
P= anFC. (233)

The equation of state becomes

he [ 3717
P =KURn4/3, where Kpp = — [—} . (2.34)
4 | 8w
We note from Egs. (2.31) and (2.34), that the pressure of a degenerate gas is an
increasing function of the density, but the rate of increase becomes less rapid once
the particles become ultra-relativistic; i.e. the equation of state becomes less stiff.

We shall see in Section 6.1 of Chapter 6 that this has important implications for
the stability of white dwarfs,
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A density—temperature diagram

An understanding of when electrons become degenerate and relativistic is
jmportant in the theory of stellar evolution. The form of the equation of state
changes gradually as the temperature and density vary, and takes on a simple form
if the electrons are classical or degenerate, and non-relativistic or ultra-relativistic.
For example, the electrons are ultra-relativistic and degenerate with the equation of
state P = Kygn®/® if n >> noyg and n >> (mc/h)’. If the temperature increases
and the density decreases the electrons become classical and ultra-relativistic with
an equation of state P = nkT when n << ngyg and kT >> mc?.

The classical, quantum, non-relativistic and ultra-relativistic regimes for electrons
in an ideal gas are illustrated in Fig. 2.2, To a first approximation, the boundary

| | I | |
A
CLASSICAL, ULTRA-RELATIVISTIC e
P = nkT s
~
7
e
- Core of
- supernova
e - . . . 7‘/ progenitor =
Z CLASSICAL, NON-RELATIVISTIC |
= P =nkT / I
|
= 7
c /o
& / |
W Sun / \
2 / !
= / White dwarf
109 — / | —
/ DEGENERATE,
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/ NON-RELATIVISTIC | £ = Kur?
/ P= KNR n5/3 |
/ i
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ELECTRON CONCENTRATION # (m3)

Fig. 2.2 Equation of state regimes for an ideal electron gas at a temperature T and at a
density of » electrons per m°. Typical values are shown for the temperature and density for
electrons in a normal metal, in the sun, in a white dwarf and in the iron core of an evolved
Star just prior to a supernova.
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lines between the different regimes in this n — T diagram are set by the four
equations:

n=ngyr ~ 2 x 102 73/2 ‘3,
n=nour ~8x10°7° m
n=(mc/h)y’ =7 x 10 m

T =mc*/k~6x10° K.

Inspection of Fig. 2.2 indicates that dense electron gases are degenerate provided
they are not too hot, and that hot electron gases are classical provided they are not
too dense.

In practice the electron gas is not ideal because electrons interact. The principal
correction to the equation of state usually arises from the electrostatic interaction
between electrons and ions. In a classical gas this correction becomes more
important as the density increases. This is illustrated by the density dependence
of the ratio of the electrostatic energy of interaction to the thermal kinetic energy.
This ratio is approximately

Egs = Zé l/3
KT~ 4meokT

(2.35)

where Z is the charge on the ions and n71/3 is the typical distance between an ion
and an electron.

In contrast, the electrostatic correction becomes less important at high density
in a degenerate gas. In this case, the typical kinetic energy of the electrons is

determined hv the Fermi momentum. which in turn denends on the rlpnmfv cee
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Eq. (2.27). If electrons are non-relativistic, the ratio of the electrostatic energy to
the kinetic energy is approximately

Egs _ Ze*n'/? NZeZZm VE

- ~ 2.36
p/2m  Ameopr/2m  Amegh? (2.36)

Thus, as the density of a degenerate gas increases, electrostatic interactions become
less important and the ideal gas approximation becomes more appropriate.

Electrons in the sun

The changing role of electrons in stellar evolution can be illustrated by
considering the electrons in the sun. At present, according to theoretical models
of the sun, the centre of the sun contains electrons with a concentration of about
8 x10°! m~3 at a temperature of about 1.6 x 107 K. If we substitute this temperature
into Eq. (2.22) we find a quantum concentration for electrons of 1.5 x 10*? m3,
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which is just above the actual concentration. This implies that we can approximately
treat the electrons at the centre the sun as classical gas, but that a precise treatment
must include small but significant corrections due to degeneracy.

As the sun evolves, the hydrogen content will be reduced and helium will build
up in the core. Eventually hydrogen burning will be confined to a shell surrounding
a small but growing helium core. Evolutionary models indicate that the temperature
will rise to about 2 x 107 K and the electron concentration to about 3 x 10*? m—3.
The effects of electron degeneracy will now become more important because the
quantum concentration at this temperature, 2 X 10** m~3, is comparable with the
actual concentration.

When the sun evolves away from the main sequence towards the red giant
region of the Hertzsprung—Russell diagram (Fig. 1.6), evolutionary models predict
it will develop a helium core with a temperature of about 10® K and an electron
concentration of 3 x 10°* m—3. The quantum concentration at this temperature is
2 % 10** m~3, which is an order of magnitude less than the actual concentration.
Despite a temperature of 10® K, we have a cold, degenerate gas in which most
of the electrons occupy the states of lowest energy in accordance with the Pauli
exclusion principle.

Even though 10® K is cold enough for the electrons to be degenerate, it is hot
enough to ignite the fusion of helium to form carbon. According to Section 1.4,
the fusion energy released will cause an increase in the gravitational energy and
a decrease in the internal energy. If the core were composed of non-degenerate
matter, the fusion control mechanism discussed in Section 1.4 would be operative:
if the fusion energy cannot escape, the core will expand and cool, and the rate
of fusion will decrease. However, when helium fusion begins in the sun, the core
will consist of a classical gas of ions and a degenerate gas of electrons, with the
latter providing the bulk of the pressure. The release of excess fusion energy into
this material will be accompanied by an expansion and a decrease in the energy of
the degenerate electrons but without any appreciable fall in temperature. The rate
of fusion will be uncontrolled. Thus, the onset of helium burning in the sun will
Cause an explosive release of energy in a thermal runaway called a helium flash;
the peak power could exceed the present luminosity of the sun by a factor of 10!,
But only a fraction of this energy will escape as radiation. Most of it will go into a
rapid expansion of the core which lifts the electron degeneracy. Eventually helium
fusion will take place in a controlled way in a less dense core of non-degenerate
matter,

The sun has insufficient mass to proceed beyond helium burning. It is expected
to end its life as an inert white dwarf composed mostly of carbon and oxygen.
The mass of this white dwarf is uncertain because of the uncertain mass losses
during the red giant and planetary nebula phases of evolution. However, if a white
dwarf of 0.5M, were formed, the central density will be of the order of 10°
kg m™2 and the initial temperature, following the completion of helium burning,
Will be of the order of 108 K. The electrons in the centre of this white dwarf
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will be degenerate and partially relativistic. In fact, we have an electron gas with
concentration 3 x 10*> m™3, a Fermi momentum of 0.8mc and a Fermi energy of
1.3mc?; according to Egs. (2.22) and (2.24), such a gas will be degenerate as long
as the temperature is below 10° K. In contrast to the electrons, the carbon ions in
the white dwarf are massive particles with small de Broglie wavelengths. They will
form a classical system, with an average thermal energy of %kT per classical degree
of freedom, which will slowly cool down as energy escapes into space. Gravity
will tend to compress the ions and the electrons, but the bulk of the resistance will
be due to the electrons. Indeed, to a first approximation, the white dwarf is held
up by a pressure gradient in a gas of degenerate, partially relativistic electrons.

Electrons in massive stars

Electrons play a different role in stars more massive than the sun. First, we note
that massive stars can evolve extensively before electron degeneracy affects their
evolution. To understand this, we recall from Eq. (2.25) that the typical internal
temperature of a stellar core of mass M and radius R supported by a classical
ionized gas is given by

kT =~ G_3]\fl§n_1 o<M2/3,01/3.

This equation implies that the temperature rises as a star contracts, but that a given
temperature is reached at a lower density p if the mass M is higher. It follows that
electrons are less likely to be degenerate when nuclear fuels are ignited in a massive
star, because the ignition takes place at a lower density. In particular, theoretical
models indicate that a star with a mass greater than 11M, will normally evolve
through all the stages of thermonuclear burning with no effects due to electron
degeneracy.

However, electron degeneracy plays a spectacular role at the end of the evolution
of a very massive star. Eventually a core of iron is formed. As no further energy
can be extracted by nuclear fusion, this core contracts and the electrons become
degenerate. The mass of this degenerate core increases as more iron is deposited,
and when its mass exceeds the Chandrasekhar mass of about 1.4M,, it will collapse
rapidly. Part of the energy released by this collapse can give rise to the ejection
of the outer layers of the star as a supernova. The origin of this instability can be
found by considering the electrons in the iron core just before the collapse.

Theoretical models for highly evolved stars suggest that the iron core has a
temperature of about 8 x 10° K and a density of about 4 x 10'> kg m™3 just
before collapse. It is easy to show that the electrons in the core at this stage are
degenerate and predominantly ultra-relativistic. First, the electron concentration
is approximately 10> m~3 which implies a relativistic Fermi momentum of
about 12mc. Second, according to Eq. (2.24), the quantum concentration for
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ultra-relativistic electrons at a temperature 8 x 10° K is a factor of 1000 smaller than
the actual concentration. Thus, we have a gas of degenerate electrons occupying the
states of lowest possible energy in accordance with the Pauli exclusion principle.
But because the density is so high, most of these electrons are ultra-relativistic; in
fact their average energy is 9mc?. The collapse of the core is a direct result of the
ultra-relativistic nature of the electron gas attempting to support it. As discussed
in Section 1.2 of Chapter 1, hydrostatic equilibrium becomes precarious whenever
gravity is opposed by the pressure of a gas of ultra-relativistic particles. Indeed,
we shall show explicitly in Section 6.1 of Chapter 6, that a gas of ultra-relativistic,
degenerate electrons cannot support a mass greater than 1.4M,.

2.3 PHOTONS IN STARS

To a first approximation a star consists of matter and radiation in thermodynamic
equilibrium. Indeed, the pressure due to radiation inside a star can be nearly as
important as the pressure due to electrons and ions. For this reason we shall review
some of the properties of black body radiation, or, in other words, the properties
of a photon gas in thermodynamic equilibrium.

The photon gas

Electromagnetic radiation in equilibrium in a black body cavity can be thought
of as an ideal gas of photons. This gas is the simplest ideal gas of all because all
the particles move at the same speed, the speed of light. The unusual property of
the photon gas is that the number of particles can change; photons are zero mass
bosons which can be created and destroyed. We recall that a change in the internal
energy of any gas is given by Eq. (2.7),

dE = TdS — PdV + pdN,

where the third term, involving the chemical potential i and the number of particles
N, describes the effect of a change in particle number. In a photon gas, N is
free to change; in particular photons are destroyed or created until equilibrium is
established. For example, at fixed energy E and volume V the number of photons
changes until the entropy § is a maximum. This equilibrium is characterized by

M
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dF = —SdT — PdV + pdN, (2.38)
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such an equilibrium is characterized by OF /ON or u equal to zero. Thus, a photon
gas in equilibrium has zero chemical potential. Its properties may be deduced by
setting = 0 in the Bose—Einstein distribution function given by Eq. (2.9).

The number of photons in states with momentum between p and p + dp can be
found by using Eq. (2.3) for the density of states and Eq. (2.9) for the distribution
function to give

1 1%
47p*dp, (2.39)

Mp)dp = exp(ep/kT) — 1 53

where €, = pc and g; = 2 since the photon is a particle with zero mass and two
states of polarization. The number of photons per unit volume is

1 [ kT]? [ 2

where we have introduced a dimensionless integration variable x = pc/kT.
Similarly, the energy per unit volume in the photon gas is given by

1 [ kT X
u= ‘—//0 ep N(p)dp = 87 {E} kT'/(; ex———ldx (2.41)

The integrals in Eqgs. (2.40) and (2.41) can be related to a special function called
the Riemann Zeta Function: The binomial expansion gives

o0 )62 o0
[ ——dx = / e +e P e ¥+ dx,
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and if we integrate each term we obtain

I 1 1 1
A ;——_idx=2|i§+2_3+¥+:|=2c(3)=2404

Similarly
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Thus, Eq. (2.40) for the photon number density and Eq. (2.41) for the photon
energy density can be simplified to give
8k’

n=>bT", where b=2.404 x 733 =203 % 107 K3 m ™3, (2.42)
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and
8mok?

Tsp = 7365 107 ITK* m™. (2.43)
C

u=al* where a=

These two equations imply that, u = 2.70nkT. Hence the average energy of a
photon in a photon gas at temperature T is 2.70kT; the corresponding results for
non-relativistic and ultra-relativistic particles in a dilute classical gas are %kT and
3kT, respectively; see the paragraph following Eq. (2.19).

Photons give rise to a pressure called the radiation pressure. Since, according to
Eq. (2.15), the pressure due to ultra-relativistic particles is one-third of the kinetic
energy density, the radiation pressure at temperature 7 is

P, = %u = %aT“. (2.44)
It is straightforward to determine the relation between the properties of a photon
gas and the properties of a black body radiator. A black body radiator at temperature
T can be formed by making a small hole in the surface enclosing a photon gas
in equilibrium at temperature 7. Photons will escape like ordinary effusing gas
particles at a rate of nc/4 per unit area; i.e. on average they move towards and
escape from the hole with a speed which is % of the actual speed of the particles.
Similarly, the rate at which energy escapes is uc/4 per unit area. This can be
identified with ¢T*, the power radiated by unit area of a black body, to give a
value for Stefan’s constant,

c=ac/4=567Tx10° WK ™* m2 (2.45)

Photons with all possible energies or frequencies are radiated. Clearly, the intensity

radiated at a particular frequency is ¢/4 times the photon energy density at this
frequency. If we use Eq. (2.39) and ¢, = pc = hr, we obtain Planck’s formula for
the intensity radiated in the frequency range v to v + dv:

hv 82

¢
4exp(hv/kT) —1 &

I,dv = %u,,du = dv. (2.46)

This equation implies that the intensity 7, and the energy density u, have a
maximum at v = 2.82 kT /h. In other words, the most probable energy of a photon
in radiation at temperature T is 2.82kT, which is slightly higher than the average
energy of 2.70kT.

Radiation pressure in stars

In order to appreciate the quantitative aspects of thermal radiation we list in
Table 2.1 the properties of radiation at two particular temperatures, the temperature
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TABLE 2.1 The thermal properties of electromagnetic radiation in equilibrium at two

temperatures. A temperature of 6 x 10° Kis a typical temperature for the solar surface and
6 x 10°Kis a typical temperature for the solar interior.

Property Solar surface Solar interior

at 6 x 10° K at6 x 10°K
Average photon energy 14 eV 1.4 keV
Photon density, 7 4 x 108¥ m~3 4 x 104’ m™3
Radiation energy density, u 1Im™? 1012 1 m™3
Radiation pressure, P, 0.33 Pa 0.33 x 10! Pa
Radiation intensity, o T 73 MW m~? 73 x 10'> MW m2

of the solar photosphere, 6 x 10° K, and the typical temperature inside the sun,
6 x 10° K

We note that the radiation pressure at the solar surface is tiny by terrestrial
standards of pressure, comparable with the pressure exerted by butter on a slice of
buttered bread. In the solar interior, the radiation pressure is much greater, more
than a million terrestrial atmospheres. Nevertheless, this pressure is much smaller
than the pressure needed to support the sun against gravity; according to Eq. (1.29)
this is 10'* Pa. Thus, we were justified in Section 1.4 to neglect radiation and
assume that the sun is primarily supported by the pressure generated by electrons
and ions.

However it is easy to show that radiation pressure cannot be neglected in stars
more massive than the sun. To do so, we recall from Eq. (1.11) that the thermal
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potential energy. This implies that the typical internal temperature 7; in a star of
mass M and radius R is approximately proportional to M /R. The electrons and ions
have densities which are proportional to M /R>, and these particles supply a ‘gas’
pressure,

Py =n kT, + nikT; ARij- (2.47)
In contrast, the radiation pressure is given by
P, = %an x ARL:. (2.48)
Hence
oo (2.49)
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Thus the ratio of the radiation pressure generated by photons to the ‘gas’ pressure
generated by the electrons and ions increases with the mass of the star. This ratio
is small for the sun. But we shall see in Chapter 5 that the radiation pressure
becomes comparable with the ‘gas’ pressure if the mass of the star exceeds 50 M.
Furthermore, we recall that hydrostatic equilibrium of a self-gravitating system
becomes precarious if the pressure of support is generated by ultra-relativistic
particles. Hence radiation pressure is likely to have a destabilizing effect on massive
stars.

24 THE SAHA EQUATION

Molecules are dissociated, atoms are ionized and atomic nuclei are
photodisintegrated by radiation. The underlying reaction mechanisms are complex
and varied. However, simple and powerful results are readily derived if we assume
that matter and radiation are in thermodynamic equilibrium. To illustrate the general
ideas, we shall consider hydrogen in equilibrium with radiation and derive the Saha
equation for the ionization of atomic hydrogen.

We begin by considering the physical significance of the chemical potential.
In a system containing one sort of particle, particles move from a region of high
chemical potential to a region of low chemical potential until the chemical potential
is the same everywhere. Similarly, if the system consists of particles of type A, B, C
and D, which can be transformed into each other via the reactions

A+B=C+D,

thermodynamic equilibrium is reached when the chemical potential of particles A
and B equals the chemical potential of particles C and D; i.e.

H(A) + 1(B) = p(C) + 1uD).

These ideas can be applied to the ionization of hydrogen.

The electron in the hydrogen atom can occupy bound states with discrete energies
€n labelled by the quantum number n = 1,2, ---. When the atom is ionized the
electron can occupy unbound states with momentum p and energy €p. These energy
levels are illustrated in Fig. 2.3.

The interaction with photons can cause the hydrogen atom to be excited and
ionized. Indeed, at high temperatures we have a dynamic situation in which atoms
are continually excited and ionized, and in which electrons are continually captured
and atoms are de-excited. If we assume that the atoms, ions, electrons and photons
are in thermodynamic equilibrium, we can find the proportion of atoms which
are excited and ionized. In particular, the number of hydrogen atoms in states with
energy e, can be found by considering the dynamic deadlock set up by the reactions
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Continuum
of unbound
cnergy levels

(3:- ‘:;2 ey
116
(2— 22 cV

13.6
€6 == 2 eV

Fig. 2.3 The bound and unbound energy levels of the hydrogen atom.
vy+H,=¢ +p. (2.50)

Since the chemical potential of the photon is zero, thermodynamic equilibrium is
characterized by

m(Ha) = pi(e) + p(p). (2.51)

If the density is sufficiently low we can assume that the electrons, protons and
hydrogen atoms behave as classical particles in an ideal gas, and, if they are non-
relativistic, we can use Eq. (2.21) to evaluate the chemical potentials:

p(€) = mec® — kT In [ge:Qe} , (2.52)
1(p) = mpc® — kT In F@} , (2.53)

fp
(H,) = m(H,)c* — kT In {g(H(H)")QP} (2.54)

In these equations n. and n, are the concentrations of electrons and protons, and

n(H ) is the concentration of hvdroeen atoms in a state with ENEIgY ¢,; the mass
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of such an atom m(H,) is given by

m(Hn)c?‘ = m.c* + mpc2 + €,.
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The quantum concentrations are denoted by a subscript ). Because these depend
on the mass of the particle, Eq. (2.22), the quantum concentrations for hydrogen
atoms and ions are almost identical and they are denoted by ng,. The number
of quantum states with a particular energy is denoted by g. Since electrons and
protons both have spin half, g, = 2 and g, = 2. The number of hydrogen atom
states g(H,) with energy ¢, is determined by the degeneracy arising from the spin
and the relative orbital angular momentum of the electron and proton in the atom.
There can be several orbital angular momentum states with the same energy e,;
for example for n = 2 there are three p-states and one s-state. In general, the total
number of hydrogen atom states with energy €, is g(H,) = g,g.g, with g, = n?.

Substituting these chemical potentials into condition (2.51) gives the Saha
equation for the equilibrium concentrations of electrons, protons and hydrogen
atoms in an ideal gas at temperature 7. We find

nH.) _ &n
Rty nQe

exp[—e/kT], (2.55)

where the quantum concentration of the electron is

k1
Hoe = F%T} ~ 2 x 103 732 m=3. (2.56)

Because the Saha equation (2.55) is so important, we shall seek a clearer insight
into its physical significance by giving an alternative, more intuitive derivation. As
already mentioned, the Saha equation describes the result of a dynamic deadlock in
which the reaction rate for v +H, — e~ + p balances the rate for e~ +p — v+ H,.
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Because the rate for the former is proportional to n\nn) and the rate
is proportional to n.n,, it follows that

a lotbne
L Idilel

n(H,)

Relp

= fu(T),

where f,(T) is some function of the temperature, We expect f,(T) to be proportional
to the probability that an electron is bound, and inversely proportional to the
probability that an electron is unbound.

To show that this is indeed the case, we consider an electron and a proton in a
box of unit volume at temperature T. First, there are g.g, bound states with energy
€n available to the electron. Furthermore, to be in such state the electron has to

borrow an energy ¢, from the environment, and the probability of a successful loan
is nrnnnrtlnnn] to the Roltzmann factor of pvr\r._r /l(T] Hence the probabilitv that
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the electron is bound in a state with energy ¢, is prOportlonal to
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Secondly, the density of unbound states available to the electron with momentum
between p and p+dp and kinetic energy ¢, is given by Eq. (2.3), and the probability
of acquiring this energy is proportional to exp[—e, /kT]. Hence the probability that
the electron is unbound with any positive energy is proportional to

oe 1
/0 eXp[ﬂep/kT]geFMszdp = gelQe-

If we assume that the constants of proportionality for these two probabilities are
the same, and if we set f,(T) equal to the ratio of the probabilities, we find that

n(H,) - £(T) = 8eln exp[—e,,/kT]-

nenp genQe

This equation is identical to the Saha equation (2.55).

When the electron is bound, it can be in any one of the bound states labelled by
the quantum number n. The concentration of un-ionized hydrogen atoms is found
by summing over all values of n. Using the Saha equation (2.55), we find

mH _ 1 ig,,eXp[—e,t/kT]. (2.57)
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We may rewrite this as

n(H)
= exp[E; /kT] (2.58)
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Z = gnexp|—(e. — €,)/kT]. (2.59)
n=}

Note that ¢, — € is the excitation energy of the nth state. The function Z is called
a partition function. As it stands it is given by a sum which is divergent. But in
practice, Z is of the order of unity because the sum is terminated when the value
of n corresponds to a state whose spatial extent is comparable with the distance
between the gas particles.

Finally we will change the notation slightly and replace n, by n(H*). Then
according to Eq. (2.58) the ratio of ionized to un-ionized atoms of hydrogen in 2
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gas at temperature 7 is approximately

H* ¢
’;((—H% ~ % exp[—E,/kT]. (2.60)
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We note that the degree of ionization depends markedly on the temperature. But
it is also inversely proportional to the electron concentration n,. It follows that the
jonization increases if the density of the gas decreases. In effect, once atoms are
ionized they are less likely to capture an electron if the gas is very dilute.

In order to explore the strong temperature dependence of ionization, we take the
logarithm of Eq. (2.60) and obtain

In [nn((HI;))} =F — f—T’ where F =In {nnge] : (2.61)

Throughout this entire section we have assumed that the electrons form a classical
gas with n, << ng.. Hence F is a positive slowly varying function of temperature.
According to Eq. (2.61), the ratio n(H*)/n(H) increases from e~! to e*!, i.e. from
0.37 to 2.72, when the temperature increases from kT = E;/(F + 1) to E;/(F — 1).
Thus when F is large, as in a very dilute electron gas, the onset of ionization occurs
rapidly near kT = E;/F.

2.5 IONIZATION IN STARS

In this section we shall consider some of the more important consequences of
the ionization of the matter in the interior of stars and in the outer regions of stars.

Stellar interiors

In order to gain an understanding of the degree of ionization in stellar interiors,
we shall, for the sake of simplicity, first consider matter which consists dominantly
of hydrogen. The concentrations of the hydrogen atoms, the protons (or H* ions),
and the electrons will be denoted by n(H), n(H*) and n,, respectively. If the mass
of the electrons is neglected, the mass density is given by

p = [a(H) + n(H")] my, (2.62)

where my is the mass of the hydrogen atom. Furthermore, the particle
concentrations can be expressed in terms of the density and the fraction of the
hydrogen that is ionized. If this fraction is denoted by x(H) then

ne = n(HY) = x(H)p/my  and  n(H) = [1 — x(H)]p/mx. (2.63)

The fraction of ionized atoms, x(H), can then be found by substituting Eq. (2.63)
into the Saha equation (2.60) and using the ionization energy E; = 13.6 eV. This
gives
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[L—x(H)] _ p/my
x(HZ 7 10217372

exp[158,000/T], (2.64)

where T is the temperature in degrees kelvin. In Section 1.4 we considered a simple
mode] in which the sun was considered to be a globe of ionized gas with an average
density of 1.4 x 10° kg m™ at a temperature of 6 x 10° K. At this density and
temperature, Eq. (2.64) gives [1 —x(H)]/x(H)?> = 0.055, indicating that the fraction
of hydrogen ionized, x(H), is about 95%. In fact, this calculation underestimates
the degree of ionization. Equation (2.64) is not accurate at this density because,
even though the electrons and hydrogen ions are small enough to form an ideal
gas, the hydrogen atoms are not; their size is comparable with the typical distance
between the particles, d = (p/mn)~'/* =~ 107! m. The atoms interact strongly
with the gas particles and the likelihood of ionization is increased.

We now assess the extent of the ionization of heavy atoms in the sun. Even
though the inner electrons in such atoms are very tightly bound, the ionization is
almost complete. This arises largely because small quantities of these atoms are
immersed in a dilute electron gas formed by the ionization of hydrogen. To illustrate
this, we consider a few carbon atoms in a gas of hydrogen at 7 = 6 x 10° K and
p = 1.4 x 10° kg m—* which is fully ionized to give n, =~ p/my =~ 8 x 10%
free electrons per cubic metre. Because the carbon nucleus has charge 6, the
ionization energy of the last electron in carbon is Z2 or 36 times the ionization
energy of hydrogen. We can adapt Eq. (2.60) to find the approximate ratio of fully
ionized carbon atoms to carbon atoms which have only lost 5 electrons. This ratio,
which depends on the concentration of electrons provided by the ionization of the
hydrogen, is given by

n(6) _ 102'7°/2
n(s) T o

exp[—36 x 158,000/’T] ~ 10. (2.65)

This calculation, like the earlier one, underestimates the degree of ionization.
However it indicates that, to a first approximation, the atoms inside a star like
the sun are completely ionized.

Complete ionization greatly simplifies the analysis of the properties of matter
inside stars. In particular, we can find simple expressions for the total number
of particles and their average mass: let X, X,, and X4 be the mass fractions of
hydrogen, helium and heavy elements. If the material was not ionized, the number
of H and He atoms and the number of heavy atoms per unit volume would be

ny=Xp/my, ny=Xsp/dmy and ny = Xxp/Amy. (2.66)

When ionized, a hydrogen atom yields 2 gas particles, a proton and an electron. A
fully ionized helium atom yields 3 particles, a nucleus and two electrons, whereas a
fully ionized heavy atom of mass number A and atomic number Z yields a nucleus
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and Z electrons, about A/2 particles in total. Hence the total number of particles
per unit volume in a fully ionized gas is

Y V-|

= [ 210 ] i

noAs 2ny + 3ng + :A=|-m1+
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Since X7 + X4 + X4 = 1, we have
n = [1+3X; +0.5X4]p/2my. (2.67)
Hence the average mass of the gas particles is
m=p/n~2my/[1+3X; +0.5X,]. (2.68)

For example, the Standard Solar Model, Bahcall (1989), assumes that the sun was
formed from matter with X7 = 0.71, X4 = 0.27 and X4 = 0.02, which, when ionized,
forms a gas of particles with average mass of m ~ 0.61 amu. The Standard Model
predicts that hydrogen burning in the sun has reduced the hydrogen content and
increased the helium content so that, at present, the mass fractions in the central
regions are approximately X; = 0.34, X; = 0.64 and X, = 0.02; this material has
average particle mass of 0.85 amu.

Finally, it is also useful to have expressions for the number of electrons and the
number of ions per unit volume in a fully ionized gas. It is straightforward to show
that these are given by

ne = [1+X1]p/2my and n; ~ [2X1 + 0.5X,]p/2my. (2.69)

Stellar atmospheres

We recall from Section 1.7 that stars are classified according to their spectral
type. The classification, denoted by a letter O, B, A, F, G, K or M, largely reflects
a steady decline in surface temperature from about 30,000 K to about 3000 K. The
atoms in stellar atmospheres at these temperatures are partially ionized. Moreover,
if the chemical composition, temperature and density of the stellar atmosphere are
known, the degree of ionization of the various atomic species may be estimated
by applying the Saha equation. In general, the metallic elements like Li, Na, Mg,
Al, K, Ca, etc, with an ionization energy of about 5 eV, are predominantly ionized.
Elements, such as H, C, N, O, F, P, S, Cl, Ar, which have ionization energies in
the range 10 to 20 eV, tend to be partially ionized, whereas He and Ne, noble gas
clements with ionization energies above 20 eV, are only partially ionized even in
the hottest stellar atmospheres.

The general situation can be understood by considering the ionization of three
representative elements, sodium, hydrogen and helium, which have ionization



70 Properties of matter and radiation Chap. 2

energies of 5.14, 13.6 and 24.6 eV, respectively. If these ionization energies are
substituted into the Saha equation we obtain
n(Na*) _ 10%17°/2

A T £ NNy /7
exp|—OU, LU/ 1 |,

<

o~~~
o

n(Na) ~ n.
H* 1021T3/2
"((H)) ~ exp[—158,000,/T], 2.71)
1 He
+ 02L73/2
"((HHee)) LT exp[—286,000/T]. (2.72)
n e

The exponential factors in these equations give rise to huge differences in the degree
of ionization of sodium, hydrogen and helium. For example, at the temperature of
the solar photosphere, 6000 K,

n(Na*) ~ 107 n(H") and n(He*) ~ 1 710@. (2.73)
n(Na) n(H) n(He) n(H)

The ionization of metallic elements plays a crucial role in stellar atmospheres.
We see from Eq. (2.73), that the ionization of sodium is a factor of 107 larger
than the ionization of hydrogen. This factor more than compensates for the low
abundance of sodium relative to hydrogen in stellar atmospheres; this abundance is
about 107° in stars like the sun. Thus, even though stellar matter largely consists
of hydrogen and helium with traces of heavier elements, most of the free electrons
in stellar atmospheres are due to the ionization of metallic elements like sodium.
Moreover, the degree of ionization of other elements, such as hydrogen and helium,
depends on the concentration of these electrons. For the solar atmosphere T and n,
are typically of the order of 6000 K and 10'° m 3. If we substitute these values
into the Saha equation we obtain

n(H") _y n(He™) 14 n(Na™) 3
P2 o, 220 d 2D, 2.74
a0 Ee Y10 (2.74)

We see that in the solar atmosphere hydrogen is partially ionized, helium is hardly
ionized at all, and sodium is predominantly ionized. The degree of ionization is
higher in hotter stellar atmospheres. Indeed, if n, remains at about 10'Y m . 50%
of hydrogen is ionized at about 9000 K, and 50% of helium is ionized at about
15,500 K, as shown in Fig. 2.4.

These considerations help to explain the approximate relation between the surface
temperature and the spectral classification of a star:

Tha enacntral ~laccifhratinn ic hagad mnn tha ahearvatian of darle 1
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spectrum due to the absorption of photons of particular energies by atoms and ions
in the stellar photosphere. For example, the observation of the absorption lines
belonging to the Balmer series would imply that the temperature is such that

Fay
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Fig. 2.4 The fractional degree of ionization of hydrogen and of helium as function of the
femperature in a gas with a free electron concentration n, = 101% m™3,

hydrogen atoms are present in the n = 2 level illustrated in Fig. 2.3; the photo-
excitation of these atoms to states with n = 3, 4, etc, gives rise to dark lines of the
Balmer series. But atoms in the n = 2 states will not be present if the temperature
is too hot or too cold: if the temperature is too high most of the hydrogen will
be ionized and if the temperature is too cold most of the hydrogen will be in the
ground state of atomic hydrogen or in the form of molecular hydrogen. As a result,
the absorption lines of the Balmer series are only conspicuous in type A and F
stars where the surface temperature is between 11,000 K and 6000 K.

Similar considerations apply to the absorption lines of other elements. In brief,
the spectrum of hot type O and B stars, with a surface temperature between 30,000
and 12,000 K, are characterized by absorption lines due to the presence of singly
ionized helium which do not appear in cooler stars. Absorption lines due to atomic
hydrogen are conspicuous in type A and F stars where the surface temperature is
between 11,000 and 6000 K. Finally, lines due to the presence of neutral metals
are particularly apparent in the Spectrum of cooler type G, K and M stars where
the temperature is between 6000 and 3000 K.

The spectral lines due to the absorption of photons with particular energies are
seen against an opaque and luminous background. This background is produced
by the absorption and emission of photons with a continuum of energies in
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the visible region of the electromagnetic spectrum. For example, electrons in
stellar atmospheres emit and absorb photons as they accelerate past ions; these
processes, which are usually called bremsstrahlung and inverse bremsstrahlung,
are particularly important in hot stellar atmospheres. But cooler atmospheres are
rendered opaque and luminous by a process of considerable interest, the continual
production and destruction of hydrogen-minus ions.

The H™ ion is a bound state of a proton and two electrons. It is a two-electron
system like the helium atom. But the charge on the nucleus is only Z = 1 and
the second electron is only just bound with a binding energy of only 0.75 eV.
Accordingly, photons with an energy as low as 0.75 eV, i.e. a wavelength as long
as 1650 nm, are absorbed and emitted by the reactions

v+H —e +H (2.75)

However, a gas of hydrogen atoms will absorb or emit visible photons in this
way only if free electrons are present. In other words, a transparent gas of hot,
un-ionized hydrogen can be made opaque and luminous by the presence of free
electrons. We shall now show that a small abundance of easily ionized metallic
elements in such a gas can provide these electrons.

We shall model the situation by assuming the presence of metallic elements,
denoted by M, which are partially ionized to give a mixture of atoms and pairs of
electrons and ions. The concentration of these particles and the fractional ionization
of the element x(M) are related by

ne = n(M*) = x(M)[n(M) + n(M*)]. (2.76)

If we assume that all the metallic elements have the same ionization energy as
sodium, the Saha equation gives

[1 —x(M)] _ [2(M) +n(M")]
XM T 10732

exp[60,000/T]. (2.77)

The dynamic equilibrium concentration of H™ ions is established by the reactions
v+ H™ = e + H, where the electron concentration is primarily determined by
the ionization of metallic atoms. The Saha equation for the ratio of the number of
H~ ions to the number of H atoms is

n(H .
’

’;E;_I) ~ 102.1.}3/2 exp[8700/T], (2.78)

where the electron concentration #n, is determined by Eqgs. (2.76) and (2.77).
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A simple numerical calculation, based on Eq. (2.77) and Eq. (2.78), illustrates
the coupled roles of easily ionized metals and loosely bound H™ ions in stellar
atmospheres. The fraction of metallic atoms ionized x(M) and the concentration
of free electrons n, increase with temperature until nearly all the metallic atoms
are ionized at about 4000 K. The concentration of H™ ions reflects this change in
the number of free electrons. The number of H™ ions increases with temperature
as the electrons become available, but then declines as n. approaches saturation
and as the temperature becomes too hot for the existence of a loosely bound H™
ion. The temperature dependence of n(H™)/n(H) is illustrated in Fig. 2.5 for the
particular case when the abundance of metallic atoms is such that, when they are
singly ionized, the concentration of free electrons is 10! m~>.
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Fig. 2.5 The fractional ionization of metallic atoms like sodium and the ratio of the number
of H™ ions te the number of H atoms as a function of temperature. As metallic atoms with
an initial concentration of 10! m™3 are increasingly ionized, the electrons released are
captured by hydrogen atoms to form loosely bound H™ ions. These H™ ions dissociate as
the temperature increases. The dynamic formation and dissociation of H™ no longer takes
place if the temperature falls below 3000 K, and visible radiation is no longer produced and

absorbed. Below 3000 K the gas is no longer luminous and opaque.
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We note from Fig, 2.5 that at a temperature of about 3000 K there is a small, but
significant, abundance of free electrons and H™ ions. At this temperature, H™ ions
are continually being produced and destroyed, and as this happens visible radiation
is emitted and absorbed. If the temperature is lowered below 3000 K, the abundance
of free electrons decreases and the H™ ions in equilibrium with these electrons
drops even more precipitously. In particular, H™ ions are no longer being produced
and destroyed, and visible radiation is no longer being emitted and absorbed. As a
result the gas is no longer luminous and opaque. This phenomenon has an important
implication for a stellar atmosphere: The temperature of the observed surface of
such an atmosphere is always above 3000 K, or thereabouts.

2.6 REACTIONS AT HIGH TEMPERATURE

So far we have focused on the interaction of radiation with atoms. When
the temperature becomes comparable with a billion degrees the interaction of
radiation with matter gives rise to two new processes: the production of electron—
positron pairs and the photodisintegration of atomic nuclei. Both these processes
are important in highly evolved massive stars. In this section we indicate how
simple and powerful results can be obtained for these processes provided they take
place in a system which is close to thermodynamic equilibrium.

Electron—positron pair production

Electron—positron pairs can be produced when the typical thermal cnergy, 47, is
comparable with m,.c?. The equilibrium concentrations of electrons and positrons,
n(e™) and r{e*), can be found by considering the reactions

v+y=e€e +eé, (2.79)

noting that the chemical potential of a photon gas is zero, and then ¢quating the
sum of the electron and positron chemical potentials to zero,

ple )+ p(e’) = 0. (2.80)

If the electrons and positrons form a classical gas, we can use Eq. (2.21) for the
chemical potentials to give

n(e In(e*) = 4ng exp[—2m.c” kT, 2.81)
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lectrons or positrons.

In a star the concentration of electrons is dominated by the electrons arising
from the ionization of the stellar matter. In the hot central regions of an evolved
star only traces of hydrogen will remain unburnt, and, according to Eq. (2.69),
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the electron concentration at density p is approximately n(e™) ~ p/2my. As
an example, we consider matter with p ~ 107 kg m™> and T ~ 10° K. Then
n(e”) ~ 3 x 10* m~> and the equilibrium concentration of positrons given by Egq.
(2.81) is n(e*) ~ n(e)/100. However, Eq. (2.81) is not valid at higher densities
where the electrons are degenerate. In this case pair production is inhibited, because
an electron can only be produced if there is an unoccupied quantum state available
to be filled. Thus pair production is favoured by high temperature and low density.
Accordingly, it is more likely in the centres of very massive stars which attain very
high temperatures at comparatively low densities.

The most important astrophysical implication of pair production is that it can
lead to the production of neutrinos via

Y+y =€ +e€ - v+, (2.82)

Most electron—positron pairs annihilate to yield photons. But about one in 10%*
pairs yield neutrinos. This is one of the mechanisms for neutrino production that
can occur in the hot central regions of highly evolved stars. The neutrinos so
produced can escape almost unhindered from a stellar interior and thereby provide
a very efficient energy loss mechanism.

Energy loss by neutrinos can be important in stars if their core reaches a
temperature of 10° K at a density where the electrons are not too degenerate,
ie. less than 10° kg m~—3, or thereabouts. Note that, even though this energy loss
is often called neutrino cooling, it does not lead to cooling. Its main effect is to
stimulate a faster rate of thermonuclear fusion in order to maintain steady conditions
inside the star. As a result, energy loss by neutrinos accelerates the rate of evolution
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Photodisintegration of nuclei

A second phenomenon induced by the interaction of radiation at high
temperatures is the break-up of atomic nuclei. This process is the analogue of

the ionization of atoms which, we recall from Section 2.5, becomes important at
about 3000 K. Since nuclear binding energies are typically a million times larger
than atomic binding energies, nuclear photodisintegration becomes appreciable at
a temperature which is about a million times higher than 3000 K, i.e. when the
temperature is about 3 x 10° K.

We shall see in Section 4.4 that photodisintegration occurs during advanced
stages of nuclear burning in massive stars, beginning with neon burning which is
initiated by the photodisintegration of ?’Ne via the reaction

v +**Ne —'°0 +*He.
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The “He nuclei released can then be captured by an undissociated *’Ne nuclei to
form 2*Mg. Photodisintegration also plays the key role in silicon burning, the final
stage of nuclear burning which leads to the formation of nuclei near iron in the
periodic table.

SUMMARY
The ideal gas

e In an ideal gas, particles occupy states whose energy is unaffected by the
interactions between the particles. The number of quantum states with a
momentum of magnitude between p and p + dp is

y
8(p)dp = gs3747p*dp. (2.3)

The average number of particles in a state with energy ¢, is given by Eq. (2.8)
if the particles are identical fermions, and by Eq. (2.9) if the particles are
identical bosons; i.e.

1
expl(e, — 1)/KT] £ 1

flep) =

where the plus sign applies to fermions and the minus sign to bosons.
e The pressure in an ideal gas is given by

s

o~
2
s
W

S

which equals two-thirds the kinetic energy density if the gas particles are non-

relativistic and one-third the kinetic energy density if they are ultra-relativistic.
e If the concentration of particles in an ideal gas is low compared with the

quantum concentration, their distribution in the quantum states is given by

F(ep) ~ expl—~(cp — w)/KT]. @.11)

These particles form a classical gas. The quantum concentration for non-
relativistic particles in such a gas is

nQ={ " J , (2.22)

and the quantum concentration for ultra-relativistic particles is
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3
kT
ng=8mw|—1 . (2.24)
c
e The chemical potential of a classical ideal gas is
sH
4t =me® — kT In {g Q} 2.21)
n

Electrons in stars

o If the concentration of electrons greatly exceeds the quantum concentration,
the electrons form a degenerate gas in which all the electrons fully occupy
quantum states with a momentum less than or equal to the Fermi momentum.
The Fermi momentum is related to electron concentration by

3p]?
PF= {g] h. (2.27)

o The equation of state of a non-relativistic, degenerate electron gas is

2/3
P =Kyen!? h K —h_2 3 / 2.31
= Kygrn’/”, where NR—Sm o . (2.31)

This is replaced by

1/3
P = Kypn/? h K _fe| 3 / 2.34
=RKyrh''7, Wwihere UR-4 7 s (2.34)

if the electrons are predominantly ultra-relativistic.

e The classical, quantum, non-relativistic and ultra-relativistic regimes for an
electron gas are illustrated in Fig. 2.2. The properties of electron gases in
these different regimes have key roles in stellar evolution.

hotone in of
otons In st

e Thermal radiation can be considered as a photon gas, a gas of zero mass
bosons with zero chemical potential.
® The number of photons per unit volume is

n=>bT® where 5=2.03x10" K m ?, (2.42)
® The energy per unit volume in a photon gas is

u=al* where a=7565x10""%]J K™% m? (2.43)



78 Properties of matter and radiation Chap. 2

e The radiation pressure is

1
P, = ZaT*. (2.44)

This is comparatively small in the sun, but it is more important in more massive
stars. According to Eq. (2.49), the ratio of the radiation pressure to the gas
pressure in a star of mass M is proportional to M2,

The Saha equation
e Ionization of atomic hydrogen and recombination,
v+H=e +H

can result in an equilibrium characterized by pu(H) = pu(e™) + p(H"). The
equilibrium concentrations are given by

n(H+) — nQe
n(H) ~ n,

exp[—E;/kT], (2.60)
where E; is the ionization energy of the hydrogen atom.

Ionization in stars

e The ionization in stellar interiors is almost complete and the number of
particles per unit volume in a fully ionized gas is

n=[1+3X;+0.5X,]p/my, (2.67)

where X; and X, are the hydrogen and helium mass fractions. The number of
electrons and the number of ions per unit volume are

ne ~ [1 +X1]p/2mH and n;, ~ [2X1 + 05X4],0/2m” (269)

e Ionization is partial in stellar atmospheres. Often most of the electrons arise
from easily ionized metallic elements. These electrons and the temperature
determine the degree of ionization of hydrogen and helium in the atmosphere.
Typically 50% of the hydrogen is ionized at 9000 K and 50% ot the helium
is ionized at 15,500 K; see Fig. 2.4.

e The opaque luminous surface of a star is due to the continual absorption and
emission of visible photons. This happens as electrons accelerate past ions,

and when loosely bound H™ ions are formed and broken up. The coupled roles
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of easily ionized metallic elements and loosely bound H™ ions indicate that
the minimum temperature of the observed surface of a star is about 3000 K;
see Fig. 2.5.

Reactions at high temperature

e Electron—positron pair production becomes significant when kT is comparable

with m.c? in a non-degenerate electron gas. The equilibrium concentrations of

electrons and positrons are given by
n(e”)n(e*) = 4nj exp[—2mcc” /kT). (2.81)

Pair production leads to neutrino production. Energy loss by neutrinos in
massive stars speeds up the rate evolution.

During the latter stages of the evolution of a massive star, central temperatures
above 3 x 10° K can be reached. At this temperature, and above, high energy
thermal photons can break-up atomic nuclei. Photodisintegration of nuclei
plays a key role in neon and in silicon burning.

PROBLEMS 2

21

Consider an ideal gas of degenerate, non-relativistic electrons with a concentration n and
obtain an expression for the Fermi energy. Assume now that the gas has a temperature
T such that the quantum concentration ng, given by Eq. (2.22), is equal to the actual
concentration n; quantum effects will be important in such a gas, but the electrons will
not be completely degenerate. Find the ratio of kT to the Fermi energy.

2.2 Compare the relative importance of the electrostatic interactions between degenerate

2.3

electrons and ions in a normal metal with a density of about 10* kg m > and in a white
dwarf with a density of about 10° kg m . In both cases estimate the temperature below
which the electrons are, indeed, degenerate.

The pressure in an ideal degenerate electron gas is given by Eq. (2.31) if the electrons
are non-relativistic, and by Eq. (2.34) if the electrons are predominantly ultra-relativistic.
Use the relativistic relation between energy and momentum, 612) = p?c? '+ m*c*, and show
that the general expression for the pressure in an ideal degenerate gas is

P = Kygn*31(x)

where x=ppr/mc and

5

3

)= 55 [x(l £/ (ZXT —~ 1) +1In[x + (1 + )7 .

Confirm that, in the appropriate limits, this expression for the pressure reduces to
Eq. (2.31) and Eq. (2.34), respectively. (This general expression for the pressure in
an ideal degenerate gas will be used in the discussion on white dwarfs in Chapter 6.)
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2.4 A stellar atmosphere consists almost entirely of hydrogen. Assume that 50% of the

2.5

2.

S8
~J

6

hydrogen molecules are dissociated into atoms and that the pressure is 100 Pa. Given
that the binding energy of the hydrogen molecule is 4.48 eV estimate the temperature,
In the early universe electrons and positrons coexisted with photons at very high
temperature. The concentrations of electrons and positrons were approximately equal
and were determined by a thermodynamic equilibrium set up by the reactions

Yty =e +et.

It follows that both the electrons and the positrons formed a gas of ultra-relativistic
fermions with zero chemical potential.

Reconsider the calculation for ultra-relativistic bosons with zero chemical potential
which led to Eq. (2.42) and Eq. (2.43), and derive the corresponding results for fermions.
Show, in particular, that the number of fermions per unit volume and the energy of these
fermions are given by

Hp = ést, and ur = zaT‘l.
4 8

In fact, the bulk of the pressure in the early universe was due to a gas of photons,
electrons, positrons, and three types of neutrinos and antineutrinos. In all, there were 8
types of ultra-relativistic fermions in equilibrium with photons at a high temperature 7.
Bearing in mind that the electrons and positrons have spin half with two polarizations,
and neutrinos and antineutrinos have spin half but only one polarization, find an
expression for this pressure.

Consider electron—positron production in a degenerate electron gas with Fermi energy
€r, and derive an expression, analogous to Eq. (2.81), for the equilibrium concentration
of positrons. Make a numerical estimate for this concentration in stellar matter at
T=10° K and p = 100 kg m—>.

Whan the core of
Wil

.
a macgive ctar execeade the Ch
¥y Laldn W/l WAL L Riada WD LAk WL

c a +0 it it coll
ALY W OLdrL v ACLiinA L L EL WL

[ ¥
Aigl 18518

this collapse, energy is absorbed by the photodisintegration of “He via the reaction
~ +*He — 2p + 2n.
The energy required for this reaction is Q = 28.30 MeV. Assume that this reaction is in

equilibrium with its inverse, and estimate the temperature at which 50% of the *He is
dissociated into nucleons when the density is 102 kg m~>,



CHAPTER

Heat transfer in stars

There are two basic mechanisms for the transport of heat inside a star. The first
mechanism depends upon the random thermal motion of the constituent particles.
The particles move, interact and transfer energy from hot to cold regions. If
the particles are electrons or ions this process is called thermal conduction. If
the particles are photons this process is called radiative diffusion. The second
mechanism depends on the collective motion of the constituent particles and is
called convective heat transfer. If the temperature gradient is steep enough, heat is
transferred from hot to cold regions by rising pockets of hot buoyant fluid and by
falling pockets of cool dense fluid. Heat transfer is a complex and difficult subject.
We shall focus on the basic ideas, and use these ideas to understand how the heat,
generated by nuclear fusion at the centre of a star, is transported to the surface.

3.1 HEAT TRANSFER BY RANDOM MOTION

Consider a gas in which the temperature T depends weakly on a coordinate
X, so that heat flows in the x-direction between regions which are approximately
in thermodynamic equilibrium. The microscopic mechanism underlying this flow
of heat is the random motion of the gas particles. In general, these move with a
distribution of speeds, in all possible directions and with a distribution of free paths
before they interact. We shall assume, for the sake of simplicity, that one sixth of

the particles move in the x-direction with a speed v and that they travel a distance
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! before they interact. The thermal energy per unit volume at x will be denoted by
u(x).

We begin our analysis by considering a surface at a particular value of x and the
particles crossing this surface. If there is a temperature gradient, the particles which
cross the surface from below will have a different thermal energy from those which
cross the surface from above. As a result there is a net transfer of energy across
the surface. As indicated in Fig. 3.1, the particles moving from below originate,
on average, from a region at x — / and transfer across the surface an energy which
is proporttonal to u(x — [), whereas particles from above originate from x +/ and
transfer an energy proportional to u(x + ). This implies that the rate of energy
transfer across unit area of the surface is given by

du
i

J(x) =~ %vu(x — 1) — é—fuu(x +h) = —%vl (3.1)

x+1 —l-vu(x+l)

3 ¢ T(x+1)
X T(x)

1 f
x-1 E‘Uw(x—l) T(x=1)

Fig. 3.1 Energy transfer across a surface at x by random thermal motion of particles.

Since u and T are both functions of x

d du dT d
du _dudl o491 (3.2)
dx  dT dx dx
where C is the heat capacity per unit volume. Hence the flux density of heat across
the surface at x is directly proportional to the temperature gradient:

d 1
Jx) = -K -dg with K~ ZelC. (3.3)

The coefficient K in Eq. (3.3) is the coefficient of thermal conductivity of the gas.
A more sophisticated calculation, which takes into account that the particles have
a distribution of speeds, directions and free paths, gives a similar result tor K, but
with v and / replaced by the mean speed T and the mean free path /.

We shall first use Eq. (3.3) to describe heat conduction by randomly moving
electrons and ions in a plasma. We shall then use it to describe heat conduction by
randomly moving photons, a process which is usually called radiative diffusion.
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Random motion of electrons and ions

The importance of thermal conduction by electrons and ions in a plasma can be
assessed by using familiar results from the kinetic theory of gases. For classical
electrons with concentration n, at temperature T

U, = %nekf C. = %nek and 7.~ [3kT/me]1/2. (3.4)
Because electron—electron collisions are less effective at transferring energy than
electron—ion collisions, the relevant mean free path in Eq. (3.3) is the mean free
path for an electron to collide with an ion. This equals 1/n;0, where n; is the
concentration of ions and o is the electron—ion collision cross-section. (The relation
between mean free paths and cross-sections is considered in more detail in Section
4.1 of Chapter 4; see Eq. (4.15).) An order of magnitude estimate for the electron—
ion cross-section is w72, where r is the distance at which the potential energy of an
electron-ion pair is comparable to the thermal kinetic energy; a significant energy
transfer to the ion is likely if the electron comes within this distance. For an ion
with charge Z this distance is given by

Ze?

dmeqr

~ kT (3.5)

Substituting these results into Eq. (3.3) gives the following estimate for the
coefficient of thermal conductivity due to electrons

k ne [3kT] 1/2 [4ﬂeokT} :

Kem Ze?

(3.6)

27Tn m.,
o

The thermal conductivity due to ions, K;, can be obtained from Eq. (3.6) by
interchanging », and n;, and m, and m;. If we assume the plasma is fully ionized
with n, = Zn;, we find

1 [me-‘ 1/2K€ 3.7)

r— Zz ;1'

Since Z > 1 and m; >> m,, it follows that K; << K,, a result which merely
reflects the fact that ions are outnumbered by electrons and that they move less
quickly than electrons. Thus, the random thermal motion of ions is, in general,
2 less effective mechanism for heat transfer than the random thermal motion of
electrons.

In fact, thermal conductivity by electrons and ions is of minor importance in
most stars. White dwarf stars are a notable exception. Here the electrons form
a2 dense, degenerate gas with high thermal conductivity, as in a metal. Equation
(3.3) is still applicable, but Eq. (3.4) must be modified to take account of the
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degeneracy. If the Fermi energy, €f, is large compared with &T, the typical electron
speed is increased by a factor of about (ep/kT)'/? and the thermal capacity is
reduced by a factor of about kT /er. The mean free path for an electron collision
is also longer in a degenerate gas, because an electron can only be scattered if
there is an unoccupied state available to be filled. The net result is that heat in
the interior of a white dwarf is conducted very efficiently by degenerate electrons,
Indeed, to a first approximation, a white dwarf has an interior of high conductivity,
at a temperature which is almost uniform, surrounded by an insulating jacket of
non-degenerate electrons and ions. The heat transfer through this jacket will be
considered in Section 3.4.

Randoem metion of photons

We can also use Eq. (3.3) to assess the importance of radiative diffusion, the
thermal conduction of heat by photons. We recall from Section 2.3 that thermal
photons move with the speed of light and, according to Eq. (2.43), form a gas with
an energy density and a thermal capacity given by

w,=al* and C, =4al”, (3.8)

Hence the heat flux density due to radiative diffusion is

dT . 4 .
j) = —K with K, ~ gclaT:‘, (3.9)
where K, can be thought of as the coefficient of thermal conduction due to the
random motion of photons.

Ta nroceed further we need ta know / the mean free
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in stellar matter. The simplest situation occurs at the high temperatures and the
comparatively low densities found in the interiors of massive main sequence stars.
Here the dominant process is Thomson scattering by electrons, in which case

ReOT 3 | 4we,m.c?

2 2
i= ! where arzEBE {———E—} : (3.10)

The Thomson scattering cross-section, o7, can be derived by considering the
classical radiation of an accelerating electron, or more generally from quantum
electrodynamics. The coefficient for thermal conduction by photons can be found
by substituting the mean free path into Eq. (3.9). It is instructive to compare the
result with Eq. (3.6), the corresponding coefficient for conduction by electrons.
Straightforward algebra gives

K, P, [mec? 312
o \@ZE [ keT ] , (3.11)
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where P, and P, are the radiation and electron pressures, given by Eqs. (2.44)
and (2.19), and we have again assumed that n, = Zn;. To illustrate we consider
conditions typical to the solar interior: for a hydrogen plasma at 6 x 10° K and
1.4 x 10° kg m—3,

kT ~ 107 mec®, P, =3 x 10" Pa and P, =7 x 10'* Pa.

Substitution into Eq. (3.11) gives K, ~ 2 x 10° K,. We conclude that radiative
diffusion is a more effective mechanism for heat transfer in the sun than thermal
conduction by electrons.

This conclusion still holds when we take into account the absorption of photons
in the sun. Conservation of energy and momentum implies that a photon cannot
be absorbed by an interaction with a free particle. In practice, photon absorption
normally involves an interaction with an electron in the presence of an ion, and as
such it becomes increasingly important at higher density and lower temperature.
If the interacting electron is initially bound to the ion we have a process called
bound—free absorption, and if the electron is initially unbound we have free—
free absorption. These processes are also called photo-ionization and inverse-
bremsstrahlung.

Both free—free and bound—free absorption lead to a mean free path which varies
with the frequency of the photon. Accordingly the analysis leading to Eqs. (3.3) and
(3.9) must be modified. We recall that Eq. (2.46) describes the black body radiation
due to photons with a frequency between v and v + dv. The energy density and
the thermal capacity due to the photons in this frequency range are given by

h 2 v
u,dy = — Vﬁ 8771/_,.(11/ and C,dv = aAuf dv. (3.12)
exp(hv /kT) — 1" ¢ a1 N

If I, is the mean free path at frequency v, the coefficient of conduction due to
photons of all frequencies is

K,:/ %chC,,dy. (3.13)

J0 ~

We conclude that Eq. (3.9) can still be used to describe radiative diffusion provided
the mean free path is averaged over frequency as follows:

N foo 1,C, dv
J=20 Y7 3.14
4qT? ( )

This average, which is called the Rosseland average, is likely to be dominated
by contributions at frequencies near 2.8kT/h where C, is a maximum, and at
frequencies where I, is large; i.e. where the stellar material is almost transparent.
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Regardless of the dominant mechanism for photon scattering or absorption, the
photon mean free path is determined by the probability of an interaction with either
an electron or an ion. This depends upon the concentration of electrons and ions,
n, and n;, and interaction cross-sections, ¢, and ;. The probability of interaction
in a distance dx is equal to (n.0. + n;0:)dx, and the mean free path is

= —t (3.15)

HeOTpe + n;,O',

Since n, and »; are both proportional to the mass density of the stellar material,
p, it is customary to write I = 1/px and specify the radiative transfer properties
in terms of x, the opacity of the material. In particular, the flux density of radiant
heat, given by Eq. (3.9), is rewritten as

Jo) = — 5 ——. (3.16)

We shall not consider in detail the complex mechanisms underlying the opacity of
stellar material. We shall merely indicate the most important features:

Bound—free absorption is important at low temperatures where a large fraction
of the atoms are only partially ionized. Free—free absorption dominates at
higher temperatures where ionization nears completion. These mechanisms give
a frequency-averaged opacity which increases with density and decreases with
temperature roughly in accordance with

ko p T3 (3.17)

This is known as Kramers’ law. Electron scattering provides a constant background
opacity which becomes predominant at high temperatures and low densities. This
constant opacity can be found using Eqgs. (3.10) and (2.69),

Kes = oo/ p= (1 + X)) o7/2my = (1 +X,) 0.02 m" kg ' (3.18)

where X; is the mass fraction of hvdrnopn in the ctellar material,

P 22afRi33 R — vwia 1{Rx

By way of numerical 1llustrat10n the opacity of solar materlal at a density of
10* kg m~3 and a temperature of 2 x 10° K, is about 10 m” kg~ !. corresponding
to a photon mean free path, 1/xp, of about 10~ > m. At a higher temperature of
1x10" K the opacity is smaller and the mean free path longer, about 0.1 m? kg™!
and 1073

3.2 HEAT TRANSFER BY CONVECTION

In the last section we considered how the random motion of photons, electrons
and ions in a material leads to the conduction of heat. However in the presence of
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a force field, heat may be transferred by the collective motion of the constituent
particles. Gravity provides this force field in a star. A rising pocket of stellar gas may
sometimes find itself in a cooler and more dense environment, and it will continue
to rise because of its buoyancy. A falling pocket of gas will continue to fall if it
finds itself in a warmer less dense environment. Complex and unpredictable currents
can be set up which convect heat very efficiently from hot to cold regions. Indeed,
convection is so efficient that it will dominate other heat transfer mechanisms.
However, convection only takes place if the magnitude of temperature gradient
exceeds a certain critical value.

Critical condition for convection

Consider an ideal gas in a gravitational field. We shall denote the temperature,
pressure and density by T, P and p at height x, and by T+ AT, P+ AP and p+Ap
at height x + Ax. Because the gas satisfies the ideal gas law, we have p o P/T and

Ap_APrAT
p P T

(3.19)

T+dT
HEIGHT x + Ax - P+6P | — T+ AT, P+AP. p+4Ap

p+ép

-

HEIGHT x _ N T Eop

Fig. 3.2 Displacement of pocket of gas from height x to x + Ax.

Now consider a pocket of gas at height x, as shown in Fig. 3.2. We shall assume
that the temperature, pressure and density of the gas in this pocket and of the
surrounding gas are matched. In general they will not match if the pocket is
displaced to a height x + Ax. We shall denote the changes in the temperature,
pressure and density of the displaced pocket by T + 6T, P+ 6P and p + ép. It is
Ieasonable to assume that the pressure inside the pocket responds rapidly to the
new environment so that 6P = AP. We shall also assume that there is insufficient
time for heat conduction to the environment and that the displaced pocket of gas
€xpands adiabatically until its pressure matches the surrounding pressure. For an
adiabatic process P  p?, so that

o

1
il 3.20
p v P (3-20)
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The pocket will be buoyant, and will continue to rise, if it contains gas which is
less dense than the surrounding gas; i.e. convection is possible if

bp<Ap, o —— < — ——, (3.21)
Y

We can set 6P = AP, because the pressure within the pocket responds quickly to
match the surroundings, and rewrite the condition for convection as

T<(fy—1)AP
T y P

(3.22)

In other words, the critical temperature gradient for convection is given by

T _(-nTdP
dx v Pdx’

(3.23)

Note that the temperature and the pressure gradients are both negative in this
equation. Convection requires the temperature to fall off rapidly with height. This
fall-off is determined by the value of the adiabatic index ~ and the fall-off in the
pressure.

The reader may recall that the adiabatic index of an ideal classical gas is related
to the number of classical degrees of freedom of the constituent gas particles. In
particular, if there are s classical degrees of freedom, each with an average thermal
energy of k7, then

_Cp_14s/2
_CV_ S/2 ’

(3.24)

For gas particles with just three translational degrees of freedom we have s = 3 and
hence v = 5/3. But ~ is smaller if the number of degrees of freedom is larger; in
fact ~ approaches 1 as s becomes large. Thus, if the gas particles can absorb heat
by exciting internal degrees of freedom such as rotation or vibration. ~ is smaller
and the critical temperature gradient for convection, Eq. (3.23), becomes less steep.
This is also the case if heat can be absorbed by the dissociation of molecules or
by the ionization of atoms.

The other important factor in Eq. (3.23), the fall-off in pressure with height,
depends on the strength of gravity. In particular, if we assume hydrostatic

iy vk Lo aonn ivey Arra e yen

g N ara ~ nlaenés~ ~
Cl.iulllUllulll lll da 1VE I WIICIC tllU avilcl i:ltlUll uue v gl d.Vll._y lb 5,

= —gp(x). (3.25)
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We note that in regions where g is small the pressure falls off gradually and
convection is more easily induced.

In practice, convection currents transfer heat very effectively. Indeed, the process
is so efficient that, in many circumstances, all the heat generated can be transported
a soon as the temperature gradient reaches the critical value given by Eq. (3.23).

3.3 TEMPERATURE GRADIENTS IN STARS

The temperature gradient at a point inside a star is determined by the rate of flow
of energy towards the surface and the mechanism governing this energy flow. In
practice, the most important mechanisms for the flow of energy in stars are often
radiative diffusion and convection.

Let L(r) denote the rate at which energy flows outwards through a spherical
surface of radius r within the star. The release of nuclear energy in the hot, centre
of the star implies that L(r) increases with r until a region is reached in which no
energy is being released. Indeed, if <(r) denotes the nuclear power generated per
unit volume at r, then the power produced in a shell bounded by r and r + dr is
e(r)4nridr. Because this is added to the outward power flow,

d. 2
p dree(r). (3.26)
Outside any central generating regions, L(r) becomes constant and approaches the
surface luminosity of the star.

We begin by assuming that radiative diffusion is the dominant heat transfer
mechanism. In this case the total outward power flow is L(r) = 47r? j(r), with j(r)
given by Eq. (3.16). Hence

L(r)y _ 4ac[T(r)) dT
472~ 3p(r)k(r) dr’

(3.27)

where the temperature 7, the density p and the opacity « depend on r. In fact, it
is more useful to think in terms of how the star manages to transport the power
generated in the interior towards the surface. If it does so by radiative diffusion, it
sets up a temperature gradient given by

dr _ 3p(r)r(r) L(r)
{d_r} ~ dac[T(N)? 4nr?’ (3-28)

The implications of Eq. (3.28) for heat transfer in the sun can be assessed by
Inserting appropriate numerical values. We can assume that the power flow in the
sun reaches a constant value equal to the surface luminosity of 4 x 10°° W at a
distance of about 0.4R, from the centre. If we use the following estimates for the

temperature, density and opacity at this distance,
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~5x10°K p~5x100kgm™> and k~0.5m?kg |

we obtain a temperature gradient of about —0.03 K m™". We note that the fractional
change in temperature over a distance comparable with the photon mean free path,
which in this case is 0.4 mm, is only 2 x 10~ !2, This indicates that the basic
approximation underlying radiative diffusion is valid: The solar interior is dense
and opaque, and radiation can indeed diffuse slowly to and from regions which are
in local thermodynamic equilibrium.

However, radiative diffusion will not be the dominant mechanism for heat transfer
if the temperature gradient reaches the critical value for the onset of convection.
According to Eq. (3.23) this critical temperature gradient is

dr (y—1)TdP
il = S 3.2
{dr}conv v Pdr (3.29)
where the pressure gradient is determined by hydrostatic equilibrium,
dp _ _ Gm(ne(r) (3.30)

dr re

In practice, convection dominates radiative diffusion whenever the temperature
gradient reaches the critical value given by Eq. (3.29). Indeed, convection is so
efficient that almost any amount of power can be transported and the temperature
gradient seldom needs to be steeper than this critical value. Convection is
particularly important in ionization zones and in the cores of massive main sequence
stars.

Ionization zones occur in the surface layers of stars, where atoms and ions
are continuously absorbing and releasing energy by ionization and recombination.
Convection is favoured for two reasons. First the opacity » will be large and
the temperature gradient for radiative transfer, Eq. (3.28), is steep. Second the
temperature gradient needed for the onset of convection, Eq. (3.29), is not steep
because the adiabatic index + is close to one; in more physical terms, convection is
favoured because a rising pocket of gas does not cool so much and is more likely to
remain buoyant if electron recombination can provide some of the energy needed
to expand the gas.

There is a convection zone in the sun located just below the photosphere. The
thickness is about 0.1 to 0.2R:. Here hot pockets of partially ionized gas rise
and cooler pockets of gas sink back down. As a result there appears at the base
of the photosphere bright, irregular and transient formations, called granules. The
convected energy is dissipated in the photosphere and then transferred to the solar
surface by radiative diffusion.

Convection can also be important in the central energy generating regions of
stars. The most favoured situation occurs when thermonuclear power is generated
in a small region near the centre. In this case, large amounts of energy flow through
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a region where the acceleration due to gravity is low; the pressure falls off gradually,
and a rising pocket of gas is more likely to remain buoyant because it need not
expand much.

We can be more quantitative by focusing on L(r)/m(r), the power that is
generated per unit mass within a core of radius r. If this exceeds a critical
value, the core will become convective. To find this critical value we set the
radiative temperature gradient, given by Eq. (3.28), equal to the critical gradient
for convection, Eq. (3.29) and use Eq. (3.30) to give

3ps L) _(y—= DT Gm(r)p
4acT4mrt 4 P 2

If we tidy up by replacing a7*%/3 by the radiation pressure, P,, we find that the
value of L(r)/m(r) needed for convection is

L] _ (y—1)167GcP,
{%L_I_ . — 5 (3.31)

If L(r)/m(r) is below this value, energy can be transported from the core by radiative
diffusion without inducing convection. If it exceeds this value convection dominates.
Thus, a convective core of radius » and mass m(r) is produced if the power generated
per unit mass within » exceeds the limit set by Eq. (3.31).

Convection occurs in the cores of massive main sequence stars, where hydrogen
burning takes place by the carbon—nitrogen cycle. This process, which will be
constdered in Chapter 4, is very temperature dependent; in fact, the power generated
is proportional to T'7. As the temperature falls off with » near the centre of the
star, nuclear power generation falls off extremely rapidly to give a small generating
region in which convection dominates. The central generating region of less massive
stars, like the sun, are larger and convection is less likely. This is because hydrogen
burning in such stars is via the proton—proton chain which is less temperature
dependent than the carbon—nitrogen cycle.

Most models of the sun indicate that convection is not important in the solar
core. For example, if we evaluate the right-hand side of Eq. (3.31) using values
appropriate to the solar core, v = 5/3, P = 1.73 x 10'® Pa, T = 13.7 x 10° K
and x = 0.138 m? kg™', we find that convection occurs only if the central power
generation per unit mass is greater than 1.5 x 1073 W kg™'. In practice, the power
generated is expected to be about 1.35 x 1072 W kg™', just less than the critical
value for convection,

3.4 COOLING OF WHITE DWARFS

We shall end this chapter by considering the physics underlying the steady decline
in the temperature and luminosity of a white- dwarf. Our primary purpose is to
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illustrate the role of heat transfer in stars. Our secondary purpose is to indicate
how the age of a white dwarf can be estimated from its luminosity. This is possible
because a white dwarf is an inert star, a dead body with no internal power source.
The time of death, as every detective knows, can be deduced from the temperature
of the corpse. This time can be used to estimate the age of the white dwarf and
also the age of the star system to which the white dwarf belongs.

For the most part, a white dwarf is composed of a dense system of classical ions
and degenerate electrons, surrounded by a thin envelope of classical gas particles.
The star cools predominantly by the conduction of heat by electrons in the interior,
and by the diffusion of radiation through the outer envelope. The cooling time is
long because of the high thermal energy of the ions in the interior and the high
opacity of the gas composing the envelope. In fact, the time scale for cooling is
about a billion years, long enough to ensure that many white dwarfs have not yet
faded from view, but short enough to ensure that most white dwarfs have low
luminosities.

We shall consider a simple model for a cooling white dwarf consisting of a
hot, metal-like, sphere surrounded by an insulating jacket of ionized gas. We shall
assume that the temperature of the interior is almost uniform because of the high
thermal conductivity of degenerate electrons; such electrons transfer energy over
long free paths because they can only be scattered into unoccupied quantum states.
The temperature of this isothermal interior will be denoted by 7;. We shall also
assume that the thermal energy of the ions, typically %kT; per ion, s lost as heat
is transported across the outer envelope, mostly by radiative diffusion. Hence, the
insulating properties of the outer envelope control the energy loss to outer space
and thereby determine the relation between the luminosity L of the star and the
steadily declining internal temperature 7;. We note that, as energy is lost, there
is little change in the structure of the star because it is supported by degenerate
electrons which cannot lose energy.

Our first task is to consider the variation of the pressure, temperature and density
in the outer envelope of the white dwarf. We assume that the ionized gas in
the envelope is classical and ideal with an equation of state P = pk7/m. There
is a pressure gradient determined by hydrostatic equilibrium, Eq. (3.30), and a
temperature gradient produced by the flow of heat towards the surface. which we
assume is governed by radiative diffusion, Eq. (3.28). Hence

dP _ GMp(r) and dT" ~ 3p(nk(r) L
e A dr — dac[T(r)]? 47r>

(3.32)

Because there is no energy generation, L is the surface luminosity. Also, m(r)
has been replaced by M, the total mass of the star, because most of the mass is
concentrated within the envelope. These two equations can be combined to give



3.4 Cooling of white dwarfs 93

o .

dP _ [16macGM] T’
ar | 3 L

migad o 1y tha nnta alans danandg an the tarminearatnre

Ananity a8 ey ra
1% EVFLIRZA WL sao k1l L1IW Uul\.d UllVUlUlJU uuy\.«uuo Ul 1w I.Clllpclﬂ.l.ul U,

Thea o
4 11w Ut.}abll.)‘ Lr
density and chemical composition. In this calculation, we shall assume that the
opacity is due to bound-free absorption and that 90% of the mass is helium and
that 10% is in the form of heavier elements. An appropriate opacity is then given

by
k= kopT 3 = 4.34 x 10T~ m? kg™, (3.34)

an expression consistent with Kramers’ law, Eq. (3.17). We can use the ideal gas
equation to rewrite the opacity in terms of the temperature and pressure

k= [“Z’"J PT—45, (3.35)

Substitution into Eq. (3.33) gives the following differential equation relating the
pressure and temperature in the envelope:

dP T7.S
=C —, with C= {

16macGk M
7 2 — } . (3.36)

3.‘%0711— f
If we integrate and use the boundary condition that P = 0 when T = 0, we find that

- o, (3.37)

The pressure, temperature and density increase as we go deeper into the white
dwarf. We are particularly interested in the density of the electrons, because these
particles will become degenerate as the interior of the white dwarf is approached.
This density can be found by noting that two-thirds of the particles in the ionized
gas of the envelope are electrons. Thus, electrons provide two-thirds of the pressure
with a number density given by

L= 3.38
T3k (-38)
If this is combined with Eq. (3.37), we find
1/2
Re = 3 {—i-l T13/4, (3.39)
3k |4.25 | o

The electrons will no longer form a classical gas when s, approaches the quantum
concentration given by Eq. (2.22); i.e. when n, approaches
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electron gas in the interior occurs when n, ~ ng. The highly conducting, isothermal

interior is reached when the electrons become degenerate with n, >> np. In
particular, we can obtain an approximate expression for the temperature of the
isothermal interior, T;, by assuming that at this temperature n, = 10ng. Then
Eqgs. (3.39) and (3.40) imply that

2rmkT; 1P 2 [ ¢ 17 13/

If we use the definition of the constant C given in Eq. (3.36), and if we use the
sun as a standard of mass and luminosity, we find the following estimate for 7;:

2/7
T, ~ (7 x 107 K) [ﬂ%@:} . (3.42)

Finally, we may rearrange Eq. (3.42) and express the luminosity of a white dwarf
in terms of its mass and the temperature of its isothermal interior,

T T m
o — | L. 3.43
L l:7 X 107 K} M@ - ( )

We note that this approximate relation between the luminosity L and the internal
temperature 7; arises because the insulating envelope of the white dwarf controls
the loss of energy into outer space.

As already mentioned the energy source for the luminosity of a white dwarf is
the thermal energy of the classical ions in the interior. This energy store is very
large. For example, if a white dwarf of mass M contained carbon ions in the form
of a classical gas, the thermal energy would be

3 3[ M
E ~ ZNKT,
VKL = [umﬂ

} kT;. (3.44)
This equals 8 x 10° J for a star of mass 0.4M, at 10° K. In practice. as the white
dwarf cools, the ions crystallize to form a lattice. The specific heat will increase
from 3Nk to 3Nk, and then decrease as the temperature falls below the Debye
lem[—JETalure of lIlU bUllU

Given the luminosity of a white dwarf, Eq. (3.43), and its internal cnergy store,
Eq. (3.44), we can find its cooling rate. If we equate the rate of decrease in the
internal energy to the luminosity we find that
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dr 7 x 107 K

d7; T,
= —
3k

7/2 2 [12
} with o~ — { m“} Le ~ 6 K per year. (3.45)

This simple differential equation may be integrated to give an expression for the
internal temperature of a white dwarf as a function of time. This expression may
then be substituted into Eq. (3.43) to give the luminosity as a function of time.
The initial temperature and luminosity are determined by the events which led up
to the formation of the white dwarf. For example, if the white dwarf was formed
following the completion of helium burning, the internal temperature will be about
10® K, and the initial luminosity will be about L, if the mass is 0.4M.

Figure 3.3 illustrates the declining luminosity of a carbon white dwarf of mass
0.4M, with an initial internal temperature of 108 K. Note that the calculated time-
scale for cooling from a luminosity of about L, to 107%L,, is a billion years.

This elementary calculation only gives a rough guide to the cooling of white
dwarfs. Detailed comparison between theory and observation requires a careful
analysis of the thermal properties of the ions, heat loss by neutrino emission and
energy release by sedimentation under gravity; see Shapiro and Teukolsky (1983).
As mentioned earlier, such a comparison is of practical use in astronomy as a way
of estimating the age of white dwarfs and the age of the star systems to which they
belong.
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Fig. 3.3 The declining luminosity of a cooling carbon white dwarf of mass 0.4M with
an initial internal temperature of 10% K.
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SUMMARY
Heat transfer by random metion

e The flux density of heat due to the random thermal motion of particles with

mean speed ¥, mean free path /, and heat capacity per unit volume C is given
by

dr 1.
jo) = —K— with K=~ 37IC. (3.3)

Random motion by electrons, ions and photons can lead to the conduction of
heat.

e Conduction by photons, or radiative diffusion, is especially important. It leads
to a radiative flux density given by

d 4 -
j(x) = ~K,a£ with K, ~ 5claT-“*. (3.9)

e Transfer of heat by radiative diffusion is usually described in terms of the
opacity, k = 1/pl. In particular, the radiant flux density is given by

dac T3 dT
i(x) = —— — —. .16
0= (3.16)

The constant background opacity due to electron scattering is given by

Kes = (1 +X1) 0.02 m? kg™ (3.18)

At high density and low temperature, bound-free and free—free absorption give
rise to an opacity which has a density and temperature dependence given by
Kramers’ law,

ko p T73° (3.17)

Heat transfer by convection

e A rising pocket of gas will remain buoyant and continue to rise, and a falling
pocket of gas will continue to fall, if the temperature gradient in a classical
ideal gas is given by

a7 _(-DTdP (3.23)

dx v Pdx N
Convection is usually the dominant heat transfer mechanism once this critical
temperature gradient is reached.
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Temperature gradients in stars

e If the outward power flow in a star is governed by radiative diffusion, the

temperature gradient is given by

d7T 3 L
[_} L 300k0) L) (.28
dr | .. dac{T(r)]° 4nr
e If the temperature gradient reaches the critical value given by
dT (y—1TdP
bl =~ - 3.2
{erm v Pdr -2)

convection is the dominant mechanism for heat transfer.

Cooling of white dwarfs

e The important problem of the cooling of white dwarfs illustrates many of the

ideas introduced in this chapter. It involves heat transfer by radiative diffusion
through the outer layers of the star, and heat conduction by degenerate
electrons through the interior of the star.

PROBLEMS 3

31

32

Show that, if the frequency and temperature dependence of the mean free path for a
photon is given by

1, 12

then the frequency averaged opacity satisfies Kramers’ law, Eq. (3.17).

The opacity depends on the chemical composition of the stellar material. Explain why
the free—free opacity is proportional to (X; + X3) (1 + X;), and the bound—free opacity
is proportional to X4(1 + X1), where X|, X, and X, are the mass fractions of hydrogen,
helium and heavier elements.

Show that heat transfer by radiative diffusion implies a non-zero gradient for the
radiation pressure which is proportional to the radiant heat flow. Bearing in mind that
the magnitude of the force per unit volume in a fluid due to the pressure is equal to
the pressure gradient, find the radjant heat flux density which can, by itself, support
the atmosphere of a star with surface gravity g. Hence show that a star of mass M has
maximum luminosity given by

Linax = 47cGM /K,

where k is the opacity near the surface. Obtain a numerical estimate for this luminosity
by assuming that the surface is hot enough for the opacity to be dominated by electron
scattering. (This maximum luminosity is called the Eddington luminosity.)
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3.6

3.7

Heat transfer in stars Chap. 3

Recall that the adiabatic index, +, is the ratio of the heat capacities at constant pressure
and at constant volume. Show that, for an ideal classical gas, the critical temperature
for the onset of convection, Eq. (3.23), can be written as

[ﬂ} __ 8
dx conv CP’

where Cp is the thermal capacity per unit mass at constant pressure and g is the
acceleration due to gravity. (Note that if the thermal capacity is high because of the
absorption of heat by the excitation and/or the dissociation of the constituent particles,
then the temperature gradient needed for convection is less steep.)

The approximate temperature and pressure profiles in the outer envelope of a white
dwarf were found in Section 3.4 by assuming hydrostatic equilibrium and heat flow by
radiative diffusion. Show that the results obtained justify the neglect of convection,
Use Eq. (3.37) and show that the radiative temperature gradient in the outer envelope
of classical gas surrounding a white dwarf is given by

dif _ GMm
dr  4.25¢%

Consider a white dwarf with mass M = 0.4 M, and radius R = R;/100 with an internal
temperature of 107 K, and estimate the thickness of its outer envelope.

Integrate Eq. (3.45) and show that the time for a carbon white dwarf of mass M to
cool from a high internal temperature to a much lower internal temperature, 7, is
approximately

L3k M
5 L 12my

where L is the luminosity corresponding to 7.




CHAPTER

Thermonuclear fusion in stars

Thermonuclear fusion in stars is activated by gravitational contraction. Because
the fusion of nuclei is strongly hindered by Coulomb repulsion, the first nuclear
fuel to ignite is composed of light nuclei with low charge. The energy released
by this fuel brings a temporary halt to the contraction of the star. But contraction
resumes when this particular fuel is exhausted. The internal temperature then rises
until the next available fuel, consisting of heavier nuclei, is ignited. In this way a
star can proceed through a sequence of nuclear burning stages which interrupt and
delay gravitational contraction. These thermonuclear hang-ups not only prolong
the life of a star, they also play a constructive role in the synthesis of heavier
atomic nuclei. We shall begin this chapter by considering the basic physics of
thermonuclear fusion.

4.1 THE PHYSICS OF NUCLEAR FUSION

The most remarkable aspect of thermonuclear fusion is that it happens at
surprisingly low temperatures. Indeed, when the significance of nuclear fusion to
stellar evolution was first noticed, many people expressed the doubt that stars were
not hot enough for it to occur. But Sir Arthur Eddington’s response to these doubters

Wag wolasiod.
vvas 1upudnt.

We do not argue with the critic who urges that stars are not hot enough
for this process; we tell him to go and find a hotter place.
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We now know that nuclear fusion in stars depends crucially on the wave-like
properties of atomic nuclei.

Consider two nuclei with charges Z4 and Zp with masses ms and mp. At
large separations r these particles interact via a repulsive Coulomb potential
Z4Zpe* /4megr. However at distances comparable with a fermi, 107! m, they will
also interact via a strong, attractive nuclear potential to give the overall potential
energy of interaction shown schematically in Fig. 4.1. Note there is a Coulomb
barrier which will inhibit the close approach of the nuclei and their fusion. The
classical mechanics of a head-on collision is straightforward: the kinetic energy
is progressively converted into potential energy as the nuclei approach each other
until the kinetic energy falls to zero. They will then come momentarily to rest and
bounce back. The distance of closest approach, r¢, corresponds to the point where
the potential energy reaches the energy of approach. When this energy is E, r¢ is
given by

 ZaZpé

E = )
dmegre

(4.1)

According to classical physics, fusion would only be possible if 7 is less than
ry, the range of the nuclear interaction between the nuclei. In other words, fusion
would only be possible if the nuclei have sufficient kinetic energy to climb over a
Coulomb barrier of height

A%ém 1.4 Z4Zg
Aregrn (ry in fermis)

Ec= MeV. (4.2)

The height of this barrier is large compared with the typical thermal energies of
nuclei in stars. For example, when the temperature is 107 K, kT is of the order of
a keV, not a MeV. Moreover, the fraction of nuclei with a thermal energy around
a MeV is tiny; this fraction is of the order of exp(—E/kT), or exp(—1000) if
E =1 MeV and kT = 1 keV. Thus at first sight, Coulomb repulsion presents an
insurmountable barrier to fusion in stars.

In fact, a definite distance of closest approach is a figment of the classical
imagination, and fusion can occur at energies well below E¢. According to quantum
mechanics, there is a chance that the nuclei can penetrate through the Coulomb
barrier and reach the region where the strong nuclear interaction is effective. Once
in this region, there is a possibility that the nuclei can fuse to form a heavier nucleus.

T smbcrotme i daeleriome hareior momabeablime to ot oo oo £ gt o anting
1LHG pllystiey Uullacliying bdlltel pChHeiratiuonn is tldi e wdve Lunciiun Iceplestiiiiils
the approach of the nuclei can leak into the region forbidden to classical particles-
This wave function, ¥(r), can be found by solving the Schrédinger equation for

the two nuclei in the potential V(r),



4.1 The physics of nuclear fusion 101
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Fig. 4.1 A representation of the Coulomb and nuclear potentials between two nuclei of
charge Z4 and Zg. The distance r¢ is the classical distance of closest approach for nuclei
with an energy of approach equal to E. The distance ry represents the range of short-range
nuclear forces. E¢ is the height of the Coulomb barrier keeping the nuclei apart.
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Fig. 42 The wave function representing the penetration of a barrier of constant height
Ec by particles whose energy of approach E is below the barrier. The wave function,
r 'Ib(r), oscillates smusmdally in the outer and inner classncally allowed regions. It decays
€Xponentially in the intervening classically forbidden regxon In stellar thermonuclear fusion
the wavelength for the relative motion of the nuclei in the outer classically allowed region

is very long compared with the range of nuclear forces ry.
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"2

[ S+ V(r)} () = Ev(r) (43)
My

where the reduced mass m, is given by m, = mamg/(ms + mg). Once we know

the wave function, we can find where the nuclei are likely to be found by noting

that the probability that they are separated by a distance between r and r + dr is

|[y(r) |2 4mridr.

To understand the wave mechanics of barrier penetration we consider the simple
example of a barrier of constant height Ec, as shown in Fig. 4.2. When a particle
approaches with energy E from the right, the incoming wave function oscillates
sinusoidally in the classically allowed region. As it penetrates into the classically
forbidden region, the kinetic energy E — E¢ is negative and the incoming wave
function satisfies the equation

VA(r) = x*y(r), (4.4)
where y is defined by
ﬁ2X2
= — E-. 4.5
E om. T EC (4.5)

It follows that the incoming wave function decays exponentially as r gets smaller.
In fact,

exp(xr)

w(r) = (4.6)

if there is no orbital angular momentum. The probability that the nuclei penetrate
the Coulomb barrier is roughly given by

|W(rw)|?4mry
|Wh(rc)|4mr

Probability of penetration ~ = |exp[—x(rc — )] (4.7)

A more careful calculation would consider the probability current density of
particles and reflection from the inner boundary, but the result given by Eq. (4.7)
is adequate for our purposes.

This result may be adapted to give the probability of penetrating a barrier of
vartable height, such as the Coulomb barrier in Fig. 4.1. In this case the parameter
X, Which governs the exponential decay of the wave function in the classically

forbidden region, depends on 7. For nuclei with reduced mass m, we have
2 2 2
R x(N)]° ZaZge
E=— ( + (4.8)

2m, dreqr ’
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and the equation corresponding to Eq. (4.7) is

2

Probability of penetration ~ (4.9)

el [ xop]

d{N

The integral can be evaluated by substituting r = r¢ cos® 6. It is useful to write the
result in terms of the relative energy E of the nuclei and an energy Eg, called the
Gamow energy, defined by

Eg = (raZaZg)*2m,c*, (4.10)

where « is the dimensionless fine structure constant,

& 1
= ~ . 4.11
“ dmeghic 137 ( )
Equation (4.9) then leads to
Es\"
Probability of penetration ~ exp |~ (—E—) : (4.12)

Thus, the Coulomb barrier keeping charged nuclei apart need not be overcome in
order to give the nuclei a chance to fuse. In practice, stars evolve slowly by adjusting
their temperature so that the average thermal energy of nuclei is well below the
Coulomb barrier. Fusion then proceeds at a rate proportional to the probability of
penetration of the barrier. Because this probability is very low, fusion proceeds at a

slow pace and the nuclear fuel lasts for an astronomically long time. We note that

the penetrability of the barrier is completely described by its Gamow energy, Eq.
(4.10). For the fusion of two protons E¢ is 493 keV. If the temperature is about 107
K, the typical thermal energy, &7, is about 1 keV, and the penetration probability
for two protons with this typical energy is exp[—(Eg /kT)!/?] ~ exp[—22]. There
are, of course, protons present with higher kinetic energy which will have a better
chance of penetrating the Coulomb barrier.

Fusion cross-sections

The probability of fusion is usually expressed in terms of a fusion cross-section.
In order to define a cross-section for a particular reaction, we consider a particle

passing through a medium contammg n target particles per umt volume The
nrnhnhﬂ:nr that the incomino

"
UUUUU ALI.'I,J LiiilLt 'I.ll\-l ERLIN Ullllll& }}u.

Ax is defined by

Probability of reaction in distance Ax = onlx, (4.13)
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where o is the reaction cross-section. It follows that the probability of no reaction
in Ax is [1 — onAx]. The probability that the particle travels a finite distance
x without reaction can be found by dividing the distance x into N intervals of
thickness Ax = x/N, and then compounding the probabilities for no reaction in
each of the intervals, We have:

Probability of no reaction in distance x = Nlim [1 — onx/N]" = exp[—onx]. (4.14)

The mean free path travelled before a reaction is then given by

- o0 1
= / xexp[—onx] on dx = —. (4.15)
0

Ra

The reaction cross-section, o, is an effective target area which is proportional
to the probability of the reaction occurring in a collision. A classical analogue
is the collision between a cricket ball and a window of area 1 m?; the reaction
cross-section would be 0.1 m? if there is a 10% chance that the window breaks. A
nuclear cross-section depends on the energy of the nuclei and their electromagnetic
and nuclear interactions. In particular, the cross-section often exhibits resonant
behaviour when the energy matches the energy needed to form a compound nuclear
state. The unit usually used for nuclear cross-sections is the barn which equals
10728 m?; a particularly large nuclear cross-section, will be as big as a barn, but
millibarn and microbarn cross-sections are more common.

Our chief concern is the cross-section for the fusion of two nuclei. At low
energies this cross section is proportional to the probability of penetration of the
Coulomb barrier keeping the nuclei apart. We therefore use Eq. (4.12) and write
the fusion cross-section for nuclei with relative energy E as

1/2
o(E) = g?exp [— (%)

The energy dependence of the fusion cross-section is invariably dominated by
a steeply rising probability of barrier penetration. The factor S(E), which is
determined by the nuclear physics of fusion, varies much more slowly with energy;
sometimes, however, it may peak when the energy is near a nuclear resonance. The
factor of 1/E has been introduced because nuclear cross-sections at low energies
are often proportional to the square of the de Broglie wavelength for the relative
motion of the nuclei before fusion; if p is the relative momentum of the nuclei,
N =h/p* = b /2m,E.

In practice, it is very difficult to measure fusion cross-sections at energies directly
relevant to astrophysics; i.e. at energies well below the Coulomb barrier. Larger,
and hence more easily observed cross-sections are measured at higher energies,

(4.16)
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and the prescription for the fusion cross-section given by Eq. (4.16) is used to
extrapolate the data to lower, more relevant energies. This prescription is also very
useful in calculating the temperature dependence of thermonuclear reaction rates.

Thermonuclear reaction rates

Consider a hot ionized gas containing nuclei of type A and B with concentrations
ny and ng which can fuse with a fusion cross-section denoted by o. For the moment
we will neglect the motion of the B nuclei and assume that all the A nuclei move
with speed v. According to Eq. (4.15), a nucleus of type A travels an average a
distance of 1/ngo before fusing with a B nucleus, and the average time before
fusion is 74 = 1/ngov. Thus in unit volume of the gas, we have ns nuclei of type
A which fuse at a rate of Rqp = nangov per second.

Of course, both types of nuclei move and the fusion cross-section depends on the
relative speed v, of the nuclei. If P(v,) dv, denotes the probability that the relative
speed is between v, and v, + dv,, then the average value of the product of the fusion
cross-section and the relative speed is

{ov,) = -/000 ov P(v,) du,. (4.17)

When we take this averaging procedure into account, the mean time for a particular
nucleus of type A to fuse with a B nucleus becomes

1
= 4.18
TA ng <O_Ur> ’ ( )
and the A — B fusion rate per unit volume becomes
Rap = nang{av,). (4.19)

Care is needed in using these equations to describe the fusion of identical nuclei.
The product nang in Eq. (4.19) represents the number of possible pairs of nuclei that
can fuse. It must be replaced by n(n — 1)/2, or in practice n? /2, when calculating
the fusion rate for identical nuclei with concentration .

In most astrophysical situations the nuclei form a classical, non-relativistic gas
with a speed distribution given by the Maxwell-Boltzmann distribution. Further,
it is easy to show that Maxwellian distributions for nuclei A and B lead to a
Maxwellian distribution for the relative speed, given by

m,v?

3/2
P(v)dv, = [%] exp [— AT } 4mvidu,. (4.20)
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If this distribution is substituted into Eq. (4.17) and if the integration variable is
changed to the energy E = %mrv2 we obtain

Fe

R - T R O O R - N o
wvr):[vrmrj Lﬁj jo Eo(E)exp L_EJM' (4.21)

If we substitute the prescription Eq. (4.16) for the fusion cross-section into
Eq. (4.21) and use Eq. (4.19), we obtain the following expression for the
thermonuclear fusion rate per unit volume

g 1271 3/2 oo E Eq 1/2
Raug = — E _ = — dE. )
AR = NAHR [er} {kT} /(; S(E) exp T ( 7 ) (4.22)

Note that in order to react at energy E, the nuclei need to borrow an energy I from
the thermal environment, and the probability of a successful loan is proportional
to the Boltzmann factor exp[—E/kT] in Eq. (4.22). Moreover in order to fuse,
the nuclei must first penetrate the Coulomb barrier keeping them apart, and the
probability of penetration is given by the factor exp[—(Eq/E)/°] in Eq. (4.22).
Once this has happened, nuclear forces can sometimes bring about a fusion. The
nuclear physics of fusion is hidden in the factor S(£) in Eq. (4.22).

Because the nuclear factor S(E) usually varies slowly with energy, the energy
dependence of the integrand in Eq. (4.22) is governed by the exponential borrowing
and penetrating functions. As illustrated in Fig. 4.3, the product of these two
exponentials has a maximum when the energy £ is equal to

Eg(kry* ]
4 |

A~
e
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0
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Figure 4.3 also indicates that fusion dominantly takes place in a narrow energy
range around a most likely fusion energy equal to Ey. We can find the width of this
window for fusion by making a Taylor’s expansion about £, to give the following
approximation:

E  [(E:\'| _ Eg\'"? (E - E)\
exp [—ﬁ — (f) } ~Z eXp [—3 (4k_T> } exp {- (W) . (4.24)

where A, the width of the fusion window, is given by

A _EJOkTy . (4.25)

These expressions for Ey and A show that fusion mostly occurs al energies
determined by the temperature of the gas and the Gamow energy of the Coulomb



4.1 The physics of nuclear fusion 107

FUSION PROBABILITY
I
/

FUSION WINDOW
-— E=E + AR

S
,\/\.<.___ . 1

2kT AT 6kT 8kT
ENERGY OF APPROACHE

Fig. 4.3 The energy window for the fusion of nuclei with a Gamow energy Eg and
temperature 7. To react at energy £, the nuclei need to borrow an energy E from the thermal
environment, and the probability of a successful loan is proportional to the Boltzmann factor
exp[--E/kT). To fuse, the nuclei must first penetrate the Coulomb barrier keeping them apart,
and the probability of penetration is given by the factor exp[— (Eg/E)!/?]. The product of
these two factors indicates that fusion mostly occurs in an energy window Eq £A/2. For
the fusion of two protons at 2 x 107 K, Eg = 290kT, Ey = 4.2kT, and A = 4.8kT, as
illustrated.

barrier. We recall that the Gamow energy is simply related to the charges of the
nuclei and their reduced mass via Eq. (4.10), namely

Eg = (maZyZg)*2m,c*.

For example, the Gamow energy for two protons is E; = 493 keV. When the
temperature is 2 x 107 K, k7 = 1.7 keV and the fusion of two protons is most
likely at Eg = 7.2 keV. The half-width of the fusion window, A/2, is 4.1 keV.

In many cases the nuclear factor S(E) is approximately constant across the fusion

window. It can then be replaced by a constant S(Ep) , and Eq. (4.22) simplifies to
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g 11271 132 oo E Eg\ /2
= — | SE S . (4.
s ] (2] " e £ ()

The value of the integral in this equation may be evaluated using the approximation
(4.24) to give /wA/2 times the maximum value of the integrand at E = Ey. When
the numerical values for the various constants are inserted we find a fusion rate
given by

Al Eq 2/ E 173
Rap =648 x 1072 222 qEo) [ =% _3{ Lo -3 -1
AB 8 Az.z, 0 (4kT> CXP{ 4T mes

(4.27)

where A, is the reduced mass of the nuclei in atomic mass units and S(Ep) is the
nuclear fusion factor in units of keV barns.

We now have a three parameter model for thermonuclear fusion. The parameters
are the nuclear fusion factor S(Ey), the Gamow energy Es, and the temperature
T. The nuclear factor depends on the specific nuclear reaction taking place; in
practice, it is usually measured in accelerator experiments. The Gamow energy
depends simply on the charge of the nuclei and their reduced mass and, together
with the temperature, it determines how the Coulomb barrier affects thermonuclear
fusion.

The main effects of the Coulomb barrier can be identified by focusing on the
terms involving exponential dependence on E¢ and 7. If we do this, we find that
the key factors in the expression for the fusion rate are

r . R
Eg\"
Rag o< nanpS(Eq) exp [—3 (ZIEGT) J . (4.28)

The exponential term in Eq. (4.28) can be thought of as a slow-down factor due to
the Coulomb barrier. It clearly demonstrates why, if there are many species present,
there is a strong tendency for those with the smaller Coulomb barrier to take part
in thermonuclear fusion more rapidly. As an example, we compare

p+d — He +7
and
p +2C SN+ .

The Gamow energies for these two fusion reactions are 0.657 MeV and 35.5 MeV,
respectively. At a temperature of 2 x 107 K these fusion reactions are slowed down
by factors of exp(—14) and exp(—52), respectively.
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The exponential term in Eq. (4.28) also demonstrates that the fusion rate increases
rapidly with temperature. Indeed, Eq. (4.28) implies that

dRap _ rEg11/3@

(4.29
dT L4kTJ T (%)
For the fusion of protons and deuterons at a temperature near 2 x 107 K
dRyy Rpa
~ 4.6 . 4.30
dr T (+-30)

This implies that as T varies about 2 x 107 K, the proton—deuteron fusion rate
varies as T#°. In fact, when account is taken of the factor of 7-2/% in Eq. (4.27),
the fusion rate is approximately proportional to T%. The temperature dependence
is more marked for fusion reactions with a higher Coulomb barrier. For the fusion
of protons with '2C nuclei, the fusion rate near 2 x 107 K is proportional to 77,

Even though the Coulomb barrier plays a dominant role in shaping the properties
of all thermonuclear reactions, the actual rates depend on the interactions that bring
about the fusion. Nuclear strong, electromagnetic and nuclear weak interactions
may be involved. The net effect is summarized by the nuclear factor S(£). We shall
consider particular thermonuclear reactions later in this chapter. But at this stage it
is useful to note that S(E) is necessarily small if the reaction relies on the nuclear
weak interaction; such reactions involve the emission of a neutrino. It is larger for
reactions which are reliant on the electromagnetic interaction and emit photons. It
is larger still for reactions governed by the nuclear strong interaction.

4.2 HYDROGEN BURNING

Star formation begins with the gravitational collapse of a cloud composed of
hydrogen, helium and traces of other chemical elements. The collapse is rapid until
the atoms are ionized and energy can no longer easily escape from the cloud. The
cloud then contracts slowly in a state close to hydrostatic equilibrium; half the
gravitational energy released is lost as radiation and the other half heats up the
cloud. This contraction will continue until the activation of a source of energy
other than gravity. The first such source, which is activated when the temperature
is about 10° K, is the thermonuclear fusion of protons with light nuclei, such as D,
Li, Be and B. This involves fast, indeed bomb-like, reactions. But only a limited
amount of energy is released because the light nuclei are only present in small
quantities and are rapidly consumed. In order to properly begin its life as a star,
the hot ionized gas must find some way of exploiting the nuclear fuel provided by
its dominant nuclear constituent, protons. It must find a way of burning ordinary
hydrogen.
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The net effect of hydrogen burning is to transform protons to *He nuclei. We
note that protons must be converted into neutrons at some stage during a chain of
reactions which burn hydrogen, and that this transformation can only be effected
by a nuclear weak process. The most likely process is p — n+ e* + 1, and, in this
case, the net result of a hydrogen-burning chain is

4p —*He + 2¢* + 2u,. (4.31)

The decrease in mass in this transformation implies a kinetic energy release of
24.69 MeV. But each of the positrons will promptly annihilate with an electron
and release a further 2m.c> = 1.02 MeV to give total energy release of 26.73 MeV.
However, a small percentage of this energy is associated with the kinetic energy of
the neutrinos. This is not retained locally but escapes almost without interaction.

Hydrogen burning would be a straightforward and rapid process, if a bound state
of two protons existed. Such a state would be an isotope of heljum, “He, and
hydrogen would begin to burn via the electromagnetic reaction

p+p—>2He+'y,

and each He would then beta decay to form a deuteron. But the nuclear force
between two protons is not quite strong enough to produce a “He bound state.
Indeed, the absence of a “He bound state implies that hydrogen burning is a subtle
and slow process. In fact, as first explained by Bethe in 1939, there are two main
ways of burning hydrogen, the proton—proton chain and the carbon-nitrogen cycle.

The proton—proton chain

One sure, but slow, way of by-passing the bottle-neck formed by the absence of
a 2He bound state is to fuse protons via a weak nuclear reaction:

p+p ~d+e + .. (4.32)

The underlying mechanism for this reaction is that one of the interacting protons
undergoes inverse beta decay, p — n +e* + v, and the neutron produced is then
bound to the other proton to form a deuteron. The first step in this mechanism is a
virtual process because an energy of least 1.8 MeV is needed to convert a proton
into a neutron, a positron and a massless neutrino. But this energy is more than
paid back by the formation of a deuteron with a binding energy of 2.225 MeV.
However, the key feature of the reaction (4.32) is that it is very slow. Indeed,

)

this reaction is so slow that it has not been possible to measure its cross-section in
an experiment on earth. But according to theoretical calculations, it has a nucleat
S factor of S,,(0) = 3.8 x 10722 keV barns. The mean lifetime of a proton before

fusion and the proton—proton fusion rate in stellar material can then be found
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using this value for S, and Egs. (4.18), (4.19) and (4.27). We can estimate the
fusion rate at the centre of the sun by taking T = 15 x 10° K, p = 10° kg m™>
and a hydrogen mass fraction X; = 0.5. The concentration of protons is then
n, = X1p/mu = 3x10°" m™? and the proton—proton fusion rate is 5x 10'* s71 m—3,
This implies that a proton in the centre of the sun has to hang around for about
9 x 10° years on average before it fuses with another proton. This astronomically
long time sets the time scale for the hydrogen burning phase of the sun’s life.!

Once deuterons are formed by the reaction (4.32), the way is open for much
faster reactions to synthesize *He nuclei. There are three sequences of reactions
which form the main branches of the proton—proton chain. These branches, labelled
by I, I, and III, are shown in Fig. 4.4.

REACTIONS QF THE PROTON-PROTON CHAIN

+ 3
p+p—d+et+p,

p+d —He+y

Y Y

'He + 'He — *He + 2p He + *He — "Be + ¢
e +Be —Li+ v, p+'Be —*B+y
p +7Li — *He + *He B —~PBe' + e+,

8Be* — 4He + *He

BRANCH I BRANCH I BRANCH 11T

0 .=262MeV @ .=257MeV Q.,.=19.1 MeV
L2} iy <H

[B5%] [15%] (0.02%]

Fig. 44 The three competing branches of the proton—proton chain with the net result
4p —*He + Qeq. Here Q. is the effective energy released by the branch; it includes the
energy from the annihilation of positrons, but it does not include any of the energy carried
away by neutrinos. Note, a pre-existing “*He nucleus acts as a catalyst in branches II and
ITL, its destruction leading to two new “He nuclei. According to the Standard Solar Model,
Bahcall (1989), the proton—proton chain in the sun is terminated by branch I 85% of the
time, by branch IT 15% of the time and by branch III 0.02% of the time.

It is sometimes suggested that the time scale for hydrogen burning would be shorter if it was
initiated by an electromagnetic reaction instead of the weak-nuciear reaction (4.32). This is not the
case, because the overall rate for hydrogen burning is determined by the rate at which energy can
escape from the star, i.e. by its opacity. If hydrogen burning was initiated by an electromagnetic
reaction, this reaction would proceed at about the same rate as the weak reaction (4.32), but at lower

temperature and density.
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A deuteron formed by reaction (4.32) is almost immediately snapped up by the
second reaction in the proton—proton chain

+d —3He + . (4.3
d } (4

p+d ~H 33)
The S factor for this electromagnetic reaction is S,q(0) = 2.5 x 1074 keV barns, 18
orders of magnitude greater than the S factor for the nuclear weak reaction (4.32),
As a result, a deuteron in the centre of the sun lives for about a second before
it fuses with a proton. Note that, since deuterons are produced at a slow rate and
consumed at a fast rate, the equilibrium abundance of deuterons is expected to be
low. If we apply Eq. (4.19) we find that the rate of change in the concentration of
deuterons is

dnd 1
& "3 g(avr)pp — Rphg (o) pd. (4.34)

Hence the deuteron concentration will increase and reach an equilibrium
concentration given by

nd _ {ovr) pp ~ SPP(O)_
np  2(cvr)pa  28pa(0)

(4.35)

Thus the deuteron to proton ratio in the centre of a star like the sun is determined by
the ratio of a nuclear weak cross-section to an electromagnetic cross-section. This
ratio is tiny, of the order of 1078, In contrast, terrestrial deuterium is relatively
abundant; about 0.015 % of the hydrogen atoms around you are deuterium atoms. It
lb LlCdI that lerreSlHdl UEUleTIUﬁ] cannot UC d pIUUULl of lnermOIIULleaT reaCLIOﬁS in
stars like the sun. It was, in fact, produced during the very early universe, minutes
after the big bang.

A *He nucleus formed by reaction (4.33), can be processed in the two ways
shown in Fig. 4.4. It can either complete the branch I of the chain by fusing with
another *He nucleus, or it can fuse with a *He nucleus. The latter alternative leads to
the formation of "Be, which can be processed in two ways, and to the termination
of the proton—proton chain via branches II and III, as shown in Fig. 4.4. Note
that a pre-existing *He nucleus acts as a catalyst when the proton—proton chain is
terminated by branch 1T or I1I; it is destroyed when it fuses with a *He nucleus but
two more *He nuclei are formed subsequently.

The proton—proton fusion reaction, Eq. (4.32), is the first and slowest link in the
proton—proton chain, and as such it governs the rate at which energy is released by
the chain as a whole. This rate is simply the proton—proion fusion rate, npp, times
the energy released by the chain per proton—proton fusion. Note, however, that {two
proton—proton fusions are needed to produce a 4He nucleus via branch I, but only
one is needed if the chain is completed via branches II or III. Hence the energy
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release by the chain per proton—proton fusion is sensitive to the relative importance
of the three branches of the chain. According to the Standard Solar Model, Bahcall
(1989), the proton—proton chain in the sun is terminated by branch I 85% of the
time, by branch II 15% of the time and by branch III 0.02% of the time. It follows
that the average energy released per proton—proton fusion in the sun is

0.85 x 26.2/2+0.15 x 25.7 = 15 MeV. (4.36)

If we combine this with our earlier estimate of 5 x 10'* m=3 s~! for the proton—
proton fusion rate in the solar centre, we find an energy production rate of about
120 W m™3,

Finally, it is useful to have an approximate expression for the energy production
rate which clearly indicates how it depends on the temperature, density and mass
fraction of hydrogen. The temperature dependence of the proton—proton fusion rate
can be found by using the appropriate Gamow energy, Eg = 493 keV, and Eq.
(4.27); for temperatures close to T = 15 x 10% K, the typical temperature at the
centre of the sun, the fusion rate R,, is approximately proportional to T*. This

rate is also proportional to nlz) or to X?p*. Hence, the energy production rate by

the proton—proton chain is proportional to X?p?T*. If we normalize to an energy
production rate of 120 Wm™ at T =15 x 10° K, p = 10° kg m~> and X; = 0.5,
we find that the proton—proton chain produces energy at a rate given by

Epp = 9.5 x 1077 X{p*T* Wm™>, (4.37)

The carbon—nitrogen cycle

The proton—proton chain can account for hydrogen burning in main sequence
stars with masses comparable to the sun, but it fails in more massive stars.
Even though the internal temperatures of such stars are only moderately higher
than the sun’s, their luminosities are much higher, too high to be explained by
the 7% dependence of the proton—proton chain. We recall that this temperature
dependence is governed by the Coulomb barrier between two protons; see
Eq. (4.29). To explain the luminosities of massive main sequence stars, such as
Sirius A, a more temperature-dependent mechanism for hydrogen burning is needed,
a mechanism which must be governed by a higher Coulomb barrier. Such a
mechanism must involve heavy elements. But, because these elements are, at best,
Present in low abundance, recycling of this scarce resource is needed to prolong the
hydrogen burning. In fact, stars can burn hydrogen by an almost closed sequence
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of reactions called the carbon-nitrogen cycle. This cycle depends on the presence
of small quantities of carbon, carbon produced in earlier generations of stars by
helium burning; this carbon is not completely destroyed but partially converted into

nitrogen. The reactions of the carbon—nitrogen cycle are illustrated in Fig. 4.5.
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REACTIONS OF THE CARBON—NITROGEN CYCLE

p+'%C -"N+y [§(0) = 1.5 keV bamns]
l—» BCtet+u,

p+BC—1N 4y [S (0) = 5.5 keV barns]

prUN—DB0+y [S (0) = 3.3 keV barns]
|_> BN+et+ 2,

p+ ISN—12C + He [S (0) = 78 keV barns]

Fig. 4.5 Hydrogen burning by the carbon-nitrogen cycle. The net result of this sequence of
reactions is 4p —%He + Qef. The effective energy released Qe is 23.8 MeV; this includes
the energy from the annihilation of positrons, but it does not include the energy carried away
by neutrinos. Note that nuclei of carbon and nitrogen are temporarily transformed but return
to take part in subsequent operations of the cycle. The rates for these reactions are governed
by the relevant Coulomb barriers and the approximate S factors indicated.

Even though the carbon—nitrogen cycle has no beginning or end, it is useful {0
think of it as commencing with the capture of a proton by a 'C nucleus. This
is followed by a transformation of a proton into a neutron by a beta decay, the
capture of two more protons, the transformation of a second proton into a neutron
by another beta decay and finally the capture of a fourth proton to produce a new
12C nucleus and a *He nucleus. The net effect of this sequence is the transformation
4p —*He + 2 e* + 21, and a 2C nucleus still in circulation. Thus, carbon acts
as a catalyst for hydrogen burning. In fact other cycles also exist, particularly one
involving 0. However the carbon-nitrogen cycle illustrated in Fig. 4.5 is by far
the most important.

The rate of energy production by the carbon—nitrogen cycle is governed by the
slowest reaction in the sequence. By considering the Coulomb barriers and the
values of the S factors given in Fig. 4.5, we conclude that the slowest reaction is

p+UN =0+ 4. (4.38)

The mean life for a '*N nucleus in the centre of the sun can be estimated by
assuming a density of 10° kg m—3, a temperature of 15 x 10° K, a mass fraction
of hydrogen of 0.5 and a nuclear S factor of 3.3 keV barns. Substitution into Egs.
(4.18), (4.19) and (4.27) shows that a '“N nucleus in the sun has an average life
of about 5 x 10* years before it fuses with a proton. The fusion rate per unit
volume depends on the concentration of nitrogen nuclei in the solar centre. In the
Standard Solar Model, the abundance of "N at the solar centre is about 0.6% which
implies a concentration of nitrogen nuclei of about 0.0060/14my, = 2.6 x 108 m™>.
As each of these nuclei lasts for an average of 5 x 10% years, the fusion rate is

approximately 1.6 x 10'2 m— s~!, In contrast, protons fuse via reaction (4.32)
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at a much faster rate of 5 x 103 m=3 s~!. We conclude that the carbon-nitrogen

cycle is not an important source of energy production in the sun. Indeed, accurate
calculations show that 98.4% of the solar energy is due to the proton—proton chain
and only 1.6% is due to the carbon-nitrogen cycle.

However, the high Coulomb barriers involved in the carbon—nitrogen cycle imply
fusion rates which increase very rapidly with temperature. In particular, if we
calculate the Gamow energy corresponding to reaction (4.38) and use Eq. (4.27),
we find a fusion rate proportional to T'8. The energy production via the carbon—
nitrogen cycle has a similar temperature dependence, which is much more rapid than
the 7% dependence of the proton—proton chain. Thus, we expect the carbon—nitrogen
cycle to be the dominant source of energy production in massive main sequence
stars which burn hydrogen at temperatures higher than the central temperature of
the sun.

Finally we note that the carbon—nitrogen cycle has an important role in stellar
nucleosynthesis. It not only transforms hydrogen to helium, it also transforms '2C,
made by helium burning in a star of an earlier generation, into '*C, *N, and "°N.
Indeed, if we assume equilibrium conditions and if we neglect leakage from the
cycle, the relative abundances of these nuclei are inversely proportional to their
fusion rates. For example, in the centre of a star burning hydrogen by the carbon-
nitrogen cycle at a temperature of 50 x 10° K, the relative abundances of '2C, 1°C,
1N, and N are 4%, 1%, 95% and 0.004%, respectively. The high abundance of
YN arises because its fusion rate is the slowest in the cycle. In fact, the vitally
important nitrogen in the solar system is a product of hydrogen burning by the
carbon—nitrogen cycle in earlier generations of nearby stars. Other elements were
also produced by other cycles of reactions which couple with the carbon-nitrogen
cycle.

Solar neutrinos

There is no question that hydrogen burning, mostly via the proton—proton
chain and the carbon-nitrogen cycle, provides a viable power source for main
séquence stars. But few of the details are open to observation because the whole
Process is obscured by millions of kilometres of stellar matter. But the cover-up is
not complete. Neutrinos created by hydrogen burning can escape almost without
interaction straight from the heart of a star. In so doing, they carry inside information
On what is actually happening at the centre. Detection of these neutrinos is clearly
a formidable task. Not only do they hardly interact as they escape from the star,
they hardly interact when they arrive at the earth. Nevertheless, neutrinos from the
Dearest star, the sun, were first detected in 1968 in a pioneering experiment set
Up by R. Davis in the Homestake Gold Mine in South Dakota. This experiment
has been developed and data has been taken for over 20 years. The long-standing
Problem of reconciling the results of this experiment with the theoretical predictions
is called the solar neutrino problem.
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Hydrogen burning necessarily involves the emission of neutrinos. They arise
when the nuclear weak interaction changes a proton to a neutron viap — n+e* +v,.
This must occur twice during the hydrogen burning process 4p —*He + 2¢* + 2w,
The expected flux of neutrinos can be found by noting that the formation of each
“He is accompanied by the release of two neutrinos and a thermal energy Q.p,
which according to Figs 4.4 and 4.5 is about 26 MeV. Hence if hydrogen burning
is the power source for the sun’s luminosity of Lo, = 3.86 x 10?® W, neutrinos must
be released at a rate of 2L, /Q.p = 1.86 x 1038 s~1.

To escape from the sun, each neutrino must travel a distance of about Ry, i.e.
7 % 10¥ m. The probability of interaction during this escape is cnR, where o is the
average interaction cross-section with an electron or a nucleus and » is the average
density of electrons and nuclei in the sun. Since ¢ is of the order of 107% m? and
n is approximately 10°* m—3, the probability of interaction is an insignificant 107,
Thus, neutrinos do indeed escape almost unhindered from the sun and arrive some
eight minutes later at the earth, a distance of 1.5 x 10'! m away. The neutrino flux
at the earth is F,, = 6.6 x 10" m~2 s~!, an intense but almost undetectable flow
straight from the heart of the sun.

This neutrino flux is the combined effect of a number of reactions and decays in
the proton—proton chain and in the carbon—nitrogen cycle. These processes may be
identified by inspecting Figs 4.4 and 4.5. Clearly each process emits neutrinos with
an energy spectrum characteristic of the process, but with a rate which depends
on the details of hydrogen burning inside the sun. The most accurate predictions
for these rates are based upon a detailed model of the sun, called the Standard
Solar Model. This model, which is described by Bahcall in his book Neutrino
Astrophysics, is really an evolutionary sequence of models. The sequence begins
with a star with a homogeneous composition similar to that observed on the solar
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surface, and successive models are then calculated by allowing for the changes in
composition brought about by hydrogen burning. This sequence is required to fit
the known data, namely the age, the mass, the radius, the surface composition and
the present-day luminosity.

The predictions of the Solar Standard Model for the flux of neutrinos from
various processes taking place inside the sun are given in Table 4.1. As expected,
the majority of the neutrinos originate from the primary reaction of the proton—
proton chain, but these neutrinos have low energy, never exceeding (.420 MeV.
The neutrinos from electron capture by "Be, the reaction which initiates branch II
of the proton—proton chain, are the next most plentiful. The flux of neutrinos from
8B decay in branch III of the chain is four orders of magnitude less, but these
neutrinos are very energetic. In addition, there are contributions from '*N and 150
beta decay, two processes in the carbon—nitrogen cycle. These contributions are
small because the carbon—nitrogen cycle only supplies 1.6% of the solar luminosity.
When combined, the fluxes from individual processes should yield a net flux of
F, =6.6 x 10" m~2 s~! at the earth.
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TABLE 4.1 The flux of neutrinos from particular processes in the proton—proton chain and
the carbon—mtrogen cycle inside the sun. In add1t1on there are small contributions from
p+e +p—d+v,andp+ *He —%He + ¢ + 1; see Bahcall (1989) for details.

Process Neutrmo ﬂux Maximum neutrino
(1014 2s7h energy (MeV)

ptp— d +e" + 1, 6.0 (1 £ 0.02) 0.420

e~ +'Be —'Li+ v, 0.47 (1 £ 0.15) 0.861

88 —8Be + et + 1, 58 x 1074 (1 £ 037) 15

BN SBC et + 1, 0.06 (1 £ 0.50) 1.199

50 5PN + et + v, 0.05 (1 & 0.58) 1.732

The first experiment to detect solar neutrinos was developed by R. Davis. It was
based on neutrino capture in the reaction

ve +'Cl = Ar + et ' (4.39)

The chief drawback of this reaction is that only neutrinos with energy above 0.81
MeV can be detected. This high threshold energy implies that neutrinos from the
primary proton—proton fusion reaction cannot be detected; as indicated in Table
4.1 these have a maximum energy of 0.420 MeV, Furthermore, the neutrinos from
electron capture on “Be only just exceed the threshold and the probability of capture
in 37Cl is exceedingly low. However, most of the neutrinos from 8B decay have an
energy well above the threshold for detection. Indeed, even though these neutrinos
contribute a minor component of the neutrino flux from the sun, they are expected
to dominate the capture rate in >’Cl. Finally, the neutrinos from the two beta decay
processes in the carbon-nitrogen cycle are sufficiently energetic to be detected.

The actual capture rates depend on incident neutrino flux, the number of
target *’Cl nuclei and the energy-averaged neutrino capture cross-section. For
example, for neutrinos from ®B decay, the average capture cross-section on 3’Cl is
7 =1.06 x 107* m?, and a target containing N(°*’Cl) nuclei should give a capture
rate of

RCB) = F,(®B) N(*’Cl) 7 = 6.1 x 107 N(*'CI) per second (4.40)

Because of the low probability of neutrino capture, a special unit called the SNU,
Or the solar neutrino unit, is used in neutrino astrophysics. This is the capture rate
per second per 10°° target nuclei. We see from Eq. (4.40) that the capture rate of
neutrinos from 8B decay in the sun should be 6.1 SNU. Bahcall also shows that the
Capture rates of neutrinos from "Be, '*N, and '°O are expected to be 1.1 SNU, 0.1
SNU and 0.3 SNU, respectively. In addition, a capture rate of 0.2 SNU is expected
from solar neutrinos produced by p+ e~ +p — d + 1. In total the predicted rate
for capturing solar neutrinos in 3’Cl is

Predicted rate = (7.9 + 2.6) SNU. (4.41)
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Davis and his colleagues have taken data and developed their experiment to
detect solar neutrinos for over 20 years. It was one of the most ambitious and
impressive astrophysics experiments ever embarked upon. The low probability of
neutrino capture implies that a huge target containing *’Cl is needed. This was
provided by 610 tons of a dry-cleaning fluid called perchloroethylene, C;Cls. By
noting that 24% of naturally occurring chlorine is >’Cl and 76% is *°Cl, it is easy
to show that this target contains 2 x 10°° *'Cl nuclei. A capture rate of 1 SNU
in this target yields 2 x 107° captures a second, or one capture every 6 days.
Each capture is only detectable by virtue of the radioactive *’Ar atom produced.
These radioactive argon atoms were flushed out with helium and counted by low
background proportional counters. Then the background rate due to cosmic rays
had to be subtracted. In 1984 Davis and his collaborators reported a *’ Ar production
rate of 0.462 £0.04 atoms per day against a background rate of .08 £ 0.03 atoms
per day. This corresponds to an observed neutrino capture rate of

Observed rate = (2.05 +0.3) SNU. (4.42)

See Bahcall (1989) for further details.

The discrepancy between the observed and predicted capture rates of solar
neutrinos in *’Cl, Egs. (4.41) and (4.42), has and continues to be a subject of
lively and imaginative debate, a debate which is fully explored in the 500 pages of
Bahcall’s book Neutrino Astrophysics.”

Solar neutrinos can also be detected by neutrino—electron scattering. Indeed, data
on solar neutrinos by this method was first obtained in 1987 by the Kamiokande II
detector in Japan. The Kamiokande detector consists of a huge underground tank of
water surrounded by photomultiplier counters which observe the Cerenkov radiation
emitted by electrons which have been accelerated to speeds close to the velocity
of light by an interaction with an energetic neuirino. This method of detection has
important advantages over the *’Cl experiment. It can record the precise time of
arrival and it is sensitive to the direction of the incoming neutrinos. Indeed, a clear
peak is seen corresponding to neutrinos coming from the direction of the sun. This
experiment also observes a solar neutrino flux that is smaller than expected; the
observed rate is about one-half the theoretical prediction.

But it is important to emphasize that the Kamiokande experiment and the *'Cl
expertment can only detect energetic neutrinos. Accordingly both experiments
mainly record neutrinos from ®B decay in branch III of the proton—proton chain, a
very minor part of the hydrogen burning process. Experiments sensitive to branches

~ Because this debate can lead to an uncomfortable feeling called confusion, it is usctul to point out
at least one positive outcome: the 37C1 experiment clearly confirms that the carbon-nitrogen cycle
plays a minor role in the sun. According to the Standard Solar Model, 1.6% of the iuminosit¥3‘i§
generated by the carbon—nitrogen cycle and the contribution from the associated neutrinos from N
and > O beta decay to the solar neutrino capture rate is 0.4 SNU. If the carbon—nitrogen cycle wer€
the dominant mode for hydrogen burning in the sun, the expected capture rate would be about 25
SNU, more than ten times the observed capture rate.
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I and II of the chain are needed before firm conclusions can be drawn about
hydrogen burning in the sun.

Two such experiments, the SAGE and GALLEX collaborations, began taking
data in late 1991. These are radiochemical experiments based on the reaction

v, +'Ga —"'Ge +e™. (4.43)

The threshold energy for this reaction is only 0.233 MeV, well below the maximum
energy of neutrinos from the primary proton—proton fusion reaction of the chain,
Eq. (4.32). Indeed, these neutrinos should provide half the counting rate in the
"'Ga experiments. But, as in the *’Cl experiment, there is a formidable problem
in identifying the radioactive products of neutrino capture, in this case about one
atom of "'Ge per day in a target containing tons of gallium.

The solar neutrino capture rates in 7'Ga measured by the SAGE and GALLEX
collaborations in 1992 were, respectively,

[58*}] £ 14(systematic) SNU] and [83 + 19 + 8(systematic) SNU]. (4.44)

These experimental results can be compared with two theoretical predictions: first,
a minimum capture rate of 80 SNU in gallium based solely on the requirement
that the observed solar luminosity is due to nuclear reactions, regardless of the
details of the solar model. Second, an expected rate of 132 SNU predicted by
the Standard Solar Model; see Bahcall (1989). The large statistical errors in the
experimental results prevent any firm conclusions. However, there is an indication
that the number of neutrinos arriving from the sun is less than expected. But it will
take several years to collect enough data to confirm this indication.

The premise underlying our account of the solar neutrino problem has been that
solar neutrinos, once produced, are well behaved. This may not be the case. Indeed,
there is a growing theoretical belief that electron neutrinos emitted during hydrogen
burning can change their form to muon neutrinos as they propagate through the
sun. Such a transformation could account for the low detection rate of neutrinos
on earth. This is interesting particle physics but depressing astrophysics. It implies
that the astrophysical information carried by neutrinos may be scrambled.

In view of current theoretical and experimental uncertainties, we have no
alternative but to leave this section on solar neutrinos unfinished. The solar neutrino
debate has focused attention on the physics and chemistry of neutrino detection,
on the reliability of the Standard Solar Model, and on the properties of neutrinos.
At present, it is not clear if it is an experimental problem, a solar model problem,
Or a problem with neutrinos.

43 HELIUM BURNING

Helium burning produces two vitally important chemical elements, namely
Oxygen and carbon. Indeed, 65% of your body is oxygen and 18% is carbon.
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Moreover, 0.85% and 0.39% of the matter in the solar system is composed of
oxygen and carbon; only hydrogen and helium are more abundant. Thus, helium
burning is an important process. It is also an interesting process.

Hydrogen burning at the centre of a star ceases when most of the hydrogen
in the core has been converted into helium. In the absence of nuclear fusion, the
core contracts and gravitational energy is converted into thermal energy. About
half of this energy escapes from the core and the other half leads to an increase
in temperature. The increased temperature promotes hydrogen burning in a shell
surrounding the helium core, and, as more helium is produced, the mass of the
central core of helium increases. If the mass of the star is large enough, around
0.5 Mg or above, the helium core becomes hot and dense enough for helium
burning, which normally takes place at temperatures between 1 to 2 x 10® K and
densities between 10° to 108 kg m 3.

The end of hydrogen burning at the centre of a star and the subsequent onset
of helium burning has a profound effect on the overall structure and on the
outward appearance of the star. The increased internal temperature due to the
initial contraction of the helium core leads to an increase in pressure and a large
expansion of the outer envelope of the star. When helium burning commences, the
energy released causes the core to expand and cool, a cooling that causes a partial
contraction of the outer envelope. The net effect is to produce a star with a dense
core and a large extended outer envelope, a red giant.

Helium burning is hindered by the absence of stable nuclei with mass 5 and mass
8 to act as stepping-stones to the formation of carbon. But the existence of carbon-
based units like you and me implies that there must be a sequence of reactions that
produces carbon in stars, a sequence which neatly overcomes the bottle-neck due
to the absence of stable nuclei with mass 5 and 8. This sequence was first set out in
1952 by Salpeter. In 1954, Hoyle pointed out that the effectiveness of the sequence
depended on the existence of a hitherto unknown excited state of carbon-12. There
are three stages to the sequence:

1. The production of a small, but transient, population of unstable “Be nuclei
via

e’
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2. The production of a small, but transient, population of carbon- 12 nuclei in an
excited state, denoted by '>C*, via
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The net effect of this sequence is
*He +*He +'He —'*C  [Q = +7.275 MeV]. (4.48)

This fusion of three “He nuclei, or three alpha-particles, is called the triple-
alpha process. Note that the first two stages of the triple-alpha process involve
reactions which create and destroy nuclei. If these reactions are in thermodynamic
equilibrium, 1t is possible to derive a simple and accurate expression for the rate
of the triple-alpha process. To do so, we consider each stage of the process in
succession.

Production of *Be

The ground state of ¥Be is a state with zero angular momentum and positive
parity, J™ = 0*. Tt is unstable because it is more massive than than two *He nuclei,
with a mass-energy excess of (mg — 2mg)c? = 91.8 keV. It decays with a mean
lifetime of 7 = 2.6 x 10715 5 into two *He nuclei with the release of 91.8 keV,

*Be —*He +*He. (4.49)

Conversely, two “He nuclei can fuse to form a ®Be in the endothermic reaction
which absorbs 91.8 keV,

*He +*He —°Be. (4.50)

In fact, the probability of the interaction of two *He nuclei is enhanced if they
approaCu with a relative energy E near to 91.8 keV and with zero dngurdl
momentum. The enhanced probability of interaction arises because they can form
an intermediate state, a resonance which corresponds to the ground state of ®Be.
The formation of unstable ®Be nuclei in a hot gas of ionized helium will
be favoured if the resonance with energy of 91.8 keV falls within the energy
window for the fusion of two *He nuclei. We recall from Section 4.1, that the
joint probability for nuclei to borrow an energy E from a gas at temperature T
and to penetrate the Coulomb barrier, which keeps them apart, has a maximum
at E = £, with a width A; see Fig. 4.3 and Egs. (4.23) and (4.25). This energy
Window for fusion is determined by the Gamow energy for two “He nuclei, which
according to Eq. (4.10) is 31.6 MeV, and by the temperature of the gas. A simple
calculation shows that the window is in the right place for the formation ®Be when
the temperature is just above 108 K; in fact, at T = 1 x 108 K, the fusion window

1€ d11at Taol e, e 7O L AIN LY7ol 4 Ao 1N8 T ol
i JUDI. LUCIUOW lllC TESOIAICE at E = kOJ T Jl) ht'« V, W[lCICdb dl I = 4 X 1U I UIC

Window is just above at E = (132 + 55) keV.
Of course, any ®Be nucleus formed will rapidly decay back to two *He nuclei.
But at high density and when the temperature is above 10° K, the formation rate
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can be sufficient to generate a significant population of ®Be nuclei in a gas of “He
nuclei. Furthermore, if the decay and formation processes, Egs. (4.49) and (4.50),
reach thermodynamic equilibrium, the steady state population of ®Be can be found
by equating the chemical potential of a ®Be nucleus to the chemical potential of a
pair of “He nuclei.

According to Eq. (2.21), the chemical potential for nuclei with mass my and
concentration n4 in a classical gas at temperature 7 is

jia = my® — kT n [gA:QA} , (4.51)
A

where the quantum concentration ngy is given by Eq. (2.22),

2mmakT 3/2
noa = [——kg—:‘ s (4-52)

and g4 is an angular momentum multiplicity factor which equals unity for states
with zero angular momentum, like the ground states of *He and ®Be. Substitution
into the equilibrium condition

Hg = Ha + [, (4.53)

gives the following result for the population of ®Be nuclei in a gas of *He nuclei
at temperature 7

2

8 _ 3z
27TM4kT

3,2

= } exp|—(mg — 2my4) c* /kT]. (4.54)
4

Note the key role played by the Boltzmann factor involving the mass-energy

difference of (mg — 2my)c? = 91.8 keV; this is the energy that must be borrowed

from the thermal environment in order to form a ®Be,

We can now estimate the population of ®Be in a dense, hot gas of helium. For
example, if the density of the helium gas is p = 10° kg m > and the temperature is
T =2 x 10® K, the concentration of *He nuclei is ns = p/my = 1.5 x 10°* m~? and
the concentration of ®Be nuclei is 7 x 10?° m—3. In other words, there is one *Be
nucleus present for every 20 million *He nuclei. However, the Boltzmann factor in
Eq. (4.54) indicates that the population of 8Be falls off rapidly if the temperature
is reduced. It equals exp(—5) at 2 x 108 K and exp(—10) at 1 < 10" K. At this
lower temperature, there is only one ®Be for every 2 billion *He nuclei.

We conclude that when the helium core of a star reaches a temperature above
10® K, a tiny fraction of the core is in the form of ®Be nuclei in a state of dynamic
equilibrium. The turnover of this population is very rapid, with each ®Be nucleus
existing for an average of 2.6 x 10716 s, Nevertheless, these nuclei provide an
adequate raw material for the next stage of the triple-alpha process.
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Production of *C*

The next stage of the triple-alpha process depends on the existence of a particular
excited state of carbon-12, '>C*. This seemingly accidental state is so important
that its existence was predicted by Hoyle in order to account for helium burning
in red giants. In particular, he showed that for helium burning to take place at
temperatures as low as 7 = 1.2 x 108 K, there must be a resonant enhancement of
the fusion of “*He and ®Be. Moreover, he showed that this *He—8Be resonance had to
be at an energy about 300 keV above the threshold. Such a resonance corresponds
to an excited state of carbon-12 with an excitation energy of 7.65 MeV.

This excited state of carbon-12 was subsequently found almost exactly where
predicted. It has zero angular momentum and even parity, J™ = 0%, and the
excitation energy above the ground state of carbon-12 is

(m?, — mp2)c® = (7.6542 + 0.0015) MeV. (4.55)

As illustrated in Fig. 4.6, this state has an energy which is just above the threshold
for a “He and a ®Be nucleus and the threshold for three “*He nuclei. In fact,

(m}, — my — mg)c® =287.7keV and (m}, — 3my)c® = 379.5keV.  (4.56)

We have already seen that in a dense gas of helium at a temperature near to
10® K or above, “He nuclei occasionally fuse to form unstable 8Be nuclei, each of
which will usually decay back to two “He nuclei. We now see that these ®Be nuclei
could, very occasionally, fuse with *He to form 12C*, carbon-12 nuclei in the 0%
excited state, and that each of these '>C* nuclei would have a brief existence before
decaying back to a *He and a ®Be. This will happen if the resonance, which is at
an energy of 287.7 keV above the *“He—®Be threshold, is close to the window for
the fusion of these two nuclei. It is easy to use Eqs. (4.23) and (4.25) to show that
this is the case when the temperature of the gas is just above 10® K; for example,
when the temperature is 7 = 2 x 10® K, the window for *He-®Be fusion is at
E = (232 + 73) keV.

Thus, when the temperature of an ionized gas of helium e 10% K, collisions
between “He generate small numbers of unstable 8Be and '>C* nuclel The
equilibrium population of 8Be is given by Eq. (4.54). The equilibrium population
of 12C* can be found by considering the reactions

‘He +*Be ='°C", (4.57)
and imposing the condition that

Ha + 1g = i (4.58)
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‘He + *He + *He &  “4He + ®Be = 0*state of 12C at 7.65 MeV

2* state of '2C at 4.44 Mev

0" ground state of 12C

Fig. 46 Threshold energies and energy levels of carbon-12 relevant to helium burning.
The 0% state of carbon-12 at 7.65 MeV, denoted by '2C* in the text, is only 0.3795
MeV above the threshold energy for three *He nuclei. Carbon is produced by establishing
transient populations of unstable *Be and '>C* nuclei whlch coexist with *He nuclei at high
temperature and density. A small proportion of the '>C* nuclei opt out of this dynamic
coexistence by decaying to the ground state of carbon-12. The activation energy for carbon
production is the energy needed to produce a ' “C* nucleus, 0.3795 MeV. The ene %y released

by carbon production is the difference in energy between the threshold for three “He nuclei
and the ground state of carbon-12, 7.275 MeV.
In complete analogy with Eqs. (4.53) and (4.54), we find that
3/2 2 3/2
HTZ 3 h I
=| = — expl—(m], — my — my) c /KT, 4.59
Ryng (2) {27rm4kT p[ ( 12 M 8) / ] ( )

We also recall that the concentration of ®Be nuclei, ng, is given by Eqy. (4.54). Thus,
we combine Eq. (4.59) with Eq. (4.54), to give

*

2
nys

2mmykT

3
= 3%/2 [ } exp| —(m}, — 3my)c* /kT]. (4.60)

3
hy
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Note that, even though the unstable nucleus ®Be plays a crucial role in establishing
equilibrium, the population of '2C* is determined solely by the temperature, the
concentration of “He nuclei and the energy difference between a '2C* and three *He
nuclei. Indeed, Eq. (4.60) can be derived directly by considering the equilibrium
established by the reactions

*He +*He +*He ='2C*. (4.61)

We have already seen that the concentrations of *He and ®Be nuclei are
ng = 1.5 x 10°* m~2 and ng = 7 x 10?® m~3, respectively, in a helium gas with
density of 10° kg m > and temperature 2 x 10® K. We can now use Eq. (4.60) to
show that the concentration of >C* nuclei in such a gas is n}, = 3 x 10! m~>,
We also note that the Boltzmann factor, exp[—(m}, — 3my)c?/kT], in Eq. (4.60)
implies that the concentration of '2C* nuclei falls off rapidly if the temperature is
reduced.

Thus, when the helium core of a star reaches a temperature above 10° K, the core
contains a small population of '>C* nuclei which coexists in dynamic equilibrium
with a larger population *Be nuclei and a much larger population of *He nuclei. In
the final stage of the triple-alpha process a small fraction of these '>C* nuclej opt
out from this dynamic coexistence.

Carbon production

The first two stages of the triple-alpha process create ®Be and 2C* nuclei via
the reactions,

LA N
(4.62)

Nearly all of the '>C* nuclei produced return from whence they came. But a few
of them leak away and decay to the ground state of carbon-12 in the following way

2 S0+ {2y or (et +e)} (4.63)

The mean time for this decay is 7(!2C* —'2C) = 1.8 x107!® s and the
energy released is 7.65 MeV. This irreversible leakage hardly effects the dynamic
equilibrium set up by Eq. (4.62), because only a few of the ?C* nuclei, roughly one
in 2500, opt out by decaying to the ground state. Hence we can still use Eqgs. (4.54)
and (4.60) to find the populations of ®Be and '*C* nuclei. The rate of production
of carbon-12 nuclei in the ground state is simply the concentration of *C* times
the rate at which each of these nuclei opts out; i.e.

dnys _ nys
det (12C* =12C)’

(4.64)
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If we use Eq. (4.60), we obtain a production rate of

3
dn12 n3 h2 ) *
ar (2C 4_\12{“‘\33/2 [m exp[—(m7, — 3my) c* /KT, (4.65)
HIAN hd ~7 (MR M|

Thus, the carbon production rate in a gas of helium at high temperature is given
by the remarkably simple expression, Eq. (4.65). The simplicity arises because
of the role played by ®Be and !>C* in establishing thermodynamic equilibrium.
We note that the production rate depends on two parameters. The first 1S the mass-
energy difference (m?},—3m,)c? which enters as an activation energy for the process;
i.e. as the energy that has to be borrowed to create the key intermediate state, '*C*.
The second is the mean time for '>C* to decay to the ground state, 7('*C* —12C),
Both of these parameters have been accurately measured: the activation energy is
0.3795 keV and the mean decay time is 1.8 x 10710 s.

The energy released by the triple-alpha process follows directly from the carbon
production rate. To produce a '>C nucleus, an energy equal to (m}, — 3ms)c? is
first absorbed in order to create an intermediate >C*, and then an energy equal to
(m?, — my2)c? is released when this intermediate state decays to the ground state.
The net energy released is (3my — m12)62 = 7.275 MeV, and the energy production
rate by the triple-alpha process is

, dnps
dr

£33 = (3m4 — m12)c (466)

As a specific numerical example we reconsider helium burning in helium gas at
T =2 x 108 K and p = 10% kg m~3. According to Eq. (4.60), n}, =3 x 10" m—>.
According to Eq. (4.65), carbon-12 nuclei are produced at a rate equal to
1.9 x10% m~3 s71. And according to Eq. (4.66) energy is produced at a rate of
2.2x 10" W per cubic metre. However, this rate is very sensitive to the temperature.
The temperature dependence of the triple-alpha rate is largely governed by the
Boltzmann factor in Eq. (4.65). The energy in the exponent, (m}, —3my) ¢* = 379.5
keV, is the energy needed to form an intermediate state of a 12C™: it is the activation
energy for carbon production. Because this activation energy is large compared with
kT at helium burning temperatures, the Boltzmann factor changes markedly if the
temperature is varied. For example, it falls from exp(—22) to exp( 44) when the
temperature is reduced from 2 to 1 x 10° K.

Carbon consumption

Once carbon is present at the centre of a red

o
AT i1 i1 ToLil L i s i3,

the reaction
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The rate of oxygen production can be calculated using the standard equations for
thermonuclear fusion outlined in Section 4.1. According to Eq. (4.27), the fusion
rate depends largely on the value of the nuclear S factor at an energy Ey in the
window for the fusion of “He and '?C. There are no resonances within or near to
this fusion window and the appropriate value of the S factor is small but uncertain;
for £y near to 300 keV, S is in the region of 0.3 MeV barns.

The production of oxygen can be followed by the production of neon via the
reaction

“He +1°0 —?°Ne + . (4.68)

In practice this happens to a minor extent during the helium burning phase. Reaction
(4.68) is clearly hindered by an increased Coulomb barrier. Moreover, it is not
resonant at energies near to the fusion window. In fact, there is aJ™ = 27 excited
state of 2’Ne with excitation energy 4.97 MeV, which at first sight could give rise
to an enhanced *He—'°0 fusion rate. It does not because a “He and a 'O cannot
couple to form a negative parity state with angular momentum 2; the ground states
of both nuclei are 0%, and if they couple with relative orbital angular momentum
I = 2 to give a state with total angular momentum J = 2, the parity is positive
because ™ = (—1)' = +1. As far as “He and 60 are concerned, the 2™ state of ?’Ne
is a state of unnatural parity.

Thus, helium burning dominantly consists of two processes, the triple-alpha
process and the production of oxygen by radiative capture of “He by '2C. The
production of heavier nuclei, *°Ne, >*Mg, ?8Si, etc by radiative capture of *He does
not happen to any appreciable extent during helium burning.

We also note that helium burning involves a jump from helium to carbon. It
bypasses the stable nuclei between A = 6 and A = 11, namely ®Li, °Be, '°B and
U'B. This is consistent with the observed low abundance of these light nuclei in the
solar system. These nuclei are not produced in stars, but are primarily produced by
spallation reactions in the inter-stellar medium; i.e. collisions between high energy
cosmic ray protons and nuclei like 2C. They were also produced in very small
quantities during the big bang.

What if ?

We conclude by noting that the outcome of helium burning is finely balanced.
During helium burning there exist two competing processes, the carbon producing
triple-alpha process, Eq. (4.48), and the carbon consuming oxygen production
process, Eq. (4.67). The relative proportion of carbon to oxygen in the solar
System is largely an outcome of the balance struck between these two competing
processes, and the total amount of carbon and oxygen present depends crucially
on the ineffectiveness of the neon production reaction (4.68). It is interesting to

speculate on how our surroundings would be affected if this balance was different.
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For example, if oxygen production were enhanced by the presence of a resonance
near the fusion window, carbon formed by the triple-alpha process would be
consumed almost as fast as it is produced. This would lead to an oxygen-rich,
carbon-poor environment. A similar situation would arise if the 0% excited state
in carbon-12 were a little higher. The triple-alpha rate would be slower, as shown
by the Boltzmann factor in Eq. (4.65), and any carbon produced would be rapidly
converted into oxygen. Furthermore, if the 4.97 MeV excited staie of *’Ne had
quantum numbers 2* instead of 27 most of the carbon and oxygen produced by
helium burning would be transformed into neon.

These what-ifs are of interest to advocates of the anthropic principle which in
effect says that physics has to be just right in order for biological evolution to be
successful. Helium burning seems to fit the principle quite well. It suggests that
small changes in seemingly boring excited states of nuclei could easily have led to
a solar system in which boredom would not be a problem, because nobody could
be around to be bored.

4.4 ADVANCED BURNING

As a massive star evolves there is a sequence of nuclear burning stages as the
temperature and density at the centre of the star progressively increase. If the mass
of a star is large enough, greater than 8 M, or thereabouts, it will evolve beyond
helium burning to advanced burning stages involving heavy nuclei. The following
processes are thought to occur:

1. When helium burning at the centre of a star ceases, a core of carbon and
oxygen contracts and the temperature rises. Carbon burning begins when the
temperature approaches 5 x 10% K at a density of about 3 x 10° kg m~.

Carbon burning produces neon, sodium and magnesium via reactions of the

form:
B2C +2C - 2Ne +*He, (4.69)
120420 L Na +p, (4.70)
B il2c —PMg +n. (4.71)

2. Neon burning occurs after carbon burning if the temperature reaches 10° K.
At this temperature high-energy thermal photons begin to break up ““Ne by
the photodisintegration reaction

O +*He. (4.72)

The *He nuclei released can then react with undissociated 2°Ne nuclei to form
24M
g,
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“He +Ne —**Mg + 4. (4.73)

3. After neon burning, the core of the star consists mainly of 1°0 and **Mg. The
oxygen burning phase begins if the temperature reaches 2 x 10° K, the most
important product being ®Si which is produced by the reaction

160 +160 288 +*He. (4.74)

4.  Silicon burning begins if the temperature reaches 3 x 10° K. At this
temperature silicon is gradually destroyed by high energy thermal photons
releasing *He nuclei, protons and neutrons. These light particles then combine
with undissociated nuclei to build more massive nuclei. A complex network
of capture and photodisintegration reactions compete with each other, and the
net effect is that loosely bound nuclei tend to be transformed into nuclei of
higher stability.

To some extent these advanced burning phases involve the same physics of
thermonuclear fusion that we encountered when we considered hydrogen and
helium burning. But a new type of physical phenomenon occurs when the
temperature rises above 10” K: nuclei are broken up by high energy thermal photons
and the nuclear material so formed is then reduced to its most stable form. We shall
briefly illustrate these ideas by considering the role of the photodisintegration of
nuclei in silicon burning.

The photodisintegration of nuclei is the nuclear physics analogue of the ionization
of atoms. We recall from Section 2.5, that atomic ionization becomes important at
about 3000 K. Since nuclear binding energies are typically a million times larger
than atomic binding energies, nuclear photodisintegration becomes appreciable
at a temperature which is about a million times higher than 3000 K, i.e. about
3x10° K.

As we have mentioned, a network of competing photodisintegration and capture
reactions occurs during the silicon burning stage. To illustrate the underlying
principle we consider part of this network which is initiated by the production
of “He nuclei by the photodisintegration of the tightly bound nucleus 23Si,

~ +788i —**Mg +'He. (4.75)
This process proceeds slowly because the thermal photon must have an energy
above 9.98 MeV. The “He nuclei released by this photodisintegration can induce a
sequence of reactions which produces sulphur, argon, calcium, .. ., etc, as follows
#8i +'He =¥S + 4,

28 +*He =¥ Ar + 7,

3Ar +*He =*Ca + 4,
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and so on until
*2Fe +*He =Nj + 7.

These reactions can take place more rapidly than the initial photodisintegration of
2881 which initiates this build-up process by releasing *He nuclei. In fact, the time
scale for the build-up of heavier nuclei is governed by the slow photodisintegration
of the tightly bound ?Si. Because the build-up reactions approach thermodynamic
equilibrium, relative concentrations can be found by equating chemical potentials.
For example, if we consider the first reaction in the sequence and equate the sum
of the chemical potentials of Si and *He to the chemical potential of *2S,

28 + g = (432, (4.76)

we find that the concentrations of these nuclei are related by

nagny {ZerkT

3/2
2 ] exp[—Q/kT], (4.77)

n32
where Q is the energy needed to release a *He from a *2S nucleus,
Q = [ng +my m32]C2 ~ 6.95 MeV,

and m, is the reduced mass for the *8Si—*He system, 3.5 amu. We note from
Eq. (4.77) that the abundance of *S relative to 2Si is determined by the temperature
and the concentration of *He during silicon burning. If this concentration is
10** m™3, say, then the equilibrium ratio of **S to 2*Si is about 1 to 4 at a
temperature of 5 x 10° K.

Similar considerations can be used to explore the abundances of **Ar, *'Ca, . ..
etc relative to 8Si. We note that the abundances of these nuclei, and others, will
be governed by Boltzmann factors, exp[—Q/kT], involving their break-up energy.
As a result there will always be a tendency for the more tightly bound nuclei to be
favoured.

We recall from Fig. 1.3 that the binding energy per nucleon increases as the
mass number A approaches 56. Hence the breakup of “*Si and the subsequent
rearrangement of the nucleons favours the formation of the most stable nuclei in
the periodic table near A = 56, namely the isotopes of Cr, Mn, Fe, Co and Ni.

Because the binding energy per nucleon reaches a maximum at A = 56, energy 18
absorbed from the gas if light particles are captured to form nuclei with A > 56.
For this reason nuclei beyond the iron group in the periodic table are not formed

during silicon burning.
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Thus, silicon burning is a sequence of radiative capture and photodisintegration
reactions which in effect melt silicon in a sea of alpha particles, protons and
neutrons to create heavier elements with mass number in the range 30 to 56.
Indeed, silicon burning is often referred to as silicon melting. This terminology has
the advantage of stressing that the underlying mechanism is different. Apart from
neon burning, it is the only stage of nuclear burning that involves the disintegration
of nuclei by high energy thermal photons.

Finally, we point out that the time scales involved in the advanced burning stages
are much shorter than the time scale for hydrogen or helium burning. The primary
reason is that the rate of production of nuclear energy is governed by the rate of
energy loss from the star. The energy loss is large at the high temperatures reached
during the advanced burning stages. For example, at these temperatures neutrinos
can be produced by electron—positron collisions and by other mechanisms, and
energy loss by neutrino emission can be large. The nuclear burning time scales
for a star of mass 25 M are listed in Table 4.2. The nuclear burning sequence
terminates with silicon burning which yields a central core composed of the most
stable nuclei in the periodic table with mass number near 56, from which no further
energy can be extracted. We shall see in Chapter 6, that a star which evolves beyond
silicon burning is heading for some sort of catastrophe because the central core will
collapse under gravity when its mass exceeds the Chandrasekhar limit of about
1.4 Mg,.

TABLE 4.2 The time scale for the nuclear burning stages for a star of mass 25 M, and
the central temperature and density at which they take place. This data is based on the
calculations of Weaver, cited by Rolfs and Rodney (1988).

Stage Time scale Temperature Density

(10° K) (kg m™*)
Hydrogen burning 7 x 10° years 0.06 5 x 10%
Helium burning S x 10° years 0.23 7 % 10°
Carbon burning 600 years 0.93 2 x 108
Neon burning | year 1.7 4 x 10°
Oxygen burning 6 months 2.3 1 % 1019
Silicon burning 1 day 4.1 3 x 10"
SUMMARY

The physics of nuclear fusion

® Nuclear fusion can take place at an energy E below the Coulomb barrier which
tends to keep the nuclei apart. The probability of penetrating this barrier is
approximately given by
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/
E,:
Probability of penetration =~ exp [— (-—E(i) } ) (4.12)

where Eg, the Gamow energy, depends on the electric charge on the nuclei,
Z4 and Zg, and their reduced mass, m,. It is given by

Eg = (maZsZp)2m,c*. (4.10)

e The energy dependence of the fusion cross-section, o(F), is invariably
dominated by the rapidly rising probability of penetration of the Coulomb
barrier. It is usually represented by

1/2
o(E) = §E_EE_) exp {— (%) } . (4.16)

The function S(E) is determined by the nuclear physics of fusion and varies
slowly with energy except at energies near to nuclear resonances.

e The thermonuclear reaction rate per unit volume for the fusion of two nuclet,
A and B, with concentrations n4 and nyp is given by

RAB = nAnB(ov,,). (419)

If the nuclei form a classical, non-relativistic gas at a temperature 7, their
relative velocity v, has a Maxwellian distribution, Eq. (4.20), and the fusion
rate is given by Eq. (4.22)

g 1V/2 711732 poo
Rap=man | =) 2L [ seyen [
L™ | J0 L

m, |

Eg l/Z'I

(?) dE. (4.22)
N |

e The exponential in this equation is proportional to the joint probability that
an energy E is borrowed from the thermal environment and that the Coulomb
barrier is penetrated. This joint probability has a peak at E = E; and a width
A as shown in Fig. 4.3, where according to Eqs. (4.23) and (4.25)

- ~=1/3
_ | Ee(k)~ 17 4 1/6 5/6
E(J = \»TJ and A= WEG (kT) .

As a result thermonuclear fusion predominantly takes place at cnergies in the
energy window Eo = A /2.

e If the nuclear fusion factor S(E) is approximately constant for energies in the
fusion window, the fusion rate is given by

Rap = 6.48 x 1072 24%8_gp) E Q/Bex 3 (Lc v m~?s™!
AB AZAZs AT P kT '
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This expression implies that the temperature dependence of the fusion rate is
approximately given by

[Ec 1"’
\akT]

Rap x T° where a=

Hydrogen burning

e Hydrogen burning transforms protons into *He nuclei. The most likely
transformation involves the emission of two positrons and two electron
neutrinos, i.e.

4p —He + 2¢* + 2v,.

When the annihilation energy of the positrons is included, the energy release
is 26.73 MeV per *He formed; a small percentage of this energy is carried by
the neutrinos which escape almost without interaction.

e [n the sun, hydrogen buming occurs mostly by the proton—proton chain
illustrated in Fig. 4.4. There are three main branches denoted by I, II, and III.
The overall rate of the proton—proton chain is governed by the first reaction
in the chain,

p+p —d+e +v.. (4.32)

. In the sun the proton—proton chain is terminated by branch I 85% of the
time, by branch II 15% of the time and by branch III 0.02% of the time.
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energy release together with the calculated proton—proton fusion rate leads to
an energy production rate by the proton—proton chain given by

=9.5x 10777X2p’T* Wm 3, (4.37)

where X is the mass fraction of hydrogen.

e In main sequence stars more massive than the sun, hydrogen burning
predominantly takes place via the carbon-nitrogen cycle illustrated in Fig. 4.5.
This is a cycle of reactions in which ?C acts as a catalyst in the transformation
of protons to “He nuclei.

¢ In principle, neutrinos released during hydrogen burning could provide direct
information on the actual reactions involved. The expected flux of neutrinos
from the sun due to particular reactions in the proton—proton chain and in the
carbon-nitrogen cycle are listed in Table 4.1. Experiments designed to detect
solar neutrinos with an energy above 0.81 MeV consistently yield measured
fluxes below the theoretically expected result; see Eqgs. (4.41) and (4.42).
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Experiments designed to detect the more numerous, low energy neutrinos
may resolve the solar neutrino problem.

v
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e Helium burning produces carbon, some of which is converted to oxygen.
e Carbon is produced by the triple-alpha process, Eqs. (4.45) to (4.47). The net
effect is

‘He +*He +*He —'* C [Q = +7.725 MeV]. (4.48)

Unstable ¥Be nuclei and carbon-12 nuclei in the excited 0* state ('*C*), play
a key role in the triple-alpha process. Collisions between *He nuclei generate
small numbers of ¥Be and '2C* nuclei via the reactions

‘He +*He +*He =*He +°Be ='2(C".

The populations of the ®Be and !'C* nuclei are given by Eq. (4.54) and
Eq. (4.60), respectively. A tiny fraction of the '*C* nuclei leak away from this
dynamic coexistence by decaying to the ground state of !°C in accordance
with Eq. (4.63). The production rate of carbon-12 nuclei in the ground state
is given by

- _C —(m*, — = /kT]. 4.65
e~ 7(12CT =12 C)3 {27rm4kT} expf—(my, — 3my)e” /KT (4.65)

This rate is governed by two parameters, the energy needed to form a '2C*,
the activation energy (m}, — 3my4)c?, and the mean time for a '*C* to decay
to the ground state, 7(12C* —12C).

e Some of the carbon produced is transformed into oxygen by the reaction

“He +'°C %0 + . (4.67)

e The relative nronortion of carbon and o en nroduced by helium burning
e e relaftive proportion of carbon and gxygen duced by hellum burning

(o)

ISR A

depends on the relative effectiveness of the carbon-producing triple-alpha
process and the oxygen-production reaction which consumes carbon. Nuclei
heavier than 0 are not produced in any quantity during hetium burning

because the rate of capture of *He by '°0, Eq. (4.68), is slow.

Advanced burning

o If the mass of a star exceeds a value of about 8 M, it will cvolve beyond
helium burning. Carbon, neon, oxygen and silicon burning stages can occur.
See Table 4.2,
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e The main new physical phenomenon that arises in advanced burning is

the photodisintegration of nuclei by high energy thermal photons when the
temperature is above 10° K. Indeed, silicon burning involves a rearrangement
of nuclear material by a network of photodisintegration and capture reactions.
Because this rearrangement tends to reduce nuclei to their most stable form,
nuclei close to iron in the periodic table are formed.

Once a star evolves beyond silicon burning, no further energy can be extracted
from nuclear reactions in its iron core. The core of such a star collapses when
its mass exceeds the Chandrasekhar limit of about 1.4 M.

PROBLEMS 4

4.1

4.2

4.3

4.4

4.5

Find the classical distance of closest approach for two protons with an energy of
approach equal to 2 keV. Estimate the probability that the protons penetrate the Coulomb
barrier tending to keep them apart. Compare this probability with the corresponding
probability for two “He nuclei with the same energy of approach.

We have seen that the quantum-mechanical penetration of a Coulomb barrier plays a
crucial role in thermonuclear fusion, It also plays a crucial role in the alpha-decay
of nuclei such as *3°U. In the simplest model for alpha-decay, the alpha-particle is
preformed and trapped within the nucleus by a potential similar to that shown in Fig.
4.1. The mean rate of decay, A, is then a frequency v with which the alpha-particle
hits the confining barrier times a probability of penetration of the Coulomb barrier; this
probability is given by Eq. (4.12). Write down an approXimate expression for the decay
rate in terms of 1/, E and the energy released by alpha-decay, E. The half-life for the
alpha-decay of 235)U is 7172 = 0.69/A = 7.1 % 10% years and the energy released, E, is
4.68 MeV. The energy released by the alpha-decay of **Pu is 5.24 MeV. Estimate the
half-life of this isotope of plutonium.

Assume that the solar luminosity of 4 X 10 W is due to hydrogen burning by the
proton—proton chain illustrated in Fig. 4.4. The expected flux of neutrinos from the
primary proton—proton fusion reaction is then almost fixed if the relative importance of
branch I and II is known. Find an upper limit and a lower limit for this neutrino flux.
The flux of energetic neutrinos from °B decay in branch III of the proton—proton chain
is very dependent on the central temperature of the sun. Confirm this by showing that

the rate of the reaction producing ®B,

026

p + Be —%B + Y

is approximately proportional to T'*, when the temperature 7 is near to 1.5 x 107 K.
[In fact, the local production rate of neutrinos from °B decay is found to be proportional

to 72* when the temperature dependence of the reactions leading to "Be formation is
taken into account; see Bahcall (1989).]
Consider hydrogen burning by the carbon-nitrogen cycle illustrated in Fig. 4.5. Show

that, at a temperature of 1.5 X 107 K, the slowest reaction in the cycle is

p+¥N =170 + 4,
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4.6

4.7

4.8

Thermonuclear fusion in stars Chap. 4

and thereby estimate the temperatute dependence of the carbon-nitrogen cycle in the
sun. It is thought that about 1.6% of the solar luminosity is generated by the carbop-
nitrogen cycle. Estimate by how much this would change if the central temperature of
the sun were increased by 1%.

Calculate the power per kilogram produced by hellum burning in helium when the
density is 10® kg m™> and the temperature is 10% K. By how much would this power
change if the excitation energy of the 0% state of carbon-12 were 7.66 MeV instead of
7.65 MeV?

The photodisintegration of nuclei plays an increasingly important role as a star evolves
and as the temperature at its centre increases. Use the results of Section 2.3 to obtain
an expression for the number of photons per unit volume in a gas at temperature T with
an energy above 9.98 MeV, the minimum energy needed to eject a *He nucleus from a
28si nucleus. Estimate the fractional change in the number of such photons that occurs
when the temperature rises from 1 x 10° K to 4 x 10° K.

The pract1cal exploitation of thermonuclear fusion as a energy source on earth depends
on raising the temperature of a plasma contammg ionized deuterium and tritium to an
ignition temperature T;g, of about 2 X 10% K; at this temperature the rate of energy
production by the fusion of deuterons and tritons is faster than the rate at which energy
is lost by radiation. A considerable amount of energy is needed to heat the plasma to
the ignition temperature. A greater amount of energy must be released by fusion in
order to make the process cost effective. Hence, the hot plasma must be confined for a
certain minimum time. Show that, if the plasma contains equal numbers of deuterons
and tritons, this minimum confinement time, 7, is approximately given by

12T g
(UVr )Qdep

where n; is the number of ions per unit volume, o is the deuteron—triton fusion cross-
section and Qe is the energy deposited in the plasma per fusion. (This result i s called
the Lawson Break-Even Condition. For a deuterium—tritium plasma at 2 x 10° K, n; uT

lllubl CXLCCU l U A 11U lll S. l[llb llllpllcb Uld.l d uuuu: p Sma Wllll N _IU20 11
must be confined for at least 1.6 s to break even.)

mT >



CHAPTER

Stellar structure

A complete analysis of stellar structure requires calculations of considerable
complexity and the numerical solution of a coupled set of differential equations. The
aim of this chapter is very modest by comparison. It is to use simple models to gain
insight into some of the most basic ideas of stellar structure, The discussion will
be restricted to stars with homogeneous chemical compositions. We shall consider
the structure of main sequence stars, like the sun. We shall estimate the minimum
mass of a main sequence star by considering the temperature needed for hydrogen
burning, and the maximum mass by considering the destabilizing effect of radiation
pressure. These lower and upper limits to stellar masses are shown to be comparable
with a fundamental stellar mass M, , whose value is determined by the mass of the
nucleon and a dimensionless measure of the strength of the gravitational interaction
between nucleons. We shall begin by reminding the reader of some concepts from

earlier chapters that are particularly relevant to our discussion of stellar structure.

5.1 PREAMBLE

During most of its existence a star is in a state which evolves very slowly,
a state which is very close to hydrostatic and thermodynamic equilibrium. The
Internal pressure gradient is just sufficient to hold up the star and according to

Eq. (1.5)
&P Gm(r)p(r)
r 2

(5.1)
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where m(r), the mass enclosed by a sphere of radius r, is given by

dm

—_— = 47T 2 . 52
— = 4 p(r) (5.2)
The internal temperature gradient is just sufficient to maintain the power flow
towards the surface. If energy transport is by radiative diffusion we can use
Eq. (3.28) and write

ar 3 k(e L)
dr — dac [T(r)] 4nr?

(5.3)
where, according to Eq. (3.26),

dL

i 4mrie(r). (5.4)

We recall that L(r) is the power generated within a sphere of radius r and &(r) is
the power density at r.

Equations (5.1} to (5.4) are the fundamental equations of stellar structure.
They are based on the assumptions of spherical symmetry, hydrostatic equilibrium
under Newtonian gravity and the flow of energy by radiative diffusion. The latter
assumption often has to be modified to allow for energy transport by convection,
as in the outer layers of the sun or in the core of a massive main sequence star, or
energy transport by conduction as in a white dwarf,

The static structure of a star can be found if the fundamental equations of stellar
structure are supplemented by equations which relate the pressure, opacity and
power to the density and temperature of the stellar material; i.e.

P=PpT) kr=x(pT) and c=¢(pT). (5.5)

These equations for the properties of matter and radiation inside the star have been
discussed in earlier chapters. We shall now recall some of the most relevant results.

In Chapter 2 we considered the pressure generated by matter and radiation.
Three important sources of this pressure were identified, namely classical electrons
and ions, degenerate electrons, and radiation or photons. The number densities of
electrons and ions in a completely ionized plasma depend on the mass fraction of
hydrogen, helium and heavier elements, X, X, and Xy, in the plasma. According
to Eqgs. (2.67) and (2.69)

n. =~ [1+X1]p/2my, (5.6)

n; == [2Xy + 0.5X4]p/ 2muy, (5.7)
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and
n=n,+n ~[1+3X; +0.5X4]p/2my. (5.8)

As discussed in Section 2.1 these particles can form a classical or a quantum gas.
In particular, at low.density the electrons and ions form an ideal classical gas with
a pressure

P = nkT + nikT = nkT . (5.9)

At high densities the electrons form a degenerate quantum gas with a pressure
given by Eq. (2.31),

h2
P= KNRng/E;, where KNR = I:

5 72/3
5m, '

o (5.10)

But at very high densities the degenerate electrons become ultra-relativistic and the
pressure approaches a value given by Eq. (2.34),

1/3
P =Kyrn/? h K _he| 2 / 5.11
=Aprh,”, wherIe UR = 4 |8&n . ( )

Finally at high temperature, the pressure due to radiation or photons can be
comparable with the gas pressure due to electrons and ions. The radiation pressure
at a temperature T is given by Eq. (2.44),

8 k*
15kh3c3°

D —

P=—aT* with

 —
Yviill u —

n
—
b

s

D3] =
——

The opacity of the stellar medium is determined by the interaction of radiation
with electrons, ions and atoms. Three processes were mentioned in Chapter 3.
Thomson scattering by electrons yields a constant background opacity given by

Eq. (3.18),
Kes = (1+X1) 0.02 m* kg~ " (5.13)

Bound-free absorption and free-free absorption give rise to a density and
temperature dependent opacity described by Kramers’ law, Eq. (3.17),

Ko pT ™32, (5.14)
Bound—free absorption and free—free absorption are important at the low

temperatures and high densities found in main sequence stars like the sun. But the
constant background opacity due to Thomson scattering is dominant at the higher



140 Stellar structure Chap. 5

temperatures and lower densities found in main sequence stars more massive than
the sun,

The generation of thermonuclear power was discussed in Chapter 4. Several
important chains of reactions were identified. In this chapter we shall only be
interested in hydrogen burning in main sequence stars. In the sun, hydrogen burning
is dominated by the reactions of the proton—proton chain; according to Eq. (4.37),
the power generated is given approximately by

Epp = 9.5 x 107X p*T* Wm™. (5.15)

5.2 SIMPLE STELLAR MODELS

The fundamental equations of stellar structure, Eqs. (5.1) to (5.4), reduce the
problem of calculating the structure of a star to the solution of four coupled first-
order differential equations in four unknown functions P(r), m(r), T(r) and L(r).
Clearly four boundary conditions are needed to specify a unique solution. Two of
these are straightforward. They are m(0) = 0 and L(0) = 0, which are satisfied
because the mass and the energy generated within a sphere of radius » must tend
to zero as r tends to zero. Two other boundary conditions can be obtained by
specifying the pressure and the temperature near the surface of the star; this, in
practice, requires some knowledge of the properties of the stellar atmosphere. We
shall not discuss this procedure further. Instead, we shall consider approximate
models of stellar structure based on Eqgs. (5.1) to (5.4) which are simple enough to
permit physical insight into some of the general features of stellar structure.

A traditional way of proceeding is to combine the equation of hydrostatic
equilibrium and the equation describing the conservation of mass, Eqs. (5.1) and
(5.2), to give the second-order equation
1d {rz dpP

— || = —4xGy. 5.16
err 0 dr] TP ( )

This equation involves two unknown functions, P(r) and p(r). It can be reduced to
an equation in one unknown function by assuming a simple relation between the
pressure and the density which is valid throughout the star. This is the procedure
adopted in polytrope models for stellar structure. In particular, a polytrope model
with index » is obtained by imposing the following relation between pressure and
density,

P =Kpmhin (5.17)
where K is a constant. When this relation is substituted into Eq. (5.16), we obtain

the following non-linear second order differential equation for the density inside
the star:
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1d[rrd  uivm
S [;HF(KP( 1/ )J = —471Gp. (5.18)

A unique numerical solution of this equation can be obtained by imposing two
boundary conditions. Two such conditions on the function p(r) are

d
p=p. and d—p=0 at r =0, (5.19)
r

where the second condition follows immediately from the substitution of Eq. (5.17)
into Eq. (5.1) and the use of the boundary condition m(0) = 0. Thus, once a value
for the central density p. is fixed, the numerical solution of Eq. (5.18) gives a
density profile p(r). The radius R of the star is then the value for r for which p(r)
is zero and the total mass of the star is M = m(R). The pressure inside the star
can be found using Eq. (5.17) and the thermal properties of the star can then be
deduced using an equation of state P = P(p,T) and the stellar equations (5.3) and
(5.4).

Polytrope models based upon the simple relation between pressure and density,
Eq. (5.17), have played an important role in development of stellar structure
theory, particularly before the advent of powerful computers. Accordingly, they
are fully described in many books on astrophysics. However, despite the drastic
simplification represented by Eq. (5.17), polytrope models still involve a numerical
solution of a messy differential equation.

A simpler approach is to guess a suitable form for the density profile within
the star, p = p(r), and to use this as a starting point for an approximate solution
of Egs. (5.1) to (5.4). These equations can then be tackled sequentially. Equations
(5.1) and (5.2) can be integrated to give a profile for the pressure P(r). An equation
of state P = P(p,T) can then be used to find the temperature profile T(r), which
can be combined with an opacity k = x(p,T) to estimate the power flow L(r) by
using Eq. (5.3). This power flow can then be compared with the power flow L(r)
found by integrating Eq. (5.4) using a nuclear power density = e(p,T). There is,
of course, no guarantee that the two expressions for L(r) will be similar, and, in
practice, there is almost no similarity if the initial guess for the density profile is a
simple function.

A related approach was proposed by Clayton in 1986. The starting point is a
simple parametrization of the pressure profile P = P(r) within the star. This is
more successful than the approach based upon an initial choice for the density
P(r), because the choice for the pressure can be shaped by constraints directly
imposed by hydrostatic equilibrium. We shall see that the Clayton model can yield
reasonably correct answers when applied to the sun.
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Pressure inside a star

The pressure at the centre of the star will greatly exceed the average pressure
inside the star. For example, the pressure at the centre of the sun is about 2 x 106

~e ey

Pa, which is about 200 times the average value given by Eq. (1.7), namely

Egr
Py =——— 5.2
where Egg, the gravitational potential energy, is
GM2
Egr =~ ‘ (5.21)

©

In order to model the large variation of the pressure inside a star, we note that the
pressure gradient is directly constrained by the equation for hydrostatic equilibrium
(5.1). It is easy to show that this equation implies that the pressure gradient tends
to zero at the centre and at the surface. Near the cenire, where r 1S small, the
enclosed mass m(r) is approximately equal to 4773 /3 times the central density p,
and Eq. (5.1) becomes

dP 4m

o = —?Gpgr. (5.22)
Near the surface, where r encloses most of the stellar matter, m(r) is approximately
equal to m(K) or the total mass M, and Eq. (5.1) becomes

&G (5.23)

dr r2

Thus, hydrostatic equilibrium demands that the pressure gradient inside a star
is zero at the centre, that it initially varies linearly with r, but that it eventually
approaches zero again when the density decreases near the surface. The essence of
the Clayton model is to guess a simple form for the pressure profile inside the star
which takes these constraints into account. Such a guess can be a reasonable starting
point for a stellar structure calculation, particularly for a star with a homogeneous
chemical composition.

If the chemical composition of the star is uniform, the variation in the pressure
should be smooth, as shown in Fig. 5.1. Following Clayton, we shall model the
pressure gradient inside such a star by the following expression for the pressure
gradient:

—
]
}.-/
—_—
wn
b
o~
S’

where a is a length parameter which is yet to be specified. This expression gives
an accurate representation of the pressure gradient at small r; see Eq. (5.22). In
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DISTANCE FROM CENTRE r

e

PRESSURE GRADIENT dP/Adr

Fig. 5.1 The typical variation in the pressure gradient dP/dr inside a star with a
homogeneous chemical composition. Near the centre the pressure gradient varies linearly

with r, and near the surface it is proportional to p(r)/rz.

contrast, the representation at large r is very approximate. However, the necessary
small pressure gradient near the surface of the star will be reproduced if the value
of the length parameter a is small compared with the radius R of the star. This
length parameter also fixes the position of the minimum of dP/dr at a distance
= a/+/2 from the centre of the star.

The pressure inside the star is obtained by integrating Eq. (5.24) and imposing
the boundary condition of zero pressure at r = R. This gives

P = T Golallexp(—r ) — exp(~R’ [a)) (5.25)

This representation for the pressure inside a star defines a family of stellar models,
€ach specified by particular values of p., @ and R. The corresponding expressions
for the density and temperature can be found as follows:

Density and temperature inside a star

In order to find expressions for the density and temperature, we first calculate

m(r\ the mace nf ctallar matarinl anclacad hy
\' }, LiIw L1500 AL LWL 1AL 1ALl viIvIVowa U

Combine Eqs. (5.1) and (5.2) to give
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Gm(r)ydm = —47r* dP
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which can be integrated to yield
1 " .dP
Gimz(r) = —4WL r’4a—r—ldr’.

If we substitute the expression (5.24) for the pressure gradient, we obtain

3

3

m(r) = pcP(x), (5.26)

where x is r/a and
@%@:6[xﬁmmfﬁﬁﬂ=6—yf+2€+mamffy (5.27)
0

Given this expression for m(r), it is easy to find the density and the temperature
inside the star. The density p(r) can be found directly; it is given by
1 dm _ X exp(—xz)
dmr2 dr 7 P(x) ’

p(r) = (5.28)

The temperature 7(r) requires a knowledge of the equation of state of the stellar
material. For example, if we assume that the star is supported by an ideal classical
gas we can use Egs. (5.8) and (5.9) to give

PO ith = 2y

I(r)= km [1+3X, +0.5%,]

(5.29)
The density and temperature distributions given by Eqgs. (5.28) and (5.29) are
expected to be more reliable at small r where the prescription (5.24} accurately

reproduces the pressure gradient. In particular, we can use the small x behaviour
of the function ®(x),

[l

1,2
d(x) = l—xﬁ — %xs + ixw — i.1:12 + ldoIJ ,
A 4 10 12 |

to derive the following expressions for the density and temperature at small 7:

~~
lJ‘
0
=
—

5r° 377
p(r)=pc [1§‘2““2“+:| and T(F)ITC |:1 —§;—2+} (531)

A star with a high central density

The model simplifies considerably if the mass of the star is concentrated towards
the centre, so that the central density is much larger than the average density. If
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this 1s the case, the length parameter a is small compared with the stellar radius
R, and terms proportional to exp(~—a”/R?) can be neglected. We note that this is a
reasonable approximation when the model is applied to the sun; in the next section
we shall show that in this case a = R, /5.4.

In the simplified model with small a, the total mass of the star is simply

4rpea’ drpea/6

3

M =m(R) = PR /a) = (5.32)
It follows that the average density of the star is about \/B(a /R)?p.. Furthermore,
it is straightforward to show that the density at » = a is 0.53p., and that a sphere
of radius a contains 28% of the mass of the star. In addition, we can obtain a
very useful relation between the pressure and the density at the centre of the star.

Substituting r = 0 into Eq. (5.25) gives a central pressure of the form

2

P
3

Gpla®.
If we use Eq. (5.32) to express a in terms of M and p., we find

ml/3 273

Por || GMM, (5.33)
36

where the numerical factor [7/36]'/? is approximately 0.44.

This equation predicts a relation between the pressure and density at the centre
of a star which is expected to be approximately valid for any homogeneous star
in which the mass is concentrated towards the centre. Moreover, the relation does
not depend on the specific value of the parameter @, as long as it is small. We note
here that other models for stellar structure give a similar relation. For example, Eq.
(5.33) is roughly consistent with polytrope models of stellar structure. A polytrope
model with index # is defined by assuming Eq. (5.17) and solving the differential
equation (5.18). It can be shown that a polytrope with index n = 3/2 gives

P.=0.48 GM?/3pt/3 (5.34)
and a polytrope with index n = 3 gives
P. =0.36 GM*/3p}/3, (5.35)

We also refer the reader to problem 1.7 at the end of Chapter 1. In the last part of
this problem you are asked to show that under very general conditions there is an
upper bound for the central pressure given by

1/3
P < [Z] " oM, (5.36)



146 Stellar structure  Chap. 5

Thus, in many situations, the central pressure needed to support a star is
approximately given by Eq. (5.33). This equation provides a simple and moderately
reliable way of imposing the condition of hydrostatic equilibrium in a stellar
structure calculation. We shall use it in Section 5.4 to derive estimates for the
minimum and maximum masses for stars. It will also be used in the analysis of
white dwarfs in Section 6.1 of Chapter 6.

5.3 MODELLING THE SUN

Heat transfer and thermonuclear fusion are the essential ingredients of a model
of the sun. Realistic solar models take careful account of the chemical composition,
and the changes in the composition as the sun evolves. This chemical composition
determines the opacity of the matter within the sun, with some elements of very
low abundance having a large effect. Energy transport is usually governed by
radiative diffusion, but convective transport dominates in a zone near to the solar
surface. The equation of state, i.e. the relation between the pressure, temperature
and density, takes into account the effects of electron degeneracy which begin to
become significant near the solar centre; the equation of state also takes into account
the pressure due to photons or radiation. Finally, thermonuclear energy is produced
by the reactions of the proton—proton chain and, to a lesser extent, by the reactions
of the carbon-nitrogen cycle.

The Standard Solar Model is widely recognized as one of the most realistic
models of the sun. It provides a framework for the intrepretation of all observational
properties, including the flux of solar neutrinos. A full description of this detailed
and sophisticated model is given by Bahcall (1989).

But the purpose of this section is less ambitious. It is to obtain a rough
understanding of the sun in terms of a simple model based upon the prescription
(5.34) for the pressure gradient. This prescription is not appropriate for a model
of today’s sun. Hydrogen burning during the last 5 billion years has led to a
composition which changes abruptly near the centre of the sun. As a result, there
is an abrupt change in the density and in the pressure gradient. However, the
prescription for the pressure gradient given by Eq. (5.34) is a reasonable starting
point for a model of the early, chemically homogeneous sun. Such a simple model
is very crude by the standards set by realistic models. But despite this, we shall
see that it gives a useful insight into the variation of the pressure, density and
temperature inside the sun. Moreover, we shall show that it yields the correct order
of magnitude for the solar luminosity in two independent ways. firstly by assuming
the release of nuclear energy by the reactions of the proton—proton chain, and
secondly by assuming heat transport by radiative diffusion.

Pressure, density and temperature

Following Clayton (1986), we shall compare the predictions given by the simple
model with the numerical results of a stellar structure calculation by Strémgren;
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these numerical results for a chemically homogeneous sun are tabulated in Table 6.5
of Clayton (1983). In particular, Stromgren obtained the following results for the
pressure, density and temperature at the solar centre:

P.=165x10"Pa, p.=9.0x10"kgm > and T.=13.7x 10° K, (5.37)

As indicated by Eq. (5.25), the simple model is specified by three parameters:
the central density p., the length parameter a and the radius R. For a star with a
high central density we can use Eq. (5.32) to express the length parameter a in
terms of the mass M and central density p.. Thus to model the sun we take R = R
and M = M, and p, equal to Stromgren’s value of 9 x 10* kg m~>. This implies
that the length parameter is a = R, /5.4.

According to Eq. (5.33), the central pressure needed to support a star of high
central density p. and mass M, is

P. = 0.44 GMp!/2. (5.38)

[S

This gives a central pressure P. = 1.9 x 10'® Pa, which is slightly higher than
Strdmgren’s value of 1.65 x 10'® Pa. To calculate the central temperature we assume
that the matter at the centre of the sun is an ideal classical gas with hydrogen and
helium mass fractions of X; = 0.71 and X; = 0.27. This assumption yields a central
temperature 7, = 16 x 10° K.

To find the variation in the pressure, density and temperature inside the sun,
we adopt the appropriate value for the length parameter, @ = Ry /5.4, use Eqgs.
(5.25), (5.28) and (5.29) to give the results illustrated in Fig. 5.2. This figure shows
impressive agreement between the results obtained from Clayton’s simple model
and those obtained by Stromgren by numerical solution of the equations of stellar

Pl oy R,

structure.

The solar luminosity

The temperature and density distributions illustrated in Fig. 5.2 can be used
10 estimate the luminosity of the sun in two independent ways. First, we can
integrate Eq. (5.4) and relate the luminosity to the total power due to thermonuclear
fusion. Second, we can use Eq. (5.3) and estimate the power flow that can be
achieved by radiative diffusion. These two estimates should agree with each other.
Indeed, in practice, the highly temperature-dependent nuclear reactions in the
sun adjust themselves so that the nuclear power generated equals the power lost
by radiative diffusion towards the surface. Furthermore, these estimates for the
luminosity sliould be comparable to the computed luminosity, which, for the early
homogeneous sun, is about 3 x 10°° W.

To find the solar luminosity due to thermonuclear fusion we assume that nuclear
energy is generated by the reactions of the proton—proton chain in accordance with
Eq. (5.15). In fact, the power produced by the proton—proton chain was slightly
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Fig. 5.2 The pressure, density and temperature in a homogeneous sun with X, = 0.71 and
X4 = 0.27. The broken lines represent the results of a computer solution by B. Stromgren;
see Table 6.5 of Clayton (1983). The solid lines correspond to the simple model described
in Section 5.2 with a = Rp/5.4 =129 x 108 m.
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lower in the early sun because branch II of the chain was less effective when the
helium-four abundance was lower. If we substitute a slightly modified Eq. (5.15)
into Eq. (5.4) and integrate, we obtain

Lo =84 x107%x3 f " 4 [p(NP[T ()] dr. (5.39)
0

If the density and temperature are given by Egs. (5.28) and (5.29), we find
Lo =84 x 107X 4na’plT? |, (5.40)

where [ is the integral

/- // () eif(_m i
0

To evaluate this integral we use the expansion (5.30) to give
Ra/a 3 3
I= -/0 {xz — ZX4 + EX6 — | exp(—2x")dx.

If a is small compared with R, the upper limit of the integral may be extended to
infinity to give a series of integrals, which can be evaluated by using the standard
integral

[ exo(—o?

nvind NAv e e A~
j CAIJ\ LEA )LL'L -— \ 1 /‘ —ru} »
0

and the integrals obtained by differentiation with respect to «. If the series is
summed numerically, we find that

1=0.078 (1/2)'/~. (5.41)
Substitution of this result into Eq. (5.40) gives

Lo =1.0x 107%aX2p2T?,

3
476

Le=1.0x10"% Mo X5 p. T (5.42)
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In order to obtain a numerical value, we insert X; = 0.71, p. = 9.0 x 10* kg m™—3
and T, = 16 x 10° K into Eq. (5.42) to give a solar luminosity of about 5 x 10°° W,
This estimate based on thermonuclear fusion by the proton—proton chain should be
compared with 3 x 10°% W, the luminosity for the early, homogeneous sun given
by computer calculations.

Heat transport by radiative diffusion provides a second way of estimating the
solar luminosity. Only a rough estimate can be obtained because the model makes
no attempt to constrain the temperature gradient to ensure that the heat flow is in
accordance with the power generation within in the sun; for example, the divergence
of the heat flow should go to zero as the temperature and power generation fall off
with increasing distance from the centre. Moreover, the model becomes increasingly
poor at large distances and the power flow L(r) can only be equated to L. for values
of r beyond the central power generating region. Nevertheless, we shall see that the
model can still give a useful estimate for the solar luminosity due to the radiative
diffusion of heat.

The relation between the temperature gradient and the power flow due to radiative
diffusion in a star is given by Eq. (5.3). In order to avoid confusion between the
length parameter a of the simple model and the radiation constant, which is also
denoted by a, we express the latter in terms of Stefan’s constant ¢ which equals
ac/4. Rearranging Eq. (5.3) then gives an outward power flow at radius » of the
form

160 4x?[T(N] dT
M= TS e o

We shall consider power flow in a central region of the sun where r is small
so that the density and temperature are given by Eq. (5.31). If the opacity obeys
Kramers’ law, Eq. (5.14), its value at a small distance » from the centre of the sun

is given by
11 r
K(r) = K¢ 16 e

where k. is the opacity at the centre a ad1 C
be obtained by differentiating the p r expansion for 7 given in Fq ( 1) If
we only retain terms of order r*/a” we ﬁnd that Eq. (5.43) vields the following

approximation for the power flow at a small distance r from the centre of the sun:

(5.43)
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T r? 19 r*
L(r) =~ l67mﬁc "z {1 — —1_655] : (5.44)

If we insert p. = 9.0 x 10* kg m~3, T, = 16 x 10° K and the appropriate value for
the opacity at this density and temperature, x. = 0.14 m* kg~ ', and use a = R, /5.4
we obtain
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L(r) ~ 3 x 102~ [1 - 35—} W. (5.45)

As expected, the pow with 7,
constant value as it Would in a more realistic model. Despite this shortcoming, it
is encouraging to note that, when r is R /10, the outward power flow given by
Eq. (5.45) reaches 2 x 10°® W. Thus, the order of magnitude of the power flow
due to radiative diffusion is comparable with 5 x 10%® W, our estimate of the solar
luminosity due to thermonuclear fusion. In a realistic model of the.sun, the power
generated by thermonuclear fusion is precisely that necessary to supply the power
transported towards the surface. If it were not, the sun would contract or expand
until it is.
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5.4 MINIMUM AND MAXIMUM MASSES FOR STARS

In practice most main sequence stars have a mass in the range from about a tenth
of a solar mass to about fifty solar masses. Two questions immediately arise: what
fundamental constants of nature determine the order of magnitude of the mass of
a main sequence star? And why is the range in mass so limited? These questions
were briefly considered in Chapter 1 and will now be considered in more detail. In
this section, we shall see that if the mass is significantly smaller than the solar mass,
gravitational contraction will result in an internal temperature which is insufficient
to ignite thermonuclear fusion and create a genuine star. We shall also sce that if
the mass of the star greatly exceeds the solar mass, then radiation pressure becomes
dominant. As a result, the binding energy of the star is small and any small energy
loss or gain is accompanied by large changes in the thermal kinetic energy and
gravitational potential energy; in other words, the hydrostatic equilibrium of the
star becomes precarious.

The key ingredient in the calculation of minimum and maximum stellar masses
is the condition for hydrostatic equilibrium. We shall impose this condition in a
simple and approximate way by focusing on the pressure at the centre of a star.
To do so we recall Eq. (5.33). Th S states that the central pressure and density of

a star of mass M in hvydrostatic e
ARAAGLL WD LFA i JUAUL’LuLl L3

(5.46)

a relation which is approximately true for any chemically homogeneous star, in
which the inass is concentrated towards the centre so that the central density
greatly exceeds the average density. The pressure given by Eq. (5.46) is the ceniral
pressure needed to support the star. We shall see that expressions for the minimum
and maximum masses of stars can be found by examining the source of this

Pressure.
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Minimum mass of a main sequence star

In order to achieve stardom a contracting system must be sufficiently massive
to generate a central temperature which is high enough for thermonuclear fusion
to supply the energy loss from the surface. To derive the minimum mass needed
to reach this ignition temperature, we consider a contracting cloud of ionized gas
with mass M.

Initially, the energy lost from the surface is supplied by gravitational contraction,
The pressure is low and, to a first approximation, the electrons and ions form an
ideal classical gas so that the central pressure and temperature are related by

= B, (5.47)

where 7 = 2my/[1 + 3X; + 0.5X,] is the average mass of the gas particles; see
Eqgs. (5.8) and (5.9). If the pressure generated by the ideal gas is close to the
pressure needed to support the system, the contraction is slow and the cloud is in a
state close to hydrostatic equilibrium. Equating the pressures given by Eqs. (5.46)
and (5.47) gives the following expression for the central temperature during this
period of slow contraction:

w3 2/31/3
kT, ~ ['36] GaM>/3pl/3. (5.48)

We see that the temperature rises steadily as the density of the contracting gas
cloud increases.
The temperature of a contracting cloud will continue to rise until either a

substantial amount of enerev is released hv thermonuclear fusion, or the electrons

ODVQRLILAGL QULIVLIL Vi ViIvAG Y 40 Avivaovie v;;;;u;luu;vu; AI‘-L . R O T

at the centre become degenerate. In the former case, nuclear energy alone can
supply the energy loss from the surface, thereby removing the need for contraction
and the release of gravitational energy. In the latter case, electrons, occupying
the lowest possible energy states in accordance with the Pauli exclusion principle,
resist compression and support the mass, Thus, true stardom will not be possible if
the electrons become degenerate before the ignition temperature for thermonuclear
fusion is reached.

To estimate the maximum temperature achievable at the centre of a contracting
gas cloud, we shall assume a stage is reached in which the electrons at the centr®
are fully degenerate and the ions are classical. At this stage the central pressure IS
given by

(5.49)

where the constant Kyg is given by Eq. (5.10). The number densities for the
electrons and ions can be expressed in terms of the central density using Egs. (5. 6)
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and (5.7). However in order to simplify the algebra, we shall assume the mass is
entirely composed of hydrogen so that n. = n; = p. /my. In this case

Again, hydrostatic equilibrium is achieved if this pressure equals the pressure
needed to support the mass. Equating the pressure given by Egs. (5.50) to the
pressure given by Eq. (5.46) leads to a central temperature given by

w1/3 2/3 1/3 Pe 23
kﬂfm[ggJ Gl — Kue | 2= | (5.51)

Equation (5.51) gives the central temperature in a contracting mass of hydrogen
at a stage when the electrons at the centre are fully degenerate and the ions are
classical. In contrast with Eq. (5.48), there are two terms. The first is associated
with the classical ions and the second with the degenerate electrons. The second
term becomes important at high density and when it does the temperature will cease
to rise quickly as the mass contracts. This behaviour is illustrated in Fig. 5.3 which
shows how the temperature at the centre of a contracting cloud with mass M, /16
varies as the density increases. As expected, the temperature initially rises as p.
increases. However, the temperature increases less quickly as the pressure due to
degenerate electrons becomes more important; eventually the degeneracy pressure
is dominant and the temperature ceases to rise. To find the maximum value of the
temperature, we rewrite Eq. (5.51) in the form

kT, = Ap!/® — Bp?/3.

Elementary calculus then shows that 7, reaches a maximum of A% /4B at a density
of (A/2B)>. Substituting for A and B, we find that the maximum temperature reached
at the centre of a contracting mass of hydrogen is

2 8/3

e [ 2] 0 (5:52)

B L364 4K N
A less accurate version of this equation was derived in Chapter 1; see Eq. (1.28).
We can now impose the condition that the contracting mass achieves stardom.
This condition is that the maximum central temperature reaches the ignition
temperature for the thermonuclear fusion of hydrogen. If we denote this ignition
temperature by Tig,, we find that the minimum mass for a genuine star is given by

3612 [ akee 17" 3/4
Mmin ~ l:?r-‘| —2% I:le‘gn] . (553)
G-my,
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Fig. 53 The temperature at the centre of a contracting cloud of hydrogen with mass M/16
as a function of the central density.

In fact, the ignition temperature of a material depends on its environment. It is the
temperature at which the power produced in a particular region begins to match
the power that escapes from the region. When this occurs the region gets hot and
the ‘fire’ spreads. If we take the ignition temperature for hydrogen to be about
1.5 x 10° K, one-tenth of the central temperature of the sun, Eq. (5.53) gives a
value of 0.05 M, for the minimum mass of a star; more accurate calculations give
values closer to 0.1 M,

Maximum mass of a main sequence star

We recall from Section 1.2 of Chapter 1 that the hydrostatic equilibrium of
a star becomes precarious if the pressure preventing gravitational contraction is
supplied by a gas of ultra-relativistic particles. This implies that a star could be
easily disrupted if radiation becomes the dominant source for the internal pressute.
This general property sets an upper limit to the mass of a main sequence star. T0
derive this limit we consider the pressure due to ¢lectrons, jons and photons at the
centre of a hot, massive star and compare this with the pressure necded to suppoft
the star.

We assume that the electrons, ions and photons are in thermal equilibrium at 2

temperature T, and a density p. at the centre of the star. The central pressure P 18
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the sum of a gas pressure P, due to electrons and ions, and a radiation pressure P,
due to photons.! At high temperature and low density, the electrons and ions form
an ideal classical gas with a gas pressure given by

P, = %kTC. (5.54)

According to Eq. (5.12), the photons form an ideal quantum gas with pressure

1
P, = zaT}. (5.55)

It is convenient to describe the fractional contributions of gas and radiation
pressure to the total pressure P, = P, + P, by introducing the parameter 3. We take

P, =3P, and P,=(1— B)P.. (5.56)

It is then straightforward to eliminate 7, from Egs. (5.55) and (5.54) and express
P, in terms of 3 and p, to give

1/3 4/3
P = {3(1_5)} [_} . (5.57)

a m

Again, hydrostatic equilibrium is achieved if this pressure equals the pressure
needed to support the star. Equating the pressure given by Eq. (5.57) to the pressure
given by Eq. (5.46) leads to

1/3

EIRC

H (5.58)

We recall that (1 — ) and 8 are the fractional contributions of ‘radiation’ and
‘gas’ to the central pressure; by definition both are less than one. We note from
Eq. (5.58) that M, the mass of the star, determines 3 and that 3 decreases as M
increases. Hence the radiation pressure P, = (1 — 3)P. is more important in stars
Wwith a large mass. We illustrate this in Fig, 5.4, which plots P, /P¢ as a function
of the mass of the star; a value of 0.61 amu has been taken for m.

We recall from Chapter 1 that the binding energy is small for a star supported by
4 pressure due to the random motion of ultra-relativistic particles such as photons.
Moreover, the release or the absorption of a small amount of energy in such a star
IS accompanied by large changes in the internal kinetic energy and gravitational
Potential energy. It follows that radiation pressure has a destabilizing effect on

——

1 . .
Of course radiation pressure can be thought of as a pressure due to a gas of photons. Despite this we

will follow custom at this stage and use the adjective gas to describe the pressure due to electrons
and ions.
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Fig. 5.4 The fractional contribution of radiation pressure to the gas pressure at the centre
of a star of mass M. Note that radiation pressure becomes increasingly important in more
massive stars.

massive stars. In practice, the increasing importance of radiation pressure in massive
stars illustrated in Fig. 5.4 imposes an upper limit on the mass of main sequence
stars. An estimate of about 100 M for the maximum mass of a main sequence
star can be obtained from Eq. (5.58) by requiring (1 — 3) to be less than 0.5; this
corresponds to assuming that not more than 50% of the pressure at the centre of
the star 1s due to radiation. In fact, stars with a mass greater than 50 M. are very
rare.

A fundamental unit for stellar masses

We have seen how lower and upper limits for stellar masses are imposed by the
need for thermonuclear fusion and the destabilizing effect of radiation pressure. A
lower limit can be found from Eq. (5.53) and an upper limit from Eq. (5.58). The
range of masses for main sequence stars is surprisingly small. typically from about
one-tenth of a solar mass to about fifty solar masses. Thus, the solar mass seems
to be a convenient unit for the mass of all main sequence stars. We shall now
re-examine these results and identify the fundamental constants of nature which
actually fix the mass of a main sequence star in the region of a solar mass.

To begin with, we shall introduce a dimensionless measure of the strength of
the gravitational interaction between two nucleons. Because the average mass of
a neutron and proton is almost equal to the mass of a hydrogen atom, we shall
denote the nucleon mass by my. The gravitational potential energy of two nucleon$
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at a distance r is —Gm3 /r. The magnitude of this energy for nucleons separated

by a fundamental distance, £i/myc, in units of the fundamental rest-mass energy,
2 .

myc-, 18

Gm?,
hc

ag = =59 x 107%. (5.59)
This small dimensionless number is a measure of the strength of the gravitational
interaction between nucleons. A corresponding measure for the strength of the
electromagnetic interaction is the fine structure constant, & = €% /(dmepfic) = 1/137.
Because we have usually used Planck’s constant in this book, we point out that the
definitions of ag and « involve /i or k /21,

The minimum mass of a main sequence star is given by Eq. (5.53). This equation
contains the constant Kyg which depends on Planck’s constant and the mass of the
electron as shown in Eq. (5.10). If we use Eq. (5.10), we find that the minimum
stellar mass can be rewritten as

kT, %%
Mminzlé{ 3} agPmy. (5.60)

m,c?

If we take Tjg, to be about 1.5 x 10° K, one-tenth of the central temperature of the
sun, we find

3/2

My = 0.03 g™ “my. (5.61)
An estimate for the maximum mass of a main sequence star can be obtained
from Eq. (5.58) by requiring (1 — 3) to be 0.5; this corresponds to assuming that

50% of the pressure at the centre of the star is due to radiation. Using Eq. (5.12)
to relate the radiation constant a to Planck’s constant and the velocity of light, and
assuming that the average mass m is 0.61 my, we find a maximum mass given

by
Mooy = 56 o “my. (5.62)
In view of Egs. (5.61) and (5.62), we introduce the mass
M, = o Pmy = 1.85 M, (5.63)

and identify this mass as a fundamental stellar mass which determines the mass
Scale of main Sequence stars. it uepeﬁUb bUlCly on the mass of the nucleon and the
dimensjonless strength of the gravitational interaction between nucleons. A stable,
lOflg. lived main sequence star occurs if M =~ M,, thermonuclear fusion is not

ignited if M << M, , and radiation pressure destabilizes if M >> M,. In view of
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this, it is no accident that the mass of the sun is comparable with M, . Finally, the
role of M, as a fundamental stellar mass indicates that the number of nucleons in
a typical star is solely determined by a. This number is

M,
N,=—Z=a;?=2x107. (5.64)

SUMMARY
Preamble

e Stellar structure calculations are based on four fundamental equations,
Eqgs. (5.1) to (5.4), which describe hydrostatic equilibrium, mass conservation,
heat transport and power gencration within a star. These equations are
differential equations for four unknown functions P(r), m(r), T(r) and L(r).
They can be solved, in principle, if they are supplemented by an equation
of state for the stellar material and expressions for the opacity and power
generation.

A simple model for a star

¢ Insight into some of the features of stellar structure can be obtained by
assuming the following simple analytic form for the pressure gradient:

P 4w s
_ 5.24
dr 3 Gpcrexp( r /a ) ( )

This expression describes the pressure gradient correctly at small r and very
approximately at large r. Once the mass, radius and central density of the
star are specified, the parameter a is fixed and simple expressions can then
be obtained for the density within the star; see Eq. (5.28). The temperature
distribution can also be found if the equation of state is known; see Eq. (5.29).

e Whenever the mass of the star tends to concentrate towards the centre, there
is a simple relation between the pressure and the density at the centre of the
star given by

a1/
P~ [_} TGMAR 3, (5.33)
36
[ VS PR L e T s ~an vamn
ULICT I UUU glVC VCIy similar relation llllb plebUlC—UCIlSlly refation <ab

be used as a simple and direct way of i 1mposmg the condition of hydrostatlc
equilibrium, as in Section 5.4, in order to estimate the minimum and maximum
masses of main sequence stars.
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Modelling the sun

e The pressure, density and temperature within the sun can be roughly
reproduced by assuming a structure derived from the pressure gradient (5.24);
see Fig. 5.2.

e The solar luminosity can be estimated by considering thermonuclear fusion,
Eq. (5.42), and by considering heat transport by radiative diffusion, Eq. (5.45).
In both cases the estimates are comparable with the observed luminosity.

Minimum and maximum masses for stars

e A fundamental stellar mass can be defined by
M, =ag;> " my =1.85 Mg, (5.63)

where «y; 1S a dimensionless measure of the strength of the gravitational
interaction between two nucleons, ag = Gmﬁ/ﬁc. This fundamental stellar
mass is the natural unit for all stellar masses. It corresponds to a star containing
2 x 10°7 nucleons; see Eq. (5.64).

e A contracting cloud of hydrogen achieves true stardom and ignites the
thermonuclear fusion of hydrogen if its mass is greater than a mass given
by Eq. (5.53). This minimum mass corresponds to

M, ~0.03 M,. (5.61)

e If the mass of a star exceeds a maximum value given by

Al
/4

~ &6 AL
YEmax ™ <Y

(5 60N
1V 4, .04

the internal radiation pressure dominates the gas pressure, and the hydrostatic
equilibrium of the star becomes precarious.

PROBLEMS 5

5.1 Consider a star of mass M and radius R in which the pressure gradient is given by

dP T 5 5, o
where a is a length parameter and p, is the central density; see Eq. (5.24). Derive an
expression for the gravitational potential energy Fgr of the star by using the Virial
Theorem, Eq. (1.7). Show that if the length parameter @ is small compared with the
radius R, the gravitational potential energy is approximately

1R GM?
Eer =3 7R
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Consider a family of chemically homogeneous stars which are similar in every respect
except for their masses and radii. The similarity of the stars is such that, for any member
of the family with mass M and radius R, the density at distance r from centre can be
written as a function of x=r/R in the following way:

M
p(ry = R3 Fp(x)’

where the function F,(x) is common to the entire family. In a similar way, the mass
enclosed by a sphere of radius r within the star can be written as

m(r) = M F(x),

where, again, the function Fj,(x) is common to the family.

Assume that the equation of state for the stellar material is the ideal classical gas
equation, that the opacity of the material obeys Kramers’ law, Eq. (5.14), and that
nuclear energy is generated by the proton—proton chain in accordance with Eq. (5.15).
Use the fundamental equations of stellar structure, (5.1) to (5.4), to derive the following
scaling relations for the pressure, the temperature, the power flow due to radiative
diffusion and the power flow due to nuclear fusion:

M2
P() = = Fp(0),

T() = o Frio,
5.5

RO:5
6

M
quS(r) = ﬁ? Ffus(x)’

Lmd(r) = Fmd(JC),

where, again, the functions are common to the family.

Note that the power flow due to radiative diffusion increases slowly and the power
flow due to nuclear fusion increases rapidly as the star contracts. In fact, this rapid
increase in the fusion power only occurs after the central temperature reaches a value in
the neighbourhood of 10 million degrees. By sketching these power flows as a function
of the radius R, illustrate how stars belonging to this family will contract until they
reach radii and luminosities which are approximately given by

Roc MY and I oc MP.

Finally, show that this family of stars will lie on a line on the Hertzsprung-Russell
diagram given by

L o TH',

where T is the effective surface temperature.

Consider a family of stars in which the opacity is dominated by Thomson scattering by
electrons, and in which nuclear energy is generated by the carbon—nitrogen cycle. This
implies that the opacity is independent of the density and temperature (see Eq. (5.13)),
and that the rate of nuclear energy production is proportional to p° T'® (see Section
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4.2). In analogy with problem 5.2, find, for this family of stars, a relation between the
radius and the mass, and a relation between the luminosity and the mass. Find also the
line on the Hertzsprung—Russell diagram describing the luminosity and effective surface
temperature for these stars.

Under very general conditions the central pressure P, supporting a star of mass M
satisfies the inequality

1/3
Pc < [%] GM2/3 i/fi

b

where p. is the central density; see problem 1.7 at the end of Chapter 1. Assume that
part of this pressure, denoted by (3 P, is due to an ideal, classical gas of electrons and
ions with average mass m, and that the remaining pressure, denoted by (1—3) P, is
due to radiation. Show that the above inequality can be used to derive an upper bound
for the quantity (1—/3) 3*. Use this bound to set limits on the fraction of the pressure
due to radiation at the centre of stars of masses 1, 4 and 40 M.



CHAPTER

The end-points of stellar evolution

A star passes through several stages of nuclear burning each of which postpones
gravitational contraction. It also loses weight by a variety of mechanisms by ejecting
matter into outer space. Eventually, nuclear fusion at the centre of the star can
no longer supply enough energy to sustain a high thermal pressure and the star
contracts under gravity. A compact object is formed which can be a white dwarf,
a neutron star or a black hole. We shall begin this chapter by considering white
dwarfs, compact stars largely supported by the pressure of degenerate electrons.
Most importantly, we shall show that the mass of a white dwarf cannot exceed the
Chandrasekhar limit of about 1.4 M. We shall give an introduction to the physics
of the neutron stars, compact objects which are largely supported by the pressure
of degenerate neutrons, and consider the processes that lead to their formation. In
particular, we shail address the crucial issue of the maximum mass of a neutron
star and why we believe that all compact objects which exceed this mass must
be completely collapsed objects whose only manifestation are intense gravitational
fields. These disembodied remnants of matter are called black holes.

6.1 WHITE DWAREFS

The sun will pass through its hydrogen burning phase and then a helium burning
phase to form a star with a carbon-oxygen core surrounded bv an envelope of
helium and hydrogen. The temperature of the carbon—oxygen core will then increase
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as the core contracts under gravity. The increasing temperatures will accelerate the
rate of helium burning in a shell surrounding the core and the envelope will expand
and drift away to form a planetary nebula. But the contraction of the core is unlikely
to result in the high temperature needed to burn carbon. The core, having lost its
envelope, 1S expected to emerge as a hot white dwarf. As this white dwarf cools, the
pressure generated by the thermal motion of the ions will become less important
and eventually a pressure due to degenerate clectrons will provide the bulk of the
pressure needed to support the star.

Mass and central density

We begin by considering the relation between the density at the centre of a white
dwarf and its mass. To obtain this relation, we first write the number density for
electrons at the centre of the star in terms of the central density p. in the following
way:

pe
e = YE T, 1
ne=Y 6.1)

where Y, is the number of clectrons per nucleon; according to Eq. (5.6), Y. is
approximately [1+X,]/2. We now assume that the star is supported by the pressure
of a gas of non-relativistic, degenerate electrons. This pressure is given by Eq. (5.10)
which may be rewritten as

Y0133
”‘} . (6.2)

P = Kngm)® = Kng [
my

If we equate this to the central pressure needed to support the star, which is given
approximately by Eq. (5.33), we obtain

Yop1?” 1/3
Kng | 22| = [—W—] GM?/3 p413, (6.3)
My 36

Rearranging this equation and using the expression for Kyg given in Eq. (5.10)

leads to the following prediction for the density at the centre of a cold white dwarf
of mass M

(6.4)

3.1 {Mr "y
Pe &

Y3 M, (h/mec)

&

where M, is the fundamental stellar mass defined by Eq. (5.63), i.e.

M, =ag;*my = 1.85 Mo, (6.5)
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In deriving Eq. (6.4), we have assumed that the white dwarf is supported by
the pressure of a gas of non-relativistic, degenerate electrons. However, we saw
in Section 2.2 of Chapter 2 that degenerate electrons become relativistic when the
number density of electrons is large compared with (m.c/k)>. In fact, the Fermi
momentum of the electrons, which is given by Eq. (2.27), equals m.c when the
number density is (87/3)(m.c/h)’. We conclude that the electrons in the white
dwarf will be relativistic if the density is large compared with my/(h/mec)>. It
follows that the non-relativistic Eq. (6.4) can only be valid if the mass of the white
dwarf, M, is small compared with M,.

As an example, we consider a carbon white dwarf of mass 0.4 M. The central
density predicted by Eq. (6.4) is then 4.6 my /(h/m.c)*, or about 5.4 x 108 kg m~3,
At this density, electrons have a Fermi momentum of 0.65 m.c and a Fermi kinetic
energy of 0.19 m.c?. Hence the use of non-relativistic kinematics is, at best, a
rough approximation. It is clear that for white dwarfs more massive than 0.4 M
one must completely take into account the effects of relativity in evaluating the
pressure of the degenerate electron gas.

When relativity is taken into account, the calculated central density of a white
dwarf is higher than that predicted by Eq. (6.4). In particular, the density, considered
as a function of the white dwarf mass M, increases more rapidly than M?>. This
arises because, as the density increases and the electrons become more relativistic,
the equation of state is modified. In fact, when the electrons become ultra-relativistic
at densities very large compared with my /(h/m.c)?, the non-relativistic equation
of state, Eq. (6.2), is replaced by

\ Y. pe 4/3
P:Kmﬁﬂsz[m } , (6.6)
H

where the constant Ky is determined by the fundamental constants 2 and ¢ as
indicated in Eq. (5.11). If this pressure due to ultra-relativistic electrons supports
a star of mass M, then

1/3
| oM (6.7)

lllll

In the context of a model where a white dwarf is solely dependent on degenerate
electrons for its support, this equation should be viewed as an equation for the
mass of the white dwarf whose central density is very large compared with
my /(h/m.c)*, in effect a central density which tends to infinity. This mass is called
the Chandrasekhar mass, Because the density cancels in Eq. (6.7). this mass is
determined by Y, and fundamental constants like G, my and Kyg. 1t is given by

36 1/2 Y, 2 K 3/2
R e
s My G
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If we express the constant Kyg in terms of & and ¢ by using Eq. (5.11) and recall
the definition (6.5) of the fundamental stellar mass M,, we find that

My ~23 Y M, =43Y? M. (6.9)

To understand the significance of the Chandrasekhar mass, consider a sequence of
white dwarfs with increasing mass. As the mass increases, the degenerate electrons
at the centre of the star become increasingly relativistic. When the mass is small, the
central density will increase with mass in accordance with Eq. (6.4). As the mass
becomes larger, the density increases more rapidly and, when the mass reaches
Mcy, the density must approach infinity. In reality, the density becomes large
compared with my/(h/m.c)’, the star collapses and new physics must be sought
to explain what happens next. For the moment, the only firm conclusion we draw
is that a degenerate electron gas cannot support a star with mass larger than the
Chandrasekhar mass.

The physical significance of the Chandrasekhar mass can be made clearer by
considering a more general model for a white dwarf. So far we have considered
two extreme models based on Egs. (6.2) and (6.6); namely, a star supported by a low
density gas of non-relativistic, degenerate electrons, and a star supported by a high
density gas of ultra-relativistic, degenerate electrons. We shall now consider a model
which incorporates both the non-relativistic and the ultra-relativistic extreme. To do
so we consider a star supported by a degenerate gas of electrons whose kinematics
are described by the exact relation between the energy and momentum,

2_,24 22 PRT
€, = m,c' +pc. (6.10)

The pressure in such a gas can be obtained by using Eq. (2.13) and by noting
that the velocity of a particle with momentum p is v, = pc?/e,. Because all the
electrons in a degenerate gas fully occupy all the states with a momentum less than
the Fermi momentum py, the pressure is given by

1 PE 2.2 2V
P o(p)dp, where g(p)dp = —4mp'dp. (6.11)

P=—
3V.0 fp

If we introduce dimensionless momenta x = p/m.c, we Obtain

8amicc [ x*
p= /0 Tret (6.12)
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The upper limit of the integral is the dimensionless Fermi momentum xx, which,
according to Eq. (2.27), is given by

_pe _[3n) 7 [3Yep ]k
7 mee \_87r_| MeC S8mmy M.C

(6.13)

Some integration and a bit of tidying-up leads to the following expression for the
pressure:

P = Kypnt? I(xr), (6.14)

where

I(x) = E% [x(l +x%)!/2 (? — 1) +In[x + (1 +x")‘/2]} : (6.15)

Because we have used Eq. (6.10), the exact relation between energy and
momentum, Eq. (6.14) 1s the pressure due to an ideal degenerate electron gas
of any density. This pressure is expressed in of terms of the dimensionless Fermi
momentum xz, which, according to Eq. (6.13), depends on the density. At high
density the Fermi momentum is large and xg >> 1. In this case the integral
I(xr) tends to 1 and Eq. (6.14) gives a pressure in agreement with Eq. (6.6), the
pressure of a gas of ultra-relativistic, degenerate electrons. At low density the Fermi
momentum is small and xr << 1. The integral /(xr) now tends to 4xy/5 and
Eq. (6.14) gives a pressure in agreement with Eq. (6.2), the pressure in a non-
relativistic, degenerate gas.

We can now consider the hydrostatic equilibrium of a star supported by electrons
which form an ideal degenerate gas of any density. If we equate the pressure given
by Eq. (6.14) to the pressure needed to support a star of mass M, we obtain

Y.p. 14 VEI
Ko | =22 1) = [1} GM? 3, (6.16)
My 36

which can be rearranged to give the following expression for the mass of the star:

M == [I(x;)) My, (6.17)

where the Chandrasekhar mass M¢y is given by Eq. (6.9).

Equation (6.17) gives the mass of a white dwarf in terms ot x;, which in tumn
depends on the central density p. via Eq. (6.13). Conversely, it gives the central
density of a white dwarf with mass M. The results of an elementary calculation
based on Eqs. (6.17) and (6.13), with Y, = 0.5, are shown in Fig. 6.1. As expected,
the central density increases as the mass of the white dwarf increases. Initially, the

increase is in accord with Eq. (6.4), which is valid when the degenerate electrons
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Fig. 6.1 The density at the centre of a white dwarf of mass M supported by the pressure of
an ideal gas of degenerate electrons. Note the density tends to infinity as the mass approaches
the Chandrasekhar mass Mcy.

are non-relativistic. The density then increases more rapidly as the electrons become
relativistic. Finally, as the mass approaches the Chandrasekhar mass, the electrons
become ultra-relativistic and the density approaches infinity.

Our estimate, Eq. (6.9), for the magnitude of the Chandrasekhar mass is based
upon the approximate relation between the central density and pressure given by
Eq. (5.33). A more accurate estimate can be made if we use a polytrope model in
which the relation between the density and pressure throughout the star is given
by P(r) x [p(r)]*/3, a relation which is consistent with Eq. (6.6), the pressure
of a gas of ultra-relativistic, degenerate electrons. In this case the numerical
factor in Eq. (5.33), which equals 0.44, is replaced by (.36 and the value of the

Chandrasekhar mass is predicted to be

N
Mey ~31Y; M, =58Y" M. (6.18)

In most white dwarfs there are about two nucleons per electron and Y, ~ 0.5 which,

when substituted into Eq. (6. 18), gives a Chandrasekhar mass of about 1.4 M.

Chandrasekhar first deduced that there is a maximum value for the mass of a
Wwhite dwarf in 1931. It was a momentous discovery with a profound implication
which he emphasized 1934 in the following way:
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The life history of a star of small mass must be essentially different from
the life history of a star of large mass. For a star of small mass the
natural white-dwarf stage is an initial step towards complete extinction.
A star of large mass cannot pass into the white-dwarf stage and one is
left speculating on the other possibilities.

Later in the chapter we shall see that this speculation has led to the conclusion
that the other possible end-points of stellar evolution are neutron stars and black
holes. At this stage, we merely note that a star with a mass above the Chandrasekhar
limit cannot form a stable white dwarf and that this instability can be traced to
the fact that the degenerate electrons in the star are ultra-relativistic. This result
is related to the general result discussed in Section 1.2 of Chapter 1; namely, that
hydrostatic equilibrium becomes precarious for any star supported by a gas of
ultra-relativistic particles.

Mass and radius

According to Eq. (6.4), and more generally Fig. 6.1, the density of a white dwarf
is a rapidly increasing function of its mass. This implies that the size of a white
dwarf decreases with mass.

To explore the connection between the mass and radius of a white dwarf we need
a mode] for the density distribution. If the degenerate electrons are predominantly
non-relativistic, the structure of the star is similar to a polytrope model with
P o p°/3, in which case it can be shown that the average density is p./6. This,
together with Eq. (6.4), implies that the average density of a white dwarf of mass

M is approximately

051 [M]1*  my
~ _ M 6.19
0~ (it e e
and that the radius is
- .. =21/3 - - 1/2 o
a7 M s

= ~0.77Y73 | == ac‘/-i_ (6.20)

4m{p) M LM

In obtaining this last equation we have made use of the definition (6.5) of M.,.
Note that the characteristic size of a white dwarf is primarily detcrmined by the

fundamental constant ag = 5.9 x 1073° and the electron Compton wavelength,
h/mec = 2.4 x 10712 m. This characteristic size is

2ii, aax

h
ag ~ 3 x 107 m. (6.21)
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We also note that the characteristic density is
My 8 -3
—— =1 x10°k . 6.
(i /mec) X g m (6.22)
Further, if we use the sun as standard for mass and size, we find that a white dwarf
with Y, = 0.5 has a radius approximately given by

Ry [Mg 1/3
R~ Tol | .
74 [M ] (6.23)

As expected, the radius of a white dwarf is a decreasing function of its mass.
In deniving this mass—radius relation we assumed that the degenerate electrons
were non-relativistic, and as such it is only applicable to low-mass white dwarfs.
Nevertheless, it is in rough agreement with the limited observational data on the
masses and radii of white dwarfs. Some of this data, which is limited because the
mass can only be determined if the white dwarf is a member of a binary or triple
system, 1s listed in Table 6.1. We note that the observed radii are comparable with
the estimate given by Eq. (6.23) and that, as expected, the radius is a decreasing
function of the mass.

TABLE 6.1 White dwarf masses and radii from optical observations. See Shapiro and
Teukolsky (1983) for further details.

White dwarf Mass Radius

Sirius B (1.053 = 0.028) M (0.0074 + 0.0006) Ry,
40 Eri B (0.48 & 0.02) M (0.0124 & 0.0005) R
Stein 2051 (0.50 £ 0.05) or (0.72 == .08) My, (0.0115 £ 0.0012) R,

The mass—radius relation (6.23) can be used to relate the luminosity of a white
dwarf to its mass. We recall from Chapter 1 that the luminosity of a star depends
upon its effective surface temperature 7y and radius via the relation (1.43):

L =4nR*oT}. (6.24)

The mass-radius relation (6.23) then implies that a white dwarf of mass M has a
luminosity given by

7 |

42

For example, a white dwarf with M = 0.4 M, and Tg = 10* K has a luminosity of
about 3 x 1073 L.

l [UOOOW (6.25)
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We saw in Section 3.4 of Chapter 3 that the rate of cooling of a white dwarf is
largely determined by radiative diffusion through an outer, insulating layer which
surrounds a largely isothermal, degencrate interior. Equation (6.25) shows that, as a
white dwarf of a given mass cools, its declining luminosity and surface temperature
are such that L is proportional to T4. This implies that a white dwarf cools along a
specific line in the Hertzsprung—Russell diagram, as shown in Fig. 6.2. Moreover,
because the position of the line of cooling is determined by the mass of the white
dwarf and because all white dwarf masses lie In a narrow range, all white dwarfs
are expected to occupy a narrow strip on the Hertzsprung—Russell diagram. The
narrow mass range for white dwarfs arises from a precise upper limit and a less
precise lower limit. Clearly, the mass cannot exceed the Chandrasekhar limit of
about 1.4 M. Further the finite age of the universe implies that the mass of any
observed white dwarf cannot be too low: this is the case because any observed
white dwarf must have evolved from a main sequence star, and this star will evolve
very slowly if its mass is low. With a universe only 10 to 20 billion years old, there
has only been enough time for the evolution and emergence of white dwarfs with
masses larger than 0.25 Mo, or thereabouts.

Finally, the mass—radius relation (6.23) can be used to estimate the strength of
gravity on the surface of a white dwarf and to understand the gravitational red shift
of radiation escaping from its surface.

We expect the acceleration due to gravity on a white dwarf to be very large by
terrestrial or even solar standards. Using Eq. (6.23), we find that the acceleration
on a white dwarf of mass M is

, 5/%
g= == 0 74 (6.26)

The numerical value of this acceleration on the surface of a star of mass 0.4 M
is approximately 4 x 10° m s 2.

The gravitational red shift of radiation escaping from the surface is determined
by the magnitude of the gravitational potential energy on its surface. According to
General Relativity, the fractional change in the wavelength of the radiation is

. 27
Rc? (6:27)

AN _[,_26M1TVE L GM
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ne naive way of understanding this result is to consider that

a photon of frequency
v has an effective mass m = hv/c® and a total energy of hv — GmM /R on the
surface. As the photon escapes, the gravitational potential energy increases and the
frequency decreases in order to conserve energy. The change in frequency on escape

CD
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Fig. 6.2 Positions of white dwarfs on a Hertzsprung—Russell diagram. A model based on a
star supported by a gas of non-relativistic, degenerate electrons leads to a relation between
luminosity and surface temperature given by Eq. (6.25). The diagonal lines illustrate this
relation for stars of mass M= 0.25 M, and M = M. In fact, relativistic effects are important
in massive white dwarfs, and their inclusion would reduce the predicted radius of the star
with M = M, and the diagonal line would be shifted downwards. The observed positions
of the white dwarfs in this diagram correspond to data compiled by Sweeney; see Shapiro
and Teukolsky (1983) for further information.

is then Av = —GmM /Rh = —GMv /Rc*. Using the mass-radius relation (6.23), we
find that the gravitational red shift for a white dwarf of mass M is approximately

AN
— & 74
3 7

4/3 .
[ M ] OMe (6.28)

M@ R@Cz '

For example, the observed red shift for 40 Eri B is AA/A = (7.97 + 0.43) x 107°.
This white dwarf has a mass of 0.48 M, and the red shift expected from Eq. (6.28)
is AN/ A~ 6x107°.
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6.2 COLLAPSE OF A STELLAR CORE

A star with a mass greater than 11 M, or thereabouts, i1s expected to evolve
through all the stages of nuclear burning. As outlined in Chapter 4, the process
begins with hydrogen burning at about 2 x 107 K and proceeds at successively
higher temperatures through helium, carbon, neon, oxygen and silicon burning.
Silicon burning at about 3 x 10° K leads to a star with a central core of iron
surrounded by concentric shells containing silicon, oxygen, neon, carbon, helium
and hydrogen. Because energy cannot be released by the thermonuclear fusion of
iron, the central core contracts. Initially, this contraction can be controlled by the
pressure of the dense gas of degenerate electrons in the core. But as silicon burning
in the surrounding shell deposits more iron onto the central core, the degenerate
electrons in the core become increasingly relativistic. When the core mass reaches
the Chandrasekhar limit of about 1.4 M, the electrons become ultra-relativistic
and they are no longer able to support the core. At this stage the stellar core is on
the brink of a catastrophe.

The onset of collapse

When a body contracts under gravity, gravitational energy is converted into
internal energy. If this leads to the activation of exothermic nuclear fusion, the
internal kinetic energy increases, the pressure rises and the contraction s opposed.
The opposite happens if an energy absorbing process is activated: Kinetic energy
is absorbed, the effectiveness of the pressure is diminished and gravitational
contraction turns into gravitational collapse. Thus, a stellar boiler prevents
gravitational contraction but a stellar refrigerator can trigger an uncontrolled
collapse.

There are two energy absorbing processes, two possible refrigerators, which
could drive the iron core of a star into an uncontrolled collapse. They are the
photodisintegration of atomic nuclei and the capture of electrons via inverse beta
decay. In the former, kinetic energy is used to unbind atomic nuclei, and in the
latter, kinetic energy of degenerate electrons is converted into the kinetic energy of
electron neutrinos which escape from the core. These energy-absorbing processes
are so effective that the collapse of the stellar core is almost unopposed. Indeed, the
core can collapse almost freely under gravity. According to Eq. (1.4). the time scale
for such a collapse depends solely on the density of the core when the collapse
is triggered. This density is expected to be around 10'> kg m™ *, and the free-fall
collapse time of the core is remarkably short:
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We shall briefly consider two energy-absorbing processes which could bring about
a catastrophic collapse of this kind.
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Nuclear photodisintegration

As the stellar core contracts, the temperature increases and eventually a stage
is reached when thermal photons are energetic enough to photodisintegrate iron
nuciei; tightly bound iron nuclei are broken up into less tightly bound nuciei, and
energy 1s absorbed. In a realistic calculation the whole range of possible nuclei
should be considered. However, a useful insight can be obtained if we assume that
a stage is reached when tightly bound °Fe nuclei coexist with neutrons and tightly
bound “He nuclei, a coexistence governed by the reactions

v +°Fe = 13*He + 4n. (6.30)

In the following we shall label the reacting particle by its mass number A.
The photodisintegration of *Fe is an endothermic reaction absorbing

Q = (13my + dmy — msg)c* = 124.4 MeV. (6.31)

Thus, one kilogram of iron could absorb 2 x 10 J, the energy equivalent of 50
kilotons of TNT.

The fraction of iron dissociated at a given temperature and density can be
estimated by using the same techniques we used when we considered atomic
ionization in Chapter 2, and helium and silicon burning in Chapter 4. We assume
that the reactions (6.30) lead to thermodynamic equilibrium, so that the chemical
potentials of the reacting particles satisfy the equation

pse = 13piq +4py. (6.32)

According to Eq. (2.21) or Eq. (4.51), the chemical potential for a particle of mass
number A is

tia = myc — kT In {gf‘T’Wi} , (6.33)
A

and the quantum concentration nga is

(na)"(ny)? _ (g)" (&) (”Q4)13(’1Q1)4
Hse6 856 ROs6
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The statistical factors g4 depend on the angular momentum of the particle. For the
spin-half neutron, g = 2. For the *He and *°Fe nuclei we can take g4 = 1 and
gs6 = 1, if we assume that all the 4He and *°Fe nuclei are mostly in their spin-zero
ground states. It is then easy to show that Eq. (6.35) implies that about three-
quarters of the iron is dissociated when the density and temperature of the core reach
p=102kgm=3 and T = 101" K.

At higher temperatures the “He nuclei are also expected to dissociate via the
reactions

v +*He = 2p + 2n. (6.36)

Again, it is straightforward to find the degree of dissociation by equating chemical
potentials; see problem 6.2 at the end of the chapter.

It is easy to estimate the total energy that could be absorbed by these
photodisintegration processes. Bearing in mind that the collapsing tron core has a
mass comparable with the Chandrasekhar mass of 1.4 M., 4 x 10% J are absorbed
by the photodisintegration of *Fe nuclei and a further 1 x 10% J by a subsequent
photodisintegration of *He nuclei. Thus, the total energy that could be absorbed by
the photodisintegration of the iron core to neutrons and protons is approximately

Eppoo = 1.4 x 107 1. (6.37)

This is a substantial energy, equivalent to the energy radiated by the sun over a
period of 10 billion years. There is no doubt that the absorption of an energy of
this magnitude could trigger an uncontrolled collapse of the stellar core.

Electron capture

In normal circumstances a neutron is an unstable particle with a half-life of 10.25
minutes. It decays into a proton, an electron and a neutrino via the beta decay

n—p+e +0,. (6.38)

The electron and the neutrino produced in this decay have a combined cnergy of
1.3 MeV, an energy equal to the mass-energy difference of a neutron and a proton.
Thus, electrons with energies up to 1.3 MeV are produced when neutrons decay.
It follows that neutrons will not be able to decay, if electrons with these energies
cannot be produced. This can be achieved by immersing the neutrons in a dense
gas of degenerate electrons so that all the electron states with an energy up to
1.3 MeV are fully occupied in accordance with the Pauli exclusion principle. The
required density of the electron gas can be found by recalling that the maximum

momentum of a electron in a degenerate gas, the Fermi momentum, is
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3n, 1/3
h : 6.39
pr=h| o] (6.39)
and that the maximum energy, the Fermi energy, is given by
ef = prct +moct (6.40)

Furthermore, if the gas is denser than this critical density, electrons with an energy
greater than 1.3 MeV exist and they may be captured by protons to form neutrons
by the inverse beta decay process,

e +p — N+, (6.41)

This conversion of protons to neutrons is often called neutronization.

In practice, the protons in the core of an evolved, massive star are not free but
bound in atomic nuclei. Nevertheless, they can still capture energetic electrons to
form neutrons, and in so doing they produce nuclei which are increasingly rich in
neutrons. Neutronization begins in the stellar core when the main constituent, 3°Fe,
can undergo the inverse beta decay,

e~ +Fe —°Mn + v,. (6.42)

This will be energetically possible when the density of the contracting iron core
reaches 1.1 x 10'? kg m~?; at this density the Fermi energy of the electrons equals
the threshold energy of mec +3.7 MeV needed for the inverse beta decay of *°Fe.

Normally, a *®Mn nucleus beta decays to “®Fe with half-life of 2.6 hours, but in the
stellar core it captures an electron from the dense deoenerate\ gas to form a 56(1].

nucleus. This in turn is capable of capturing an electron when the density reaches
1.5 % 109 kg m™>.

Electron capture by inverse beta decay on nuclei in the stellar core becomes
very rapid when the density exceeds 10'* kg m 3. The neutrinos produced interact
very weakly with matter and carry away the energy originally stored by degenerate
electrons. As the pressure generated by these electrons disappears, the stellar core
collapses rapidly.

It is easy to estimate the possible energy loss due to electron capture in the stellar
core. First, we note that an iron core with a mass equal to the Chandrasekhar mass
contains about 10°7 electrons which could produce 10°7 electron neutrinos. Second,
we assume that the average energy of a captured electron is around 10 MeV; this

corresponds to the average energy of an degenerate electron when the density of
the core i1s 2 x 1013 kg m =3 Thus. the total energy that could be lost hv electron

b VR B U Pu ) A axse¥y taiws asaiie wiavaa raaihy R Na RN A 2RO R AL LY §

Capture is

Ecop = 1077 x (10 X 1.6 x 1079 = 1.6 x 10% J. (6.43)
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This energy is carried away from the star by a burst of electron neutrinos. 1f the
neutrinos escaped freely, the duration of this burst would be comparable with the
millisecond time scale for the free fall of the core under gravity given by Eq. (6.29).
However, many of the neutrinos interact with the dense matter formed by the
collapsed core. Indeed, theoretical calculations indicate that the neutrino mean free
path becomes comparable with the size of the core when the core radius is a few
kilometres and the density is 10' kg m™ 2. Neutrinos, which earlier streamed out
of the imploding core, are now trapped in the implosion. Because of this, most of
the clectron neutrinos formed by electron capture will be trapped for a few seconds
before they diffuse out of the collapsed core.

The aftermath

We have seen that electron capture and/or photodisintegration can trigger the
collapse of the iron core of a massive star. The collapse is rapid and almost
unopposed until a density comparable to the density of nuclear matter is recched.
This density can be determined from the well-known formula for the radius of a
nucleus containing A nucleons: a radius given by

R =rAY? where rg=12x10"" m, (6.44)
implies a nuclear density of

3AmN 3mN 1
pric = RS = Gt 2.3 107 kg m ™7, (6.45)

where my is the nucleon mass. Clearly, neutron degeneracy and nuclear forces in
the neutron-rich core will begin to be important when the nuclear density . 18
reached. Moreover, nuclear forces are expected to resist compression and bring
the collapse to a halt when the core becomes two or three times more dense than
normal nuclear matter. The core is expected to rebound strongly and set up a shock
wave that travels through the material that is falling towards the centre. Theoretical
calculations suggest that this shock wave may be able to reverse the inward fall
of stellar material surrounding the core and produce an outward expulsion, a
supernova.

Supernovae are very energetic explosions: the observed kinetic energy of
the debris is typically 10** J and the optical energy output during the year
following the explosion is of the order of 10*? J. These explosions are primarily
classified according to their optical spectra, with particular attention to the presence

ParEt s e V- S L Y [ UL P
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or absence of speciral lines associated with hydrogen. However, this spectral
classification bears little relation to the underlying cause of the explosion. Two
possible causes could yield the required energy, either the disruption of a star by a
thermonuclear detonation or the collapse of the iron core of a massive star.
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In passing, we shall briefly describe a possible scenario for a supernova due to a
thermonuclear detonation of a star. This scenario involves a carbon—oxygen white
dwarf which can increase its mass by drawing mass from a nearby companion star.
When the mass of the white dwarf exceeds the Chandrasekhar limit of 1.4 M,
it contracts and ignites the thermonuclear fusion of the hitherto quiescent carbon
and oxygen. Because this material is degenerate, the fusion-control mechanism
discussed at the end of Section 1.4 is not operative. We recall that an energy
release in a star leads to an expansion and an accompanying decrease in the internal
kinetic energy. The latter normally implies a temperature decrease and a reduction
of the fusion rate. In degenerate matter, however, the decrease in the internal kinetic
energy lowers the energy of the degenerate electrons and has little effect on the
temperature so that the rate of fusion is uncontrolled. Thus, the sudden ignition of
thermonuclear fusion in a white dwarf creates a star-sized fusion bomb. The white
dwarf could explode more or less as a whole, leaving no residual core behind.

We now return to the collapse of an iron core of a massive star. The physics of
the collapse, the rebound and associated shock wave is very complicated. As we
shall see in a moment, a gigantic amount of gravitational energy is released. But it
is not certain how energy and momentum is transferred to the outer layers of the
star, and it is by no means certain that core collapse is always accompanied by a
supernova. Nevertheless, the collapse is expected to leave a core residue, either a
neutron star or an over-weight neutron star which collapses to form a black hole.
We shall take a closer look at neutron stars and briefly comment on black holes
later in this chapter. At this stage we shall concentrate on the energy of formation
of a neutron star, the energy that must be released when the neutron star is formed.
In so doing, we shall show that the fireworks of any accompanying supernova is,
if assessed in terms of energy, an insigniﬁcant side-show.

The energy of formation of a neutron star is largely determined by the chang
in the gravitational binding caused by core collapse. Just before collapse we have
a core with a mass comparable to the sun and a radius of about 1000 km. After
the collapse we have a neutron star with a similar mass but with a radius of about
10 km. The initial gravitational binding is negligible and the gravitational energy
released in the collapse is simply the gravitational binding of the neutron star. For
a neutron star of mass M and radius R, this binding energy is approximately given
by

2 2
GM-~ M 10 km
Ep =~ = 1040 J. 6.46

? R 3% iMoi i R i (6.40)

We emphasize that the energy of formation implied by Eq. (6.46) is an order
of magnitude greater than the energy needed to photodisintegrate the iron nuclei
in the core; see Eq. (6.37). 1t is also an order of magnitude greater than the
energy lost by electron capture; see Eq. (6.43). Moreover, it is much larger than

the energy associated with the kinetic and visible effects of any supernova which
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may be triggered by the collapse; as mentioned earlier, the typical kinetic energy
of the debris of a supernova is only 10* J and the optical energy output during
the year following the explosion is only of the order of 10* J. Thus, we still
have to account for about 90% of the energy released when a neutron star is
formed by core collapse. There must be an important intermediate stage before the
formation of a compact neutron star, a stage characterized by an energy loss of about
3 x 10* J, the typical binding energy of a neutron star.

This intermediate stage is thought to be the formation of a hot, bloated neutron
star which then cools and contracts by emitting neutrinos. This bloated neutron star
is, to a first approximation, a dense plasma of neutrons, protons, nuclei, electrons,
photons and neutrinos held together by gravity; the typical temperature and density
are of the order of 10'"" K and 10'* kg m~3. The plasma is almost completely
opaque to photons and little energy escapes by electromagnetic radiation. Instead,
cooling occurs by the emission of neutrinos. These weakly interacting particles can
travel several metres in the plasma before interaction. They escape from the hot
neutron star by a random walk process similar to that discussed in Section 1.4. If
their mean free path is /, they will interact about R?/ 7 times before they escape
from the surface of a star with radius R. Hence the escape time will be of the order
of R*/lc.

Only a fraction of the escaping neutrinos arise from electron capture. The
hot, bloated neutron star is so hot that neutrino—antineutrino pairs are copiously
produced. The simplest production mechanism, the annihilation of an electron—
positron pair, was briefly discussed in Section 2.6, but other mechanisms, such
as plasmon decay, photoneutrino production and neutrino bremsstrahlung, are also
thought to be important.

Three types of neutrino—antineutrino pairs can be produced. They are denoted
by v., V. and v,, ¥, and v, V,. The v, neutrino is associated with the most
familiar lepton of all, the electron. The neutrinos v,, and v, are associated with
massive, unstable charged particles called muons and tauons, particles very similar
to electrons but with masses 106 MeV/c2 and 1784 MeV/cz. The antineutrinos ¥,
v, and 7, are associated with the antielectron or positron, the antimuon and the
antitauon, respectively. The various types of neutrinos and antineutrinos are very
similar. They are all weakly interacting fermions with a mass which is either zero
or very small. However, they do differ from each other, and this difference can be
illustrated by how they interact. For example, a weak interaction could transform
a v, into an electron, but not into a muon or tauon.

Because the masses of these neutrinos are either zero or very smali. all three
types of neutrino—antineutrino pairs are produced by thermal processes in the hot
neutron star. In all, six kinds of weakly interacting particles are formed: 1, and
Ve, vy, and 7, and v, and 7. These particles carry away the bulk of the binding
energy of the neutron star. Moreover, each of the six kinds of weakly interacting
particle is expected to carry away about one-sixth of this energy. Thus, each kind
of neutrino carries away about 0.5 x 10 J if the binding energy of the neutron
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star is 3 x 10% J. The time scale for this cooling process is the time needed for a
neutrino to diffuse to the surface of the neutron star. As mentioned earlier, this is
of the order of R*/Ic.

To summarize, the authentic signature of the aftermath of core collapse is not a
supernova, but an intense pulse of neutrinos. An observation of the energy of these
neutrinos and the duration of the pulse would reveal how gravitational collapse is
shaped by weak interaction processes.

The detection of neutrinos from core collapse is a formidable problem. If the
neutrinos can escape from a hot, neutron star and penetrate the outer layers of the
collapsing star, they are more than likely to pass through any detection apparatus.
Similar problems are met in the detection of neutrinos from the sun, as discussed
in Section 4.2 of Chapter 4. But the techniques for the detection of neutrinos from
core collapse are different, and somewhat easier, because these neutrinos are more
energetic than solar neutrinos. These techniques were successfully demonstrated
for the first time on 23 February 1987, when two massive underground detectors,
the Kamiokande 11 (KII) detector in Japan and the Irvine-Michigan—Brookhaven
(IMB) detector in the US, detected neutrinos from the supernova SN1987A.

The KII and IMB detectors are similar in design, consisting of large volumes of
ultra-pure water surrounded by thousands of photomultiplier tubes. The neutrino
burst from SN1987A was mainly detected via the reaction,

Vo+p —n+e’. (6.47)

If the positron recoils with a velocity greater than the phase velocity of light in
the water, it emits Cerenkov radiation which can be detected by photomultiplier
tubes surrounding the water. The ¥, absorption reaction (6.47) is the most probable
reaction involving neutrinos and antineutrinos from the supernova. Even so, less
than one in 10" of the ¥,’s from the supernova were detected. The data from the
KII and TMB detectors is illustrated in Fig. 6.3.

First and foremost we note that only 20 neutrinos were detected by the KII and
IMB detectors.

Second, the duration of the neutrino pulse, as illustrated in Fig. 6.3, is about
10 seconds. This time can be identified with R*/Ic, the typical time needed for a
neutrino with mean free path [ to diffuse from the cooling neutron star of radius
R. For example, a time of the right order of magnitude is obtained if R = 100 km
and [ = 10-* R

Third, when account is taken of the efficiency of detection and of the distance
of supernova SN1987A, about 50 kpc, the data in Fig. 6.3 is consistent with 7,
radiation with a total energy between 0.3 10% to 0.5x 10% J, an energy comparable
with one sixth of the expected binding energy of a neutron star.

Finally, the observed energies of the detected neutrinos are consistent with the
energy spectrum expected from a ‘black-body’ neutrino radiator at an effective
temperature of Tz ~ 5 x 10Y K, some ten million times hotter than the effective
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Fig. 6.3 Energy and time of arrival of neutrinos from the supernova SN1987A as registered
by the Kamiokande Il and IMB detectors. In all 20 neutrinos were detected and the duration
of the neutrino pulse was about 10 seconds.
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the diffusion of neutrinos from a cooling neutron star. In particular, we can adapt
Eq. (1.35) to find an approximate relation between the typical internal temperature
T; and the effective surface temperature 7¢ of the cooling neutron star,

l-l 1/4

Hence, if the characteristic mean free path for neutrinos mside the cooling neutron
star is 10™% R, a value consistent with the observed duration of the neutrino pulse,
then the typical internal temperature is between 10" and 10'- K.

All in all, the detection of 20 neutrinos from SN1987A by the KII and IMB

detectors gave credence to many of the theoretical expectations for the aftermath
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In problem 6.3 at the end of the chapter you are asked to show that the average ecnergy of neutrinos
from such a radiator at temperature T is 3.15 kT.
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astrophysical events of the century. It established a new branch of astronomy: non-
solar neutrino astronomy. Managers of scientific research should take careful note
that both the KII and IMB detectors were designed and built for another purpose,
the observation of proton decay.

6.3 NEUTRON STARS

A neutron star is born as a hot residue of the collapsed core of a massive star.
The typical internal temperature is initially between 10! to 10'? K. It rapidly cools
by neutrino emission and is expected to reach a temperature of the order of 10° K
in a day and 10® K in a 100 years. These are high temperatures by terrestrial and
solar standards, but they are low by the standards set by the high densities of the
matter inside a neutron star; the electrons, protons and above all neutrons inside a
neutron star are degenerate and occupy the lowest possible states consistent with
the Pauli exclusion principle. We begin by commenting on how the nature of the
matter inside a neutron star depends upon its density.

Matter inside neutron stars

In normal circumstances the most stable form of nuclear matter consists of nuclei
near “°Fe in the periodic table. Less massive nuclei are less stable because they
have a higher fraction of their nucleons near the surface, and more massive nuclei
are less stable because of the increased importance of Coulomb repulsion between
protons. The best deal, with the lowest binding energy per nucleon, is struck near
S6Fe,

This deal is changed by the presence of relativistic electrons. As described in
Section 6.2, uegGHEraLc electrons in a LUlldprU Star are buulucuuy energcm to
induce inverse beta decay. Protons are converted to neutrons, and nuclei rich in
neutrons are formed. Coulomb forces now have a reduced importance and neutron-
rich nuclei, heavier than *°Fe, are energetically favoured. For example, 7®Ni and
"®Fe are thought to be the most stable nuclei in an electron gas when the density
is around 10'* kg m—3.

When the density exceeds 4 x 10'% kg m 3, a new phenomenon occurs called
neutron drip. Neutrons drip from neutron-rich nuclei so that free neutrons, nuclei
and electrons coexist in equilibrium. The equation of state for this form of matter
is well understood for densities below pu, = 2.3 x 10'7 kg m™?, the density of
normal nuclear matter. At higher densities nuclei begin to merge with each other
and a dense gas of electrons, protons and neutrons is formed. The equation of state
now strongly depends upon the interaction between nucleons, an interaction which
is both C()mpuuau:u and uncertain. At higher densities, around 1018 kg 1‘1‘1_3, further
complexities and uncertainties are introduced as it becomes energetically possible
to produce pions, muons and hyperons. At higher densities still, the quark degrees
of freedom are expected to play a role.
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In order to gain some insight into why neutrons are the dominant constituent of
neutron stars, we shall crudely neglect interactions and consider an ideal gas of
degenerate electrons, protons and neutrons. At high densities, neutrons are present
in this gas because their normal beta-decay mode, n — p+ e~ + 7., is blocked by
the Pauli exclusion principle; the decay does not occur because it would involve
the emission of either a proton or an electron into a state which is already fully
occupied.

It is sufficient to consider the possible decay of one of the most energetic neutrons
present, one with an energy equal to the neutron Fermi energy €r(#). Such a neutron
cannot decay if the emitted proton and electron have energies below the Fermi
energies for protons and electrons, ex(p) and er(e). It follows that all the neutrons
with energies up to eq(n) are stabilized by the Pauli principle if

er(n) < ep(p) + cx(e). (6.49)

Conversely, neutrons can beta decay if

er(n) > ep(p) + ex(e). (6.50)

In fact, the coexistence in equilibrium of neutrons, protons and electrons at zero
temperature is characterized by

er(n) = ep(p) + €r(e). (6.51)

This result can also be obtained by noting that the chemical potential of a
Fermi gas at zero temperature is the Fermi energy. Thus, Eq. (6.51) is a relation
between chemical potentials which characterizes the equilibrium established at zero
temperature by the processes,

n-—-p+e +V, and e +p - n+u,, (6.52)

with the neutrinos playing no part because they escape.
The equilibrium concentrations of the neutrons, protons and electrons. #,. #,, and
n., implied by Eq. (6.51) can be found by noting that the Fermi momentum of a

particle is related to its concentration by Eq. (2.27), namely

3,71/
Pr = [—nil h. (().53)
87

When the density is of the order of pu., the neutrons and the protons are
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The less massive electrons, however, are ultra-relativistic and the relation between
the electron Fermi energy and momentum is

~—
o
n
n
~—

er(e) = pr(e)c.

Bearing in mind that neutron-star matter is neutral with equal numbers of electrons
and protons, we set n, = n, and find the following relation between the numbers
of neutrons and protons in the ideal gas at equilibrium:

3n,1"" 3,177 w2 [3n,]7° B2
ol pey (o) T o - m 6.56
{ 81 } o [ 87 2my, 87 2m, in€ = M (6-56)

Given the neutron—proton mass difference of 1.3 MeV/c?, it is straightforward
to find the relative numbers of neutrons and protons at any particular density.
For example, at a typical neutron-star density of p = 2 x 10'7 kg m~*, we find
2~ 1 x 10" m™? and n. = n, & n,/200; i.c. one electron per 200 neutrons
is enough to prevent neutron decay. We conclude that neutrons are the dominant
constituent of neutron-star matter at densities of the order of 10!7 kg m—3.

The size of neutron stars

We shall now take the simplistic, ideal degenerate gas model for the material
inside a neutron star one step further, and investigate how the central density and
radius of the star depend upon its mass. This can be done very simply by adapting

the analvsis of white dwarfs eoiven in Section 6.1. This analvsis assumed that a
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white dwarf is supported by the pressure of an ideal gas of degenerate electrons.
We now assume that a neutron star is supported by the pressure of an ideal gas of
degenerate neutrons.

Because neutrons are the dominant constituent of the star, the number density of
neutrons is directly determined by the mass density. At the centre of the star

nn e L2 (6.57)

The corresponding equation for a white dwarf is Eq. (6.1). The white-dwarf
equations, Eqgs. (6.2) to (6.4), can be modified so as to describe the hydrostatic
equilibrium of a neutron star by changing the electron mass to the neutron mass
and Dy bC[[lIlg Ie quldl to one. We dlb() igHOrc the uuwrence UCLW@@TI l.llt: mass of
the hydrogen atom my and the mass of the neutron m,; this difference is less than
0.1%. In this way, we deduce that a gas of degenerate, non-relativistic neutrons can

support a neutron star of mass M if the central density is
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M 2 my
pe = 3.1 [——} W (6.58)

The fundamental stellar mass M, is given by Eq. (6.5), but in the context of a
neutron star it is best expressed in terms of the neutron mass as follows:

3/2

M, =a;""m, =1.85 M. (6.59)

The radius of the neutron star can be found by adapting Eq. (6.20). We find that

M, 13 —~1/2 h
R~0.77 {ﬁ} ag'! — (6.60)

We note that the characteristic size of a neutron star is primarily determined by
the dimensionless measure of the strength of gravity, ag = 5.9 x 10779, and the
Compton wavelength of the neutron, i/m,c = 1.3 x 107'% m. This characteristic
size 18

~1/2 h

which is about 2000 times smaller than the typical size of a white dwart given by
Eq. (6.21).

It is important to emphasize that the expression (6.60) for the radius of a
neutron star is very approximate and rests on a number of assumptions of doubtful

validitv. In n,lrflr‘ll],lr the interactions between the neutrons cannot be neclected

vu;xu;u) 44l pParuavaalidr [SELVERY FURRW B¢ IR LUV iu B ULAWIR L S VL VIS § CuiLl VS ELS Nuaaays [ WAV B LV S L T

at neutron-star den81tles. Moreover, relativistic effects can be important. Indeed,
because neutrons in a degenerate gas have momenta comparable with m,c when
the density approaches m, /(h/m,c)’, Eq. (6.58) implies that relativistic effects are
only unimportant in neutron stars with masses much smaller than M, . In addition,
the gravitational fields in neutron stars are very large and Einstein’s theory of
gravitation, and not Newton’s, should really be used in establishing the condition
of hydrostatic equilibrium. An indication of whether Newtonian gravitation is an
adequate approximation is provided by the smallness of the ratio of the gravitational
potential energy to the rest-mass energy of a particle on the surface of a neutron
star. Using Eq. (6.60), we find that this ratio is

GM M 143
— 0.2 [M ] (6.62)
FAY B LIYI*J

We conclude that the gravitational fields of a neutron star are only Newtonian if
the mass is small compared with M,.
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Despite these misgivings about the accuracy of Eq. (6.60), this equation for the
radius of a neutron star can yield useful estimates of some important neutron-star
properties.

Gravitational binding energy of neutron stars

We saw in Section 6.2 that the gravitational binding energy of a neutron star is
an important property. It is approximately equal to the energy emitted as neutrino
radiation during the collapse of a stellar core. It is straightforward to estimate this
binding energy. Using Eq. (6.60), or more directly Eq. (6.62), we find that the
binding energy of a neutron star of mass M is approximately

GM?

EBR‘ﬁ R

M]'//?)

7/3
~ 0.2 L‘T M, = h—f—] 7x10% 1. (6.63)

*

.

We note that this estimate is compatible with that used when we considered the
energy of formation of neutron stars in Section 6.2; see Eq. (6.46). We also note
that the binding energy of a neutron star is only small compzﬁ@d with its rest mass
energy if its mass is small compared with M,. This is yet another indication that
relativistic effects are important in massive neutron stars.

Rotating neutron stars and pulsars

The possibility of the existence of neutron stars was postulated very soon
after Chadwick’s discovery of the neutron in 1932. In 1934, Baade and Zwicky
tentatively linked supernovae with the collapse of ordinary stars to neutron stars, and
the first theoretical models for neutron stars were dﬁ'v'f‘;i()péu oy u‘ppeﬁueimﬁf and
Volkoff in 1939. However, there was surprisingly little astronomical and theoretical
interest in neutron stars until the accidental observational discovery of pulsars by
Hewish and Bell in 1967.

Pulsars emit pulses of radiation at short and remarkably regular intervals. Many
pulsars have been observed with periods ranging from milliseconds to seconds.
But the most famous pulsar is at the heart of the Crab Nebula, the remnant of a
supernova which, according to Chinese historical records, occurred in 1054 AD.
The Crab Pulsar has a period of 33 ms; it is also slowing down so that its period
increases by a millisecond every 90 years.

The identification in the late 1960s of newly discovered pulsars with rotating
neutron stars stimulated a renewed interest in the physics of neutron stars.

The principal argument identifying pulsars with neutron stars is based upon the
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maximum speed of rotation of a star. Bearing in mind that matter will be thrown
off the star if it rotates too quickly, we can find the maximum angular frequency,
and the corresponding minimum period, by equating the gravitational attraction at
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the surface of the star to the centrifugal force tending to throw matter off the star;
this is the condition for weightlessness on the surface of the star. This condition
leads to

2 RV
and Ty = —— =2 {——} . (6.64)

= Ru?
w Whna GM

Rz max

If the radius is given by Eq. (6.60), we find that the minimum period of rotation
of a neutron star of mass M is

—~ M* —1/2 h M*
Tmin =~ 11 [7\7} o " =0.6 i ms. (6.65)

This implies that a neutron star with the mass of the sun could rotate with a period
as short as a millisecond without ripping itself apart. We note from Eq. (6.64)
that the possibility of rapid rotation is a direct consequence of the high density of
neutron stars; less dense objects, such as white dwarfs, could not rotate as quickly.
Hence, the pulsar at the heart of the Crab Nebula, whose period is 33 ms, cannot
be a rotating white dwarf. It is almost certainly a rotating neutron star.

The next property to be considered is the moment of inertia of a neutron star.
The moment of inertia of a sphere of uniform density is

I= % MR*. (6.66)

For a neutron star with radius given by Eq. (6.60), we find

[-M,-II/S 5/ Fp 12 M 11/3 2
I ~024 - , = 2.5 x 10°® ke m”. 6.67
[M*J Qg ™ tch [M*J ” gMm (6.67)

This estimate for the moment of inertia of a neutron star can be used to provide
additional evidence in favour of the identification of the Crab Pulsar with a rotating
neutron star.

As mentioned earlier, the Crab Pulsar is slowing down; its angular frequency,
w =190 57!, is not exactly constant, but changes at a rate given by

dw
< = ~2.4x 1077 s72, (6.68)

which corresponds to an increase of about a millisecond in the period every 90
years. If the pulsar is a rotating neutron star, its energy of rotation, £,, = Iw?,

-2
also decreases in accordance with

dE,,; 7 dw

dr = (AJ*CE. (669)
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If we assume a moment of inertia consistent with the estimate given by Eq. (6.67),
say I = 10%® kg m?, we deduce that the rate of loss of rotational energy of the
neutron star at the heart of the Crab Pulsar is 4.6 x 10°' W. This energy loss is
comparable with the estimated luminosity of the Crab Nebula, 5 x 103 W | It is,
therefore, highly likely that the power lost by a rapidly rotating neutron star is the
source of the luminosity of the Crab Nebula,

The most likely mechanism for the loss of energy by a rotating neutron star is
magnetic dipole radiation; see any good book on electromagnetism, such as Barger
and Olsson (1987). If a rotating neutron star has a magnetic dipole inclined at an
angle to its axis of rotation, the spinning magnetic dipole radiates electromagnetic
radiation; for a star with magnetic dipole m at an angle ¢ to an angular velocity w,
energy is radiated at a rate given by

p== [ﬂ] m*u* sin® 0. (6.70)
3c3 L4x

If this mechanism is responsible for the observed rate of energy loss of the Crab
Pulsar, 5 x 10°" W, then the neutron star in the Crab Nebula has a magnetic dipole
given by

msinf ~ 4 x 107 A m’. (6.71)

It follows that the magnetic field on the surface of the neutron star is approximately

. Hom o g
B~ o 10° T, (6.72)
if the neutron star has a radius R of about 10 km. This is a huge magnetic field,
corresponding to a magnetic energy density B> /2ug of 4 x 10°! I m™*. But such a
field could arise by the trapping of magnetic flux during stellar collapse to a very
compact neutron star. The magnetic flux through any loop moving with a fluid
of high conductivity is constant. Thus, the contraction of an iron core of radius
1000 km to a neutron star of radius 10 km could enhance an internal magnetic
field by a factor of 10*.

There is a compelling historical argument in favour of magnetic dipole radiation
as a mechanism for energy loss from pulsars: this mechanism yields an age for
the Crab Pulsar that is consistent with the date of the supernova which produced
the Crab Nebula, 1054 AD. To show this, we note that Eq. (6.70) indicates that
the mechanism predicts a rate of energy loss proportional to w*. Thus the rate of

change of the rotational energy is given by

dE,, d
L = Iw—w oc wt.

dt de
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Hence the angular velocity of the star satisfies the differential equation

dw
— = —Cu’, 6.73
dr (6-79)
where C is a constant time which, for the neutron star in the Crab Nebula, can be
determined to be 3.5 x 107!% s by using the current values of the angular velocity
and acceleration, w = 190 s™! and dw/df = —2.4 x 107 s72. If we integrate
Eq. (6.73) and set w = w; at time ¢ = 0, we find

1 1 1
t=§E ;i_w_f (674)

By substituting the current value for the angular velocity, we conclude that the
neutron star in the Crab Nebula has been rotating for a time bounded by

t <

o =4 10" s = 1253 years. (6.75)
w

We note, with satisfaction, that this time is comparable with the historical age of
the Crab Nebula, 1993 — 1054 or 939 years. In fact, this model gives the correct
historical age if the initial angular velocity of the neutron star was about 400 s !
However, we should note that the decline in the angular velocity is not the steady
decline described by Eq. (6.73). Small, abrupt increases in the angular velocity
occur from time to time as the neutron star undergoes internal changes; for example,
the Crab Pulsar’s 33 millisecond period suddenly decreased by about 3 nanoseconds
on 29 August 1989.

Finally, it should be emphasized that the physics underlying pulsar emission
mechanisms is extremely complicated. Amongst other things, it involves the
interaction of intense, rapidly-rotating magnetic fields with the plasma surrounding
neutron stars. As a result, many of the observed features of pulsars cannot be
understood using simple models.

The maximum mass of a neutron star

To a first approximation neutrons play the same supporting role in a neutron star
as electrons in a white dwarf. They can also fail to support in similar ways. Just
as degenerate clectrons are unable to support a white dwarf with a mass above a
critical limit, the Chandrasekhar limit, degenerate neutrons are unable to support a
neutron star with a mass above a certain value.
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white dwarf approaches the limit, the central density increases and the degenerate
electrons become increasingly relativistic. At the Chandrasekhar limit. the electrons

are ultra-relativistic, the density approaches ‘infinity’ and the star collapses. A



6.3 Neutron stars 189

similar phenomenon involving neutrons is expected in a neutron star, but there are
a number of important differences. First, the interactions between neutrons are very
important at the high densities found in a neutron star. Second, the gravitational
fields are very strong and Einstein’s theory, not Newton’s, should be used to describe
the equilibrium of a neutron star under gravity. However, these important differences
do not alter the fundamental result that there is a maximum mass for a neutron star,
Their main effect is to make the calculation of this maximum mass very difficult.

We emphasize that the actual value for the maximum mass for a neutron star
plays a key role in the search for black holes in astronomy. The masses of the stars
in a binary system can sometimes be determined from the observed relative motion.
If one of the members of the binary is a compact object with a mass greater than
the theoretical maximum mass of a neutron star, this object is almost certainly a
black hole.

We shall begin our discussion on neutron-star masses by drawing upon our
analysis of white dwarfs and finding the neutron-star analogue of the Chandrasekhar
mass. We shall crudely ignore the interactions between neutrons and equate the
pressure of an ultra-relativistic gas of neutrons to the pressure needed to support
a star of mass M. In analogy with Egs. (6.7), (6.8) and (6.18), we arrive at
the following expression for the maximum mass supportable by an ideal gas of
degenerate neutrons

Mupax ~ 3.1 M, =5.8 Mo, (6.76)

In effect, we simply set Y, = 1 in the expression for the Chandrasekhar mass for a
white dwarf.

As mentioned earlier, the interactions between the neutrons are important in a
neutron star. They definitely have a role in determining the maximum value for the
mass of a neutron star. These interactions are attractive at inter-nucleon distances
around 1.4 fm but repulsive at shorter distances. This would suggest that neutron-
star matter becomes harder to compress at high densities. But at high densities,
the degenerate neutrons are sufficiently energetic to produce new particles, such
as hyperons and pions. If this happens, the pressure due to energetic degenerate
neutrons is reduced, but the pressure generated by the new particles is small. Thus,
particle production is likely to make neutron-star matter more compressible, an
effect which partially offsets the effect of short-range repulsion between neutrons.
Overall. the interactions between neutrons tend to increase the theoretical maximum
mass of a neutron star.

Einstein’s theory of gravity, General Relativity, also plays a crucial part in
determining the maximum mass of a neutron star. As indicated in Eq. (6.62),
the gravitational binding energy of a massive neutron star is comparable with its
rest mass, or more precisely the mass it would have if its constituent particles were
at rest and isolated from each other. The estimate of 5.8 My given by Eq. (6.76)
corresponds to the rest mass of a star. Gravitational binding implies that the actual
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mass is considerably smaller. But by far the most important effect of the relativistic
cffects of gravity is that the attractive nature of gravity is strengthened at very high
densities and pressures. This will tend to reduce the theoretical maximum mass of
a neutron star.

To appreciate the role of the enhanced effect of gravity at high densities and
pressures, we re-examine the equation for the hydrostatic equilibrium of a spherical
mass distribution. In Chapter 1 we showed that the internal pressure gradient needed
to oppose Newtonian gravity is given by Eq. (1.5), namely

dP Gmp

dr r2

(6.77)

where m(r) is the mass enclosed by a sphere of radius r and p(r) is the density at
r. The corresponding equation in Einstein’s theory of gravitation is

P _ Gmp (1 + P/ pc)(1 + 47’ P /mc?)

dr r? (1 —2Gm/rc?)

(6.78)

Note that the Newtonian equation for hydrostatic equilibrium is recovered if the
velocity of light, ¢, tends to infinity.

An essential difference between Newton’s and Einstein’s theory lies in the source
of the gravitational field. In the former it is the mass density, in the latter it is
the energy momentum tensor, an entity which depends on the energy density and
pressure, As a result, energy and pressure gives rise to gravitational fields in very
compact objects. This is illustrated in Eq. (6.78). The terms m(r)c? and p(r)c* are
the energy enclosed by radius r and the energy density at . More importantly, the
pressure P occurs on the right-hand side of the equation. This pressure dependence
of gravity has a dramatic effect on the stability of neutron stars. It implies that
the progressive increase in pressure needed to oppose gravitational collapse is,
ultimately, self-defeating because it leads to a strengthening of the gravitational
field. Gravity is stronger and collapse is easier.

Any realistic calculation of the properties of neutron stars is based upon the
general relativistic equation for hydrostatic equilibrium, and an equation of state
for neutron-star matter, P = P(p), which takes account of nuclear interactions.
Equation (6.78) is integrated starting from p = p. at r = 0 to the surtace at r = R
where p = 0. In this way, one finds a radius R and a mass M = m(R) for a given
central density. In particular, the mass for which the star collapses can be found.
The first calculation of this kind was by Oppenheimer and Volkoft in 1939. They
found that the maximum mass of a star composed of non-interacting neutrons is
0.7 M. This is smaller than the estimate given by Eq. (6.76) because, in General
Relativity, the enhanced effect of gravity leads to a collapse at a finite density when
the neutrons are becoming relativistic, not when they are ultra-relativistic.
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There have been a number of calculations using equations of state corresponding
to a range of possible compressibilities for neutron-star matter. The predicted
maximum masses range from 1 to 3 M. In fact, the detection of neutron stars
with masses around 1.5 M, in binary systems indicates that the compressibility of
neutron-star matter is high.

In order to explicitly illustrate the role of the enhanced effect of gravity in
neutron stars due to General Relativity, we shall consider an extreme, but very
simple, model for matter inside a neutron star. We shall assume matter with a
constant density pg, which is incompressible at any finite pressure.

We begin by finding the pressure profile inside a star of constant density pg in
hydrostatic equilibrium under Newtonian gravity. Integration of Eq. (6.77), implies
that the pressure in a such a star is

P(r) = 6-23I pERE — 1), (6.79)

where the radius R is defined by P(R) = 0. We note that the pressure increases
quadratically, and at the centre it reaches a value given by

2 1/3
Po=G g R = 2] Ml (6.80)

where M = m(R) is the mass of the star. We note that this pressure is finite
for any finite value of the mass of the star. We conclude, without any surprise,
that Newtonian gravity places no restriction on the mass of a star made from
incompressible nuclear matter.

The corresponding general relativistic expression for the pressure inside a star
of constant density can be found by integrating Eq. (6.78). A little private calculus
leads to

1 — 2GMr? /R3cH)Y? — (1 — 2GM /Rc?)1/?
P=p0C2 ( r/ C) ( / C) . (681)
3(1 — 2GM /Rc?)1/2 — (1 — 2GMr? [R3c2)L/2
The pressure at the centre of the star is
> [ 1—(1—2GM/RcH'/?
« = puc? 6.82
Fe = poc [3(1 — 2GM/RA)/? — 1 (6-82)

By considering the denominator of this equation, we see that the central pressure
is finite only if

Q

M

Rc? <

(6.83)

O~
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This inequality can be rewritten in terms of the mass of the star and its constant
density pg. But before doing so, we shall express the constant density in terms of
the neutron mass as follows,

3 h
M where 7o = fo

o (6.84)

47r} m,c’
where f, is a dimensionless length parameter. Note the density of normal nuclear
matter, puc = 2.3 x 1017 kg m=3, corresponds to f, = 0.9. We can now rewrite
Eq. (6.83) and show that the pressure at the centre of a neutron star of constant
density is finite if its mass is smaller than

32
SWf"} M,
9

Moo = [ (6.85)

Yet again we have found that the magnitude of a stellar mass of crucial importance
is of the order of M,, the fundamental stellar mass defined by Eq. (6.59).

We conclude from Eq. (6.85) that even incompressible matter can collapse under
gravity. In particular, Einstein’s General Relativity imposes an upper limit to the
mass of a star made from incompressible nuclear matter; if this mass is exceeded,
the internal pressure needed to support the star becomes infinite. This maximum
mass depends on the value of the assumed constant density. For a star made up
of matter with a density equal to double the normal density of nuclear matter, the
length parameter f, is 0.7, and the maximum mass is 2.7 M, or 5 M.

In conclusion, we have two crude estimates for the maximum mass of a neutron
star: one based on the stability of a compressible ideal gas under Newtonian gravity,
Eq. (6.76), and one based on the stability of incompressible, constant-density
nuclear matter under general relativistic gravity, Eq. (6.85). The usefulness of these
estimates lies not in their numerical values, but in the physical ideas underlying
their derivation. Realistic calculations must take into account the compressibility
of neutron-star matter and General Relativity. The consensus reached by these
calculations is that the maximum possible mass of a neutron star is probably smaller
than 3 M and definitely less than 5 M.

6.4 BLACK HOLES

We now turn to the fate of a collapsing stellar core which is too massive to end
its life as a neutron star. As the collapse proceeds the gravitational field becomes
stronger and stronger, and the internal pressure becomes larger and larger. But the
source of the gravitational field in General Relativity is the energy density and
the pressure. Hence the increase in pressure accelerates the final stages of collapse.
According to General Relativity the star enters a region of space-time called a black
hole. Nothing can halt the collapse. Nothing can escape, not even light. And nothing

is left of the collapsed stellar core apart from an extremely strong gravitational field.
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Gravitational collapse, the driving mechanism of stellar evolution, has progressed
to its ultimate end, infinite compression.

In the opening paragraph we attributed the collapse to a black hole to a
progressively increasing force of gravitational attraction. But this description
improperly treats space and time as two separate concepts. It is more accurate
to describe a black hole in terms of a distortion of the unified concept of space-
time. In General Relativity, gravity is not a force, but a distortion of the geometrical
properties of space-time due to the presence of matter and radiation. The sun only
produces a slight “dent’ in space-time, but a collapsed core of a massive star can
produce a ‘hole’. Nothing can escape from this hole because there are no outward
paths in this distorted region of space-time; every path is towards the centre of the
hole. It is a hole of no return.

The size of a black hole depends on the mass of the collapsed object. It is the
Schwarzschild radius!

26M

Roeh = ——

> (6.86)

For a collapsed mass equal to 10 M, the Schwarzschild radius is 30 km. The
Schwarzschild radius marks the boundary of the one-way surface of the black hole.
This surface is not made of anything. It encloses an unobservable region of space
in which all motion is towards the centre.

A black hole is formed when the radius of a collapsing star reaches the
Schwarzschild radius. If a distant observer could view the collapse s/he would
see the star frozen at this radius, because time in the intense gravitational field on
the surface of the star appears to grind to a halt. This gravitational field leads to
a gravitational red shift which ‘extinguishes’ the star as the Schwarzschild radius
is approached. In fact, the fractional change in wavelength of radiation escaping
from the surface of a star is given by Eq. (6.27), which, when rewritten in terms
of the radius of the star and the Schwarzschild radius, becomes

—1/2
% = {1 - R;;"} —1. (6.87)

This indicates that the red shift tends to infinity as R approaches R,.,. The frequency
of the radiation tends to zero so that the energy escaping from the star also tends
to zero. Indeed, the luminosity decreases exponentially in accordance with

t Rsch
L o exp [——] where 7 = . (6.88)
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By coincidence the correct expression for the Schwarzschild radius can be obtained by setting the
Newtonian escape velocity of a particle from an object of mass M and radius R equal to c.
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However, the star only appears to freeze and fade into darkness to a distant
observer. To an observer within the Schwarzschild radius the star is still active and
lively. Indeed, such an observer would find out what happens to all the quarks,
electrons, neutrinos and photons inside the black hole. Unfortunately, s/he will be
cut off from the rest of the universe and will be unable to share the knowledge.

The detection of a black hole, an object whose only manifestation 1s an intense
gravitational field, is not an easy task. Any evidence for its existence must be
circumstantial because it cannot be seen. But the immense gravitational attraction
of a black hole can reveal its presence.

For example, when gaseous matter is pulled towards a black hole it acquires
kinetic energy and becomes very hot. The resulting temperature of this gas and the
nature of its radiation, before it is hidden for ever within the Schwarzschild radius,
are a measure of the strength of the gravitational field it is entering. In particular,
the accretion of matter onto a black hole is expected to be accompanied by
X-ray radiation. However, similar X-ray radiation can also be produced by gaseous
matter entering the strong gravitational field of a neutron star. But the presence of
a neutron star can be ruled out if the mass of the compact object involved exceeds
the maximum possible mass of a neutron star. The detection of any compact object
with a mass greater than this limit is, by default, a black hole.

The currently favoured method for detecting black holes is based upon the
observation of compact X-ray sources, binary systems consisting of a visible
ordinary star and an invisible compact object. X-rays are produced by mass flowing
from the ordinary star into the strong gravitational field of the invisible compact
object. Information on the relative motion of the binary system can be deduced
from the spectrum of radiation from the ordinary star, and this information can
be used to set limits on the mass of the invisible, compact object. If this mass
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is greater than 3 Mg, the compact object is probably a black hole. If its mass is
greater than 5 M, it almost certainly is a black hole.

The first and most famous candidate for a black hole is the compact object
in the binary X-ray source Cygnus X-1. The inferred relative motion of this
binary system implies the presence of a compact object with a mass definitely
greater than 3.4 M. Another candidate for a black hole is provided by the
X-ray system V404 Cygni, where there is compact object with a mass greater
than 6.3 Mg. In fact, evidence for the existence of stellar black holes is very
convincing (see, for example, Shapiro and Teukolsky (1989) and Casares. Charles
and Naylor (1992)).

The possibility that the evolution of a star could lead to the formation of a black
hole was first recognized in the 1930’s, soon after Chandrasekhar’s discovery of
a maximum value for the mass of a white dwarf. The existence of this maximum

implied that a massive stellar core could collapse into a region of space in which
gravity was overwhelming. Many astrophysicists found this outcome for stellar
evolution unacceptable, if not absurd. Eddington, as usual, made his view very

clear when he wrote in 1935:
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The star apparently has to go on radiating and radiating and contracting
and contracting until, I suppose, it gets down to a few kilometres radius
when gravity becomes strong enough to hold the radiation and the star
at last can find peace. . . I think that there should be a law of Nature to
prevent the star from behaving in this absurd way.

However, the current belief is that a black hole, like a white dwarf and a neutron
star, is a respectable end-point for stellar evolution. It is a belief based on firm
theoretical foundations and supported by evidence from observational astronomy.

Gravity is the driving force for stellar evolution. It leads to the formation of a
star and to temperatures which make thermonuclear fusion possible. The energy
released by fusion only serves to delay the gravitational contraction of the matter
inside the star. The end-point may be a white dwarf or a neutron star, stars in which
cold matter resists the force of gravity. An alternative end-point is a black hole in
which gravity is completely triumphant. This outcome is neat and tidy: nothing is
left of the collapsed matter apart from an intense gravitational field.

SUMMARY
White dwarfs

o To a first approximation a white dwarf is a star supported by the pressure of
an ideal gas of degenerate electrons.

e The degenerate electrons at the centre of a white dwarf with a low mass
are non-relativistic, and the central density increases with the mass M in
accordance with

3.1 {M }2 My

PO ) B 6.4
P s (hjme) (9

M,

where Y, is the number of electrons per nucleon and M, is the fundamental
stellar mass defined by Eq. (5.63). As the mass increases, the electrons become
relativistic and the density increases more rapidly. As the mass approaches
the Chandrasekhar limit, the electrons become ultra-relativistic and the central
density tends to infinity, as shown in Fig. 6.1. In other words, the star collapses.

e The Chandrasekhar limit is the mass of the white dwarf whose central density
tends to infinity. As such, it represents the maximum possible mass for a white
dwarf. The pressure—density relation (6.6) leads to an estimate for Mcy given
by Eq. (6.9). A more accurate estimate, based on a polytrope model, 1s given
by

Mey =31 Y2 M, (6.18)

which corresponds to a mass of about 1.4 solar masses.
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o The radius of a white dwarf is a decreasing function of its mass. For white
dwarfs of low mass, the approximate relation between radius and mass is

5/3 r%]l/% —1/2 h

R~0777Y) o : 6.20
¢ I_ M J mec (625
This implies that the characteristic size of a white dwarf is
—12 h
aGl/z——— ~3x 107 m. (6.21)
MeC

If we use the sun as a standard for mass and size, and if ¥, = 0.5, then

1/3
R~ o [yﬁ} . (6.23)
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This mass—radius relation can be used to derive expressions for the luminosity
and gravitational red shift of radiation from a white dwarf in terms of its mass;
see Eqs. (6.25) and (6.28).

Stellar collapse

e Nuclear photodisintegration and electron capture are two possible mechanisms
for the absorption of energy which could drive the iron core of a star into
uncontrolled collapse.

¢ The energy of formation of a neutron star, essentially the gravitational binding
energy of a neutron star,

GM? M 1710 km
Ep ~ =3 x 10* ] 6.46
g R [MQ:‘ { R } (6.46)

is an order of magnitude larger than the energy absorbed by unuclear
photodisintegration or by electron capture. The bulk of this energy 1s emitted
in the form of neutrino radiation; see Fig. 6.3.

Neutron stars

o If we assume that Newtonian gravitation in a neutron star 1s opposed by the
pressure of an ideal gas of degenerate, non-relativistic neutrons, then the radius
of a star of mass M is given by

M* 13 a—l/z__}_l"m
M m,c

R=~0.77 [--- . . (6.60)
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This implies that the characteristic size of a neutron star is

— ~ 17 km. (6.61)

o Estimates for the typical mass and radius of a neutron star lend support to the

hypothesis that pulsars are rapidly rotating neutron stars.

e Neutron stars cannot have a mass greater than a certain critical limit,

the analogue of the Chandrasekhar limit for white dwarfs. However, the
gravitational fields are strong and General Relativity must be used. The exact
value of the maximum possible mass of a neutron star is difficult to calculate
because of the uncertainty in the compressibility of neutron-star matter at high
densities. It is probably around 3 M, and almost certainly below 5 M.

Black holes

o If a collapsed stellar core has a mass greater than the maximum mass of a

neutron star, it will undergo complete collapse and form a black hole.

e Any method for detecting a black hole depends on observing the effects of

its intense gravitational field. The observation of some compact X-ray sources
indicates the presence of intense gravitational fields due to compact objects
which are too massive to be neutron stars. These objects, by default, are
thought to be black holes.

PROBLEMS 6

6.1

According to Eq. (6.4), the central density of a body supported by degenerate electrons
goes to zero as the mass of the body goes to zero. This unphysical result arises from
the neglect of electromagnetic interactions between electrons and ions. In fact, as the
pressure falls, the density tends to a value corresponding to ordinary, uncompressed
atomic matter. Because the size of an atom is of the order of the Bohr radius, this
density is approximately given by

My
Patomic = — 37
ap
where 25 the Rohr radinge can he written ac
wiiCiC g, il DUILL [allis, vall 00 Wilulil as
dp = —
CGpp MeC

The constant agps is a dimensionless measure of the strength of the electromagnetic
interaction, the fine structure constant agy = e>/(4 meg i ¢) = 1/137. Show that the
central density of a body supported by degenerate electrons becomes comparable with
normal atomic densities when the mass of the body is comparable with

3/2
Mp = [%f_"i} My = oplf M, =0.001 Mg,
G
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6.2

6.3

6.4

6.5

6.6

6.7

The end-points of stellar evolution Chap. 6

Note we can roughly identify this mass with the maximum mass of a body containing
ordinary atomic matter, in other words the maximum mass of a body like a planet.
Indeed, the mass of Jupiter is 0.00095 M.

The energy needed to dissociate an *He nucleus into two neutrons and two protons is
(= 28.3 MeV. Derive an expression reiating the numbers of “He nuclei, neutrons and
protons coexisting at a temperature T in an equilibrium set up by the reactions

v +* He == 2n + 2p.
Calculate the temperature for 50% dissociation when the density is 10*? kg m ™.
Assume that a hot, bloated neutron star emits thermal neutrino radiation from a surface
of radius R at an effective temperature equal to Tg. Assume that three types of massless,
or nearly massless, neutrinos, Ve, 1/~ and their antiparticles, are emitted in equal
numbers, in thermal equilibrium with zero chemical potential. Show that the luminosity
is given by

21
L,= gaTgéLﬁRz,

where o is Stefan’s constant. Find an expression for the average energy for a neutrino
in this radiation. [Hint: Look back at Chapter 2 and reconsider problem 2.5.]

The outward expulsion of the outer layers of a massive star by a shock wave generated
by core rebound is the most promising mechanism for generating a supernova from
gravitational collapse. A possible alternative mechanism involves neutrinos. Neutrino
radiation from the collapsed core could transmit outward momentum and cause an
expulsion. By reconsidering problem 3.3 at the end of Chapter 3, show that this
mechanism could be effective only if the neutrino luminosity exceeds a value given by

drcGM
> _
Ke

v )

where M is the mass of the collapsed core and &, is the neutrino opacity. By noting
that the neutrino opacity is of the order of 107'% m? kg™, show that the expected
neutrino luminosity of around 10*> W is insufficient to cause an expulsion.

The detection of neutrinos {mostly ¥,’s in fact) from the supernova SN1987A at a
distance of 50 kpc from the Earth provided valuable information on the maximum
possible mass of the electron neutrino. Write down a general expression for the velocity
of a neutrino of mass m and energy F as a fraction of the velocity of light. and confirm
that more energetic neutrinos move faster and arrive earlier at the Earth. Show that. if
the mass of the neutrino is 30 eV ¢ ™2, then a 10 second spread in the arrival time at
the Earth is expected for neutrinos with energy between 10 and 15 MeV

Consider an ideal degenerate gas of electrons, protons and neutrons, and the cquihbrium
established by the reactions (6.52). Assume equal numbers of electrons and protons and
assume that the density is so high that all the degenerate particles are ultra-relativistic.
Show that the number densities of the particles are in the ratio

Heihpin,=1:1:8.

Estimate the maximum angular velocity of rotation of a typical white dwart.



6.8

6.9

6.10

P
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The ratio of the Schwarzschild radius to the actual radius of a body is the crucial
parameter for assessing the importance of General Relativity. Show, that for a main
sequence star, like the sun, with a typical interior temperature Tj, this ratio is
approximately given by

Rsch ~ kT]
R mHCZ .
Show that for a white dwarf
Recn _ me
R My
and for a neutron star
Rsch 1.
R

The Crab Pulsar is a rotating neutron star formed by a supernova in 1054 AD. At
present it has an angular velocity and an angular acceleration given by:

d
w=190s ! and EC; = _24x107% 2.

If gravitational radiation were responsible for the Crab slowdown, the rate of loss of
rotational energy would be proportional to w®, Use this model to derive an expression
for the time dependence of w. Show that this model predicts an age which is less than
the actual age of the pulsar.

Consider a compact X-ray source consisting of an ordinary star and a neutron star.
Assume that a X-ray luminosity of 10°! W is powered by the release of gravitational
energy due to the accretion of mass onto the surface of a neutron star.

Use Eq. (6.62) o show thai the luminosity is consistent with a mass accretion rate of
about 108 M, per year.

Show that, if the source of this luminosity is a black body whose size is comparable
with a typical neutron star, then the effective surface temperature of the source is such
that the radiation is indeed in the X-ray region of the electromagnetic spectrum.



Hints to selected problems

CHAPTER 1

1.1
1.2

1.4

1.6

1.7

Make use of Egs. (1.6), (1.7) and (1.5).

Use the equation before Eq. (1.19) to estimate the minimum mass that could
condense under gravity at the temperature and density given.

Bear in mind that the luminosity of a star of mass M is proportional to M“
with o between 3 and 3.5; see Fig. 1.4,

Find the energy flux from the sun at a distance of 10 pc. Such a sun would
appear as a star of magnitude 4.72. Use Eq. (1.40) to compare the energy flux

received from stars of magnitude 6 and 4.72.
Let

Gm(r)* dF
F(r) = [P(r) + St ] and show that — < 0.

dr

The first lower bound on P, is given by the condition F(0) > F(R).
The second lower bound and the upper bound on P, can be obtained by noting
that

4 4
m(r) > o), m(r) < 3 per’,
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and using

dF N Gm(r)2 _
dr 2ars

CHAPTER 2

2.2 Make use of Eq. (2.36).
2.4 Derive the Saha equation corresponding to v + H, = H + H,

3
”(E)P’I’SI) = {“"Zﬁkﬂ exp [—(4.48¢V) /kT],

and use P = [n(H) + n(H>) | k7. Impose the condition for 50% dissociation,
n(Hz) = 2 n(H).

2.5 The calculation closely follows that leading to Egs. (2.42) and (2.43).

r

The substitution of massless fermions for bosons leads to integrals with a
denominator e*+1 instead of e*— 1. Expand each integral as a series, rearrange
the series and express it in terms of the Riemann Zeta Function. For example,
the integral occurring in the calculation of density of fermions is

xzdx—Zl 1+i— =2 1+1+ -2 1+1+
41 |13 23 33 B 13 23 23 43

Hence

~ P

[c“(?v) - —c<3ﬂ )

‘E.
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2.6 Consider the equilibrium established by

y+y=¢€"+e .

Use Eq (2 21) for the chemical pOtentldl for the dilute gas of positrons and

PR, PRI I I P A ana
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electrons.

CHAPTER 3

3.1 The opacity is x = 1/pl and the frequency averaged mean free path is given by

Eq. (3.14).

3.3 The radiation pressure is P, = a T%/3, hence by Eq. (3.28)

dp,  pk L

dr c 4nr?’
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Equate this pressure gradient to the gravitational force on unit volume of matter
near to the surface of the star.

3.5 Use Eq. (3.37) to relate the fractional differences in the temperature and
pressure at nearby points in the envelope of the white dwarf, and compare
with the condition for convection, Eq. (3.22).

CHAPTER 4

4.1 Make use of Eq. (4.12).

4.3 Note that two proton—proton fusions are needed to produce a “He nucleus via
branch 1, but only one is needed if a *He nucleus is produced via branch II.

4.4 Make use of Eq. (4.29).

4.5 Use Eq. (4.29) again.

4.6 Make use of Egs. (4.65) and (4.66).

4.7 Use Eq. (2.46). In making the estimate, note that k7 is small compared with
9.98 MeV.

4.8 Equate the energy produced by fusion in time 7 to the energy needed to heat
the gas to a temperature 7;,,. The former can be found from Eq. (4.19). The
latter is approximately the kinetic energy of the particles in an ionized gas at
Tign; confirm this by estimating the energy needed to ionize the gas.

CHAPTER 5

5.1 Relate Egr to an integral involving P(r) and evaluate the integral by integration
by parts. For the last part use Eq. (5.32).
5.2 The star contracts until Lg, reaches L,q4. At this stage

M® M5‘5
R’ RS
For the last part use L o< R*T}.
54 1If
P c Pr !
g=le o tMe g gt
e (T e e
then
(1-3) alm]'P
B+ 3 |k| pt
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CHAPTER 6

6.3

6.5

6.6

6.8
6.9

6.10

This problem is a minor variation on problem 2.5. It involves relating the
power radiated by a neutrino black body radiator to the energy density in a
neutrino gas; the discussion leading to Eqs. (2.45) and (2.46) may be helpful.
Note also that, unlike photons or electrons, each neutrino has only one possible
polarization.

The wvelocity of a neutrino of mass m with an energy E is given by

v .
“=1— — if E>>mc.
C

A distance of 50 kpc is about 1.6 x 10° light years.
Show, in analogy with Eq. (6.56), that the concentrations of degenerate, ultra-
relativistic electrons, protons and neutrons in a very dense gas are related by

1/3 1/3 _ 1/3
S/ +n, =n,".

Make use of Egs. (1.31), (6.20), and (6.60).

Make the appropriate modifications to the analysis leading to Egs. (6.73) to

(6.75).

1. Assume that the luminosity due to accretion of mass by the neutron star
equals the rate of loss of gravitational potential energy.

2. Use the definition of the effective surface temperature, Eq. (1.43), and
assume a reasonable value for the radius of the neutron star.
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