
Chapter 4

Numerical Differentiation

We would like to calculate the derivative of a smooth function defined on a discrete set of grid points
x0, x1, . . . , xN . Assume that the data are the exact values of the function at the data points, and we need
the derivative only at the data points. We will look into the construction of numerical approximations of
the derivative called finite differences. There are two approaches to such constructions: using interpolation
formulas, or Taylor series approximations.

4.1 Finite Differences from Interpolation

From linear piecewise Lagrange interpolation we have

f(x) =
xi+1 − x

xi+1 − xi

f(xi) +
x − xi

xi+1 − xi

f(xi+1).

Differentiating, we find that the derivative is a constant and the same at the two ends of the interval

f ′(xi) =
fi+1 − fi

hi

≡
1

hi

∆fi, f ′(xi+1) =
fi+1 − fi

hi

≡
1

hi

∇fi+1,

where ∆ and ∇ are forward and backward difference operators. Note that the derivative is discontinuous
at the end points.

From quadratic piecewise Lagrange interpolation we have

f(x) =
(x − xi)(x − xi+1)

(xi−1 − xi)(xi−1 − xi+1)
f(xi−1) +

(x − xi−1)(x − xi+1)

(xi − xi−1)(xi − xi+1)
f(xi) +

(x − xi−1)(x − xi)

(xi+1 − xi−1)(xi+1 − xi)
f(xi+1).

Differentiating and evaluating the result at the midpoint of the interval we obtain

f ′(xi) = −
hi

hi−1 (hi−1 + hi)
fi−1 +

(

1

hi−1

−
1

hi

)

fi +
hi−1

hi (hi−1 + hi)
fi+1.

For equally spaced intervals hi−1 = hi = h, so

f ′(xi) =
fi+1 − fi−1

2h
=

1

2h
(∆ + ∇) fi.

This is the central difference formula, and is the average of the forward and backward formulas.
If we differentiate f(x) twice and evaluate the result at xi we obtain a constant in the interval

xi−1 ≤ x ≤ xi+1

f ′′(xi) =
2

hi−1 (hi−1 + hi)
fi−1 −

2

hi−1hi

fi +
2

hi (hi−1 + hi)
fi+1,
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which for equally spaced intervals reduces to

f ′′(xi) =
fi−1 − 2fi + fi+1

h2
=

1

h2
∆∇fi =

1

h2
∇∆fi.

Since f ′′ is constant, it is called a forward, central, or backward formula depending whether it is evaluated
at xi−1, xi, or xi+1, respectively.

The use of cubic splines to derive finite difference approximations has received little attention. It
requires the solution of the tridiagonal system

hi−1

6
f ′′(xi−1) +

(hi−1 + hi)

3
f ′′(xi) +

hi

6
f ′′(xi+1) =

f(xi+1) − f(xi)

hi

−
f(xi) − f(xi−1)

hi−1

.

For uniform intervals we obtain

1

6
f ′′

i−1 +
2

3
f ′′

i
+

1

6
f ′′

i+1 =
fi−1 − 2fi + fi+1

h2
.

Note that the solution of this system gives us the approximation for the second derivative, and the effect
of the spline is to distribute the previous result over the central point and its neighbors with weights
1/6, 2/3, and 1/6. Once this tridiagonal system is solved, the appropriate f ′′

i
can be used in the first

derivative approximation obtained by differentiating the spline approximation for f(x) and evaluating
the result at xi.

4.2 Finite Differences from Taylor Series

Finite difference formulas can be easily derived from Taylor series expansions. For example, to obtain an
approximation for the derivative of f(x) at the point xi, we use

f(xi+1) = f(xi) + (xi+1 − xi)f
′(xi) +

(xi+1 − xi)
2

2
f ′′(xi) + · · · .

Rearrangement leads to:

f ′(xi) =
f(xi+1) − f(xi)

hi

−
hi

2
f ′′(xi) + · · · .

When the grid points are uniformly spaced, the above formula can be recast in the following form

f ′

i =
fi+1 − fi

h
+ O(h).

This formula is referred to as the first order forward difference. The exponent of h in O(h) is the order of
accuracy of the method. With a first order scheme, if we refine the mesh size by a factor of 2, the error
(called the truncation error) is reduced by approximately a factor of 2. Similarly,

f ′

i
=

fi − fi−1

h
+ O(h)

is called the first order backward difference formula. Higher order (more accurate) schemes can be derived
by Taylor series of the function f at different points about the point xi. For example, the widely used
central difference formula can be obtained from subtraction of the two Taylor series expansions:

fi+1 = fi + hf ′

i +
h2

2
f ′′

i +
h3

6
f ′′′

i + · · · (4.1)

fi−1 = fi − hf ′

i
+

h2

2
f ′′

i
−

h3

6
f ′′′

i
+ · · · . (4.2)
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This leads to:

f ′

i
=

fi+1 − fi−1

2h
−

h2

6
f ′′′

i
+ · · · . (4.3)

This is, of course, a second order formula. In general, we can obtain higher accuracy if we include more
points. Here is a fourth order formula:

f ′

i
=

fi−2 − 8fi−1 + 8fi+1 − fi+2

12h
+ O(h4).

The main difficulty with higher order formulas occurs near the boundaries of the domain. They require
the functional values at points outside the domain which are not available. Near the boundaries one
usually resorts to lower order formulas.

Similar formulas can be derived for second or higher order derivatives. For example, the second order
central difference formula for the second derivative is

f ′′

i
=

fi+1 − 2fi + fi−1

h2
+ O(h2),

and is obtained by adding formulas (4.1) and (4.2).

4.3 Difference Operators

In order to develop approximations to differential equations, we will occasionally be using the following
operators:

Ef(x) = f(x + h) The shift operator

∆f(x) = f(x + h) − f(x) The forward difference operator

∇f(x) = f(x) − f(x − h) The backward difference operator

δf(x) = f(x + h

2
) − f(x − h

2
) The central difference operator

µf(x) = 1

2

[

f(x + h

2
) + f(x − h

2
)
]

The average operator

Df(x) = f ′ (x) Differential operator

where h is the difference interval. For linking the difference operators with the differential operator we
consider Taylor’s formula

f (x + h) = f (x) + hf ′ (x) +
1

2!
h2f ′′ (x) + · · · .

In operator notations we can write

Ef (x) =

[

1 + hD +
1

2!
(hD)

2
+ · · ·

]

f (x) .

The series in brackets is the expression for the exponential and hence we have (formally)

E = ehD.

This relation is very important, since it can be used by symbolic programs such as Maple or Mathe-
matica to analyze the accuracy of finite difference schemes. For example, consider the finite difference
operator defined by Eq. (4.3). Applying the shift operator to fi we can write fi+1 = Efi = ehDfi and
fi−1 = E−1fi = e−hDfi. Now, substituting these expressions into central difference approximation for
the derivative we obtain:

fi+1 − fi−1

2h
=

ehDfi + e−hDfi

2h
=

ehD + e−hD

2h
fi. (4.4)
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Now using the Taylor series expansion for ehD and e−hD for small values of h we obtain:

ehD = 1 + hD +
1

2
h2D2 +

1

6
h3D3 + . . . +

1

n!
hnDn + . . . ,

e−hD = 1 − hD +
1

2
h2D2 −

1

6
h3D3 + . . . +

(−1)n

n!
hnDn + . . . .

Substituting these expressions to Eq. (4.4) we obtain:

fi+1 − fi−1

2h
=

(

D +
1

6
h2D3 + . . .

)

fi. (4.5)

Reorganizing left and right hand sides of this equation would result in Eq. (4.3).


