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ლექცია 2

ივანე ჯავახიშვილის სახელობის 
თბილისის სახელმწიფო უნივერსიტეტი

Finite Difference (FD) Methods

Conservation Law:

1D Linear Differential Equation:
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FD Methods

One-sided backward Leapfrog

One-sided forward Lax-Wendroff

Lax-Friedrichs Beam-Warming

One-sided backward

Difference equation:

i

i+1

i-1

j-1 j j+1

time

stepping

 )(i,j(i,j)-A
Δx

Δt
(i,j) - ,j)(i 1UUU1U 



2

One-sided forward

Difference equation:
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Lax-Friedrichs

Difference equation:
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Leapfrog

Difference equation:
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Lax-Wendroff

Difference equation:
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Lax-Wendroff

Derivation:

1. Lax-Friedrichs with half step;

2. Leapfrog half step;

derive 

Beam-Warming

Difference equation:

 

 )(i,j)(i,j(i,j)-A
Δx

Δt

)(i,j)(i,j(i,j)-A
Δx

Δt

(i,j),j)(i

2U1U2U
2

2U1U43U
2

U1U

2

2

2







Comparison

One-sided schemes: O(Dt,Dx)

Lax-Friedrichs: O(Dt,Dx2)

Leapfrog: O(Dt2,Dx2)

Lax-Wendroff: O(Dt2,Dx2)

Beam-Warming: O(Dt2,Dx3)

Time stepping

1st order methods in time:

U(i+1) = F{ U(i) }

2nd order methods in time:

U(i+1) = F{ U(i) , U(i-1) }

Starting  A) U(2) = F{ U(1) } ( e.g. One-Sided )

method:  B) U(3) = F{ U(2) , U(1) } ( Leapfrog )
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Convergence

- Analytical solution

- Numerical solution

Error function:

Numerical convergence (Norm of the Error function):
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Norms

Norm for conservation laws:

Other Norms (e.g. spectral problems)
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Norms

P-Norm

Norm-2: Energy in numerical domain;

Numerical dissipation, boundary effects, etc.
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Numerical Stability

Courant, Friedrichs, Levy (CFL, Courant number)

Upwind schemes for discontinity:

a > 0 : One sided forward 

a < 0 : One sided backward
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Numerical stability

CFL<1

Domain of dependence

Lax Equivalence Theorem

For a well-posed linear initial value problem, the 

method is convergent if and only if it is stable.

Necessary and sufficient condition 

for consistent linear method

Well posed: solution exists, continuous, unique;

- numerical stability (t)

- numerical convergence (xyz)

Given a properly posed initial-value problem and a finite difference approximation to it that satisfies 

the consistency condition, stability is the necessary and sufficient condition for convergence.

Discontinuous solutions

Advection equation:

Initial condition: 

Analytic solution:
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Analytic vs Numerical

Dx = 0.01
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Analytic vs Numerical

Dx = 0.001

Nonlinear Equations

Linear conservation:

Nonlinear conservation:
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Nonlinear FD methods

Lax-Friedrichs

linear stencil:

nonlinear stencil:
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Nonlinear FD methods

Lax-Wendroff

MacCormack’s two step method: 
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FD Methods

Methods to supress numerical instabilities

Numerical diffusion (first order methods)
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Numerical dispersion

Lax-Wendroff (or second order methods)

Beam-Warming method











D

DD
 Ia

x

t
a

x 2

2

22

6


3

3 UUU

x

(t ,x )

x

( t ,x )
a

t

( t ,x )

























D

D


D

D


D
 2

2

22 3
2

6
a

x

t
a

x

t
Ia

x


Numerical dispersion

( a > 0 ) ( a < 0 )

Numerical dispersion

( a > 0 ) ( a < 0 )
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Convergence

Lax-Friedrichs:

Convergence:

xtC ( i , j ) DE
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FD Methods

+ / Primitive

+ / Fast

- / Accuracy

- / Numerical instabilities

end

http://www.tevza.org/home/course/modelling-II_2016/


