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Abstract. The purpose of the present study is to obtain numerical solutions of the modified Korteweg–de Vries
equation (mKdV) by using mixed Crank–Nicolson scheme and differential quadrature method based on quintic
B-spline basis functions. In order to control the effectiveness and accuracy of the present approximation, five well-
known test problems, namely, single soliton, interaction of double solitons, interaction of triple solitons, Maxwellian
initial condition and tanh initial condition, are used. Furthermore, the error norms L2 and L∞ are calculated for
single soliton solutions to measure the efficiency and the accuracy of the present method. At the same time, the
three lowest conservation quantities are calculated and also used to test the efficiency of the method. In addition to
these test tools, relative changes of the invariants are calculated and presented. After all these processes, the newly
obtained numerical results are compared with results of some of the published articles.
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1. Introduction

Many physical phenomena are described via partial
differential equations (PDEs). For this reason, a lot
of researchers have investigated the solution of PDEs
[1–5].

One of the most famous nonlinear differential equa-
tion known as the Korteweg–de Vries equation (KdV)
equation in its simplest form is given by

Ut + εUUx + μUxxx = 0, (1)

where subscripts x and t denote partial derivatives with
respect to space and time, respectively, and ε and μ are
constant parameters.

The KdV equation stems from the study of shallow
water waves [6] derived by Korteweg and de Vries to
describe shallow water waves of long-wavelength and
small-amplitude travelling in canals. It has been proved
earlier that this equation has solitary waves as solu-
tions, and hence it can have any number of solitons [7].
The equation has been the simplest nonlinear equation
describing two important effects: nonlinearity which

is represented by UUx and linear dispersion which is
represented by Uxxx . The nonlinearity of UUx tends to
localise the wave whereas dispersion spreads the wave
out. The stability of solitons is a result of the delicate
equilibrium between the two effects of nonlinearity and
dispersion [8–11].

One of the most important KdV-type equation is
known as modified KdV (mKdV) equation which was
first introduced by Miura [12] and is given as follows:

Ut + εU 2Ux + μUxxx = 0. (2)

The mKdV equation has many physical applications in
a wide range of areas such as electrodynamics, elec-
tromagnetic waves, elastic media, traffic flow [13,14],
fluid dynamics [15,16] and plasma physics [17]. Various
methods are used to obtain solutions of the KdV equa-
tion [18–21]. Both numerical and analytical solutions
of the mKdV equation have been investigated by many
researchers [22–30].

Differential quadrature method (DQM) was first
introduced by Bellman et al [31] to obtain the numer-
ical solution of PDEs. Many researchers have developed
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different types of DQMs utilising various base
functions such as Legendre polynomials and spline
functions [31,32], Hermite polynomials [33], radial
basis functions [34], harmonic functions [35], Sinc func-
tions [36,37], B-spline functions [38–40] and modified
B-spline functions [41–43].

In this work, quintic B-spline-based Crank–Nicolson
DQM (QCN-DQM) is going to be applied to obtain
numerical solutions of the mKdV equation.

2. Quintic B-spline DQM

Let us take the grid distribution a = x1 < x2 < · · · <

xN = b of a finite interval [a, b] into consideration.

Provided that any given functionU (x) is smooth enough
over the solution domain, its derivatives with respect to
x at a grid point xi can be approximated by a linear
summation of all the functional values in the solution
domain, i.e.

U (r)
x (xi ) = d(r)U

dx (r)
|xi =

N∑

j=1

w
(r)
i j U(x j ),

i = 1, 2, . . . , N , r = 1, 2, . . . , N − 1, (3)

where r denotes the order of the derivative, w
(r)
i j

represent the weighting coefficients of the r th-order
derivative approximation and N denotes the number
of grid points in the solution domain. Here, the index j

represents the fact that w
(r)
i j is the corresponding

weighting coefficient of the functional value U (x j ). We
need the first- and the third-order derivatives of the func-
tion U (x). Therefore, we are going to find the value of
eq. (3) for r = 1 and 3.

Let Qm(x) be the quintic B-splines with knots
at points xi where the uniformly distributed N grid
points are taken as a = x1 < x2 < · · · <

xN = b on the ordinary real axis. In that case, the
B-splines {Q−1, Q0, . . . , QN+2} form a basis for func-
tions defined over [a, b]. The quintic B-splines Qm(x)
are defined by the following relationships:

Qm(x) = 1

h5

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − xm−3)
5, x ∈ [xm−3, xm−2],

(x − xm−3)
5 − 6(x − xm−2)

5, x ∈ [xm−2, xm−1],
(x − xm−3)

5 − 6(x − xm−2)
5 + 15(x − xm−1)

5, x ∈ [xm−1, xm],
(x − xm−3)

5 − 6(x − xm−2)
5 + 15(x − xm−1)

5

−20(x − xm)5,
x ∈ [xm, xm+1],

(x − xm−3)
5 − 6(x − xm−2)

5 + 15(x − xm−1)
5

−20(x − xm)5 + 15(x − xm+1)
5,

x ∈ [xm+1, xm+2],
(x − xm−3)

5 − 6(x − xm−2)
5 + 15(x − xm−1)

5

−20(x − xm)5 + 15(x − xm+1)
5 − 6(x − xm+2)

5,
x ∈ [xm+2, xm+3],

0, otherwise,

where h = xm − xm−1 for all m [44].
Using the quintic B-splines as test functions in the

fundamental DQM, eq. (3) leads to the equation

∂(r)Qm(xi )

∂x (r)
=

m+2∑

j=m−2

w
(r)
i, j Qm(x j ),

m = −1, 0, . . . , N + 2, i = 1, 2, . . . , N . (4)

An arbitrary choice of i leads to an algebraic equation
system

M1W1 = �1, (5)

where Qi, j denotes Qi (x j ),

M1 =

⎡

⎢⎢⎢⎢⎣

Q−1,−3 Q−1,−2 Q−1,−1 Q−1,0 Q−1,1
Q0,−2 Q0,−1 Q0,0 Q0,1 Q0,2
. . .

. . .
. . .

. . .
. . .

QN+1,N−1 QN+1,N QN+1,N+1 QN+1,N+2 QN+1,N+3
QN+2,N QN+2,N+1 QN+2,N+2 QN+2,N+3 QN+2,N+4

⎤

⎥⎥⎥⎥⎦
,

W1 =
[
w

(r)
i,−3 w

(r)
i,−2 · · · w

(r)
i,N+3 w

(r)
i,N+4

]T
(6)
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and

�1 =
[
∂(r)Q−1(xi )

∂x (r)

∂(r)Q0 (xi )

∂x (r)
· · ·

∂(r)QN+1(xi )

∂x (r)

∂(r)QN+2(xi )

∂x (r)

]T

. (7)

The weighting coefficients w
(r)
i, j related to the i th grid

points are determined by solving system (5). System (5)
consists of N + 8 unknowns and N + 4 equations. To
have a unique solution for the system, it is necessary to
eliminate four unknown terms from the equation system.
By adding the following equations

∂(r+1)Q−1(xi )

∂x (r+1)
=

1∑

j=−3

w
(r)
i, j Q

′−1(x j ), (8)

∂(r+1)Q0(xi )

∂x (r+1)
=

2∑

j=−2

w
(r)
i, j Q

′
0(x j ), (9)

∂(r+1)QN+1(xi )

∂x (r+1)
=

N+3∑

j=N−1

w
(r)
i, j Q

′
N+1(x j ),

∂(r+1)QN+2(xi )

∂x (r+1)
=

N+4∑

j=N

w
(r)
i, j Q

′
N+2(x j ), (10)

to system (5), we easily obtain

M2W1 = �2, (11)

where

M2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q−1,−3 Q−1,−2 Q−1,−1 Q−1,0 Q−1,1

Q′−1,−3 Q′−1,−2 Q′−1,−1 Q′−1,0 Q′−1,1

Q0,−2 Q0,−1 Q0,0 Q0,1 Q0,2

Q′
0,−2 Q′

0,−1 Q′
0,0 Q′

0,1 Q′
0,2

Q1,−1 Q1,0 Q1,1 Q1,2 Q1,3

. . .
. . .

. . .
. . .

. . .

QN+1,N−1 QN+1,N QN+1,N+1 QN+1,N+2 QN+1,N+3

Q′
N+1,N−1 Q′

N+1,N Q′
N+1,N+1 Q′

N+1,N+2 Q′
N+1,N+3

QN+2,N QN+2,N+1 QN+2,N+2 QN+2,N+3 QN+2,N+4

Q′
N+2,N Q′

N+2,N+1 Q′
N+2,N+2 Q′

N+2,N+3 Q′
N+2,N+4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

�2 =
[
∂(r)Q−1(xi )

∂x (r)

∂(r+1)Q−1(xi )

∂x (r+1)

∂(r)Q0(xi )

∂x (r)

∂(r+1)Q0(xi )

∂x (r+1)

∂(r)Q1(xi )

∂x (r)
· · · ∂(r)QN+1(xi )

∂x (r)

∂(r+1)QN+1(xi )

∂x (r+1)

∂(r)QN+2(xi )

∂x (r)

∂(r+1)QN+2 (xi )

∂x (r+1)

]T

.

After using values of quintic B-splines at the grid points
and eliminating w

(r)
i,−3, w

(r)
i,−2, w

(r)
i,N+3 and w

(r)
i,N+4 from

the system, we obtain an algebraic equation system hav-
ing a five-banded coefficient matrix of the form

M3W2 = �3, (12)

where

M3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

37 82 21
8 33 18 1
1 26 66 26 1

1 26 66 26 1
. . .

. . .
. . .

. . .
. . .

1 26 66 26 1
1 26 66 26 1

1 18 33 8
21 82 37

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
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W2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(r)
i,−1

w
(r)
i,0

...

w
(r)
i,i−2

w
(r)
i,i−1

w
(r)
i,i

w
(r)
i,i+1

w
(r)
i,i+2

...

w
(r)
i,N+1

w
(r)
i,N+2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The non-zero entries of the load vector �3 are given
as

�−1 = 1

30

[
−5Q(r)

−1 (xi ) + hQ(r+1)
−1 (xi )

+ 40Q(r)
0 (xi ) + 8hQ(r+1)

0 (xi )
]
,

�0 = 1

10

[
5Q(r)

0 (xi ) − hQ(r+1)
0 (xi )

]
,

�i−2 = Q(r)
i−2(xi ),

�i−1 = Q(r)
i−1(xi ),

�i = Q(r)
i (xi ),

�i+1 = Q(r)
i+1(xi ),

�i+2 = Q(r)
i−2(xi ),

�N+1 = 1

10

[
5Q(r)

N+1(xi ) + hQ(r+1)
N+1 (xi )

]
,

�N+2 = −1

30

[
−40Q(r)

N+1(xi ) + 8hQ(r+1)
N+1 (xi )

+ 5Q(r)
N+2(xi ) + hQ(r+1)

N+2 (xi )
]
. (13)

For example, if we apply the test functions Qm, m =
− 1, 0, . . . , N+2, at the first grid point x1 for first-order
derivative approximation by the selection of i = 1 and
r = 1 in eq. (13)

�−1 = 1

30

[
−5Q(1)

−1 (x1) + hQ(2)
−1(x1)

+ 40Q(1)
0 (x1) + 8hQ(2)

0 (x1)
]
,

�−1 = 1

30

[
−5

(−5

h

)
+ h

(
20

h2

)

+ 40

(−50

h

)
+ 8h

(
40

h2

)]
= −109

2h
,

�0 = 1

10

[
5Q(1)

0 (x1) − hQ(2)
0 (x1)

]
,

�0 = 1

10

[
5

(−50

h

)
− h

(
40

h2

)]
= −29

h
,

�1 = Q(1)
1 (x1) = 0,

�2 = Q(1)
2 (x1) = 50

h
,

�3 = Q(1)
3 (x1) = 5

h
,

�N+1 = 1

10

[
5Q(1)

N+1(x1) + hQ(2)
N+1(x1)

]
,

�N+1 = 1

10
[5.0 + h.0] = 0,

�N+2 = −1

30

[
−40Q(r)

N+1(xi ) + 8hQ(r+1)
N+1 (xi )

+ 5Q(r)
N+2(xi ) + hQ(r+1)

N+2 (xi )
]
,

�N+2 = −1

30
[−40.0 + 8h.0 + 5.0 + h.0] = 0

is obtained and written in the matrix form as

M3

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(1)
1,−1

w
(1)
1,0

w
(1)
1,1

w
(1)
1,2

w
(1)
1,3

w
(1)
1,4

...

w
(1)
1,N+1

w
(1)
1,N+2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 109/2h
− 29/h

0
50/h
5/h

0
...

0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

By following the same idea used before to determine the
weighting coefficients w

(1)
k, j , j = − 1, 0, . . . , N + 2, at

grid points xk , 2 ≤ k ≤ N − 1, we have obtained the
following algebraic equation system:
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M3

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(1)
k,−1

...

w
(1)
k,k−3

w
(1)
k,k−2

w
(1)
k,k−1

w
(1)
k,k

w
(1)
k,k+1

w
(1)
k,k+2

w
(1)
k,k+3

...

w
(1)
k,N+2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
− 5/h
− 50/h

0
50/h
5/h

0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

For the last grid point of the domain xN with the
same idea, we determine the weighting coefficients
w

(1)
N , j , j = − 1, 0, . . . , N + 2, and obtain the algebraic

equation system as

M3

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(1)
N ,−1

w
(1)
N ,0

...

w
(1)
N ,N−3

w
(1)
N ,N−2

w
(1)
N ,N−1

w
(1)
N ,N

w
(1)
N ,N+1

w
(1)
N ,N+2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

0
− 5/h
− 50/h

0
29/h

109/2h

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

We can obtain the third-order derivative approximations
with similar calculation. Hence, system (12) is solved
by the pentadiagonal Thomas algorithm.

3. Numerical discretisation

We have discretised eq. (2) using the forward finite dif-
ference and Crank–Nicolson-type schemes. First, eq. (2)
is discretised as

Un+1 −Un

�t
+ μ

Un+1
3x +Un

3x

2

+ ε

(
U2Ux

)n+1 + (U 2Ux
)n

2
= 0. (17)

Equation (17) is rewritten as follows:

2Un+1 + �t
[
μUn+1

3x + ε
(
U 2Ux

)n+1
]

= 2Un + �t
[
−μUn

3x − ε
(
U 2Ux

)n]
. (18)

Then, the Rubin and Graves-type linearisation tech-
nique [45] is used on the left-hand side of eq. (18) to
linearise the nonlinear terms as given below:

(UUx)
n+1 = (Un+1Un

x +UnUn+1
x −UnUn

x

)
, (19)

(UUx)
n = UnUn

x. (20)

Accordingly, we have obtained

2Un+1

+ �t
[
μUn+1

3x +ε
((
U 2)n Un+1

x +2UnUn
x U

n+1
)]

= 2Un + �t
[
−μUn

3x + ε
(
U 2)n Un

x

]
. (21)

Let us define some terms used in eq. (21) as

An
i =

N∑

j=1

w
(1)
i j U

n
j = Un

xi ,

Bn
i =

N∑

j=1

w
(3)
i j U

n
j = Un

3xi , (22)

where An
i and Bn

i are the first- and third-order derivative
approximations of the U functions at the nth time level
on points xi , respectively. By substituting definition (22)
in eq. (21), we obtain

2Un+1
i + �t

⎡

⎣μ

N∑

j=1

w
(3)
i j U

n+1
j

+ ε

⎛

⎝(Un
i

)2
N∑

j=1

w
(1)
i j U

n+1
j + 2Un

i A
n
i U

n+1
i

⎞

⎠

⎤

⎦

= φn
i , (23)

where

φn
i = 2Un

i + �t
[
−μBn

i + ε
(
Un
i

)2
An
i

]
,

for i = 1(1)N.

Then we have reorganised eq. (23) for each grid point
as follows:
[
2 + �t

(
μw

(3)
i i + ε

((
Un
i

)2
w

(1)
i i + 2Un

i A
n
i

))]
Un+1
i

+
⎡

⎣
N∑

j=1,i �= j

�t
(
μw

(3)
i j + ε

(
Un
i

)2
w

(1)
i j

)
Un+1

j

⎤

⎦

= φn
i . (24)
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By implementing the system of eq. (24) on xi , i =
1(1)N grid points, N equations consisting of N
unknowns which are denoted byUn+1 will be obtained.
The equation system is shown in the matrix form below:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1,1 K1,2 · · · K1,N

K2,1 K2,2 · · · K2,N
...

...
. . .

...

KN−1,1 KN−1,2 · · · KN−1,N

KN ,1 KN ,2 · · · KN ,N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Un+1
1

Un+1
2
...

Un+1
N−1

Un+1
N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

φn
1

φn
2
...

φn
N−1
φn
N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

Then the boundary conditions are applied to the system
of eq. (25) and the first and last equations are eliminated
from the systems. Hence,

⎡

⎢⎢⎢⎢⎢⎣

K2,2 K2,3 · · · K2,N−1

K3,2 K3,3 · · · K3,N−1
...

...
. . .

...

KN−1,2 KN−1,3 · · · KN−1,N−1

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

Un+1
2

Un+1
3
...

Un+1
N−1

⎤

⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎣

φn
2 − K2,1U

n+1
1 − K2,NU

n+1
N

φn
3 − K3,1U

n+1
1 − K3,NU

n+1
N

...

φn
N−1 − KN−1,1U

n+1
1 − KN−1,NU

n+1
N

⎤

⎥⎥⎥⎥⎥⎦
(26)

is obtained and solved by the Gauss elimination method
easily.

4. Numerical examples

In this section, the five well-known test problems are
investigated. The accuracy of the numerical method
is checked by using the error norms L2 and L∞,
respectively:

L2 =
√√√√h

N∑

J=1

∣∣∣U exact
j − (UN ) j

∣∣∣
2
,

L∞ = max
j

∣∣∣U exact
j − (UN ) j

∣∣∣. (27)

Moreover, the following lowest three invariants corre-
sponding to the conservation of mass, momentum and
energy are computed:

I1 =
∫ b

a
Udx, I2 =

∫ b

a
U 2dx,

I3 =
∫ b

a

[
U 4−6μ

ε

(
U ′)2

]
dx. (28)

4.1 Single soliton

The mKdV equation has an analytic solution given in
the following form:

U(x, t) = kp sech
(
kx − kx0 − k3μt

)
, (29)

where

p =
[

6μ

ε

]1/2

, (30)

which represents a single soliton originally located at
x0 moving to the right with velocity k2μ. Solitons
may have positive or negative amplitudes depending on
the sign of k but all of them have positive velocities.
We take eq. (29) as initial condition at t = 0 of the
form

U(x, 0) = kp sech(kx − kx0), (31)

and to allow comparison with earlier works [29,30],
we use ε = 3, μ = 1, kp = c = 1.3, x0 = 15
and 0 ≤ x ≤ 200. For the present case, the obtained
solution is going to move towards the right, having a con-
stant speed with unchanged amplitude. We have plotted
the graphs of the numerical solution of a single soli-
ton with �t = 0.025 and N = 1001 from t = 0 to
100 in figure 1. To make a quantitative comparison,
the error norms L2 and L∞ have been computed and
compared with earlier works [29,30] in table 1 until
t = 10, respectively. It is clearly seen from table 1 that
by using the same parameters (�t = 0.025) and less
number of grid points (N = 761), the present results
are superior. Besides this, by decreasing the time step
size from �t = 0.025 to 0.001, the error norms L2 and
L∞ decrease to 1.6×10−5 and 1.0×10−5, respectively
at t = 10. After that, three lowest invariants, I1, I2 and
I3, are computed with the same parameters �t = 0.025
and N = 1001 and compared with earlier works [29,30]
in table 2 until t = 100. It is seen from table 2 that the
present results are superior, again. It is obviously seen
from table 2 that the three lowest invariants, I1, I2 and I3,
are changed by less than 2.7 × 10−6, − 4.4 × 10−5 and
− 1.3×10−4, respectively, with respect to their original
values during the long run t = 100 and so are small
enough to accept. To show the accuracy of the present
method for a long time, i.e. t = 100 with a small time
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(a) (b)

Figure 1. (a) Simulations of a single soliton and (b) maximum error at t = 100.

Table 1. The error norms L2 and L∞ at various times for a single soliton.

QCN-DQM (present) �t = 0.025 and N = 1000

�t = 0.025, N = 761 �t = 0.01, N = 1201 �t = 0.001, N = 2001 Quad. FEM [29] Quin. FEM [30]

t L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

0 – – – – – – – – – –
1 0.321 0.172 0.048 0.032 0.008 0.004 3.38 2.03 0.25 0.10
2 0.322 0.202 0.051 0.030 0.008 0.005 4.88 3.23 0.35 0.17
3 0.322 0.195 0.049 0.031 0.009 0.005 6.32 4.15 0.39 0.25
4 0.289 0.206 0.045 0.032 0.009 0.006 7.65 5.00 0.51 0.36
5 0.311 0.220 0.049 0.035 0.011 0.007 8.84 5.75 0.75 0.51
6 0.318 0.203 0.049 0.033 0.012 0.008 9.83 6.34 1.02 0.67
7 0.307 0.211 0.049 0.035 0.013 0.008 10.57 6.71 1.32 0.85
8 0.300 0.192 0.048 0.033 0.013 0.008 11.21 7.20 1.66 1.07
9 0.315 0.214 0.048 0.032 0.015 0.010 11.34 6.99 2.03 1.03

10 0.313 0.207 0.050 0.034 0.016 0.010 11.61 7.33 2.45 1.55

Table 2. Comparison of the three lowest invariants for a single soliton: �t = 0.025,
N = 1001.

QCN-DQM (present) Quad. FEM [29] Quin. FEM [30]

t I1 I2 I3 I1 I2 I3 I1 I2 I3

0 4.442880 3.676954 2.071352 4.443 3.678 2.055 4.443 3.677 2.071
10 4.442868 3.676935 2.071318 4.444 3.677 2.055 4.442 3.676 2.070
20 4.442869 3.676923 2.071299 4.443 3.677 2.054 4.442 3.675 2.068
30 4.442881 3.676905 2.071267 4.444 3.676 2.054 4.442 3.674 2.067
40 4.442893 3.676892 2.071248 4.444 3.676 2.054 4.441 3.674 2.066
50 4.442897 3.676876 2.071218 4.443 3.676 2.054 4.441 3.673 2.064
60 4.442883 3.676856 2.071186 4.442 3.676 2.053 4.440 3.672 2.063
70 4.442893 3.676846 2.071167 4.441 3.676 2.053 4.440 3.671 2.061
80 4.442887 3.676825 2.071132 4.441 3.676 2.053 4.440 3.670 2.060
90 4.442888 3.676816 2.071119 4.440 3.675 2.052 4.439 3.669 2.058

100 4.442892 3.676794 2.071082 4.440 3.675 2.052 4.439 3.668 2.057

step size �t = 0.001, three lowest invariants I1, I2 and
I3 and error norms L2 and L∞ are computed and are
given in table 3. It is clearly seen from table 3 that the

present method gives acceptable good results for a long
simulation and at time t = 100 the three invariants I1, I2
and I3 are changed by less than 1.2×10−6, − 3.8×10−6
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Table 3. The three lowest invariants and error norms for a single
soliton: �t = 0.001, N = 2001.

QCN-DQM (present)

t I1 I2 I3 L2 × 103 L∞ × 103

0 4.442877 3.676955 2.071352 – –
10 4.442882 3.676955 2.071352 0.016 0.010
20 4.442876 3.676947 2.071340 0.017 0.011
30 4.442880 3.676941 2.071328 0.024 0.016
40 4.442874 3.676935 2.071317 0.083 0.053
50 4.442875 3.676934 2.071317 0.153 0.094
60 4.442877 3.676940 2.071325 0.205 0.123
70 4.442880 3.676934 2.071317 0.259 0.155
80 4.442880 3.676944 2.071331 0.309 0.185
90 4.442881 3.676938 2.071325 0.352 0.207

100 4.442882 3.676941 2.071327 0.403 0.239

(a) (b)

Figure 2. (a) Simulations of a single soliton and (b) maximum error at t = 20.

and − 1.2×10−5, respectively, with respect to their orig-
inal values during this very long run and therefore they
can be considered almost constant. The maximum error
value of a single soliton at t = 100 for the simulation
region 0 ≤ x ≤ 200 is given in figure 1.

Then to compare with other works [26–28] we fix
all parameters except solution region 0 ≤ x ≤ 80 and
time 0 ≤ t ≤ 20. We have plotted the graphs of the
numerical solution of single soliton with �t = 0.01
and N = 475 from t = 0 to 20 in figure 2. To make
a quantitative comparison, the error norms L2 and L∞
and three lowest invariants I1, I2 and I3 have been com-
puted and compared with earlier works [26–28] in table
4 till t = 20. It is clearly seen from table 4 that by using
the same parameters (�t = 0.01) and less number of
grid points (N = 475) than earlier works [26–28], the
present results are superior and the error norms L2 and
L∞ are obtained as 5.0 × 10−5 and 3.1 × 10−5 respec-
tively at t = 20. Besides these, by decreasing the time
step size from �t = 0.01 to 0.001, the error norms L2

and L∞ decrease to 9.9 × 10−6 and 6.2 × 10−6 respec-
tively at t = 20. The maximum error value of a single
soliton at t = 20 for the simulation region 0 ≤ x ≤ 80
is given in figure 2.

4.2 Interaction of double solitons

The interaction of double solitons has an initial condi-
tion of the form [29,30]

U(x, t) =
2∑

i=1

kip sech
(
ki x − ki xi − k3

i μt
)
, (32)

where

p =
[

6μ

ε

]1/2

, (33)

evaluated at t = 0.
This condition represents two solitary waves mov-

ing to the right having velocities k2
i μ which depend
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Table 4. The three lowest invariants and L2 and L∞ error norms for a single soliton.

Method t L2 × 103 L∞ × 103 I1 I2 I3

Present QCN-DQM 0 – – 4.442881 3.676955 2.071352
�t = 0.01, N = 475 1 0.048278 0.029429 4.442885 3.676954 2.071352

5 0.049183 0.031314 4.442894 3.676955 2.071353
10 0.052029 0.034742 4.442872 3.676954 2.071350
15 0.051401 0.037722 4.442872 3.676953 2.071347
20 0.050776 0.031535 4.442873 3.676950 2.071343

Present QCN-DQM 0 – – 4.442877 3.676955 2.071352
�t = 0.001, N = 801 1 0.007319 0.003647 4.442881 3.676954 2.071351

5 0.010969 0.007443 4.442880 3.676949 2.071342
10 0.012061 0.008346 4.442877 3.676949 2.071342
15 0.011568 0.009028 4.442876 3.676946 2.071337
20 0.009997 0.006212 4.442879 3.676950 2.071345

Gal. FEM [26] 0 – – – – –
�t = 0.01, N = 801 1 – 1.206756 4.443000 3.677069 2.073575

5 – 3.621519 4.443138 3.677535 2.074357
10 – 5.942047 4.444142 3.678094 2.075303
15 – 7.626772 4.443420 3.678642 2.076232
20 – 8.642137 4.443171 3.679192 2.077161

Lump. Pet-Gal.FEM [27] 0 – – – – –
�t = 0.01, N = 801 1 0.628695 0.363099 4.442866 3.676941 2.072795

5 1.249516 0.839746 4.442866 3.676941 2.073537
10 2.131860 1.399503 4.442866 3.676941 2.073699
15 2.949376 1.880855 4.442866 3.676941 2.073776
20 3.641638 2.285638 4.442866 3.676941 2.073846

Lump-Gal. FEM [28] 0 – – – – –
�t = 0.01, N = 801 1 0.627901 0.362434 4.442866 3.676941 2.072792

5 1.252048 0.841523 4.442866 3.676941 2.073533
10 2.138787 1.403498 4.442866 3.676941 2.073695
15 2.960441 1.887116 4.442866 3.676941 2.073772
20 3.656694 2.294197 4.442866 3.676941 2.073841

upon their magnitude. To provide the interaction with
increasing time, we place the larger soliton to the left
side of the smaller one. Thus, we place the soliton
with magnitude k1 p = c1 = 1.3 at x1 = 15 and
k2 p = c2 = 0.9 at x2 = 35 and then the region is
0 ≤ x ≤ 200, ε = 3, μ = 1.0 so that p = √

2.
For simulation of interaction of double solitons, we

used �t = 0.025 and N = 901 for a long run from time
t = 0 to 120. As can be seen in figure 3, the bigger soli-
ton at the left position of the smaller soliton is located
at the beginning of the run. With the increase of time,
the bigger soliton catches up with the smaller one until
t = 40, and the smaller soliton is being absorbed. The
overlapping process continues until t = 60, then the
bigger soliton overtakes the smaller soliton and starts
the process of separation. At t = 100, the interaction is
complete and the bigger soliton separates completely
from the smaller soliton. Three lowest invariants are
calculated and compared with earlier works [29,30] in
table 5. By using the same parameter (�t = 0.025)
and less number of grid points (N = 901) than earlier
works [29,30], the three invariants I1, I2 and I3 change

by less than 6.4×10−6, − 1.7×10−5 and − 6.6×10−5,
respectively, at the end of the simulation with respect
to their original values during the very long run and
therefore they can be considered to be almost constant.
We have decreased the time step size from �t = 0.025
to 0.01 and used less number of grid points (N = 871),
then I2 invariants do not change and I1 and I3 invariants
change by less than 8.9 × 10−6 and 3.6 × 10−7, respec-
tively, at the end of the simulation with respect to their
original values.

Then, to compare with another work [26] we used

U(x, 0) =
2∑

i=1

αi sech

[√
ci
μ

(x − xi )

]
(34)

as initial condition where

αi =
[

6ci
ε

]1/2

, i = 1, 2 (35)

and ε = 3, μ = 1, c1 = 2, c2 = 1, x1 = 15 and x2 = 25
at solution region 0 ≤ x ≤ 80 and time 0 ≤ t ≤ 20.

We have plotted the graphs of the numerical solution of
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(a) (b) (c)

(d) (e) (f)

Figure 3. Simulations of double solitons: (a) t = 0, (b) t = 20, (c) t = 40, (d) t = 60, (e) t = 80 and (f) t = 120.

Table 5. Invariants for double solitons: c1 = 1.3 and c2 = 0.9.

t I1 I2 I3 I1 I2 I3

�t = 0.025 and N = 901 �t = 0.01 and N = 871
QCN-DQM (present) QCN-DQM (present)

0 8.885761 6.222641 2.758834 8.885756 6.222640 2.758833
20 8.885755 6.222616 2.758789 8.885740 6.222646 2.758843
40 8.885790 6.222559 2.758680 8.885780 6.222632 2.758847
60 8.885807 6.222596 2.758753 8.885852 6.222641 2.758835
80 8.885818 6.222576 2.758721 8.885843 6.222637 2.758826

100 8.885799 6.222555 2.758684 8.885837 6.222641 2.758836
120 8.885818 6.222536 2.758651 8.885835 6.222640 2.758834

�t = 0.025 and N = 1000 �t = 0.025 and N = 1000
Quad. FEM [29] Quin. FEM [30]

0 8.8857 6.2226 2.7396 8.8858 6.2226 2.7588
20 8.8865 6.2222 2.7389 8.8852 6.2212 2.7562
40 8.8846 6.2220 2.7388 8.8854 6.2212 2.7559
60 8.8845 6.2248 2.7486 8.8851 6.2203 2.7540
80 8.8851 6.2253 2.7495 8.8846 6.2188 2.7513

100 8.8854 6.2219 2.7383 8.8840 6.2174 2.7487
120 8.8846 6.2211 2.7362 8.8834 6.2161 2.7461

double solitons with �t = 0.01 and N = 801 from t =
0 to 20, in figure 4. To make a quantitative comparison,
all parameters which were used in the earlier work [26]
are used here and the three lowest invariants I1, I2 and
I3 have been computed and compared with earlier work
[26] in table 6 until t = 20. As can be clearly seen from
table 6, by using the same parameters as in earlier work
[26], the present results are superior. Besides these, by
decreasing the time step size from �t = 0.01 to 0.001
with less number of grid points (N = 601) than earlier
work [26], the relative changes of invariants I1, I2 and

I3 decrease to − 6.5×10−6, 9.3×10−7 and 9.8×10−7

at t = 20, respectively.

4.3 Interaction of triple solitons

The interaction of triple solitons has initial condition of
the form [26]

U(x, 0) =
3∑

i=1

αi sech

[√
ci
μ

(x − xi )

]
, (36)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Simulations of double solitons: (a) t = 0, (b) t = 4, (c) t = 6, (d) t = 8, (e) t = 10, (f) t = 12, (g) t = 14,
(h) t = 16 and (i) t = 20.

Table 6. Invariants for double solitons: c1 = 2 and c2 = 1.

t

�t = 0.01 and N = 801 �t = 0.001 and N = 601 �t = 0.01 and N = 800
QCN-DQM (present) QCN-DQM (present) Gal. FEM [26]

I1 I2 I3 I1 I2 I3 I1 I2 I3

0 8.885763 9.659376 10.219340 8.885761 9.659375 10.219340 – – –
1 8.885799 9.659359 10.219250 8.885782 9.659382 10.219350 8.886014 9.659527 10.239870
5 8.885741 9.659147 10.218240 8.885767 9.659382 10.219400 8.886776 9.663714 10.249000

10 8.885828 9.659196 10.218550 8.885808 9.659379 10.219360 8.889742 9.662547 10.246790
15 8.885797 9.659162 10.218510 8.885737 9.659385 10.219360 8.885983 9.661071 10.242580
20 8.885759 9.659080 10.218200 8.885703 9.659384 10.219350 8.884880 9.661224 10.242030

where

αi =
[

6ci
ε

]1/2

, i = 1, 2, 3 (37)

and ε = 3, μ = 1, c1 = 2, c2 = 1, c3 = 0.5, x1 = 15,
x2 = 25 and x3 = 35 at the solution region 0 ≤ x ≤ 80
and time 0 ≤ t ≤ 20. We have plotted the graphs of
the numerical solution of triple solitons with �t = 0.01

and N = 301 from t = 0 to 20 in figure 5. To make
a quantitative comparison, all parameters which were
used in the earlier work [26] are used here also and the
three lowest invariants I1, I2 and I3 have been computed
and compared with the earlier work [26] in table 7 until
t = 20. It is seen clearly from table 7 that by using
same parameters (�t = 0.01) and less number of grid
points (N = 301) than earlier work [26], the present
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Figure 5. Simulations of triple solitons: (a) t = 0, (b) t = 4, (c) t = 6, (d) t = 8, (e) t = 10, (f) t = 12, (g) t = 14,
(h) t = 16 and (i) t = 20.

results are superior. The relative changes of invariants
I1, I2 and I3 obtained are, − 4.5 × 10−5, − 4.8 × 10−6

and −4.9 × 10−5 respectively at time t = 20. Besides
these, by decreasing the time step size from �t = 0.01
to 0.001 and less number of grid points (N = 361)
than earlier work [26], the relative changes of invariants
I1, I2 and I3 decrease to 2.1 × 10−5, 0.0 × 10−7 and
8.9 × 10−7, respectively at time t = 20.

4.4 Maxwellian initial condition

Evolution of the train of solitons of the mKdV equation
has been studied using the Maxwellian initial condition

U(x, 0) = exp
(−x2) (38)

for various values of μ. First of all, to compare the
present results with earlier studies, we have selected the

Table 7. Invariants for three solitons: c1 = 2, c2 = 1 and c3 = 0.5.

�t = 0.01 and N = 301 �t = 0.001 and N = 361 �t = 0.01 and N = 800
QCN-DQM (present) QCN-DQM (present) Gal. FEM [26]

t I1 I2 I3 I1 I2 I3 I1 I2 I3

0 13.328650 12.519940 11.228820 13.328650 12.519940 11.228610 – – –
1 13.328750 12.519920 11.228720 13.328640 12.519940 11.228620 13.329060 12.520280 11.249790
5 13.328650 12.519750 11.228660 13.328450 12.519930 11.229070 13.330630 12.526260 11.261270

10 13.328530 12.519490 11.228930 13.328540 12.519930 11.229800 13.338780 12.540860 11.288040
15 13.327100 12.519830 11.228480 13.327750 12.519940 11.228700 13.332640 12.526660 11.259970
20 13.328050 12.519880 11.228260 13.328920 12.519940 11.228620 13.332060 12.524900 11.256730
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Table 8. Invariants for Maxwellian initial condition: μ = 0.04, μ = 0.01, μ = 0.005 and μ = 0.0025.

t I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3

QCN-DQM μ = 0.04 [29] μ = 0.04 QCN-DQM μ = 0.01 [29] μ = 0.01
�t = 0.01, N = 1001 �t = 0.01, N = 1000 �t = 0.005, N = 751 �t = 0.005, N = 2000

0.0 1.7725 1.2533 0.5854 1.7725 1.2533 0.5839 1.7725 1.2533 0.8110 1.7725 1.2533 0.8109
2.5 1.7725 1.2533 0.5854 1.7719 1.2511 0.5756 1.7725 1.2533 0.8110 1.7713 1.2485 0.7889
5.0 1.7725 1.2533 0.5854 1.7716 1.2504 0.5734 1.7725 1.2533 0.8110 1.7708 1.2463 0.7778
7.5 1.7725 1.2533 0.5854 1.7716 1.2501 0.5726 1.7724 1.2533 0.8110 1.7707 1.2460 0.7767

10.0 1.7725 1.2533 0.5854 1.7715 1.2501 0.5723 1.7725 1.2533 0.8110 1.7706 1.2459 0.7764
12.5 1.7725 1.2533 0.5854 1.7716 1.2500 0.5721 1.7725 1.2533 0.8110 1.7706 1.2458 0.7762

QCN-DQM μ = 0.005 [29] μ = 0.005 QCN-DQM μ = 0.0025 [29] μ = 0.0025
�t = 0.005, N = 1001 �t = 0.005, N = 3000 �t = 0.005, N = 1101 �t = 0.005, N = 3000

0.0 1.7725 1.2533 0.8486 1.7725 1.2533 0.8486 1.7725 1.2533 0.8674 1.7725 1.2533 0.8674
2.5 1.7725 1.2533 0.8487 1.7724 1.2529 0.8464 1.7725 1.2534 0.8675 1.7722 1.2520 0.8614
5.0 1.7725 1.2533 0.8486 1.7722 1.2522 0.8438 1.7724 1.2534 0.8674 1.7710 1.2488 0.8504
7.5 1.7725 1.2533 0.8486 1.7720 1.2516 0.8418 1.7725 1.2534 0.8674 1.7699 1.2458 0.8410

10.0 1.7725 1.2533 0.8486 1.7719 1.2510 0.8399 1.7725 1.2535 0.8674 1.7689 1.2431 0.8325
12.5 1.7724 1.2533 0.8486 1.7717 1.2504 0.8380 1.7725 1.2535 0.8675 1.7680 1.2406 0.8247

(a) (b) (c)

(d) (e) (f)

Figure 6. Simulations of Maxwellian initial condition for μ = 0.04: (a) t = 0, (b) t = 2.5, (c) t = 5, (d) t = 7.5, (e) t = 10
and (f) t = 12.5.

values ε = 1, μ = 0.04, �t = 0.01 and N = 1001
over the region − 50 ≤ x ≤ 50. Then, we have used
μ = 0.01, �t = 0.005 and N = 751 over the region
− 15 ≤ x ≤ 15. Finally, for μ = 0.005 and 0.0025 the
simulations are obtained for �t = 0.005 and N = 1001
and 1101, respectively. The three lowest invariants for
all the values of μ are calculated and compared with the
earlier work [29] in table 8. One can see clearly from
table 8 that the present method used the same parame-
ters and less number of grid points than the earlier work
[29] and obtained better results. The graphs drawn using
the values μ = 0.04, 0.01, 0.005 and 0.0025 at various

times up to t = 12.5 are given in figures 6–9. One can
see clearly from figures 6–9 that by the decreasing the
value of μ from μ = 0.04 to 0.0025, the number of
waves increase at the end of the simulations.

4.5 Tanh initial condition

Finally, we have examined the tanh initial condition [29]

U(x, 0) = 0.5

[
1 − tanh

|x | − x0

d

]
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(a) (b) (c)

(d) (e) (f)

Figure 7. Simulations of Maxwellian initial condition for μ = 0.01: (a) t = 0, (b) t = 2.5, (c) t = 5, (d) t = 7.5, (e) t = 10
and (f) t = 12.5.

(a) (b) (c)

(d) (e) (f)

Figure 8. Simulations of Maxwellian initial condition for μ = 0.005: (a) t = 0, (b) t = 2.5, (c) t = 5, (d) t = 7.5,
(e) t = 10 and (f) t = 12.5.

and boundary conditions

U(−150, t) = U(150, t) = 0, t > 0,

where −150 ≤ x ≤ 150, d = 5 and x0 = 25 will be
considered in all simulations.

We have taken the same parameters as in [29], i.e.,
ε = 0.2, μ = 0.1, �t = 0.05 and N = 801. The
behaviour of this simulation that runs for a long time

from t = 0 to 800 is given in figure 10. The three
lowest invariants I1, I2 and I3 are recorded and com-
pared with [29] in table 9 for the present case. It is
seen from table 9 that the invariants change by less than
1.2 × 10−5, 1.5 × 10−4 and 1.1 × 10−5, respectively,
with respect to their original values during this very long
run and therefore they can be considered to be almost
constant.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Simulations of Maxwellian initial condition for μ = 0.0025: (a) t = 0, (b) t = 2.5, (c) t = 5, (d) t = 7.5,
(e) t = 10 and (f) t = 12.5.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Simulations of the train of solitons: (a) t = 0, (b) t = 100, (c) t = 200, (d) t = 300, (e) t = 400, (f) t = 500,
(g) t = 600, (h) t = 700 and (i) t = 800.
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Table 9. Invariants for tanh initial condition: ε = 0.2 and μ = 0.1.

QCN-DQM (present) Quad. FEM [29]
�t = 0.05 and N = 801 �t = 0.05 and N = 750

t I1 I2 I3 I1 I2 I3

0 50.000210 45.000450 40.434230 50.000244 45.000481 40.433926
100 50.000210 45.000490 40.432260 49.983517 44.910309 39.909645
200 50.000270 45.000950 40.425900 49.935287 44.674023 38.445984
300 50.000610 45.002050 40.424920 49.913094 44.565525 37.815990
400 50.000530 45.004010 40.428280 49.905308 44.536327 37.681885
500 50.001190 45.008430 40.437940 49.903107 44.530098 37.638954
600 50.002360 45.008120 40.436530 49.902920 44.530876 37.612217
700 50.005220 45.005430 40.430750 49.908508 44.535641 37.582287
800 50.000770 45.007310 40.434640 49.920536 44.540688 37.587090

5. Conclusion

In this study, the approximate solutions of the mKdV
equation have been obtained using QCN-DQM. All the
weighting coefficients are obtained directly by using
quintic B-splines. After the discretisation of the mKdV
equation with forward difference formulae and Crank–
Nicolson scheme, the Rubin and Graves linearisation
technique is used. After the implementation of DQM on
the equation, the linear equation system is obtained and
solved by Gauss method easily. Five well-known test
problems have been solved. It can be seen obviously
from a comparison of the present results and earlier
works [26–30] that QCN-DQM can be effectively used
for long runs of the mKdV equation. It is observed that
conservation laws are reasonably satisfied for all the
test problems given in the present paper. The obtained
numerical results and comparison of the error norms L2
and L∞ and also the three invariants show that QCN-
DQM can achieve high accuracy and good conservation
properties. It can be concluded that the present approx-
imation is an effective and efficient method for solving
the mKdV equation and can also be used for numerical
solutions of other problems.
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