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Preface

These notes developed from a course on the numerical solution of conservation laws
first taught at the University of Washington in the fall of 1988 and then at ETH during
the following spring.

The overall emphasis is on studying the mathematical tools that are essential in de-
veloping, analyzing, and successfully using numerical methods for nonlinear systems of
conservation laws, particularly for problems involving shock waves. A reasonable un-
derstanding of the mathematical structure of these equations and their solutions is first
required, and Part I of these notes deals with this theory. Part II deals more directly with
numerical methods, again with the emphasis on general tools that are of broad use. I

have stressed the underlying ideas used in various classes of methods rather than present-
ing the most sophisticated methods in great detail. My aim was to provide a sufficient
background that students could then approach the current research literature with the
necessary tools and understanding.

Without the wonders of TeX and LaTeX, these notes would never have been put
together. The professional-looking results perhaps obscure the fact that these are indeed
lecture notes. Some sections have been reworked several times by now, but others are
still preliminary. I can only hope that the errors are, not too blatant. Moreover, the
breadth and depth of coverage was limited by the length of these courses, and some
parts are rather sketchy. I do have hopes of eventually expanding these notes into a full-
fledged book, going more deeply into some areas, discussing a wider variety of methods
and techniques, and including discussions of more applications areas. For this reason I
am particularly interested in receiving corrections, comments and suggestions. I can be
reached via electronic mail at na.rlevequecna-net.stanford.edu.

I am indebted to Jurgen Moser and the Forschungsinstitut at ETH for the opportunity
to visit and spend time developing these notes, and to Martin Gutknecht for initiating this
contact. During the course of this project, I was also supported in part by a Presidential
Young Investigator Award from the National Science Foundation.
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Mathematical Theory





1 Introduction

1.1 Conservation laws

These notes concern the solution of hyperbolic systems of conservation laws. These are
time-dependent systems of partial differential equations (usually nonlinear) with a par-
ticularly simple structure. In one space dimension the equations take the form

a u(x, t) + a f(u(x, t)) = 0.

Here u : IR x IR -, IR- is an m-dimensional vector of conserved quantities, or state
variables, such as mass, momentum, and energy in a fluid dynamics problem. More
properly, uj is the density function for the jth state variable, with the interpretation that
fr, u,(x, t) dx is the total quantity of this state variable in the interval [x1, x2] at time t.

The fact that these state variables are conserved means that f ul(x, t) dx should
be constant with respect to t. The functions ui themselves, representing the spatial
distribution of the state variables at time t, will generally change as time evolves. The
main assumption underlying (1.1) is that knowing the value of u(x, t) at a given point
and time allows us to determine the rate of flow, or flux, of each state variable at (x, t).
The flux of the jth component is given by some function f,(u(x,t)). The vector-valued
function f(u) with jth component f,(u) is called the flux function for the system of
conservation laws, so f : lR' - RR. The derivation of the equation (1.1) from physical
principles will be illustrated in the next chapter.

The equation (1.1) must be augmented by some initial conditions and also possibly
boundary conditions on a bounded spatial domain. The simplest problem is the pure
initial value problem, or Cauchy problem, in which (1.1) holds for -oo < x < oo and
t > 0. In this case we must specify initial conditions only,

u(x,0) = uo(x), -on < x < on. (1.2)

We assume that the system (1.1) is hyperbolic. This means that them x m Jacobian
matrix f'(u) of the flux function has the following property: For each value of u the

1



2 1 Introduction

eigenvalues of f'(u) are real, and the matrix is diagonalizable, i.e., there is a complete set
of m linearly independent eigenvectors. The importance of this assumption will be seen
later.

In two space dimensions a system of conservation laws takes the form

atu(x,Y, t) + 8Xf(u(2,Y, t)) + a-g(u(x,Y, t)) = 0 (1.3)

where u x 1R .. R and there are now two flux functions f, g : lR.'" - lR"`. The
generalization to more dimensions should be clear.

Hyperbolicity now requires that any real linear combination af'(u) +,6g'(u) of the
flux Jacobians should be diagonalizable with real eigenvalues.

For brevity throughout these notes, partial derivatives will usually be denoted by

subscripts. Equation (1.3), for example, will be written as

ut + f(u): + g(u)r = 0. (1.4)

Typically the flux functions are nonlinear functions of u, leading to nonlinear systems
of partial differential equations (PDEs). In general it is not possible to derive exact
solutions to these equations, and hence the need to devise and study numerical methods
for their approximate solution. Of course the same is true more generally for any nonlinear
PDE, and to some extent the general theory of numerical methods for nonlinear PDEs
applies in particular to systems of conservation laws. However, there are several reasons
for studying this particular class of equations on their own in some depth:

Many practical problems in science and engineering involve conserved quantities
and lead to PDEs of this class.

There are special difficulties associated with solving these systems (e.g. shock for-
mation) that are not seen elsewhere and must be dealt with carefully in developing
numerical methods. Methods based on naive finite difference approximations may
work well for smooth solutions but can give disastrous results when discontinuities
are present.

Although few exact solutions are known, a great deal is known about the mathemat-
ical structure of these equations and their solution. This theory can be exploited to
develop special methods that overcome some of the numerical difficulties encoun-
tered with a more naive approach.

1.2 Applications

One system of conservation laws of particular importance is the Euler equations of gas
dynamics. More generally, the fundamental equations of fluid dynamics are the Navier-
Stokes equations, but these include the effects of fluid viscosity and the resulting flux
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function depends not only on the state variables but also on their gradients, so the equa-
tions are not of the form (1.1) and are not hyperbolic. A gas, however, is sufficiently
dilute that viscosity can often be ignored. Dropping these terms gives a hyperbolic sys-
tem of conservation laws with m = d + 2 equations in d space dimensions, corresponding
to the conservation of mass, energy, and the momentum in each direction. In one space
dimension, these equations take the form

p p"
pv + - pv2 + p 1 = 0, (1.5)

8t E 8x
v(E + p)

where p = p(x, t) is the density, v is the velocity, pv is the momentum, E is the energy,
and p is the pressure. The pressure p is given by a known function of the other state
variables (the specific functional relation depends on the gas and is called the "equation
of state"). The derivation of these equations is discussed in more detail in Chapters 2
and 5.

These equations, and some simplified versions, will be used as examples throughout
these notes. Although there are many other systems of conservation laws that are impor-
tant in various applications (some examples are mentioned below), the Euler equations
play a special role. Much of the theory of conservation laws was developed with these
equations in mind and many numerical methods were developed specifically for this sys-
tem. So, although the theory and methods are applicable much more widely, a good
knowledge of the Euler equations is required in order to read much of the available lit-
erature and benefit from these developments. For this reason, I urge you to familiarize
yourself with these equations even if your primary interest is far from gas dynamics.

The shock tube problem. A simple example that illustrates the interesting behavior
of solutions to conservation laws is the "shock tube problem" of gas dynamics. The
physical set-up is a tube filled with gas, initially divided by a membrane into two sections.
The gas has a higher density and pressure in one half of the tube than in the other half,
with zero velocity everywhere. At time t = 0, the membrane is suddenly removed or
broken, and the gas allowed to flow. We expect a net motion in the direction of lower
pressure. Assuming the flow is uniform across the tube, there is variation in only one
direction and the one-dimensional Euler equations apply.

The structure of this flow turns out to be very interesting, involving three distinct
waves separating regions in which the state variables are constant. Across two of these
waves there are discontinuities in some of the state variables. A shock wave propagates
into the region of lower pressure, across which the density and pressure jump to higher
values and all of the state variables are discontinuous. This is followed by a contact dis-
continuity, across which the density is again discontinuous but the velocity and pressure
are constant. The third wave moves in the opposite direction and has a very different



4 1 Introduction

3.0

density velocity
0.5

2.5

2.0

1.5

1.0 k

-2 -1 0

3.0

2

0.4

0.3

0.2

0.1

0.0
-2

pressure wave structure in x-t plane

2.5

2.0

1.5

1.0 6 =='

-2 -1 0 1 2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2
-2

-1

-1

0

0

1

1

2

2

Figure 1.1. Solution to a shock tube problem for the one-dimensional Euler equations.

structure: all of the state variables are continuous and there is a smooth transition. This
wave is called a rarefaction wave since the density of the gas decreases (the gas is

rarefied) as this wave passes through.

If we put the initial discontinuity at x = 0, then the resulting solution u(x,t) is

a "similarity solution" in the variable x/t, meaning that u(x,t) can be expressed as a

function of x/t alone, say u(x, t) = w(x/t). It follows that u(x,t) = u(ax,at) for any

a > 0, so the solution at two different times t and at look the same if we rescale the
x-axis. This also means that the waves move at constant speed and the solution u(x, t)
is constant along any ray x/t = constant in the x-t plane.

Figure 1.1 shows a typical solution as a function of x/t. We can view this as a plot of
the solution as a function of x at time t = 1, for example. The structure of the solution
in the x-t plane is also shown.

In a real experimental shock tube, the state variables would not be discontinuous
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Figure 1.2. (a) Pressure contours for flow around an airfoil. (b) Pressure coefficient plot-
ted along the top and bottom surface. Figure taken from Yee and Harten[100]. (Reprinted
with permission.)

across the shock wave or contact discontinuity because of effects such as viscosity and heat
conduction. These are ignored in the Euler equations. If we include these effects, using the
full Navier-Stokes equations, then the solution of the partial differential equations would
also be smooth. However, these smooth solutions would be nearly discontinuous, in the
sense that the rise in density would occur over a distance that is microscopic compared to
the natural length scale of the shock tube. If we plotted the smooth solutions they would
look indistinguishable from the discontinuous plots shown in Figure 1.1. For this reason
we would like to ignore these viscous terms altogether and work with the simpler Euler
equations.

The Euler equations are used extensively in aerodynamics, for example in modeling
the flow of air around an aircraft or other vehicle. These are typically three dimensional
problems, although 2D and even 1D problems are sometimes of interest. A typical 2D
problem is the flow of air over an airfoil, which is simply the cross section of a wing.
Figure 1.2a (taken from Yee and Harten(1001) shows the contours of pressure in a steady
state solution for a particular airfoil shape when the freestream velocity is Mach 0.8. Note
the region above the upper surface of the airfoil where many contour lines coincide. This
is again a shock wave, visible as a discontinuity in the pressure. A weaker shock is visible
on the lower surface of the airfoil as well.

Small changes in the shape of an airfoil can lead to very different flow patterns, and
so the ability to experiment by performing calculations with a wide variety of shapes is
required. Of particular interest to the aerodynamical engineer is the pressure distribution
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along the airfoil surface. From this she can calculate the lift and drag (the vertical and
horizontal components of the net force on the wing) which are crucial in evaluating its
performance. Figure 1.2b shows the "pressure coefficient" along the upper and lower
surfaces. Again the shocks can be observed as discontinuities in pressure.

The location and strength of shock waves has a significant impact on the overall

solution, and so an accurate computation of discontinuities in the flow field is of great

importance.
The flow field shown in Figure 1.2 is a steady state solution, meaning the state

variables u(z, y, t) are independent of t. This simplifies the equations since the time
derivative terms drop out and (1.3) becomes

f(u)r + g(u)y = 0. (1.6)

In these notes we are concerned primarily with time-dependent problems. One way to
solve the steady state equation (1.6) is to choose some initial conditions (e.g. uniform
flow) and solve the time-dependent equations until a steady state is reached. This can
be viewed as an iterative method for solving the steady state equation. Unfortunately,
it is typically a very inefficient method since it may take thousands of time steps to
reach steady state. A wide variety of techniques have been developed to accelerate this
convergence to steady state by giving up time accuracy. The study of such acceleration
techniques is a whole subject in its own right and will not be presented here. However, the
discrete difference equations modeling (1.6) that are solved by such an iterative method
must again be designed to accurately capture discontinuities in the flow, and are often
identical to the spatial terms in a time-accurate method. Hence much of the theory
developed here is also directly applicable in solving steady state equations.

Unsteady problems also arise in aerodynamics, for example in modeling wing flutter,
or the flow patterns around rotating helicopter blades or the blades of a turbine. At high
speeds these problems involve the generation of shock waves, and their propagation and
interaction with other shocks or objects is of interest.

Meteorology and weather prediction is another area of fluid dynamics where conserva-
tion laws apply. Weather fronts are essentially shock waves - "discontinuities" in pressure
and temperature. However, the scales involved are vastly greater than in the shock tube
or airfoil problems discussed above, and the viscous and dissipative effects cause these
fronts to have a width of several miles rather than the fractions of an inch common in
aerodynamics.

Astrophysical modeling leads to systems of conservation laws similar to the Euler
equations for the density of matter in space. A spiral galaxy, for example, may consist of
alternating arms of high density and low density, separated by "discontinuities" that are
again propagating shock waves. In this context the shock width may be two or three light
years! However, since the diameter of a galaxy is on the order of 101 light years, this is
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Figure I.S. Solution of the Buckley-Leverett equation at three different times.

still a small distance in relative terms. In particular, in a practical numerical calculation
the shock width may well be less than the mesh width.

Modeling the dynamics of a single star, or the plasma in a fusion reactor, also requires
conservation laws. These now involve electromagnetic effects as well as fluid dynamics.
The magnetohydrodynamics (MHD) equations are one system of this type.

Multiphase flow problems in porous materials give rise to somewhat different systems
of conservation laws. One important application area is secondary oil recovery, in which
water (with some additives, perhaps) is pumped down one well in an effort to force more
oil out of other wells. One particularly simple model is the Buckley-Leverett equation,
a scalar conservation law for a single variable u representing the saturation of water in
the rock or sand (u = 0 corresponds to pure oil, u = 1 to pure water). Figure 1.3
shows the solution to this 1D problem at three different times. Here the initial condition
is u(x, 0) = 0 and a boundary condition u(0, t) = 1 is applied, corresponding to pure
water being pumped in at the left boundary. Note that the advancing front again has
a discontinuity, or propagating shock wave. The Buckley-Leverett equation is discussed
further in Chapter 4. More realistic models naturally involve systems of conservation laws
in two or three dimensions.

Systems of conservation laws naturally arise in a wide variety of other applications
as well. Examples include the study of explosions and blast waves, the propagation of
waves in elastic solids, the flow of glaciers, and the separation of chemical species by
chromatography, to name but a few.
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1.3 Mathematical difficulties

Discontinuous solutions of the type shown above clearly do not satisfy the PDE in the
classical sense at all points, since the derivatives are not defined at discontinuities. We
need to define what we mean by a solution to the conservation law in this case. To find
the correct approach we must first understand the derivation of conservation laws from
physical principles. We will see in Chapter 2 that this leads first to an integral form of the
conservation law, and that the differential equation is derived from this only by imposing
additional smoothness assumptions on the solution. The crucial fact is that the integral
form continues to be valid even for discontinuous solutions.

Unfortunately the integral form is more difficult to work with than the differential
equation, especially when it comes to discretization. Since the PDE continues to hold
except at discontinuities, another approach is to supplement the differential equations by
additional "jump conditions" that must be satisfied across discontinuities. These can be
derived by again appealing to the integral form.

To avoid the necessity of explicitly imposing these conditions, we will also introduce
the "weak form" of the differential equations. This again involves integrals and allows
discontinuous solutions but is easier to work with than the original integral form of the
conservation laws. The weak form will be fundamental in the development and analysis
of numerical methods.

Another mathematical difficulty that we must face is the possible nonuniqueness of
solutions. Often there is more than one weak solution to the conservation law with the
same initial data. If our conservation law is to model the real world then clearly only
one of these is physically relevant. The fact that the equations have other, spurious,
solutions is a result of the fact that our equations are only a model of reality and some
physical effects have been ignored. In particular, hyperbolic conservation laws do not
include diffusive or viscous effects. Recall, for example, that the Euler equations result
from the Navier-Stokes equations by ignoring fluid viscosity. Although viscous effects
may be negligible throughout most of the flow, near discontinuities the effect is always
strong. In fact, the full Navier-Stokes equations have smooth solutions for the simple
flows we are considering, and the apparent discontinuities are in reality thin regions with
very steep gradients. What we hope to model with the Euler equations is the limit of
this smooth solution as the viscosity parameter approaches zero, which will in fact be one
weak solution of the Euler equations.

Unfortunately there may be other weak solutions as well, and we must use our knowl-
edge of what is being ignored in order to pick out the correct weak solution. This suggests
the following general approach to defining a unique weak solution to a hyperbolic system
of conservation laws: introduce a diffusive term into the equations to obtain an equation
with a unique smooth solution, and then let the coefficient of this term go to zero. This
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"vanishing viscosity" method has some direct uses in the analysis of conservation laws, but
is clearly not optimal since it requires studying a more complicated system of equations.
This is precisely what we sought to avoid by introducing the inviscid equations in the
first place. For this reason we would like to derive other conditions that can be imposed
directly on weak solutions of the hyperbolic system to pick out the physically correct
solution. For gas dynamics we can appeal to the second law of thermodynamics, which
states that entropy is nondecreasing. In particular, as molecules of a gas pass through
a shock their entropy should increase. It turns out that this condition is sufficient to
recognize precisely those discontinuities that are physically correct and specify a unique
solution.

For other systems of conservation laws it is frequently possible to derive similar con-
ditions. These are generally called entropy conditions by analogy with gas dynamics.

Armed with the notion of weak solutions and an appropriate entropy condition, we
can define mathematically a unique solution to the system of conservation laws that is
the physically correct inviscid limit.

1.4 Numerical difficulties

When we attempt to calculate these solutions numerically, however, we face a new set
of problems. We expect a finite difference discretization of the PDE to be inappropriate
near discontinuities, where the PDE does not hold. Indeed, if we compute discontinuous
solutions to conservation laws using standard methods developed under the assumption
of smooth solutions, we typically obtain numerical results that are very poor.

As an example, Figure 1.4 shows some numerical results for the shock tube problem
discussed earlier in this chapter. If we use Godunov's method, a first order accurate
method described in Chapter 13, we obtain results that are very smeared in regions near
the discontinuities. As we will see, this is because natural first order accurate numerical
methods have a large amount of "numerical viscosity" that smoothes the solution in
much the same way physical viscosity would, but to an extent that is unrealistic by
several orders of magnitude. If we attempt to use a standard second order method, such
as MacCormack's method (a version of the Lax-Wendroff method for conservation laws),
we eliminate this numerical viscosity but now introduce dispersive effects that lead to
large oscillations in the numerical solution, also seen in Figure 1.4. These results are very
typical of what would be obtained with other standard first or second order methods.

Shock tracking. Since the PDEs continue to hold away from discontinuities, one
possible approach is to combine a standard finite difference method in smooth regions with
some explicit procedure for tracking the location of discontinuities. This is the numerical
analogue of the mathematical approach in which the PDEs are supplemented by jump
conditions across discontinuities. This approach is usually call "shock tracking". In one
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Figure 1.4. Solution of the shock tube problem at t = 0.5. The true density profile is
shown along with the numerical solution computed with three different methods: Godunov's
method (first order), MacCormack's method (second order), and a high resolution method.
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space dimension it is often a viable approach. In more space dimensions the discontinuities
typically lie along curves in 2D (recall Figure 1.2, for example) or surfaces in 3D and in
realistic problems there may be many such surfaces that interact in complicated ways as
time evolves. Although shock tracking is still possible, it becomes much more complicated
and will not be pursued in these notes.

Shock capturing. Ideally we would like to have a numerical method that will produce
sharp approximations to discontinuous solutions automatically, without explicit tracking
and use of jump conditions. Methods that attempt to do this are called "shock capturing"
methods. Over the past fifteen years a great deal of progress has been made in this
direction, and today a variety of such methods are available. Some of the features we
would like such a method to possess are:

At least second order accuracy on smooth solutions, and also in smooth regions of

a solution even when discontinuities are present elsewhere.

Sharp resolution of discontinuities without excessive smearing.

The absence of spurious oscillations in the computed solution.

An appropriate form of consistency with the weak form of the conservation law,
required if we hope to converge to weak solutions.

Nonlinear stability bounds that, together with consistency, allow us to prove con-
vergence as the grid is refined.

A discrete form of the entropy condition, allowing us to conclude that the approxi-
mations in fact converge to the physically correct weak solution.

Methods with the accuracy and resolution properties indicated above are often referred
to as high resolution methods. Our goal is to study the development and analysis of
these methods. Figure 1.4 shows the results obtained on the shock tube problem with
one of the high resolution methods described in Chapter 16.

Understanding these methods requires a good understanding of the mathematical
theory of conservation laws, as well as some physical intuition about the behavior of
solutions. Consequently, we will cover a considerable amount of material before we finally
introduce these methods.

For linear hyperbolic systems characteristics play a major role. For nonlinear prob-
lems, the generalization of this theory which is most frequently used in developing numer-
ical methods is the solution of a Riemann problem. This is simply the conservation
law together with particular initial data consisting of two constant states separated by a
single discontinuity,

J u, x<0,
u0(X) = l

u, x > 0.
(1.7)
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For the Euler equations, this is simply the "shock tube problem" described previously.
The solution of this problem has a relatively simple structure, and can be explicitly
calculated in many cases. With a numerical method we compute a set of discrete values
Uj , presumably approximations to u(x t") on some set of grid points {(x A great
deal of information about the local structure of the solution near (x t") is obtained by
solving a Riemann problem with data uj = U7 and u, = Uj"+,. Many numerical methods
make use of these Riemann solutions, and so we study the Riemann problem and its
solution in some detail in Chapters 6-9.

Obtaining the nonlinear stability results necessary to prove convergence is currently
impossible for most methods in use for systems of equations. For the simpler case of a
scalar equation, more analysis is possible. In particular, for many methods it is possible
to show that the total variation of the solution is nonincreasing with time. This is enough
to obtain some convergence results and also guarantees that spurious oscillations are
not generated. Methods with this property are called Total Variation Diminishing
Methods, or simply TVD Methods. Using this requirement as a design tool has lead to
the development of many good numerical methods. Moreover, it is possible to generalize
these scalar methods to systems of equations in a natural way using Riemann solutions.
Even though the analysis and convergence proofs do not yet carry over, the resulting
methods are often very successful in practice, having the "high resolution" properties
that we desire.

Most practical problems are in two or three space dimensions and additional difficul-
ties arise in this extension. There is currently some interest in the development of "fully
multidimensional" methods that make use of the multidimensional structure of the so-
lution locally, perhaps by some generalization of the Riemann problem. However, most
of the methods currently in use are heavily based on one-dimensional methods, general-
ized by "dimensional splitting" or similar techniques. For this reason we will concentrate
on one-dimensional methods, with some discussion at the end regarding generalizations.
Of course solving multidimensional problems in complicated geometries introduces many
other complications as well, such as grid generation and the proper treatment of boundary
conditions. These topics are beyond the scope of these lectures. Several of the compu-
tational fluid dynamics books referred to below contain excellent discussions of these
problems.

1.5 Some references

The next several chapters concern the mathematical theory of conservation laws. This
material is self contained to a large extent, but the reader may wish to consult some of
the excellent texts in this area for an alternative presentation or more details.

The elementary theory of linear hyperbolic equations is briefly reviewed in these notes,
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at least the aspects of particular importance in understanding the behavior of conservation
laws. A more thorough treatment can be found in many standard books on PDEs, for
example John[41]. This theory of hyperbolic equations with particular emphasis on the
Euler and Navier-Stokes equations is also presented in Kreiss-Lorenz[42).

Some of the basic theory of nonlinear conservation laws is neatly presented in the mono-
graph of Lax[45]. Majda[56] and Whitham[97] also present this material, with discussions
of many applications including the Euler equations. The book of Courant-Friedrichs[1l]
deals almost entirely with gas dynamics and the Euler equations, but includes much of
the general theory of conservation laws in this context and is very useful. The relatively
new book of Smoller[77] includes more recent mathematical results not found in the other
texts and is also an excellent reference in general.

Regarding numerical methods, many of the results and methods in the literature are
not collected in any text, and so there will be frequent references to journal publications.
For general background on numerical methods for PDEs, the new book of Strikwerda[82]
is highly recommended. The classic book of Richtmyer-Morton[63] contains a good de-
scription of many of the mathematical techniques used to study numerical methods, par-
ticularly for linear equations. It also includes a large section on methods for nonlinear
applications including fluid dynamics, but is out of date by now and does not discuss
many of the methods we will study.

The recent book of Sod[79] describes some of the more modem methods and their
mathematical analysis. Several other recent books on computational fluid dynamics are
also good references, including Anderson-Tannehill-Pletcher[1], Boris-Oran[3], Fletcher[23],
Hirsch[38], and Peyret-Taylor[61]. These books describe the fluid dynamics in more detail
as well as the additional numerical problems arising in several space dimensions.

Finally, for an excellent collection of photographs illustrating a wide variety of inter-
esting fluid dynamics, including shock waves, Van Dyke's Album of Fluid Motion[87] is
highly recommended.



2 The Derivation of Conservation
Laws

2.1 Integral and differential forms

To see how conservation laws arise from physical principles, we will begin by deriving the
equation for conservation of mass in a one-dimensional gas dynamics problem, for example
flow in a tube where properties of the gas such as density and velocity are assumed to
be constant across each cross section of the tube. Let x represent the distance along the
tube and let p(x, t) be the density of the gas at point x and time t. This density is defined
in such a way that the total mass of gas in any given section from zl to x2i say, is given
by the integral of the density: .

mass in [XI, xs] at time t =1 p(x, t) dx. (2.1)

If we assume that the walls of the tube are impermeable and that mass is neither created
nor destroyed, then the mass in this one section can change only because of gas flowing
across the endpoints xl or x2.

Now let v(x, t) be the velocity of the gas at the point x at time t. Then the rate of
flow, or flux of gas past this point is given by

mass flux at (x, t) = p(z, t)v (x, t). (2.2)

By our comments above, the rate of change of mass in [x1, z2] is given by the difference
in fluxes at x, and x2:

_2
,I J=

P(z, t) dx = p(x1, t)v(xi, t) - P(xs, t)v(xz, t). (2.3)

This is one integral form of the conservation law. Another form is obtained by integrat-
ing this in time from tl to t2i giving an expression for the mass in [XI, x21 at time t2 > t1
in terms of the mass at time tl and the total (integrated) flux at each boundary during

14
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this time period:

112
P(x,t2) dx = f

2

p(x,tt)dx (2.4)

,,
+ &I, t)v(xi, t) dt - 1 p(x2i t)v(x2, t) dt.

To derive the differential form of the conservation. law, we must now assume that
p(x, t) and v(x,t) are differentiable functions. Then using

P(x,t2) - P(x,tt) = I,' 8tp(x,t) dt (2.5)

and

in (2.4) gives

P(xs,t)v(xs,t) - P(xt,t)v(xt,t) =

JX'
8xx(P(x,t)v(x,t))dx (2.6)

8tp(x,t) + ax(p(x,t)v(x,t)) dx dt = 0. (2.7)f`' I='
Since this must hold for any section [XI, x2) and over any time interval [tt, t2), we conclude
that in fact the integrand in (2.7) must be identically zero, i.e.,

pt + (pv)= = 0 conservation of mass. (2.8)

This is the desired differential form of the conservation law for the conservation of mass.
The conservation law (2.8) can be solved in isolation only if the velocity v(x, t) is

known a priori or is known as a function of p(x, t). If it is, then pv is a function of
p alone, say pv = f(p), and the conservation of mass equation (2.8) becomes a scalar

conservation law for p,

Pt + f (p). = 0. (2.9)

More typically the equation (2.8) must be solved in conjunction with equations for the
conservation of momentum and energy. These equations will be derived and discussed
in more detail in Chapter 5. For now we simply state them for the case of the Euler
equations of gas dynamics:

(pv)t + (pv2 + p): = 0 conservation of momentum (2.10)

E, + (v(E + p))= = 0 conservation of energy (2.11)

Note that these equatons involve another quantity, the pressure p, which must be specified
as a given function of p, pv, and E in order that the fluxes are well defined functions of
the conserved quantities alone. This additional equation is called the equation of state
and depends on physical properties of the gas under study.
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If we introduce the vector u E lit3 as

p(x,t) uI

u(x,t) = p(x,t)v(x,1) u2

E(x t) u3

then the system of equations (2.8), (2.10), (2.11) can be written simply as

ut + f(u)= = 0

where

(2.12)

(2.13)

PV U2

f(u) = pv2 + p = u2/u1 + p(u) (2.14)

v(E + p) u2(u3 + p(u))/ui

Again, the form (2.13) is the differential form of the conservation laws, which holds in
the usual sense only where u is smooth. More generally, the integral form for a system of
rn equations says that

d
:2

It f u(x,t)dx = f(u(xl,t)) - f(u(x2,1)) (2.15)
,

for all x1, x2, t. Equivalently, integrating from tl to t2 gives

fr 2

u(x,t2)dx = I u(x,tI)dx

92+ f f(u(xi,t))dt-! f(u(x2,t))dt
I, i,

(2.16)

for all xj, x2, tj, and t2. These integral forms of the conservation law will be fundamental
in later analysis.

2.2 Scalar equations

Before tackling the complications of coupled systems of equations, we will first study the
case of a scalar equation, where m = 1. An example is the conservation of mass equation
(2.8) in the case where v is a known function of p(x,t). This does not happen in gas
dynamics, but can occur in other problems where the same conservation law holds. One
example is a simple model of traffic flow along a highway. Here p is the density of vehicles
and the velocity at which people drive is assumed to depend only on the local density.
This example is explored in detail in Chapter 4.

Another possibility is that the velocity v(x, t) is given a priori, completely independent
of the unknown p. Suppose, for example, that p represents the density of some chemical
in flowing water, a pollutant in a stream, for example. Since the total quantity of this
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chemical is conserved, the same derivation as above again yields (2.8). Now it is reasonable
to consider a case where v, the fluid velocity, is known from other sources and can be
assumed given. Changes in concentration of the chemical will have little or no effect on
the fluid dynamics and so there will be no coupling in which v depends on p.

Strictly speaking, this conservation law is not of the form (1.1), since the flux function
now depends explicitly on x and t as well as on p,

f(p,x,t) = Pv(z,t). (2.17)

However, the conservation law is still hyperbolic and this variable coefficient linear equa-
tion is convenient to study as an introductory example. Moreover, if the velocity is
constant, u(z, t) _- a, then f(p) = ap and (2.8) reduces to

pi + apr = 0. (2.18)

This equation is known as the linear advection equation or sometimes the one-way
wave equation. If this equation is solved for t > 0 with initial data

AX, 0) = Po(x) - oo < x < 00

then it is easy to check (assuming po is differentiable) that the solution is simply

P(z,t) = po(x - at).

(2.19)

(2.20)

Note that the initial profile simply moves downstream with velocity a, its shape un-
changed. It is reasonable to say that the solution is given by (2.20) even if the initial data
po(z) is not smooth, as will be justified in Chapter 3.

2.3 Diffusion

In the example just given of a concentration profile moving downstream, the result that
this profile remains unchanged may seem physically unreasonable. We expect mixing
and diffusion to occur as well as advection. Mixing caused by turbulence in the fluid
is clearly ignored in this simple one-dimensional model, but molecular diffusion should
occur even in a stream moving at constant velocity, since by "velocity" we really mean the
macroscopic average velocity of the molecules. Individual molecules travel with random
directions and speeds distributed about this average. In particular, the molecules of our
chemical undergo this random motion and hence there is a net motion of these molecules
away from regions of high concentration and towards regions of lower concentration. Since
the chemical is still conserved, we can incorporate this effect into the conservation law by
modifying the flux function appropriately.
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Consider the flux of the chemical past some point x in the tube or stream. In addition
to the advective flux ap there is also a net flux due to diffusion whenever the concentration
profile is not flat at the point x. This flux is determined by "Fourier's Law of heat
conduction" (heat diffuses in much the same way as the chemical concentration), which
says that the diffusive flux is simply proportional to the gradient of concentration:

diffusive flux = -Dpi. (2.21)

The diffusion coefficient D > 0 depends on the variance of the random component of the
particle speeds. The minus sign in (2.21) is needed since the net flux is away from higher
concentrations.

Combining this flux with the advective flux ap gives the flux function

f (p,p,) = ap - Dpi, (2.22)

and the conservation law becomes

pt + (ap - Dp.) = 0 (2.23)

or, assuming D is constant,
Pt + app = Dpi. (2.24)

Equation (2.24) is called the advection-diffusion equation (or sometimes the convection-
diffusion equation).

Note that the flux function f(p, per) now depends on p. as well as p. Equation (2.23),
while still a conservation law, is not of the form (1.1). In this case, the dependence of
f on the gradient completely changes the character of the equation and solution. The
advection-diffusion equation (2.24) is a parabolic equation while (2.18) is hyperbolic. One
major difference is that (2.24) always has smooth solutions for t > 0 even if the initial data
po(x) is discontinuous. This is analogous to the relation between the Euler equations and
Navier-Stokes equations described in Chapter 1. We can view (2.18) as an approximation
to (2.24) valid for D very small, but we may need to consider the effect of D in order to
properly interpret discontinuous solutions to (2.18).
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We begin our study of conservation laws by considering the scalar case. Many of the

difficulties encountered with systems of equations are already encountered here, and a

good understanding of the scalar equation is required before proceeding.

3.1 The linear advection equation

We first consider the linear advection equation, derived in Chapter 2, which we now write
as

ut+ au, = 0. (3.1)

The Cauchy problem is defined by this equation on the domain -oo < x < no, t > 0
together with initial conditions

u(x,0) = uo(x). (3.2)

As noted previously, the solution is simply

u(x,t) = uo(x - at) (3.3)

for t > 0. As time evolves, the initial data simply propagates unchanged to the right (if
a > 0) or left (if a < 0) with velocity a. The solution u(x, t) is constant along each ray
x - at = xo, which are known as the characteristics of the equation. (See Fig. 3.1 for
the case a > 0.)

Note that the characteristics are curves in the x-t plane satisfying the ordinary differ-
ential equations x'(t) = a, x(0) = xo. If we differentiate u(x, t) along one of these curves
to find the rate of change of u along the characteristic, we find that

d
u(x(t), t) = au(x(t), t) + au(x(t), t) x'(t)

= u, + au, (3.4)

= 0,

confirming that u is constant along these characteristics.

19
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More generally, we might consider a variable coefficient advection equation of the form

u, + (a(x)u). = 0, (3.5)

where a(x) is a smooth function. Recalling the derivation of the advection equation in
Chapter 2, this models the evolution of a chemical concentration u(x, t) in a stream with
variable velocity a(x).

We can rewrite (3.5) as
u, + a(x)u = -a'(x)u (3.6)

or
a +a(x) u(x,t) = -a'(x)u(x,1). (3.7)

It follows that the evolution of u along any curve x(t) satisfying

x'(t) = a(x(t)) (3.8)

X(0) = xo

satisfies a simple ordinary differential equation (ODE):

dtu(x(t),t) = -a'(x(t)) u(x(t),t). (3.9)

The curves determined by (3.8) are again called characteristics. In this case the solution
u(x,t) is not constant along these curves, but can be easily determined by solving two
sets of ODEs.

It can be shown that if uo(x) is a smooth function, say uo E C*(-oo, oo), then the
solution u(x, t) is equally smooth in space and time, u E C*((-oo, oo) x (0, oo)).

3.1.1 Domain of dependence
Note that solutions to the linear advection equations (3.1) and (3.5) have the following
property: the solution u(x,t) at any point (2,0 depends on the initial data uo only at
a single point, namely the point ao such that (2,> lies on the characteristic through
ao. We could change the initial data at any points other than lo without affecting the
solution u(a, 0. The set D(i, 0 = {2o} is called the domain of dependence of the
point (2, 0. Here this domain consists of a single point. For a system of equations this
domain is typically an interval, but a fundamental fact about hyperbolic equations is that
it is always a bounded interval. The solution at (x, 0 is determined by the initial data
within some finite distance of the point 2. The size of this set usually increases with
t, but we have a bound of the form D C {x : Ix - 21 < a,i) for some value a..
Conversely, initial data at any given point xo can influence the solution only within some
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Figure 3.1. Characteristics and solution for the advection equation.

D(:,[)

Figure 3.2. Domain of dependence and range of influence.

cone {x : Ix - xoI < a.t) of the x-t plane. This region is called the range of influence
of the point xo. See Figure 3.2 for an illustration. We summarize this by saying that
hyperbolic equations have finite propagation speed; information can travel with speed
at most a.. This has important consequences in developing numerical methods.

3.1.2 Nonsmooth data
In the manipulations performed above, we have assumed differentiability of u(x, t). How-
ever, from our observation that the solution along a characteristic curve depends only on
the one value uo(xo), it is clear that spatial smoothness is not required for this construction
of u(x, t) from uo(x). We can thus define a "solution" to the PDE even if uo(x) is not a
smooth function. Note that if uo(x) has a singularity at some point xo (a discontinuity in
uo or some derivative), then the resulting u(x, t) will have a singularity of the same order
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along the characteristic curve through xo, but will remain smooth along characteristics
through smooth portions of the data. This is a fundamental property of linear hyperbolic
equations: singularities propagate only along characteristics.

If uo is nondifferentiable at some point then u(x, t) is no longer a classical solution of
the differential equation everywhere. However, this function does satisfy the integral form
of the conservation law, which continues to make sense for nonsmooth u. Recall that the
integral form is more fundamental physically than the differential equation, which was
derived from the integral form under the additional assumption of smoothness. It thus
makes perfect sense to accept this generalized solution as solving the conservation law.

EXERCISE 3.1. Let f (u) = au, with a constant, and let uo(x) be any integrable
function. Verify that the function u(x, t) = uo(x - at) satisfies the integral form (2.16)
for any xl, X2, tl and t2.

Other approaches can also be taken to defining this generalized solution, which extend
better to the study of nonlinear equations where we can no longer simply integrate along
characteristics.

One possibility is to approximate the nonsmooth data uo(x) by a sequence of smooth
functions o(x), with

NO - uoIli < e

as e -' 0. Here It is the 1-norm, defined by

11vIh1 =
J-

Iv(x)I dx. (3.10)

For the linear equation we know that the PDE together with the smooth data uo has a
smooth classical solution u'(x, t) for all t > 0. We can now define the generalized solution
u(x, t) by taking the limit of u`(x, t) as e -+ 0. For example, the constant coefficient
problem (3.1) has classical smooth solutions

u,(x,t) = u0, (X - at)

and clearly at each time t the 1-norm limit exists and satisfies

u(x, t) = Ii muo(x - at) = uo(x - at)

as expected.

Unfortunately, this approach of smoothing the initial data will not work for nonlinear
problems. As we will see, solutions to the nonlinear problem can develop singularities
even if the initial data is smooth, and so there is no guarantee that classical solutions
with data uo(x) will exist.

A better approach, which does generalize to nonlinear equations, is to leave the initial
data alone but modify the PDE by adding a small diffusive term. Recall from Chapter 2
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that the conservation law (3.1) should be considered as an approximation to the advection-
diffusion equation

ut + au = eu_ (3.11)

for e very small. If we now let u'(x, t) denote the solution of (3.11) with data uo(x),
then u' E C°°((-oo,oo) x (0,oo)) even if uo(x) is not smooth since (3.11) is a parabolic
equation. We can again take the limit of u`(x, t) as a -. 0, and will obtain the same
generalized solution u(z,t) as before.

Note that the equation (3.11) simplifies if we make a change of variables to follow the
characteristics, setting

v'(x, t) = u'(x + at, t).

Then it is easy to verify that v' satsifies the heat equation

vi(x,t) = ev.'.(x,t). (3.12)

Using the well-known solution to the heat equation to solve for v(x, t), we have u'(x, t) =
v'(x - at, t) and so can explicitly calculate the "vanishing viscosity" solution in this case.

EXERCISE 3.2. Show that the vanishing viscosity solution limk_ou'(z,t) is equal to
uo(x - at).

3.2 Burgers' equation

Now consider the nonlinear scalar equation

ut + f(u): = 0 (3.13)

where f(u) is a nonlinear function of u. We will assume for the most part that f(u) is a
convex function, f"(u) > 0 for all u (or, equally well, f is concave with f"(u) < 0 `du). The
convexity assumption corresponds to a "genuine nonlinearity" assumption for systems of
equations that holds in many important cases, such as the Euler equations. The nonconvex
case is also important in some applications (e.g. oil reservoir simulation) but is more
complicated mathematically. One nonconvex example, the Buckley-Leverett equation, is
discussed in the next chapter.

By far the most famous model problem in this field is Burgers' equation, in which
f (u) = lug, so (3.13) becomes

ut + uu = 0. (3.14)

Actually this should be called the "inviscid Burgers' equation", since the equation studied
by Burgers[5] also includes a viscous term:

ut + uu = FU_. (3.15)
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u(z,t)

IT//Ill 11111
u(z,0)

Figure 3.3. Characteristics and solution for Burgers' equation (small t).

This is about the simplest model that includes the nonlinear and viscous effects of fluid
dynamics.

Around 1950, Hopf, and independently Cole, showed that the exact solution of the
nonlinear equation (3.15) could be found using what is now called the Cole-Hopf trans-
formation. This reduces (3.15) to a linear heat equation. See Chapter 4 of Whitham[97]
for details.

Consider the inviscid equation (3.14) with smooth initial data. For small time, a
solution can be constructed by following characteristics. Note that (3.14) looks like an
advection equation, but with the advection velocity u equal to the value of the advected
quantity. The characteristics satisfy

X '(t) = u(x(t),t) (3.16)

and along each characteristic u is constant, since

dtu(x(t),t) =
=

8tu(x(t),t)+a u(x(t),t)x(t)
uj + uu= (3.17)

= 0.

Moreover, since u is constant on each characteristic, the slope z'(t) is constant by (3.16)

and so the characteristics are straight lines, determined by the initial data (see Fig. 3.3).
If the initial data is smooth, then this can be used to determine the solution u(x, t) for

small enough t that characteristics do not cross: For each (z, t) we can solve the equation

x = f + uV,0)t (3.18)

for f and then
u(x,t) = u(f,0). (3.19)
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u(x,Tb)

///11111
Figure 3.4. Shock formation in Burgers' equation.

3.3 Shock formation

For larger t the equation (3.18) may not have a unique solution. This happens when the
characteristics cross, as will eventually happen if u,(x, 0) is negative at any point. At the
time Tb where the characteristics first cross, the function u(x, t) has an infinite slope -
the wave "breaks" and a shock forms. Beyond this point there is no classical solution of
the PDE, and the weak solution we wish to determine becomes discontinuous.

Figure 3.4 shows an extreme example where the initial data is piecewise linear and
many characteristics come together at once. More generally an infinite slope in the solu-
tion may appear first at just one point x, corresponding via (3.18) to the point 1' where
the slope of the initial data is most negative. At this point the wave is said to "break",
by analogy with waves on a beach.

EXERCISE 3.3. Show that if we solve (3.14) with smooth initial data uo(x) for which
uo(x) is somewhere negative, then the wave will break at time

Tb = -1 (3.20)minuo'(x)*

Generalize this to arbitrary convex scalar equations.

For times t > Tb some of the characteristics have crossed and so there are points x
where there are three characteristics leading back to t = 0. One can view the "solution"
u at such a time as a triple-valued function (see Fig. 3.5).

This sort of solution makes sense in some contexts, for example a breaking wave on a
sloping beach can be modeled by the shallow water equations and, for a while at least,
does behave as seen in Fig. 3.5, with fluid depth a triple-valued function.
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u(z,0)

Figure 3.5. Triple-valued solution to Burgers' equation at time t > T6.

Figure 3.6. Solution to the viscous Burgers' equation at time T6 for the data shown in
Figure 3.4.

However, in most physical situations this does not make sense. For example, the
density of a gas cannot possibly be triple valued at a point. What happens instead at
time TO

We can determine the correct physical behavior by adopting the vanishing viscosity
approach. The equation (3.14) is a model of (3.15) valid only for small a and smooth
u. When it breaks down, we must return to (3.15). If the initial data is smooth and e
very small, then before the wave begins to break the cu_ term is negligible compared
to the other terms and the solutions to both PDEs look nearly identical. Figure 3.3,
for example, would be essentially unchanged if we solved (3.15) with small a rather than
(3.14). However, as the wave begins to break, the second derivative term u.r grows much
faster than u., and at some point the eurr term is comparable to the other terms and
begins to play a role. This term keeps the solution smooth for all time, preventing the
breakdown of solutions that occurs for the hyperbolic problem.

For very small values of e, the discontinuous solution at Tb shown in Figure 3.4 would
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limiting solution as e -. 0

r- e = 0.005

Figure 3.7. Solution to the viscous Burgers' equation for two different values of e.

be replaced by a smooth continuous function as in Figure 3.6. As e - 0 this becomes
sharper and approaches the discontinuous solution of Figure 3.4.

For times t > T6, such as was shown in Figure 3.5, the viscous solution for e > 0 would
continue to be smooth and single valued, with a shape similar to that shown in Figure
3.6. The behavior as e - 0 is indicated in Figure 3.7.

It is this vanishing viscosity solution that we hope to capture by solving the inviscid
equation.

3.4 Weak solutions

A natural way to define a generalized solution of the inviscid equation that does not
require differentiability is to go back to the integral form of the conservation law, and say
that u(x, t) is a generalized solution if (2.7) is satisfied for all x1, x2, tj, t2.

There is another approach that results in a different integral formulation that is often
more convenient to work with. This is a mathematical technique that can be applied more
generally to rewrite a differential equation in a form where less smoothness is required
to define a "solution". The basic idea is to take the PDE, multiply by a smooth "test
function", integrate one or more times over some domain, and then use integration by
parts to move derivatives off the function u and onto the smooth test function. The result
is an equation involving fewer derivatives on u, and hence requiring less smoothness.

In our case we will use test functions 0 E C0 '(R x 1R). Here Co is the space of function
that are continuously differentiable with "compact support". The latter requirement
means that 4(x, t) is identically zero outside of some bounded set, and so the support of
the function lies in a compact set.

If we multiply u,+ff = 0 by O(x, t) and then integrate over space and time, we obtain
00 +=

1 [Out +Of(u)0] dxdt = 0. (3.21)

Now integrate by parts, yielding
0

J J
[m,u + Orf (u)] dx dt = - I ¢(x, 0)u(x, 0) dx. (3.22)
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Note that nearly all the boundary terms which normally arise through integration by
parts drop out due to the requirement that m have compact support, and hence vanishes
at infinity. The remaining boundary term brings in the initial conditions of the PDE,
which must still play a role in our weak formulation.

DEFINITION 3.1. The function u(x, t) is called a weak solution of the conservation
law if (3.22) holds for all functions 0 E Co(lR x lR+).

The advantage of this formulation over the original integral form (2.16) is that the
integration in (3.22) is over a fixed domain, all of IR x IR.+. The integral form (2.16) is
over an arbitrary rectangle, and to check that u(x,t) is a solution we must verify that
this holds for all choices of xj, x2, t1 and t2. Of course, our new form (3.22) has a similar
feature, we must check that it holds for all ¢ E Co, but this turns out to be an easier task.

Mathematically the two integral forms are equivalent and we should rightly expect a
more direct connection between the two that does not involve the differential equation.
This can be achieved by considering special test functions 4(x, t) with the property that

I for (x,t) E [XI, X21 X [t1,t2]
(3.23)

0 for (x, t) [XI - e, x2 + C] X [t1 -02+C]

and, with 0 smooth in the intermediate strip of width c. 'then 0. = 0, = 0 except in this
strip and so the integral (3.22) reduces to an integral over this strip. As c -* 0, 0r and
ji approach delta functions that sample u or f(u) along the boundaries of the rectangle
[x1, x2] x [t1, t2], so that (3.22) approaches the integral form (2.16). By making this
rigorous, we can show that any weak solution satisfies the original integral conservation
law.

The vanishing viscosity generalized solution we defined above is a weak solution in
the sense of (3.22), and so this definition includes the solution we are looking for. Unfor-
tunately, weak solutions are often not unique, and so an additional problem is often to
identify which weak solution is the physically correct vanishing viscosity solution. Again,
one would like to avoid working with the viscous equation directly, but it turns out that
there are other conditions one can impose on weak solutions that are easier to check and
will also pick out the correct solution. As noted in Chapter 1, these are usually called en-
tropy conditions by analogy with the gas dynamics case. The vanishing viscosity solution
is also called the entropy solution because of this.

3.5 The Riemann Problem

The conservation law together with piecewise constant data having a single discontinuity
is known as the Riemann problem. As an example, consider Burgers' equation ue+uu, = 0
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ut

U,

Figure 3.8. Shock wave.

with piecewise constant initial data

u(x,0)=ut x<0
lu, x>0.

The form of the solution depends on the relation between uI and u,.

Case I. uI > u,.
In this case there is a unique weak solution,

xst

(3.24)

u(x,t) =
{uI x<st

(3.25)
u, x > st

where
s = (u, + u,)/2 (3.26)

is the shock speed, the speed at which the discontinuity travels. A general expression
for the shock speed will be derived below. Note that characteristics in each of the regions
where u is constant go into the shock (see Fig. 3.8) as time advances.

EXERCISE 3.4. Verify that (3.25) is a weak solution to Burgers' equation by showing
that (3.22) is satisfied for all 0 E Co.

EXERCISE 3.5. Show that the viscous equation (3.15) has a travelling wave solution
of the form u`(x, t) = w(x - st) by deriving an ODE for w and verifying that this ODE
has solutions of the form

w(y) = u, + 2(u, - u,) (1 - tanh((ur - u,)y/4e)] (3.27)

with s again given by (3.26). Note that w(y) -. uI as y -. -oo and w(y) -+ u, as
y -+ +oo. Sketch this solution and indicate how it varies as e 0.

The smooth solution u`(x,t) found in Exercise 3.5 converges to the shock solution
(3.25) as a -* 0, showing that our shock solution is the desired vanishing viscosity solution.
The shape of u'(x, t) is often called the "viscous profile" for the shock wave.
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uI

ui

0

...............

0

Figure 3.9. Entropy-violating shock.

0 0

Figure 3.10. Rarefaction wave.

x= Si

Case H. uj < u,.
In this case there are infinitely many weak solutions. One of these is again (3.25),

(3.26) in which the discontinuity propagates with speed s. Note that characteristics now
go out of the shock (Fig. 3.9) and that this solution is not stable to perturbations. If the
data is smeared out slightly, or if a small amount of viscosity is added to the equation,
the solution changes completely.

Another weak solution is the rarefaction wave
ui x < uit

u(x,I) = x/t ujt < x < u,t (3.28)

U, x > u,t

This solution is stable to perturbations and is in fact the vanishing viscosity generalized
solution (Fig. 3.10).

EXERCISE 3.6. There are infinitely many other weak solutions to (3.14) when uI < u,.
Show, for example, that

uI x < smt

u(x, t)
um sort < x < umt
x/t umt < x < u,t
u, x > u,t
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is a weak solution for any u- with ul < u, < u, and s,,, = (ul + um)/2. Sketch the
characteristics for this solution. Find a class of weak solutions with three discontinuities.

EXERCISE 3.7. Show that for a general convex scalar problem (3.13) with data (3.24)
and ul < u the rarefaction wave solution is given by

r ul x < f'(u,)t
u(x, t) v(x/t) f'(ul)t < x < f'(u,)t (3.29)

l u, x > f'(u,)t

where v(e) is the solution to f'(v(e)) = C.

3.6 Shock speed

The propagating shock solution (3.25) is a weak solution to Burgers' equation only if the
speed of propagation is given by (3.26). The same discontinuity propagating at a different
speed would not be a weak solution.

The speed of propagation can be determined by conservation. If M is large compared
to st then by (2.15), f M u(x, t) dx must increase at the rate

d rM
dtJ-M u(x,t)dx = f(ut)-f(u,) (3.30)

= 2(ul+ur)(ul-u.)

for Burgers' equation. On the other hand, the solution (3.25) clearly has

M

1 M u(x, t) dx = (M + st)ul + (M - st)u, (3.31)

so that
d

It J_'. u(x, t) dx = s(ut - u,). (3.32)

Comparing (3.30) and (3.32) gives (3.26).
More generally, for arbitrary flux function f(u) this same argument gives the follow-

ing relation between the shock speed s and the states ul and u called the Rankine-
Hugoniot jump condition:

f(ul) - f(u,) = s(ul - u,).

For scalar problems this gives simply

s = f(ul) - f(u.) [fl
ul - u,

fu-1

(3.33)

(3.34)
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where indicates the jump in some quantity across the discontinuity. Note that any
jump is allowed, provided the speed is related via (3.34).

For systems of equations, u, - u, and f(u,) - f(u,) are both vectors while s is still
a scalar. Now we cannot always solve for s to make (3.33) hold. Instead, only certain
jumps u, - u, are allowed, namely those for which the vectors f(u,) - f(u,) and u, - u,
are linearly dependent.

EXAMPLE 3.1. For a linear system with f(u) = Au, (3.33) gives

A(ut - u,) = s(ul - u,), (3.35)

i.e., u, - u, must be an eigenvector of the matrix A and s is the associated eigenvalue.
For a linear system, these eigenvalues are the characteristic speeds of the system. Thus
discontinuities can propagate only along characteristics, a fact that we have already seen
for the scalar case.

So far we have considered only piecewise constant initial data and shock solutions con-
sisting of a single discontinuity propagating at constant speed. More typically, solutions
have both smooth regions, where the PDEs are satisfied in the classical sense, and prop-
agating discontinuities whose strength and speed vary as they interact with the smooth
flow or collide with other shocks.

The Rankine-Hugoniot (R-H) conditions (3.33) hold more generally across any prop-
agating shock, where now u, and u, denote the values immediately to the left and right
of the discontinuity and s is the corresponding instantaneous speed, which varies along
with u, and u,.

EXAMPLE 3.2. As an example, the following "N wave" is a solution to Burgers'
equation:

ux,t (x/t -\I3.36
( ) 0 otherwise ( )

This solution has two shocks propagating with speeds f 771. The right-going shock has
left and right states u, = f/t = 1/f, u, = 0 and so the R-H condition is satisfied, and
similarly for the left-going shock. See Figure 3.11.

To verify that the R-H condition must be instantaneously satisfied when u, and u,
vary, we apply the same conservation argument as before but now to a small rectangle as
shown in Figure 3.12, with x2 = x, + Ox and t2 = t, + At. Assuming that u is smoothly
varying on each side of the shock, and that the shock speed s(t) is consequently also
smoothly varying, we have the following relation between Ox and At:

Ox = s(t,)ot + O(Ot2). (3.37)
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0

Figure 3.11. N wave solution to Burgers' equation.

XI X, + Ax

Figure 3.12. Region of integration for shock speed calculation.
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From the integral form of the conservation law, we have

r,+Or r,+Or

I u(x, t, + At) dx = I u(x, t,) dx (3.38)

+ r,,+ne
f (u(xi, t)) dt - .f(u(xi + Ox, t)) dt.

e, e,

In the triangular portion of the infinitesimal rectangle that lies to the left of the shock,
u(x, t) = ut(t,) + O(At), while in the complementary triangle, u(z, t) = u,(t,) + O(At).
Using this in (3.38) gives

Ax ut = Ax U, + At f (ut) - At f (u,) + O(At').

Using the relation (3.37) in the above equation and then dividing by At gives

sAt(ut - ur) = At(f (ut) - f(ur)) + O(At)

where s, ut, and U. are all evaluated at t,. Letting At -+ 0 gives the R-H condition (3.33).

EXERCISE 3.8. Solve Burgers' equation with initial data

12 x<0
u0(x)= 1 0<x<2

0 x>2.
(3.39)

Sketch the characteristics and shock paths in the x-t plane. Hint: The two shocks merge
into one shock at some point.

The equal area rule. One technique that is useful for determining weak solutions
by hand is to start with the "solution" constructed using characteristics (which may be
multi-valued if characteristics cross) and then eliminate the multi-valued parts by inserting
shocks. The shock location can be determined by the "equal area rule", which is best
understood by looking at Figure 3.13. The shock is located such that the shaded regions
cut off on either side have equal areas, as in Figure 3.13b. This is a consequence of
conservation - the integral of the discontinuous weak solution (shaded area in Figure
3.13c) must be the same as the area "under" the multi-valued solution (shaded area in
3.13a), since both "solve" the same conservation law.

3.7 Manipulating conservation laws

One danger to observe in dealing with conservation laws is that transforming the differ-
ential form into what appears to be an equivalent differential equation may not give an
equivalent equation in the context of weak solutions.
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Figure 3.13. Equal area rule for shock location.

EXAMPLE 3.3. If we multiply Burgers' equation

1
ui + (2u2)r = 0 (3.40)

by 2u, we obtain 2uu, + 2u2u, = 0, which can be rewritten as

(u2)t + (3u3)s = 0. (3.41)

This is again a conservation law, now for u2 rather than u itself, with flux function f (u2) _
3(u2)3/2. The differential equations (3.40) and (3.41) have precisely the same smooth

solutions. However, they have different weak solutions, as we can see by considering the
Riemann problem with u, > u,. The unique weak solution of (3.40) is a shock traveling
at speed

1lug 1

s = [ul = (w+u.), (3.42)

whereas the unique weak solution to (3.41) is a shock traveling at speed

xua
2 u2 - u3

ug 3 u; u
It is easy to check that

(3.43)

1 (ut - u.)2 (3.44)
6 (ut + u,)

and so 82 54 81 when ut # u,, and the two equations have different weak solutions. The
derivation of (3.41) from (3.40) requires manipulating derivatives in a manner that is valid
only when u is smooth.
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3.8 Entropy conditions

As demonstrated above, there are situations in which the weak solution is not unique and
an additional condition is required to pick out the physically relevant vanishing viscosity
solution. The condition which defines this solution is that it should be the limiting solution
of the viscous equation as c - 0. but this is not easy to work with. We want to find
simpler conditions.

For scalar equations there is an obvious condition suggested by Figures 3.8 and 3.10.
A shock should have characteristics going into the shock, as time advances. A propa-
gating discontinuity with characteristics coming out of it, as in Figure 3.9, is unstable to
perturbations. Either smearing out the initial profile a little, or adding some viscosity
to the system, will cause this to be replaced by a rarefaction fan of characteristics, as in
Figure 3.10. This gives our first version of the entropy condition:

ENTROPY CONDITION (VERSION I): A discontinuity propagating with speeds given
by (3.33) satisfies the entropy condition if

f'(u,) > s > f'(u,). (3.45)

Note that f'(u) is the characteristic speed. For convex f, the Rankine-Hugoniot
speed s from (3.34) must lie between f'(ul) and f'(u,), so (3.45) reduces to simply the
requirement that f'(ul) > f'(u,), which again by convexity requires u/ > is,.

A more general form of this condition, due to Oleinik, applies also to nonconvex scalar
flux functions f:

ENTROPY CONDITION (VERSION II): u(x, t) is the entropy solution if all discontinu-
ities have the property that

f(u) - f(ul) > s > f(u) - f(u,)
u-u, - - u - u, (3.46)

for all u between ul and u,.

For convex f, this requirement reduces to (3.45).
Another form of the entropy condition is based on the spreading of characteristics in a

rarefaction fan. If u(x, t) is an increasing function of x in some region, then characteristics
spread out if f" > 0. The rate of spreading can be quantified, and gives the following
condition, also due to Oleinik[57].

ENTROPY CONDITION (VERSION III): u(x,t) is the entropy solution if there is a
constant E > 0 such that for all a > 0, t > 0 and x E lit.,

u(x + a, 1) - u(x,t)
<
E

(3.47)
a t
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Note that for a discontinuity propagating with constant left and right states u1 and u,,
this can be satisfied only if u, - ul < 0, so this agrees with (3.45). The form of (3.47) may
seem unnecessarily complicated, but it turns out to be easier to apply in some contexts. In
particular, this formulation has advantages in studying numerical methods. One problem
we face in developing numerical methods is guaranteeing that they converge to the correct
solution. Some numerical methods are known to converge to the wrong weak solution in
some instances. The criterion (3.45) is hard to apply to discrete solutions - a discrete
approximation defined only at grid points is in some sense discontinuous everywhere. If
U; < U;+1 at some grid point, how do we determine whether this is a jump that violates
the entropy condition, or is merely part of a smooth approximation of a rarefaction wave?
Intuitively, we know the answer: it's part of a smooth approximation, and therefore
acceptable, if the size of this jump is O(Ax) as we refine the grid and Ax -. 0. To turn
this into a proof that some method converges to the correct solution, we must quantify
this requirement and (3.47) gives what we need. Taking a = Ax, we must ensure that
there is a constant E > 0 such that

((ElUi+1(t)-U,(t)<\t)A. (3.48)

for all t > 0 as Ax -* 0. This inequality can often be established for discrete methods.
In fact, Oleinik's original proof that an entropy solution to (3.13) satisfying (3.47)

always exists proceeds by defining such a discrete approximation and then taking limits.
This is also presented in Theorem 16.1 of Smoller[77].

3.8.1 Entropy functions
Yet another approach to the entropy condition is to define an entropy function q(u)
for which an additional conservation law holds for smooth solutions that becomes an
inequality for discontinuous solutions. In gas dynamics, there exists a physical quantity
called the entropy that is known to be constant along particle paths in smooth flow and
to jump to a higher value as the gas crosses a shock. It can never jump to a lower value,
and this gives the physical entropy condition that picks out the correct weak solution in
gas dynamics.

Suppose some function p(u) satisfies a conservation law of the form

TI(U)1 + V(u)r = 0

for some entropy flux tk(u). Then we can obtain from this, for smooth u,

i'(U)U1 + VAU)Ur = 0.

(3.49)

(3.50)
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Recall that the conservation law (3.13) can be written as u, + f'(u)ur = 0. Multiply this
by q'(u) and compare with (3.50) to obtain

Ou) = rj (u)f'(u). (3.51)

For a scalar conservation law this equation admits many solutions 17(u), +,(u). For a
system of equations Q and iG are still scalar functions, but now (3.51) reads Vt/i(u) =
f'(u)Orl(u), which is a system of m equations for the two variables q and r'. If m > 2
this may have no solutions.

An additional condition we place on the entropy function is that it be convex, n"(u) >
0, for reasons that will be seen below.

The entropy p(u) is conserved for smooth flows by its definition. For discontinuous
solutions, however, the manipulations performed above are not valid. Since we are par-
ticularly interested in how the entropy behaves for the vanishing viscosity weak solution,
we look at the related viscous problem and will then let the viscosity tend to zero. The
viscous equation is

ut + f(u)r = fu_ (3.52)

Since solutions to this equation are always smooth, we can derive the corresponding
evolution equation for the entropy following the same manipulations we used for smooth
solutions of the inviscid equation, multiplying (3.52) by p'(u) to obtain

rf (u)1 + t(u)s = Ert (u)usr (3.53)

We can now rewrite the right hand side to obtain

q(u)t + E(rl (u)ur)r - (3.54)

Integrating this equation over the rectangle [xl,x2] x [tt,12] gives

1
t,

1 , t
tl(u)t ++'(u). dx dt = If

y
[0'(u(x2, t))ur(x2, t) - t'(u(xt, t))ur(xt, t)] dt

ez sz

-c n"(u)u2 dx dt.1I
t, r,

As e -* 0, the first term on the right hand side vanishes. (This is clearly true if u is smooth
at xt and x2, and can be shown more generally.) The other term, however, involves
integrating u2. over the [xt,x2] x [tt,t2] If the limiting weak solution is discontinuous
along a curve in this rectangle, then this term will not vanish in the limit. However, since
E > 0, u= > 0 and 11" > 0 (by our convexity assumption), we can conclude that the
right hand side is nonpositive in the limit and hence the vanishing viscosity weak solution
satisfies

1182 /r2

h Jtr,
rl(u)t + ,'(u)r dx dt < 0 (3.55)
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for all x1, x2, tl and t2. Alternatively, in integral form,

IJ ,7(u(x, t)) dx + 0(u(x, t)) dt 0, (3.56)
_R t, h r,

J
2 p(u(x,t2))dx <

112
q(u(x,t,))dx (3.57)

(4`2 P(u(x2, t)) dt - 1y

tl(u(xr, t))dt) .

Consequently, the total integral of q is not necessarily conserved, but can only decrease.
(Note that our mathematical assumption of convexity leads to an "entropy function" that
decreases, whereas the physical entropy in gas dynamics increases.) The fact that (3.55)
holds for all x1, x2, t, and t2 is summarized by saying that p(u),++/'(u)= < 0 in the weak
sense. This gives our final form of the entropy condition, called the entropy inequality.

ENTROPY CONDITION (VERSION IV): The function u(x, t) is the entropy solution of
(3.13) if, for all convex entropy functions and corresponding entropy fluxes, the inequality

rl(u), +>U(u)r 5 0 (3.58)

is satisfied in the weak sense.

This formulation is also useful in analyzing numerical methods. If a discrete form of
this entropy inequality is known to hold for some numerical method, then it can be shown
that the method converges to the entropy solution.

Just as for the conservation law, an alternative weak form of the entropy condition
can be formulated by integrating against smooth test functions 0, now required to be
nonnegative since the entropy condition involves an inequality. The weak form of the
entropy inequality is

10- J
- ¢,(x, t)rl(u(x,1)) + W=(x, t)rf'(u(x, t)) dx dt

4'(x,0)q(u(x,0))dx (3.59)

for all 0 E CC(lR x IR) with 4'(x, t) > 0 for all x, I.

EXAMPLE 3.4. Consider Burgers' equation with f(u) = zu2 and take q(u) = u2.
Then (3.51) gives 0'(u) = 2u2 and hence +&(u) = 30. Then entropy condition (3.58)
reads

(u2), + (2u3) < 0. (3.60)
3
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For smooth solutions of Burgers' equation this should hold with equality, as we have
already seen in Example 3.3. If a discontinuity is present, then integrating (u2), + (3u3)Z
over an infinitesmal rectangle as in Figure 3.12 gives

I ry u2(x, t) dx l + 1
e,

2u3(x, t) dt l
-2

2 1 A, 3 tl

= s1At(u2 j -U2) + 3At(u; - u,) + O(Ai2)

= At(u,2 - u2,)(31 - 82) + O(At2)

-
6

(u, - u,)3At + O(At2)

where sl and sq are given by (3.42) and (3.43) and we have used (3.44). For small At > 0,
the O(At2) term will not affect the sign of this quantity and so the weak form (3.56) is
satisfied if and only if (u, - u,.)3 > 0, and hence the only allowable discontinuities have
u, > ur, as expected.



4 Some Scalar Examples

In this chapter we will look at a couple of examples of scalar conservation laws with
some physical meaning, and apply the theory developed in the previous chapter. The
first of these examples (traffic flow) should also help develop some physical intuition that
is applicable to the more complicated case of gas dynamics, with gas molecules taking
the place of cars. This application is discussed in much more detail in Chapter 3 of
Whitham[97]. The second example (two phase flow) shows what can happen when f is
not convex.

4.1 'IYafiic flow

Consider the flow of cars on a highway. Let p denote the density of cars (in vehicles
per mile, say) and u the velocity. In this application p is restricted to a certain range,
0 < p < p,,, where p, is the value at which cars are bumper to bumper.

Since cars are conserved, the density and velocity must be related by the continuity
equation derived in Section 1,

P, + (Pu), = 0. (4.1)

In order to obtain a scalar conservation law for p alone, we now assume that u is a given
function of p. This makes sense: on a highway we would optimally like to drive at some
speed u,,. (the speed limit perhaps), but in heavy traffic we slow down, with velocity
decreasing as density increases. The simplest model is the linear relation

u(P) = u,,,s (1 - P/P-)- (4.2)

At zero density (empty road) the speed is u., but decreases to zero as p approaches
p,,,,,. Using this in (4.1) gives

P, + f(p), = 0

where

f(P) = Pun, (1 - P/P )

41
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Whitham notes that a good fit to data for the Lincoln tunnel was found by Greenberg in
1959 by

f (P) = aP log(p,,, /P),

a function shaped similar to (4.4).
The characteristic speeds for (4.3) with flux (4.4) are

f(P) = u,,,.(1 - 2P/P-),

while the shock speed for a jump from p, to pr is

5 = APO - f(Pr)
= u,,,.(1 - (PI + Pr)/P,,,a )

P, - Pr

The entropy condition (3.45) says that a propagating shock must satisfy f'(p,) > f'(pr)
which requires p, < pr. Note this is the opposite inequality as in Burgers' equation since
here f is concave rather than convex.

We now consider a few examples of solutions to this equation and their physical inter-
pretation.

EXAMPLE 4.1. Take initial data

P(-,0)
PP, X<O

r x > 0
(4.7)

where 0 < p, < pr < p.. Then the solution is a shock wave traveling with speed s given
by (4.6). Note that although u(p) > 0 the shock speed s can be either positive or negative
depending on p, and pr.

Consider the case pr = p. and p, < p,,,,,. Then s < 0 and the shock propagates to
the left. This models the situation in which cars moving at speed u, > 0 unexpectedly
encounter a bumper-to-bumper traffic jam and slam on their brakes, instantaneously
reducing their velocity to 0 while the density jumps from p, to p,,,.. This discontinuity
occurs at the shock, and clearly the shock location moves to the left as more cars join
the traffic jam. This is illustrated in Figure 4.1, where the vehicle trajectories ("particle
paths") are sketched. Note that the distance between vehicles is inversely proportional
to density. (In gas dynamics, 1/p is called the specific volume.)

The particle paths should not be confused with the characteristics, which are shown
in Figure 4.2 for the case p, = 2p,,,. (so u, = Zu,,,.), as is the case in Figure 4.1 also.
In this case, f'(p,) = 0. If p, > zp,,,. then f'(p,) < 0 and all characteristics go to the
left, while if p, < zpthen f'(p,) > 0 and characteristics to the left of the shock are
rightward going.

EXERCISE 4.1. Sketch the particle paths and characteristics for a case with p, + pr <

Pm -
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EXAMPLE 4.2. Again consider a Riemann problem with data of the form (4.7), but
now take 0 < p, < PC < p,. so that the solution is a rarefaction wave. Figure 4.3 shows
the case where pi = p,,,, and p, = This might model the startup of cars after a
light turns green. The cars to the left are initially stationary but can begin to accelerate
once the cars in front of them begin to move. Since the velocity is related to the density
by (4.2), each driver can speed up only by allowing the distance between her and the
previous car to increase, and so we see a gradual acceleration and spreading out of cars.

As cars go through the rarefaction wave, the density decreases. Cars spread out or
become "rarefied" in the terminology used for gas molecules.

Of course in this case there is another weak solution to (4.3), the entropy-violating

shock. This would correspond to drivers accelerating instantaneously from ul = 0 to

u, > 0 as the preceding car moves out of the way. This behavior is not usually seen in
practice except perhaps in high school parking lots.

The reason is that in practice there is "viscosity", which here takes the form of slow
response of drivers and automobiles. In the shock wave example above, the instantaneous
jump from ul > 0 to u, = 0 as drivers slam on their brakes is obviously a mathematical
idealization. However, in terms of modeling the big picture - how the traffic jam evolves
- the detailed structure of u(x) in the shock is unimportant.

EXERCISE 4.2. For cars starting at a green light with open road ahead of them, the
initial conditions would really be (4.7) with pi = p,,,,,, and p, = 0. Solve this Riemann
problem and sketch the particle paths and characteristics.

EXERCISE 4.3. Sketch the distribution of p and u at some fixed time t > 0 for the
solution of Exercise 4.2.

EXERCISE 4.4. Determine the manner in which a given car accelerates in the solution
to Exercise 4.2, i.e. determine v(t) where v represents the velocity along some particular
particle path as time evolves.

4.1.1 Characteristics and "sound speed"
For a scalar conservation law, information always travels with speed f'(p) as long as the
solution is smooth. If fact, the solution is constant along characteristics since

PO + P(P)P- = 0.

We can obtain another interpretation of this if we consider the special case of nearly
constant initial data, say

P(x,0) = Po + ep,(x,0). (4.9)
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Figure 4.3. Rarefaction wave (vehicle trajectories), with data PI = P., p, = 12P-'

Figure 4.4. Characteristics.
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Then we can approximate our nonlinear equation by a linear equation. Assuming

P(x,t) = PO + EPi(x,t)

remains valid with pi = 0(1), we find that

Pe = fPit
P. = EPi.

P(P) = f'(Po) + Eplf"(Po) + 0(e2).

(4.10)

Using these in (4.8) and dividing by E gives

Pit + f'(Po)Pi- = -of"(Po)PIP1. + O(e2). (4.11)

For small f the behavior, at least for times t < 1/E, is governed by the equation obtained
by ignoring the right hand side. This gives a constant coefficient linear advection equation
for pi(x,t):

Pig + f'(Po)PI. = 0. (4.12)

The initial data simply propagates unchanged with velocity f'(po).
In the traffic flow model this corresponds to a situation where cars are nearly evenly

spaced with small variation in the density. These variations will propagate with velocity
roughly f'(Po)

As a specific example, suppose the data is constant except for a small rise in density
at some point, a crowding on the highway. The cars in this disturbance are going slower
than the cars either ahead or behind, with two effects. First, since they are going slower
than the cars behind, the cars behind will start to catch up, seeing a rise in their local
density and therefore be forced to slow down. Second, since the cars in the disturbance
are going slower than the cars ahead of them, they will start to fall behind, leading to
a decrease in their local density and an increase in speed. The consequence is that the
disturbance will propagate "backwards" through the line of cars. Here by "backwards" I
mean from the standpoint of any given driver. He slows down because the cars in front
of him have, and his behavior in turn affects the drivers behind him.

Note that in spite of this, the speed at which the disturbance propagates could be

positive, if f'(po) > 0, which happens if po < Zp,,,.,,. This is illustrated in Figure 4.5. Here
the vehicle trajectories are sketched. The jog in each trajectory is the effect of the car

slowing down as the disturbance passes.
The nearly linear behavior of small amplitude disturbances is also seen in gas dynamics.

In fact, this is precisely how sound waves propagate. If the gas is at rest, vo = 0 in the
linearization, then sound propagates at velocities *c, where the sound speed c depends
on the equation of state (we will see that c2 is the derivative of pressure with respect to
density at constant entropy). If we add some uniform motion to the gas, so vo 96 0, then
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p(z,0)

Figure 4.5. Vehicle trajectories and propagation of a small disturbance.

sound waves propagate at speeds vo ± c. This simple shift arises from the fact that you
can add a uniform velocity to a solution of the Euler equations and it remains a solution.

This is not true for the traffic flow model, since u is assumed to be a given function
of p. However, it should be be clear that the velocity which corresponds most naturally
to the sound speed in gas dynamics is

c = f'(po) - u(po), (4.13)

so that disturbances propagate at speed f'(po) = u(po) + c, or at speed c relative to the

traffic flow. Using (4.2) and (4.5), this becomes

c = -u,, po/p-. (4.14)

EXERCISE 4.5. What is the physical significance of the fact that c < 0?

In gas dynamics the case v < c is called subsonic flow, while if v > c the flow is
supersonic. By analogy, the value po = 1p. at which f'(po) = 0 is called the sonic
point, since this is the value for which u(po) = c. For p < 1p,,,.,,, the cars are moving
faster than disturbances propagate backwards through the traffic, giving the situation
already illustrated in Figure 4.5.

EXERCISE 4.6. Sketch particle paths similar to Figure 4.5 for the case po sp,,,...

EXERCISE 4.7. Consider a shock wave with left and right states p, and p,, and let the
shock strength approach zero, by letting p, -4 pr. Show that the shock speed for these weak
shocks approaches the linearized propagation speed f'(pr).



48 4 Some Scalar Examples
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Figure 4.6. Flux function for Buckley-Leverett equation.

4.2 Two phase flow

When f is convex, the solution to the Riemann problem is always either a shock or a
rarefaction wave. When f is not convex, the entropy solution might involve both. To
illustrate this, we will look at the Buckley-Leverett equations, a simple model for two
phase fluid flow in a porous medium. One application is to oil reservoir simulation. When
an underground source of oil is tapped, a certain amount of oil flows out on its own due
to high pressure in the reservoir. After the flow stops, there is typically a large amount of
oil still in the ground. One standard method of "secondary recovery" is to pump water
into the oil field through some wells, forcing oil out through others. In this case the two
phases are oil and water, and the flow takes place in a porous medium of rock or sand.

The Buckley-Leverett equations are a particularly simple scalar model that captures
some features of this flow. In one space dimension the equation has the standard conser-
vation law form (3.13) with

U2

f(u)
= u2 + a(l - u)2

(4.15)

where a is a constant. Figure 4.6 shows f(u) when a = 1/2. Here u represents the

saturation of water and so lies between 0 and 1.
Now consider the Riemann problem with initial states u1 = 1 and u, = 0, modeling

the flow of pure water (u = 1) into pure oil (u = 0). By following characteristics, we can
construct the triple-valued solution shown in Figure 4.7a. Note that the characteristic
velocities are f'(u) so that the profile of this bulge seen here at time t is simply the graph
of tf'(u) turned sideways.

We can now use the equal area rule to replace this triple-valued solution by a correct
shock. The resulting weak solution is shown in Figure 4.7b, along with the characteristics
in Figure 4.7c.



4.2 Two phase flow

u=1

.u=0 .........I

(a)

Figure 4.7. Riemann solution for Buckley-Leverett equation.
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rarefaction

EXERCISE 4.8. Use the equal area rule to find an expression for the shock location as
a function oft and verify that the Rankine-Hugoniot condition is always satisfied.

If you do the above exercise, you will find that the shock location moves at a constant
speed, and the post-shock value u' is also constant. This might be surprising, unless you
are familiar with self-similarity of solutions to the Riemann problem, in which case you
should have expected this. This will be discussed later.

Note the physical interpretation of the solution shown in Figure 4.7. As the water
moves in, it displaces a certain fraction u' of the oil immediately. Behind the shock, there
is a mixture of oil and water, with less and less oil as time goes on. At a production
well (at the point x = 1, say), one obtains pure oil until the shock arrives, followed by
a mixture of oil and water with diminishing returns as time goes on. It is impossible to
recover all of the oil in finite time by this technique.

Note that the Riemann solution involves both a shock and a rarefaction wave. If f(u)
had more inflection points, the solution might involve several shocks and rarefactions.

EXERCISE 4.9. Explain why it is impossible to have a Riemann solution involving
both a shock and a rarefaction when f is convex or concave.

It turns out that the solution to the Riemann problem can be determined from the
graph of f in a simple manner. If ur < of then construct the convex hull of the set
{(x, y) : u, < x < of and y < f (x)}. The convex hull is the smallest convex set containing
the original set. This is shown in Figure 4.8 for the case of = 1, u, = 0.

If we look at the upper boundary of this set, we see that it is composed of a straight
line segment from (0,0) to (u', f(u')) and then follows y = f(x) up to (1, 1). The point
of tangency u' is precisely the post-shock value. The straight line represents a shock
jumping from u = 0 to u = u' and the segment where the boundary follows f(x) is the
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Figure 4.8. Convex hall showing shock and rarefaction.

rarefaction wave. This works more generally for any two states (provided uj > u,) and
for any f.

Note that the slope of the line segment is s' = [f(u') - f(u,)] / [u' - u,], which is
precisely the shock speed. The fact that this line is tangent to the curve f(x) at u' means
that s' = f'(u'), the shock moves at the same speed as the characteristics at this edge of
the rarefaction fan, as seen in Figure 4.7c.

If the shock were connected to some point u < u', then the shock speed [f(6) - flu,)]
/ [u - u,] would be less than f'(u), leading to a triple-valued solution. On the other hand,
if the shock were connected to some point above u' then the entropy condition (3.46)
would be violated. This explains the tangency requirement, which comes out naturally
from the convex hull construction.

EXERCISE 4.10. Show that (8.46) is violated if the shock goes above u'.

If ul < u, then the same idea works but we look instead at the convex hull of the set
of points above the graph, {(x, y) : ut < x < u, and y > f(x)}.

Note that if f is convex, then the convex hull construction gives either a single line
segment (single shock) if ug > u, or the function f itself (single rarefaction) if u< < u,.
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Before developing the theory for systems of conservation laws, it is useful to have some
specific examples in mind. In this chapter we will derive some systems of conservation
laws.

5.1 The Euler equations

The Euler equations of gas dynamics are a particularly important example. The continuity
equation for conservation of mass was derived in Chapter 2. Here we will consider the
momentum and energy equations in more detail, as well as the equation of state and a
few other quantities of physical (and mathematical) significance, such as the entropy. We
will also look at some simplifications, the isentropic and isothermal cases, where systems
of two equations are obtained. These provide very good examples which will be used in
the coming chapters to illustrate the nonlinear theory.

The derivations here will be very brief, with an emphasis on the main ideas with-
out a detailed description of the physics. A more thorough introduction can be found in
Whitham[971, Courant-Friedrichs[111, or any good book on gas dynamics, e.g. [511,[711,[94].

Recall that p is the density, v the velocity, E the total energy, and p the pressure of

the gas. The continuity equation is

pt + (pv)r = 0. (5.1)

The mass flux is given by pv. More generally, for any quantity z that is advected with the
flow there will be a contribution to the flux for z of the form zv. Thus, the momentum
equation has a contribution of the form (pv)v = pv2 and the energy equation has a flux
contribution Ev.

In addition to advection, there are forces on the fluid that cause acceleration due to
Newton's laws, and hence changes in momentum. If there are no outside forces, then
the only force is due to variations in the fluid itself, and is proportional to the pressure
gradient which is simply p= in one dimension. Combining this with the advective flux

51
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gives the momentum equation

(Pv)t + (Pv2 + P). = 0.

The total energy E is often decomposed as

E =

2

pv2 + pe.

The first term here is the kinetic energy, while pe is the internal energy. The variable
e, internal energy per unit mass, is called the specific internal energy. (In general
"specific" means "per unit mass"). Internal energy includes rotational and vibrational
energy and possibly other forms of energy in more complicated situations. In the Euler
equations we assume that the gas is in chemical and thermodynamic equilibrium and that
the internal energy is a known function of pressure and density:

e = e(p,P) (5.4)

This is the "equation of state" for the gas, which depends on the particular gas under

study.
The total energy advects with the flow, but is also modified due to work done on the

system. In the absence of outside forces, work is done only by the pressure forces and is
proportional to the gradient of vp. The conservation law for total energy thus takes the
form

E, + [v(E + p)]. = 0 (5.5)

in one dimension.
Putting these equations together gives the system of Euler equations

P Pv
pv + I Pv2 +

P

= 0. (5.6)
E v(E+p)

In two space dimensions the Euler equations take the form

Pu + pu z + p + puv
= 0. (5.7)

p pu

PV

pv puv pv 2+ p

E u(E+p) v(E+p)

where (u, v) is the 2D fluid velocity.
The equation of state. We still need to specify the equation of state relating the

internal energy to pressure and density.
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5.1.1 Ideal gas
For an ideal gas, internal energy is a function of temperature alone, e = e(T), and T is
related to p and p by the ideal gas law,

p = RpT (5.8)

where 1Z is a constant. To good approximation, the internal energy is simply proportional
to the temperature,

e = c T, (5.9)

where c is a constant known as the specific heat at constant volume. Such gases are
called polytropic. If energy is added to a fixed quantity of gas, and the volume is held
constant, then the change in energy and change in temperature are related via

de = (5.10)

On the other hand, if the gas is allowed to expand while the energy is added, and
pressure is held constant instead, not all of the energy goes into increasing the internal
energy. The work done in expanding the volume 1/p by d(1/p) is pd(1/p) and we obtain
another relation

de + pd(1/p) = cpdT (5.11)

or

d(e + p/p) = cdT (5.12)

where co is the specific heat at constant pressure. The quantity

h = e + p/p (5.13)

is called the enthalpy. For a polytropic gas, c9 is also assumed to be constant so that
(5.12) yields

h = c,T. (5.14)

Note that by the ideal gas law,
cy - c = R. (5.15)

The equation of state for an polytropic gas turns out to depend only on the ratio of

specific heats, usually denoted by

7 = cv/c,,. (5.16)

Internal energy in a molecule is typically split up between various degrees of freedom
(translational, rotational, vibrational, etc.). How many degrees of freedom exist depends
on the nature of the gas. The general principle of equipartition of energy says that the
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average energy in each of these is the same. Each degree of freedom contributes an
average energy of '-kT per molecule, where k is Boltzmann's constant. This gives a
total contribution of zkT per molecule if there are a degrees of freedom. Multiplying this
by n, the number of molecules per unit mass (which depends on the gas), gives

e = 2 nkT. (5.17)

The product nk is precisely the gas constant R., so comparing this to (5.9) gives

a
=2R. (5.18)

From (5.15) we obtain

cp=(1+2)R, (5.19)

and so

7=cp/4=a+2 (5.20)

For a monatomic gas the only degrees of freedom are the three translational degrees,
so a = 3 and ry = 5/3. For a diatomic gas (such as air, which is composed primarily
of N2 and 02), there are also two rotational degrees of freedom and a = 5, so that
ry=7/5=1.4.

The equation of state for a polytropic gas. Note that T = p/7Lp so that

(7pl)P
(5.21)

by (5.15) and (5.16). Using this in (5.3) gives the common form of the equation of state
for a polytropic gas:

E =
ry

P
1

+ 21 pvz. (5.22)

5.1.2 Entropy
Another important thermodynamic quantity is the entropy. Roughly speaking, this mea-
sures the disorder in the system. The entropy S is defined up to an additive constant

by

S = c log (p/p'') + constant. (5.23)

This can be solved for p to give

p = (5.24)

where rc is a constant.
From the Euler equations we can derive the relation

S, + vs. = 0 (5.25)
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which says that entropy is constant along particle paths in regions of smooth flow. In

fact, (5.25) can be derived from fundamental principles and this equation, together with
the conservation of mass and momentum equations, gives an alternative formulation of
the Euler equations (though not in conservation form):

p,+(pv). = 0
(Pv),+(pvs+P).r = 0 (5.26)

S, + vS, = 0
It turns out that the equation of state then gives p as a function of p and S alone, e.g.

(5.24) for a polytropic gas. In this form the partial derivative of p with respect to p

(holding S fixed) plays a fundamental role: its square root c is the local speed of sound
in the gas. For a polytropic gas we have

c2 = apl = 7Kes/`'P'-, = 7P/P (5.27)8p s=constant
and so

c = 7P/P. (5.28)

From our standpoint the most important property of entropy is the fact that in smooth
flow entropy remains constant on each particle path, while if a particle crosses a shock
then the entropy may jump, but must increase. This is the physical entropy condition for
shocks.

Note that along a particle path in smooth flow, since S is constant we find by (5.24)
that

P = kp' (5.29)

where k = re-9/'- is a constant which depends only on the initial entropy of the particle.
This explicit relation between density and pressure along particle paths is sometimes
useful. Of course, if the initial entropy varies in space then k will be different along
different particle paths.

5.2 Isentropic flow

If the entropy is constant everywhere then (5.29) holds with the same value of k everywhere
and the Euler equations simplify. This is the case, for example, if we consider fluid flow
that starts at a uniform rest state (so S is constant) and remains smooth (so S remains
constant). Then using (5.29), the equation of state (5.22) reduces to an explicit expression
for E in terms of p and pv. The energy equation then becomes redundant and the Euler
equations reduce to a system of two equations, the isentropic equations,

v2 +'icp' J= = 0.
(5.30)

PPV + [ Pop
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5.3 Isothermal flow

Taking -y = 1 in the isentropic equations (5.30) gives a particularly simple set of equations.
This will prove to be a useful example for illustrating the theory presented later since the
algebra is relatively simple and yet the behavior is analogous to what is seen for the
full Euler equations. By the above discussion, the case y = 1 is not physically relevant.
However, these same equations can be derived by considering a different physical setup,
the case of "isothermal" flow.

Here we consider the flow of gas in a tube that is immersed in a bath at a constant
temperature T, and assume that this bath maintains a constant temperature within the
gas. Then the ideal gas law (5.8) reduces to

p = asp (5.31)

where a' - RT is a constant and a is the sound speed. Note that maintaining this
constant temperature requires heat flux through the wall of the tube, and so energy is
no longer conserved in the tube. But mass and momentum are still conserved and these
equations, together with the equation of state (5.31), lead to the isothermal equations,

1+
zP%-P = 0. (5.32)PvP[

pv + 1.

5.4 The shallow water equations

The study of wave motion in shallow water leads to a system of conservation laws with a
similar structure. To derive the one-dimensional equations, we consider fluid in a channel
and assume that the vertical velocity of the fluid is negligible and the horizontal velocity
v(x, t) is roughly constant through any vertical cross section. This is true if we consider
small amplitude waves in a fluid that is shallow relative to the wave length.

We now assume the fluid is incompressible, so the density p is constant. Instead the
height h(x, t) varies, and so the total mass in [x,, xsl at time t is

total mass in [xi, xzl =
/3

ph(x, t) dx.

The momentum at each point is pv(x, t) and integrating this vertically gives the mass
flux to be pv(x, t)h(x, t). The constant p drops out of the conservation of mass equation,
which then takes the familiar form

he + (vh)r = 0. (5.33)

The conservation of momentum equation also takes the same form as in the Euler equa-
tions,

(phv), + (phv' + p): = 0, (5.34)
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but now the pressure p is determined from a hydrostatic law, stating that the pressure
at depth y is Pgy, where g is the gravitational constant. Integrating this vertically from

y = 0 to y = h(x, t) gives the total pressure felt at (x, t), the proper pressure term in the

momentum flux:

P = 2P9h2. (5.35)

Using this in (5.34) and cancelling P gives

(hv), + (hv2 + 2gh2)= = 0. (5.36)

Note that the system (5.33), (5.36) is equivalent to the isentropic equation (5.30) in the
case -f = 2.

Equation (5.36) can be simplified by expanding the derivatives and using (5.33) to
replace the h, term. Then several terms drop out and (5.36) is reduced to

Vt + (2v2 +gh) = 0. (5.37)

Finally, the explicit dependence on g can be eliminated by introducing the variable V = gh
into (5.33) and (5.37). The system for the one-dimensional shallow water equations
then becomes

I

V

J

+ I vx/2 + I = 0. (5.38)

ll`V ` v
]
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In this chapter we begin the study of systems of conservation laws by reviewing the
theory of a constant coefficient linear hyperbolic system. Here we can solve the equations
explicitly by transforming to characteristic variables. We will also obtain explicit solutions
of the Riemann problem and introduce a "phase space" interpretation that will be very
useful in our study of nonlinear systems.

Consider the linear system

uj + Au. = 0 (6.1)

u(x, 0) = uo(x)

where u : IR x IR -. IR' and A E 1R'"' is a constant matrix. This is a system of
conservation laws with the flux function f (u) = Au. This system is called hyperbolic if
A is diagonalizable with real eigenvalues, so that we can decompose

A = RAR-' (6.2)

where A = diag(Ai, A2, ... , a",) is a diagonal matrix of eigenvalues and R = [rl IrsI ... Jr.)
is the matrix of right eigenvectors. Note that AR = RA, i.e.,

Ary = arry for p = 1, 2, ... , m. (6.3)

The system is called strictly hyperbolic if the eigenvalues are distinct. We will al-
ways make this assumption as well. (For a demonstration that the behavior can change
dramatically in the nonstrictly hyperbolic case, see Exercise 7.4.)

6.1 Characteristic variables

We can solve (6.1) by changing to the "characteristic variables"

v = R-' u.
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Multiplying (6.1) by R-1 and using (6.2) gives

R-'ut+AR-'uz=0

or, since R-' is constant,

59

vt+Av==0. (6.6)

Since A is diagonal, this decouples into m independent scalar equations

(v,)t + Ap(vp). = 0, p = 1, 2, ... , m. (6.7)

Each of these is a constant coefficient linear advection equation, with solution

vp(x,t) = vp(x - apt, 0).

Since v = R-'u, the initial data for vp is simply the pth component of the vector

v(x,0) = R-1uo(x).

The solution to the original system is finally recovered via (6.4):

u(x, t) = Rv(x, t). (6.10)

Note that the value vp(x, t) is the coefficient of rp in an eigenvector expansion of the
vector u(z, t), i.e., (6.10) can be written out as

rm
u(x,t) vp(x,t)rp.

p=I

Combining this with the solutions (6.8) of the decoupled scalar equations gives

u(x, t) _ vp(x - apt, 0)rp.
P=I

(6.11)

(6.12)

Note that u(x, t) depends only on the initial data at the m points x - apt, so the domain
of dependence is given by D(z,) = {x = i - apt, p = 1, 2, ..., m}.

The curves x = xo+Apt satisfying x'(t) = Ap are the "characteristics of the pth family",
or simply "p-characteristics". These are straight lines in the case of a constant coefficient
system. Note that for a strictly hyperbolic system, m distinct characteristic curves pass
through each point in the x-t plane. The coefficient vp(x, t) of the eigenvector rp in the
eigenvector expansion (6.11) of u(x, t) is constant along any p-characteristic.
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6.2 Simple waves

We can view the solution as being the superposition of m waves, each of which is advected
independently with no change in shape. The pth wave has shape vp(x, 0)rp and propagates
with speed Ap. This solution has a particularly simple form if vp(x, 0) is constant in x for
all but one value of p, say vp(x, 0) cp for p 96 i. Then the solution has the form

u(x,t) _ cprp + v;(x - .,t,0)r; (6.13)

p#i
uo(x - Ait)

and the initial data simply propagates with speed A,. Since m - 1 of the characteristic
variables are constant, the equation essentially reduces to u,+A,u: = 0 which governs the
behavior of the ith family. Nonlinear equations have analogous solutions, called "simple
waves", in which variations occur only in one characteristic family (see [97]).

6.3 The wave equation

The canonical example of a hyperbolic PDE is the second order scalar wave equation,

u = csu_ -00 < x < 00 (6.14)

with initial data

u(x,0) = uo(x)

u,(x,0) = u,(x).

This can be rewritten as a first order system of conservation laws by introducing

v=u, and w = u,

Then v, = wr by equality of mixed partials, and (6.14) becomes w, = c'v_ so we obtain
the system

l w J , + l -c v 1=0, (6.15)

which is of the form (6.1) with

A=[_0 -11.
(6.16)

The initial conditions become

v(x,0) = up(x) (6.17)

w(x,0) = UI(x)
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Note that this system is hyperbolic since the eigenvalues of A are ±c, which are the wave
speeds.

EXERCISE 6.1. Compute the eigenvectors of A in (6.16) and use these to decouple
(6.15) into a pair of scalar equations. Solve these equations to find that

v(x, t) = [uo(x-) + u-(x-) + uo(x2) - eul(x2)J (6.18)

w(x, t) =
2 [cuu(x,) + u1(xl) - cuo(x2) + ut(x2)] (6.19)

where x, = x + ct, x2 = x - ct. Use this to compute u(x, t) in the original wave equation
(6.14).

EXERCISE 6.2. Rewrite the 2D wave equation

u = c2(u:: + u95) (6.20)

as a first order system of the form q, + Bqv = 0 where q = [v, w, ,p] by introducing
o=u=, w=up, V =u,.

EXERCISE 6.3. Solve the "linearized shallow water equations",

[u1,+ i iai uI I u I, = 0
(6.21)

where u and ,z > 0 are constants, with some given initial conditions for u and V.

Propagation of singularities. If we consider a point (i, i) for which the initial data
is smooth at each point xo = i-ant, p = 1, 2, ..., m, then v(x-apt, 0) = R-Iu(x-ant, 0)
is also a smooth function at each of these points, and hence so is u(x, t). It follows that
any singularities in the initial data can propagate only along characteristics, just as in the
scalar linear case. Moreover, smooth initial data gives smooth solutions.

6.4 Linearization of nonlinear systems

Now consider a nonlinear system of conservation laws

u, + f(u), = 0, (6.22)

where u : IR x IR -. IR' and f : Rm -, R. This can be written in the quasilinear form

u, + A(u)u = 0 (6.23)

where A(u) = f'(u) is the m x m Jacobian matrix. Again the system is hyperbolic
if A(u) is diagonalizable with real eigenvalues for all values of u, at least in some range
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where the solution is known to lie, and strictly hyperbolic if the eigenvalues are distinct
for all u.

We can define characteristics as before by integrating the eigenvalues of A(u). There
are m characteristic curves through each point. The curves x(t) in the pth family satisfy

x'(t) = ap(u(x(t), 1)),

x(0) = x0,

for some xo. Note that the Ap now depend on u, the solution of the problem, and so we
can no longer solve the problem by first determining the characteristics and then solving
a system of ODEs along the characteristics. Instead a more complicated coupled system
is obtained, reducing the effectiveness of this approach. Characteristics do yield valuable
information about what happens locally for smooth data, however. In particular, if we
linearize the problem about a constant state u we obtain a constant coefficient linear
system, with the Jacobian frozen at A(u). This is relevant if we consider the propagation
of small disturbances as we did for the scalar traffic flow model in Chapter 4. Assume an
expansion of the solution with the form

u(x, t) = u + fu(')(x, t) + 2u(2)(x, t) + , (6.24)

where u is constant and f is small, then by the same derivation as equation (4.12) we find
that u(')(x, t) satisfies

u(,')(x, t) + A(u)u(ll(x, t) = 0. (6.25)

Small disturbances thus propagate (approximately) along characteristic curves of the form
xp(t) = xo + \p(u)t. Higher order corrections for nonlinear problems can be obtained by
retaining more terms in the expansion. The propagation of discontinuities and other
singularities can also be studied through the use of similar expansions. This "geometrical
optics" approach to studying weakly nonlinear phenomenon is a powerful tool, but one
we will not pursue here. (See Whitham(97), for example.)

Weak shocks. Recall that for a linear system singularities propagate only along
characteristics. For nonlinear problems this is not the case, as we have already seen for
nonlinear scalar equations in Chapter 3. Instead, the Rankine-Hugoniot jump condition
(3.33) must be satisfied for a propagating discontinuity,

f(ui) - f(u.) = s(ur - u.) (6.26)

where s is the propagation speed. However, for very weak discontinuities this relates
nicely to the linear theory. Suppose that

flu, - u:11 e f < 1. (6.27)
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In this case expanding f(ul) about u, gives

f(ul) = f(u,) + f'(u,)(u, - u,) + O(e') (6.28)

so that (6.26) yields

f'(u4(ul - U,) = s(ul - u,) + O(e'). (6.29)

In the limit as c -. 0, the normalized vector (u! - u,)/e must approach an eigenvector of
f'(u,) = A(u,) with s approaching the corresponding eigenvalue. This observation will
be very important in studying the structure of nonlinear solutions more generally.

6.4.1 Sound waves

A familiar example of small disturbances in gas dynamics is the propagation of sound
waves in the air. If we consider the Euler equations for a polytropic gas, in which the flux
is (2.14) with equation of state (5.22), then the flux Jacobian matrix is

0 1 0

f'(u) = z(7 - 3)v' (3 - 7)v (7 - 1) . (6.30)

z(7 - 1)v3 - v(E + P)/p (E + P)/p - (7 - l)v2 7v

A tedious calculation confirms that the eigenvalues are given by A, = v - c, Az = v, and

A3 = v + c, where

c = 7P/P (6.31)

This is the local speed of sound in the gas. If we linearize these equations about some
state u, we see that small disturbances propagate at speeds 6, u ± c, i.e. at speeds 0, tc
relative to the background velocity U. The waves traveling at speeds fc are sound waves;
our ears are sensitive to the small variations in pressure in these waves.

The waves that travel with the velocity of the gas turn out to be simply density
variations which advect with the fluid just as in the scalar linear advection equation.
Even for the full nonlinear equations it is easy to check that there are solutions of the
form

P(z,t) = P(z - vt)

v(z,t) = v

P(z,t) = P

(6.32)

where p(x) is any density distribution.

EXERCISE 6.4. Verify that (6.32) satisfies the nonlinear Euler equations. Is this
solution isentropic?
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EXERCISE 6.5. The sound speed for the Euler equations is most easily calculated
using the equations in the form (5.26), where the entropy S is one of the variables and
the equation of state gives p = p(p, S). Linearize these equations about a constant state
and compute the eigenvalues o the resulting matrix. This verifies that more generally the
sound speed is given by 8p/8p, which for the polytropic case reduces to (6.31).

EXERCISE 6.6. Show that the sound speed in the isentropic equations (5.30) is the
same as in the full Euler equations. For this system of two equations, small disturbance
waves travel with speeds 0 ± Z. Waves of the form (6.32) traveling with speed 0 are not
isentropic and no longer appear.

EXERCISE 6.7. Verify that linearizing the shallow water equations (5.98) gives the
system (6.21). What is the "sound speed" for this system?

6.5 The Riemann Problem

For the constant coefficient linear system, the Riemann problem can be explicitly solved.
We will see shortly that the solution to a nonlinear Riemann problem has a simple struc-
ture which is quite similar to the structure of this linear solution, and so it is worthwhile
studying the linear case in some detail.

The Riemann problem consists of the equation u, + Aus = 0 together with piecewise
constant initial data of the form

u(x,0) = r ut x < 0
(6.33)l ur x>0

We will assume that this system is strictly hyperbolic, which means that the eigenvalues
of A are real and distinct, and order them

Al < A2 < ... < am. (6.34)

Recall that the general solution to the linear problem is given by (6.12). For the
Riemann problem we can simplify the notation if we decompose u7 and u, as

ru(= L &Drp
qur = E 6prp. (6.35)

p=1 p=1

Then

vv(x,0) _
j6v x > 0

0
(6.36)

and so

vp(x, t)
-lop ap if x-Apt<0

if x -apt > 0. (6.37)
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If we let P(x, t) be the maximum value of p for which x - apt > 0, then

P(r.!) mm`

u(x,t) + [ oprp'
p=1 p=P(r,!)+,

(6.38)

The determination of u(x,t) at a given point is illustrated in Figure 6.1. In the case

shown, v, = f31 while v2 = 02 and v3 = 03. The solution at the point illustrated is thus

u(x, t) = /31r, + a2r2 + a3r3. (6.39)

Note that the solution is the same at any point in the wedge between the x' = A, and
i = A2 characteristics. As we cross the pth characteristic, the value of x - apt passes
through 0 and the corresponding vp jumps from ap to Op. The other coefficients v; (i # p)
remain constant.

The solution is constant in each of the wedges as shown in Figure 6.2. Across the pth
characteristic the solution jumps with the jump given by

[ul = (Pp - op)rp (6.40)

Note that these jumps satisfy the Rankine-Hugoniot conditions (3.33), since f (u) = Au
leads to

(Il = A[u)

(Op - op)Arp

Aplul

and Ap is precisely the speed of propagation of this jump. The solution u(x,t) in (6.38)

can alternatively be written in terms of these jumps as

u(x,t) = u, + E (Op - op)rp (6.41)

ap<r/!

U, - (Op - op)rp (6.42)

ap>r/!

It might happen that the initial jump u, -u! is already an eigenvector of A, if U'-U, =
- a;)r; for some i. In this case ap = R. for p 34 i. Then this discontinuity simply

propagates with speed A , and the other characteristics carry jumps of zero strength.
In general this is not the case, however, and the jump u, - u, cannot propagate as

a single discontinuity with any speed without violating the Rankine-Hugoniot condition.
We can view "solving the Riemann problem" as finding a way to split up the jump u, - u,
into a sum of jumps

u,-u!=(/31-a,)r,+...+(/3,,,-a,,,)rm, (6.43)
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U(4, t) = 61r1 + 03r3

z - A3t z - alt 0 z alt

(v3 = 03) (v2 = 02) (v1 = Q0

Figure 6.1. Construction of solution to Riemann problem at (x, t).

1 X, = A2 X' = A3

Figure 6.2. Values of solution u in each wedge of x-t plane.
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each of which can propagate at an appropriate speed A with the Rankine-Hugoniot con-
dition satisfied.

For nonlinear systems we solve the Riemann problem in much the same way: The
jump u, - ul will usually not have the property that [f ] is a scalar multiple of [u], but we
can attempt to find a way to split this jump up as a sum of jumps, across each of which
this property does hold. (Although life is complicated by the fact that we may need to
introduce rarefaction waves as well as shocks.) In studying the solution of the Riemann
problem, the jump in the pth family, traveling at constant speed A, is often called the
p-wave.

6.5.1 The phase plane
For systems of two equations, it is illuminating to view this splitting in the phase plane.
This is simply the u1-u2 plane, where u = (ui,u2). Each vector u(x,t) is represented by
a point in this plane. In particular, ul and u, are points in this plane and a discontinuity
with left and right states ul and u, can propagate as a single discontinuity only if u, - u,
is an eigenvector of A, which means that the line segment from ut to u, must be parallel
to the eigenvector r, or r2. Figure 6.3 shows an example. For the state ug illustrated
there, the jump from ul to u, can propagate as a single discontinuity if and only if u, lies
on one of the two lines drawn through ug in the direction r, and r2. These lines give the
locus of all points that can be connected tout by a 1-wave or a 2-wave. This set of states
is called the Hugoniot locus. We will see that there is a direct generalization of this to
nonlinear systems in the next chapter.

Similarly, there is a Hugoniot locus through any point Ur that gives the set of all points
ug that can be connected to u, by an elementary p-wave. These curves are again in the
directions rr and r2.

For a general Riemann problem with arbitrary ul and u the solution consists of two
discontinuities travelling with speeds a1 and A2, with a new constant state in between
that we will call u,,,. By the discussion above,

u. = Qlrl + a2r2 (6.44)

so that u,,, - ul = (fit - ar )r1 and u, - u,,, _ (02 - a2)r2. The location of um in the phase
plane must be where the 1-wave locus through ug intersects the 2-wave locus through u,.
This is illustrated in Figure 6.4a.

Note that if we interchange U. and ug in this picture, the location of um changes as
illustrated in Figure 6.4b. In each case we travel from ug to u, by first going in the
direction rr and then in the direction r2. This is required by the fact that Al < A2 since
clearly the jump between ul and um must travel slower than the jump between um and
Ur if we are to obtain a single-valued solution.
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Figure 6.3. The Hugoniot locus of the state ut consists of all states that differ from ut by
a scalar multiple of rt or r2.

Figure 6.4. The new state um arising in the solution to the Riemann problem for two
different choices of ut and u,.
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For systems with more than two equations, the same interpretation is possible but
becomes harder to draw since the phase space is now m dimensional. Since the m eigen-
vectors ro are linearly independent, we can decompose any jump u, - uj into the sum of
jumps in these directions, obtaining a piecewise linear path from ut to u, in m-dimensional
space.
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We now return to the nonlinear system uj + f (u).. = 0, where u(x, t) E IR'. As before
we assume strict hyperbolicity, so that f'(u) has disctinct real eigenvalues Ai(u) < <
)m(u) and hence linearly independent eigenvectors. We choose a particular basis for
these eigenvectors, {rp(u)},r, usually chosen to be normalized in some manner, e.g.
JJrp(u)JJ _- 1.

In the previous chapter we constructed the solution to the general Riemann problem
for a linear hyperbolic system of conservation laws. Our goal in the next two chapters
is to perform a similar construction for the nonlinear Riemann problem. In the linear
case the solution consists of m waves, which are simply discontinuities traveling at the
characteristic velocities of the linear system. In the nonlinear case our experience with the
scalar equation leads us to expect more possibilities. In particular, the physically relevant
vanishing viscosity solution may contain rarefaction waves as well as discontinuities. In
this chapter we will first ignore the entropy condition and ask a simpler question: is

it possible to construct a weak solution of the Riemann problem consisting only of m
discontinuities propagating with constant speeds sl < ss < < sm? As we will see, the
answer is yes for 11uz - u,11 sufficiently small.

7.1 The Hugoniot locus

Recall that if a discontinuity propagating with speed s has constant values a and u on
either side of the discontinuity, then the Rankine-Hugoniot jump condition must hold,

f(u) - f(u) = s(u - 0- (7.1)

Now suppose we fix the point it E IR' and attempt to determine the set of all points u
which can be connected to u by a discontinuity satisfying (7.1) for some s. This gives a
system of m equations in m + 1 unknowns: the m components of u, and s. This leads us
to expect one parameter families of solutions.

We know that in the linear case there are indeed m such families for any u. In the
pth family the jump u - u is some scalar multiple of r, the pth eigenvector of A. We can
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parameterize these families of solutions using this scalar multiple, say {, and we obtain
the following solution curves:

IP(S;IA) = u + frP

sP(f; IA) = AP

for p = 1, 2, ..., in. Note that IAP(O;IA) = u for each p and so through the point u

in phase space there are m curves (straight lines in fact) of possible solutions. This is

illustrated in Figure 6.4 for the case m = 2. The two lines through each point are the

states that can be connected by a discontinuity with jump proportional to rl or r2-
In the nonlinear case we also obtain m curves through any point u, one for each

characteristic family. We again parameterize these curves by IA) with IAP(O; u) = u

and let u) denote the corresponding speed. To simplify notation, we will frequently
write these as simply IAP(C), sp(C) when the point u is clearly understood.

The Rankine-Hugoniot condition gives

f(IP(L)) - f(u) = SP(S)OP(e) - IA). (7.2)

Differentiating this expression with respect to { and setting = 0 gives

f'(u)IP(0) = sP(0)u,(0) (7.3)

so that 6'',(0) must be a scalar multiple of the eigenvector r9(IA) of f'(IA), while sp(0) =
AP(IA). The curve IAP(4) is thus tangent to r9(IA) at the point u. We have already observed
this, by a slightly different argument, in discussing weak shocks in Chapter 6. For a
system of m = 2 equations, this is easily illustrated in the phase plane. An example for
the isothermal equations of gas dynamics is discussed below, see Figure 7.1.

For smooth f, it can be shown using the implicit function theorem that these solution
curves exist locally in a neighborhood of IA, and that the functions IAP and sP are smooth.
See Lax[451 or Smoller[77] for details. These curves are called Hugoniot curves. The set of
all points on these curves is often collectively called the Hugoniot locus for the point IA.
If IAP lies on the pth Hugoniot curve through IA, then we say that ai and IAP are connected
by a p-shock.

EXAMPLE 7.1. The isothermal equations of gas dynamics (5.32) provide a relatively
simple example of the nonlinear theory.

If we let m represent the momentum, m = pv, then the system becomes

pt + m: = 0 (7.4)

me + (m2/P + a2P)= = 0

or ut + f (u)r = 0 where u = (p, m).
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The Jacobian matrix is

1 0 1no = (7.5)a2 - m2/p2 2rn/p

The eigenvalues are

A, (u) = m/p - a, A2(u) = m/p + a (7.6)

with eigenvectors

ri(u)_ m/I- a], r2(u) =[m/p+ a
]. (7.7)

These could be normalized but it is easiest to leave them in this simple form.
Now let's fix a state u and determine the set of states u that can be connected by a

discontinuity. The Rankine-Hugoniot condition (7.1) becomes, for this system,

m - rh = s(3 - P) (7.8)
(m2/0 + (120) - (7h2/0 + a2P) = s(in - in).

This gives two equations in the three unknowns P, in, and s. These equations can be
easily solved for m and s in terms of P, giving

m=Pm/Pfa P/P(P-P) (7.9)

and

s = rn/P ± aPIP. (7.10)

The ± signs in these equations give two solutions, one for each family. Since in and s
can be expressed in terms of P, we can easily parameterize these curves by taking, for
example,

P9(f;u) = P(1 + f), p = 1, 2. (7.11)

We then have

l
ui(f;u)=u+f [

p
]'

rie aP 1 + $I(f;u)=m/P - a1+ (7.12)-
and

u2(f;u)=u+f[m+aP 1+ ]' s2(f;u)=m/P+a l+f. (7.13)

The choice of signs for each family is determined by the behavior as f - 0, where the
relation (7.3) must hold. It is easy to check that with the above choice we have

19

F0 v(0; u) = Prv(u) oc rn(u),

.s(0; u) = an(u),
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Figure 7.1. a) Hugoniot locus for the state u = (1,1) in the isothermal gas dynamics
equations with a = 1. 6) Variation of these curves for ii = (p,0), p = 1, 2, 3, 4.

as expected.

Notice that real-valued solutions exist only fort > -1 and that up(-1; u) = (0,0) for
p = 1, 2 and any u. Thus, each Hugoniot locus terminates at the origin (the vacuum state,
since p = 0). There are no states with p < 0 that can be connected to u by a propagating
discontinuity. The curves up({) are illustrated in Figure 7.1a for one particular choice of
i and a = 1. Figure 7.1b shows how these curves vary with u. In this case we see up(f; u)
for u = (p,0), p = 1, 2, 3, 4.

EXERCISE 7.1. Determine the Hugoniot locus for the shallow water equations (5.98).

7.2 Solution of the Riemann problem

Now suppose that we wish to solve the Riemann problem with left and right states uI and
u, (and recall that we are ignoring the entropy condition at this point). Just as in the
linear case, we can accomplish this by finding an intermediate state um such that uj and
um are connected by a discontinuity satisfying the Rankine-Hugoniot condition, and so
are um and u,. Graphically we accomplish this by drawing the Hugoniot locus for each
of the states ur and u, and looking for intersections. See Figure 7.2 for an example with
the isothermal equations.

In this example there are two points of intersection, labelled um and but only
ur gives a single-valued solution to the Riemann problem since we need the jump from
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Figure 7.2. Construction of a weak solution to the Riemann problem with left and right
states ul and u_

ul to um to travel more slowly than the jump from um to u,. This requires that um
be connected to u1 by a 1-shock while u, is connected to u,,, by a 2-shock, due to our
convention that Al (u) < A2(u). Of course our requirement really involves the shock speeds,
not the characteristic speeds, but note that any 1-shock connected to ur has speed

sl(f i um) = mm/Pr - a v, + /pm < mm/Pr df > -Pm

while any 2-shock has speed

s2(Si um) = mm/P. + a/1 + IPr > mm/Pr V > -Pm

and consequently sl(fli um) < 82(C2; U.) for all fl, f2 > -p-.
The state um can be found algebraically by using our explicit expressions for the

Hugoniot locus. We wish to find a state (pm,mm) which is connected to ul by a 1-shock
and to u, by a 2-shock. Consequently equation (7.9) with the minus sign should hold for
u = um, u = u1, and the same equation with the plus sign should hold for u = um, ii = u,.
Equating the two resulting expressions for mm gives

PmmIIPI - a P7I PI (p,, - Pt) = p nmr/Pr + a PmjPr (Prn - Pr)

Setting z = p,,,, we obtain a quadratic equation for z,

(7.14)

( a + a)z2+ (7.15)
\ I(P, Pt
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This equation has a unique positive solution z, and pm = a2. We can then determine mm
by evaluating either side of (7.14).

More generally, for a system of m equations we can attempt to solve the Riemann
problem by finding a sequence of states u1, u2, ... , um_I such that ui is connected to ul
by a 1-shock, ui is connected to u2 by a 2-shock, and so on, with um-1 connected to u, by
an rn-shock. If uI and u, are sufficiently close together then this can always be achieved.
Lax proved a stronger version of this in his fundamental paper [44]. (By considering
rarefaction waves also, the entropy satisfying solution can be constructed in a similar
manner.) See also Lax[45] and Smoller[77] for detailed proofs. The idea is quite simple
and will be summarized here following Lax[45]. From u, we know that we can reach a one
parameter family of states ul(fl) through a 1-shock. From u1 (f1) we can reach another
one parameter family of states U2(6, f2) through a 2-shock. Continuing, we see that from
ul we can reach an m parameter family of states um(fr,f2.....em). Moreover, we know
that

aum
oc rp(ui), p = 1, 2, , m.

NP f,=...=fm=a

These vectors are linearly independent by our hyperbolicity assumption, and hence the
Jacobian of the mapping um : )R.m -. R' is nonsingular. It follows that the mapping um
is bijective in a neighborhood of the origin. Hence for any u, sufficiently close to uj there
is a unique set of parameters f1, , fm such that u, = um(fl,...,fm)

7.2.1 Riemann problems with no solution
For a general nonlinear system the local result quoted above is the best we can expect,
and there are examples where the Riemann problem has no weak solution when [1u, - u,[I
is sufficiently large. In such examples the shock curves simply do not intersect in the
required way. One such example is given by Smoller[76].

For specific systems of conservation laws one can often prove that solutions to the
Riemann problem exist more globally. For example, in the isothermal case we can clearly
always solve the Riemann problem provided pi, p, > 0. The case where p, or p, is negative
is of little interest physically, but even then the Riemann problem can be solved by taking
the vacuum state um = (0, 0) as the intermediate state. We encounter problems only if
p = 0 and m 96 0 for one of the states, but since the equations involve m/p this is not
surprising.

7.3 Genuine nonlinearity

In defining the Hugoniot locus above, we ignored the question of whether a given dis-
continuity is physically relevant. The state u is in the Hugoniot locus of u if the jump
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satisfies the Rankine-Hugoniot condition, regardless of whether this jump could exist in
a vanishing viscosity solution. We would now like to define an entropy condition that
can be applied directly to a discontinuous weak solution to determine whether the jumps
should be allowed. In Chapter 3 we considered several forms of the entropy condition for
scalar equations. In the convex case, the simplest condition is simply that characteristics
should go into the shock as time advances, resulting in the requirement (3.45),

f'(u,) > s > flu,)-

Lax[44] proposed a simple generalization of this entropy condition to systems of equations
that are genuinely nonlinear, a natural generalization of the convex scalar equation. The
pth characteristic field is said to be genuinely nonlinear if

VA (u) rp(u) # 0 for all u, (7.16)

where VA (u) = (8ap/8ul, ..., Sap/bum) is the gradient of ap(u). Note that in the
scalar case, m = 1 and A,(u) = f(u) while r1(u) = 1 for all u. The condition (7.16)
reduces to the convexity requirement f"(u) 96 0 Vu. This implies that the characteristic
speed f'(u) is monotonically increasing or decreasing as u varies, and leads to a relatively
simple solution of the Riemann problem.

For a system of equations, (7.16) implies that Ap(u) is monotonically increasing or
decreasing as u varies along an integral curve of the vector field rp(u). These integral
curves will be discussed in detail in the next chapter, where we will see that through a
rarefaction wave u varies along an integral curve. Since monotonicity of the propagation
speed A. is clearly required through a rarefaction wave, genuine nonlinearity is a natural
assumption.

7.4 The Lax entropy condition

For a genuinely nonlinear field, Lax's entropy condition says that a jump in the pth field
(from ul to u say) is admissible only if

A (u,) > s > Ap(u.) (7.17)

where s is again the shock speed. Characteristics in the pth family disappear into the
shock as time advances, just as in the scalar case.

EXAMPLE 7.2. For isothermal gas dynamics we can easily verify that both fields are
genuinely nonlinear. Since Ap = m/p t a, we compute that in each case

VA PM (7.18)p(u} [ 7' ], p= 1, 2.
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Using (7.7), we compute that

V. 1(u) . r1(u) = -alp (7.19)

V)2(u).r2(u) = alp. (7.20)

These quantities are both nonzero for all u.

Now suppose ug and u, are connected by a 1-shock. Then ui lies in the Hugoniot locus
of u, and also u, lies in the Hugoniot locus of ug. We can thus evaluate the shock speed
s using (7.10) (with the minus sign, since the jump is a 1-shock) in two different ways,
obtaining

s= a/7P'= Pr -a p,/P,. (7.21)

Since A, (u) = m/p - a, the entropy condition (7.17) becomes

A
a > P' a p.IPI =

V.
a PIP. >

F.
a (7.22)

and is clearly satisfied if and only if p, > pi.
Notice that since the fluid velocity is v = rn/p, 1-shocks always travel slower than the

fluid on either side, and so a given fluid particle passes through the shock from left to
right (i.e. its state jumps from u, to u,). A consequence of the entropy condition is that
the density of the gas must increase as it goes through the shock. This is also true more
generally in the full Euler equations. The gas can only be compressed as the shock passes,
not rarefied (rarefaction occurs, naturally enough, through a rarefaction wave rather than
a shock).

For 2-shocks the entropy condition requires

m
+ a >

m1
+ a p/Pi = m, + a pI Pi > 2- + a (7.23)

P+ P1 P, P,
which is now satisfied only if p, < pi. But note that 2-shocks travel faster than the fluid
on either side, so that particles pass through the shock from right to left. So the entropy
condition has the same physical interpretation as before: the density must jump from p,
to a higher value pi as the gas goes through the shock.

We can now reconsider the Hugoniot locus of a point ti and retain only the points u that
can be connected to u by an entropy-satisfying shock, discarding the entropy-violating
shocks. In order to do this, we must first decide whether u is to lie to the left of the
discontinuity or to the right. The entropy condition (7.17), unlike the Rankine-Hugoniot
condition, is not symmetric in the two states.

Figure 7.3a shows the set of states that can be connected to the right of a given state iu
by an entropy-satisfying shock. Figure 7.3b shows the set of states that can be connected
to the left of the same state u. Note that the union of these curves gives the full Hugoniot
locus. Each branch of the Hugoniot locus splits into two parts at tu; states on one side
can only be connected to the left, states on the other side can only be connected to the
right.
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a,

1-shocks

1-shocks

1 I/

2-shocks

/\
2-shocks

(a) (b)

Figure 7.3. a) States u, that can be connected to ul = u by an entropy-satisfying shock.

b) States ul that can be connected to u, = u by an entropy-satisfying shock. In each case

the entropy-violating branches of the Hugoniot locus are shown as dashed lines.

7.5 Linear degeneracy

The assumption of genuine nonlinearity is obviously violated for a constant coefficient
linear system, in which ay(u) is constant and hence VA, =_ 0. More generally, for a
nonlinear system it might happen that in one of the characteristic fields the eigenvalue
a,(u) is constant along integral curves of this field, and hence

VA,(u) r,(u) = 0 `du. (7.24)

(Of course the value of A,(u) might vary from one integral curve to the next.) In this
case we say that the pth field is linearly degenerate. This may seem rather unlikely,
and not worth endowing with a special name, but in fact the Euler equations have this
property. We will see later that for this system of three equations, two of the fields are
genuinely nonlinear while the third is linearly degenerate.

A discontinuity in a linearly degenerate field is called a contact discontinuity. This
name again comes from gas dynamics. In a shock tube problem the gas initially on one
side of the diaphram never mixes with gas from the other side (in the inviscid Euler
equations). As time evolves these two gases remain in contact along a ray in the x-t plane
along which, in general, there is a jump in density. This is the contact discontinuity.

For general systems, if the pth field is linearly degenerate and ui and u, are connected
by a discontinuity in this field, then it can be shown that ul and u, lie on the same integral
curve of ry(u), so that A,(ut) = A,(u,). Moreover, the propagation speed s is also equal to
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Figure 7.4. The shaded region shows the set of points u, for which the Riemann problem
with states u1, u, will have an entropy satisfying solution consisting of two shocks.

Ap(ui). Consequently, the p-characteristics are parallel to the propagating discontinuity

on each side, just as in the case of a linear system. Contact discontinuities can occur
in vanishing viscosity solutions, and so for systems with both genuinely nonlinear and

linearly degenerate fields, we should modify the entropy condition (7.17) to read

Ap(ut) > s > Ap(u,). (7.25)

7.6 The Riemann problem

Returning to the Riemann problem, we see that for general data ui and u,, the weak
solution previously constructed will not be the physically correct solution if any of the
resulting shocks violate the entropy condition. In this case we need to also use rarefaction
waves in our construction of the solution. This will be done in the next chapter.

EXAMPLE 7.3. In particular, the weak solution to the isothermal equations con-
structed in Figure 7.2 is nonphysical, since the 2-shock does not satisfy the entropy con-
dition. For the state ul illustrated there, a physically correct Riemann solution consisting
of two shocks will exist only if the state u, lies in the region shaded in Figure 7.4.

EXERCISE 7.2. Consider the shallow water equations (5.38).

1. Show that a weak solution to the Riemann problem consisting only of shocks always
exists if gyp,, <p, > 0. Determine the intermediate state um for given states ul and
u,.
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2. Show that both fields are genuinely nonlinear.

3. Give a physical interpretation to the entropy condition for this system.

EXERCISE 7.3. Consider the system

v, + (vg(v, 4 )): = 0 (7.26)

0, + (0g(v, 0)1= = 0

where g(v, O) is a given function. Systems of this form arise in two-phase flow. As a
simple example, take g(v, 0) = 0' and assume 0 > 0.

1. Determine the eigenvalues and eigenvectors for this system and show that the first
field is linearly degenerate while the second field is genuinely nonlinear.

2. Show that the Hugoniot locus of any point it consists of a pair of straight lines, and
that each line is also the integral curve of the corresponding eigenvector.

S. Obtain the general solution to the Riemann problem consisting of one shock and one
contact discontinuity. Show that this solution satisfies the entropy condition if and
only if 0, > 0r.

EXERCISE 7.4 (A NONSTRICTLY HYPERBOLIC SYSTEM). Consider the system

Pt + (pv)r = 0 (7.27)

v, + (2v2)r =0 (7.28)

1. Show that the Jacobian matrix has eigenvalues A, = Az = v and a one-dimensional
space of eigenvectors proportional to r = (1, v). Hence the Jacobian matrix is not
diagonalizable, and the system is hyperbolic but not strictly hyperbolic.

2. Note that equation (7.28) decouples from (7.27) and is simply Burgers' equation for
v. We can compute v(x, t) from this equation, independent of p, and then (7.27)
becomes

Pr+VP==-Pv=
where the right hand side is now a source term and v is known. This is an evolution
equation for p along characteristics. What happens when v becomes discontinuous?

3. The system (7.27), (7.28) is the isothermal system (7.4) in the case a = 0. Use
the theory of this chapter to investigate the limit a --. 0, and determine how the
solution to a Riemann problem behaves in this limit. Relate this to the results of
Part 2 above.



8 Rarefaction Waves and Integral
Curves

All of the Riemann solutions considered so far have the following property: the solution is
constant along all rays of the form x = lt. Consequently, the solution is a function of x/t
alone, and is said to be a "similarity solution" of the PDE. A rarefaction wave solution
to a system of equations also has this property and takes the form

uj x < Cli
u(x,t) = w(x/t) {1t < x < fst (8.1)

u, x > 6 t

where w is a smooth function with w({1) = u1 and w(C2) = u,.
When does a system of equations have a solution of this form? As in the case of

shocks, for arbitrary states ul and u, there might not be a solution of this form. But in
general, starting at each point ul there are m curves consisting of points u, which can be
connected to u, by a rarefaction wave. These turn out to be subsets of the integral curves
of the vector fields rp(u).

8.1 Integral curves

An integral curve for rp(u) is a curve which has the property that the tangent to the
curve at any point u lies in the direction rp(u). The existence of smooth curves of this
form follows from smoothness of f and strict hyperbolicity, since rp(u) is then a smooth
function of u. If up({) is a parameterization (for f E It) of an integral curve in the pth
family, then the tangent vector is proportional to rp(up(C)) at each point, i.e.

u,(f) = c(f)r,(up(f)) (8.2)

where is some scalar factor.

EXAMPLE 8.1. For the isothermal equations we can easily sketch the integral curves
of rp in the phase plane by drawing a selection of eigenvectors rp and then sketching in

81
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m/p = 1/2, A, = -1/2

rn/p = 0, Aj _ -1

m/p = -1/2, ,\1 = -3/2

Figure 8.1. Integral curves of r1 in the phase plane.

the smooth integral curves of this vector field. Figure 8.1 shows an example for the first
characteristic field, in the case where the sound speed is taken as a = 1. Notice that
along any ray m/p = c in the phase plane the vector rj(u) is constant, since by (7.7),
rl(u) = (1,c - a). This observaion has been used in Figure 8.1 to sketch in a number of
eigenvectors.

Also notice that along rn/p = c we have Ai(u) = c - a, so a, is also constant along
these rays. These are level lines of the function )1(u). Since this characteristic field is
genuinely nonlinear by (7.19), the function Ai(u) varies monotonically along any integral
curve of r1, as is clearly seen in Figure 8.1.

8.2 Rarefaction waves

To see that rarefaction curves lie along integral curves, and to explicitly determine the
function w(x/t) in (8.1), we differentiate u(x, t) = w(x/t) to obtain

ue(x,t) = - tz w'(x/t) (8.3)
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ur(x,t) = I w (x/t) (8.4)

so that us + f'(u)ur = 0 yields

- tzw (x/t) +
t

f'(w(x/t))w'(x/t) = 0. (8.5)

Multiplying by t and rearranging gives

f'(w(0)w'(0 = W (C),(f), (8.6)

where f = x/t. one possible solution of (8.6) is &(C) __ 0, i.e., w constant. Any constant
function is a similarity solution of the conservation law, and indeed the rarefaction wave
(8.1) takes this form for f < ft and f > fs. In between, w is presumably smoothly varying
and w' # 0. Then (8.6) says that w'(f) must be proportional to some eigenvector rp(w(f ))
of f'(-(f) )),

-V) = -(WA-(f)) (8.7)

and hence the values w(f) all lie along some integral curve of rp. In particular, the states
ut = w(fl) and u, = w(f2) both lie on the same integral curve. This is a necessary
condition for the existence of a rarefaction wave connecting ut and u but note that it is
not sufficient. We need f = x/t to be monotonically increasing as w(f) moves from ut to
u, along the integral curve; otherwise the function (8.1) is not single-valued. Note that
our parameterization of the integral curve by f is not at all arbitrary at this point, since
(8.6) requires that f be an eigenvalue of f'(w(f )),

f = A,(w(f)). (8.8)

This particular parameterization is forced by our definition f = x/t. Note that (8.8)
implies that w is constant along the ray x = \,(w)t, and hence each constant value of w
propagates with speed Ap(w), just as in the scalar problem.

By (8.8), monotonicity of f is equivalent to monotonicity of A9(w) as w moves from
ut to u,. From a given state ut we can move along the integral curve only in the direction
in which Ap is increasing. If Ap has a local maximum at ut in the direction rp, then there
are no rarefaction waves with left state ut. In the generic nonlinear case, there is a one
parameter family of states that can be connected to ut by a p-rarefaction - all those
states lying on the integral curve of rp in the direction of increasing Ap up to the next
local maximum of AP.

If the pth field is genuinely nonlinear then Ap is monotonically varying along the entire
integral curve. We need not worry about local maxima and we see that ut and u, can
always be connected by a rarefaction wave provided they lie on the same integral curve
and

A,(ut) < AP(U,). (8.9)
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If the pth field is linearly degenerate, then Ap is constant on each integral curve and
there are no possible rarefaction waves in this family.

In order to explicitly determine the function w(f ), we first determine the scale factor
a(f) in (8.7) by differentiating (8.8) with respect to f. This gives

1 = DAP(ur(f)) ' WV)
= a(f)VAP(w(f))'rP(w(f))

using (8.7), and hence

a(f) = I
10)(8OA wP((f))' rP(ur(f))

Using this in (8.7) gives a system of ordinary differential equations for w(f):

rp(w(f

))
<0

.

8 11_ f fa0 = VAP(w(f))(w(f)), fr ( . )

with initial data

w(fr) = ur

where fr = Ap(ur) and f2 = Ap(u,). Note that the denominator in (8.11) is finite for
fl < f < f7 only if Ap is monotone between fr and fz.

EXAMPLE 8.2. We will construct 1-rarefactions for the isothermal equations. Using
(7.7) and (7.19), the system of ODES (8.11) takes the form

p '(C) _ -P(f)Ia, P(fl) = Pr (8.12)

m'(f) = P(f) - m(f)/a, -(ft) = mr

where f, = A,(ur) = mr/pr - a. The first ODE is decoupled from the second and has
solution P(f) =(8.13)
The second ODE is then

-V) = Pre-(E-E,)la - m(f)/a, m(fl) = mr

with solution

m(f) _ (Pi(f-fr)+mr)e-(E-&)/

(8.14)

(8.15)

From the solutions (p(f),m(f)) it is also useful to eliminate f and solve for m as a
function of p. This gives explicit expressions for the integral curves in the phase plane. If
we solve for f in (8.13) and use this in (8.15) we obtain

m(P) = Pmr/Pr - aplog(P/Pj). (8.16)
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2-rarefaction

ui

/ 1-rarefactions

1-rarefaction

(a)

2-rarefaction

(b)

Figure 8.2. a) Set of states that can be connected to u, = is by a rarefaction wave. b)
Set of states that can be connected to u, = ti by a rarefaction wave. In each case the Jolt
integral curves are shown as dashed lines.

We can construct 2-rarefactions in exactly the same manner, obtaining

(8.17)

m(C) = Pt(f - a)e(f-(1)/". (8.18)

and consequently

m(p) = p-1/pt + aPlog(p/pi). (8.19)

EXERCISE 8.1. Derive the expressions for 2-rarefaction displayed above.

EXERCISE 8.2. From (8.16) and (8.19) verify that m'(p,) = Go(ut) and explain why
this should be so.

For a given state u = u, we can plot the set of all states u, which can be connected to
u, by a rarefaction wave in either the first or second family. This is shown in Figure 8.2a
for a particular choice of u,. Note that if we consider this same state u to be u, and now
plot the set of all states u, that can be connected to u = u, by a rarefaction, we obtain
a different picture as in Figure 8.2b. We must now have f decreasing as we move away
from u, and so it is the opposite side of each integral curve that is now relevant.

Note that these integral curves are very similar to the Hugoniot locus, e.g., Figure 7.3.
Locally, near the point is, they must in fact be very similar. We know already that in the
pth family each of these curves is tangent to ro(w) at 6. Moreover, it can be shown that
the curvature of both curves is the same (See Lax[45]).
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Figure 8.3. a) Set of states that can be connected to u1 by an entropy-satisfying 1-wave
or 2-wave. b) Set of states that can be connected to u,. In each case, Rp denotes
p-rarefactions and S. denotes p-shocks.

EXERCISE 8.3. Verify this for the isothermal equations by computing m"(0) for the
Hugoniot locus from (7.9) and for the integral curves from (8.16) or (8.19) and seeing
that they are the same. Also verify that the third derivatives are not equal.

8.3 General solution of the Riemann problem

We can combine Figures 7.3 and 8.2 to obtain a plot showing all states that can be
connected to a given u by entropy-satisfying waves, either shocks or rarefactions. Again,
the nature of this plot depends on whether u is to be the left state or right state, so we
obtain two plots as shown in Figure 8.3. Here Sp is used to denote the locus of states that
can be connected by a p-shock and R.p is the locus of states that can be connected by a
p-rarefaction. Notice that the shock and rarefaction curves match up smoothly (with the
same slope and curvature) at the point u.

To solve the general Riemann problem between two different states ui and u,, we
simply superimpose the appropriate plots and look for the intersection um of a 1-wave
curve from u, and a 2-wave curve from u,. An example for the isothermal equations is
shown in Figure 8.4. This is the same example considered in Figure 7.2. We now see
that the entropy-satisfying weak solution consists of a 1-shock from ut to um followed by
a 2-rarefaction from um to u,.

To analytically determine the state um, we must first determine whether each wave is
a shock or rarefaction, and then use the appropriate expressions relating m and p along
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Rj(ul)

Figure 8.4. Construction of the entropy-satisfying weak solution to the Riemann problem
with left and right states ut and u,.

each curve to solve for the intersection. We have already seen how to do this for the case
of two shocks, by solving the equation (7.14). If the solution consists of two rarefactions
then the intermediate state must satisfy

mm = p,,,m,/P, - apm log(Pm/p,)

Pmmr/Pr + apm log(Pm/P4)

(8.20)

(8.21)mm =

Equating the two right hand sides gives a single equation for pm alone, with solution

1 mi m,
P'. = P1 P+ e x p -

2a p, p,-)) -

(8.22)

We then obtain mm from either (8.20) or (8.21).
If the solution consists of one shock and one rarefaction wave, as in Figure 8.4, then

we must solve for pm and mm from the equations

Pmmi p=" ( 238mm = - a Pm - PI) .( )

pmmr
lmm = + apm
og(Pm/PI),

Pr

for example, in the case of a 1-shock followed by a 2-rarefaction. In this case it is not
possible to obtain a closed form solution (pm, mm). Instead, it is necessary to solve these
two equations by an iterative method such as Newton's method.
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(b)

Figure 8.5. (a) Collision of a 2-shock and a 1-shock. (6) Collision of two 2-shocks.

8.4 Shock collisions

When two shocks collide the two discontinuities merge into one discontinuity that no
longer satisfies the R-H condition. We can determine what happens beyond this point
by solving a new Riemann problem. Consider Figure 8.5a where we have initial data
consisting of three constant states u1, us and u3 chosen such that ul and u2 are connected
by a 2-shock while u2 and u3 are connected by a 1-shock. At the collision time the
function u(x, t,) has only a single discontinuity from ul to u3. The behavior beyond this
point is determined by solving the Riemann problem with ut = ul and u, = u3.

EXERCISE 8.4. Consider the isothermal equations with a = 1 and take data

u1 x < 0.5
u(x,0) = u2 0.5<x<1

U3 x > 1

where

u' = [
..28260

8185 ] us = [ 0 , u3 = [ -0.19843 ,
Determine the solution u(x, t).

EXERCISE 8.5. For the isothermal equations, use the structure of the integral curves
and Hugoniot loci to argue that:

1. When two shocks of different families collide, the result is again two shocks.

2. When two shocks in the same family collide, the result is a shock in that family and
a rarefaction wave in the other family. (see Figure 8.5b).



9 The Riemann problem for the
Euler equations

I will not attempt to present all of the details for the case of the Euler equations. In
principle we proceed as in the examples already presented, but the details are messier.
Instead, I will concentrate on discussing one new feature seen here, contact discontinuities,
and see how we can take advantage of the linear degeneracy of one field to simplify the
solution process for a general Riemann problem. Full details are available in many sources,
for example [111, [77), 1971.

If we compute the Jacobian matrix f'(u) from (2.14), with the polytropic equation of
state (5.22), we obtain

0 1 0

f'(u) = z(7 -
3)v2 (3 - 7)v (y - 1) . (9.1)

Z(y - 1)v3 - v(E + p)lp (E + p)lp - (y - 1)v2 yv

The eigenvalues are

A1(U)=V-C, A2(U)=V, A3(U) = V + C (9.2)

where c is the sound speed,

9.1 Contact discontinuities

Of particular note in these equations is the fact that the second characteristic field is

linearly degenerate. It is easy to check from (9.1) that

r2(u) = V

1

V2

89
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is an eigenvector of f(u) with eigenvalue a2(u) = v = (pv)/p. Since

-v/p
VA2(u) = 1/P

0

we find that VA2 r2 - 0.
The first and third fields are genuinely nonlinear (somewhat more tedious to check).
Since the second field is linearly degenerate, we can have neither rarefaction waves nor

shocks in this field. Instead we have contact discontinuities, which are linear discontinu-
ities that propagate with speed equal to the characteristic speed A2 on each side.

Note that because "2 = v is constant on the integral curves of r2, and since r2 depends
only on v, the vector r2 is itself constant on these curves, and hence the integral curves
are straight lines in phase space. Moreover, these integral curves also form the Hugoniot
locus for contact discontinuities. To see this, consider the Rankine-Hugoniot condition
between states u and u:

rr l rr

pv - Pv = s(P - P)

\2pv2+p) - \2Pv2+P) = s(Pv-P0)
v(E+p)-8(E+p) = s(E-E).

These equations are clearly satisfied if we take s = v = v and p = p. But then

P-P
U - u = PV - Vv = (P - p)r2(u). (9.7)

(1pv2
+ pl(7 - 1)) -

(1.Pu2
+ pl(7 - 1)

The jump is in the direction r2(+4) and so the Hugoniot locus coincides with the integral
curve of r2.

We see from this that across a contact discontinuity the velocity v and pressure p are
constant, only the density jumps (with resulting jumps in the other conserved quantities
momentum and energy). Note that this is a special case of (6.32). Also notice that the
speed of propagation is the same as the fluid velocity v. Thus particle paths agree with
the characteristics, and move parallel to the contact discontinuity.

Since particle paths do not cross the discontinuity, two gases which are initially in

contact with one another and have the same velocity and pressure will stay distinct, and
continue to be in contact along this discontinuity.

It may seem strange that this discontinuity can sustain a jump in density - it seems
that the denser gas should try to expand into the thinner gas. But that's because our in-
tuition tends to equate higher density with higher pressure. It is only a pressure difference
that can provide the force for expansion, and here the pressures are equal.
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1-rarefaction

contact
discontinuity 3-shock

Figure 9.1. Typical solution to the Riemann problem for the Euler equations.

We can achieve two different densities at the same pressure by taking gases at two
different temperatures. In fact, from (5.21) it is clear that there must be a jump in
temperature if p # p while p = p. There must also be a jump in entropy by (5.23).
This explains why contact discontinuities do not appear in solutions to the isothermal or
isentropic equations considered previously. In the reduction of the Euler equations to one
of these systems of only two equations, it is this linearly degenerate characteristic field
that disappears.

9.2 Solution to the Riemann problem

The first and third characteristic fields are genuinely nonlinear and have behavior similar
to the two characteristic fields in the isothermal equations. The solution to a Riemann
problem typically has a contact discontinuity and two nonlinear waves, each of which
might be either a shock or a rarefaction wave depending on uj and u,. A typical solution
is shown in Figure 9.1.

Because v and p are constant across the contact discontinuity, it is often easier to work
in the variables (p, v, p) rather than (p, pv, E), although, of course the jump conditions
must be determined using the conserved variables. The resulting Hugoniot locus and
integral curves can be transformed into (p, v, p) space.

If the Riemann data is (p,, vi, pi) and (p v p,), then the two new constant states that
appear in the Riemann solution will be denoted by u7 = (pj, v', p') and u; = (p;, v', P*).
(See Figure 9.1.) Note that across the 2-wave we know there is a jump only in density.

Solution of the Riemann problem proceeds in principle just as in the previous chapter.
Given the states ul and u, in the phase space, we need to determine the two intermediate
states in such a way that ul and uj are connected by a 1-wave, uj and u; are connected
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Figure 9.2. Projection of shock and rarefaction curves onto the two-dimensional v-p
plane, and determination of u'.

by a 2-wave, and finally u; and u, are connected by a 3-wave.
This seems difficult, but we can take advantage of the fact that we know the 2-wave

will be a contact discontinuity across which v and p are constant to make the problem
much simpler. Instead of considering the full three dimensional (p, v, p) phase space,
consider the v-p plane and project the integral curves and Hugoniot loci for the 1-waves
and 3-waves onto this plane. In particular, project the locus of all states that can be
connected to us by a 1-wave (entropy satisfying shocks or rarefactions) onto this plane
and also the locus of all states that can be connected to u, by a 3-wave. This gives Figure
9.2.

We see in this example that we can go from us (or actually, the projection of u,) to u'
by a 1-rarefaction and from u' to u, by a 3-shock. The problem with this construction, of
course, is that these curves are really curves in 3-space, and just because their projections
intersect does not mean the original curves intersect. However, the curve Ri(us) must go
through some state uj = (p7, v', p) for some ps' (so that it's projection onto the v-p plane
is (v',p')). Similarly, the curve S3(u,) must pass through some state u' , = (p;,v',p).
But these two states differ only in p, and hence can be connected by a 2-wave (contact
discontinuity). We have thus achieved our objective. Note that this technique depends
on the fact that any jump in p is allowed across the contact discontinuity.

In practice the calculation of u' can be reduced to a single nonlinear equation for
p', which is solved by an iterative method. Once p' is known, u', p,' and p; are easily
determined. Godunov first proposed a numerical method based on the solution of Rie-
mann problems and presented one such iterative method in his paper[24) (also described
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in §12.15 of [63]). Chorin[6( describes an improvement of this method. More details on
the solution of the Riemann problem can also be found in §81 of [11].





Part II

Numerical Methods





10 Numerical Methods for Linear
Equations

Before studying numerical methods for nonlinear conservation laws, we review some of the
basic theory of numerical methods for the linear advection equation and linear hyperbolic
systems. The emphasis will be on concepts that carry over to the nonlinear case.

We consider the time-dependent Cauchy problem in one space dimension,

u, + Au. = 0, -00<X<00, t > 0, (10.1)

u(x, 0) = uo(x).

(10.2)

We discretize the x-t plane by choosing a mesh width h e Ox and a time step k = At,
and define the discrete mesh points (x,, t") by

xi = jh, J = , -1, 0, 1, 2, ...
t = nk, n = 0, 1, 2, ...

It will also be useful to define

xi+112 = xi + h/2 = (j + 2) h.

For simplicity we take a uniform mesh, with h and k constant, although most of the
methods discussed can be extended to variable meshes.

The finite difference methods we will develop produce approximations U,' E IR.'" to
the solution u(x t") at the discrete grid points. The pointwise values of the true solution
will be denoted by

u" = u(x t").

This is a standard interpretation of the approximate solution, and will be used at times
here, but in developing methods for conservation laws it is often preferable to view Ui as

97
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an approximation to a cell average of u(x, t"), defined by

u . h 1 u(x, t") dx (10.3)

rather than as an approximation to the pointwise value 0. This interpretation is natural
since the integral form of the conservation law describes precisely the time evolution of

integrals such as that appearing in (10.3).

As initial data for the numerical method we use u°(x) to define U° either by pointwise
values, U° = u°, or preferably by cell averages, U° = u°.

It is also frequently convenient to define a piecewise constant function Uk(x, t) for all
x and t from the discrete values Uj . We assign this function the value U; in the (j, n)
grid cell, i.e.,

Uk(x,t) = U, for (x, t) E [x,-112,x1+i1s) x (t", t"}1). (10.4)

We index this function Uk by the time step k, and assume that the mesh width h and
time step k are related in some fixed way, so that the choice of k defines a unique mesh.
For time-dependent hyperbolic equations one generally assumes that the mesh ratio k/h
is a fixed constant as k, h -+ 0. This assumption will be made from here on.

We will primarily study the theory of numerical methods for the Cauchy problem,
as indicated in (10.1). In practice we must compute on a finite spatial domain, say
a < x < b, and we require appropriate boundary conditions at a and/or b. One simple
case is obtained if we take periodic boundary conditions, where

u(a,t) = u(b,t) `d t > 0 (10.5)

is specified. Then we can use periodicity in applying finite difference methods as well.
This is equivalent to a Cauchy problem with periodic initial conditions, since the solution
remains periodic and we need compute over only one period.

For linear equations, the study of the Cauchy problem or periodic case is particularly
attractive since Fourier transform techniques can be used. The study of the general initial
boundary value problem is more complex.

From the initial data u°(x) we have defined data U° for our approximate solution. We
now use a time-marching procedure to construct the approximation U' from U°, then
U2 from U' (and possibly also U°) and so on. In general, we construct U"+' from U"
in a two-level method, or more generally from U", U"-', ..., U"-' in an (r + 2)-level
method.

There are a wide variety of finite difference methods that can be used. Many of these
are derived simply by replacing the derivatives occurring in (10.1) by appropriate finite
difference approximations. For example, replacing u, by a forward-in-time approximation
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and u, by a spatially centered approximation, we obtain the following difference equations
for U"+':

U)+1 U, Ui-ilA I Ui+r 0 10 6)

2
2h = .+ ( .

This can be solved for Uj +' to obtain

Ujn+l = Ui - 2hA(Ui+i - Uj_1). (10.7)

Unfortunately, despite the quite natural derivation of this method, it suffers from severe
stability problems and is useless in practice.

A far more stable method is obtained by evaluating the centered difference approxi-
mations to ur at time t,,. rather than at time t", giving

U"+1 - U" U"+l - U±r
k

,+A( 3+i2h'') =0 (10.8)

or

(10.9)

Note, however, that in order to determine U"+' from the data U" in each time step, we
must view equation (10.9) as a coupled system of equations over all values of j. This
would be an infinite system for the Cauchy problem, but in any practical calculation we
would use a bounded interval with N grid points and this would be a finite system. In
the scalar case this is an N x N linear system with a tridiagonal coefficient matrix. When
u E R, the discrete system is mN x mN.

The method (10.7) allows us to determine U"+' explicitly, and is called an explicit
method, whereas (10.9) is an implicit method. Implicit methods are rarely used for
time-dependent hyperbolic problems, although they are very important for other classes
of equations. Although the method (10.7) is useless due to stability problems, there are
other explicit methods which work very satisfactorily with reasonable size time steps and
these are typically more efficient than implicit methods.

If we look at which grid points are involved in the computation of U,1+1 with a given
method, we can obtain a diagram that is known as the stencil of the method. The stencils
for the methods (10.7) and (10.9) are shown in Figure 10.1.

A wide variety of methods can be devised for the linear system (10.1) by using different
finite difference approximations. A few possibilities are listed in Table 10.1, along with
their stencils. Most of these are based directly on finite difference approximations to
the PDE. An exception is the Lax-Wendroff method, which is based on the Taylor series
expansion

u(x, t + k) = u(x, t) + ku,(x, () + 2k'utj(x, t) + (10.10)



100 10 Numerical Methods for Linear Equations

t"+t

to

Z'+1 z, z,_,

Figure 10.1. Stencils for the methods (10.7) and (10.9).

and the observation that from u, _ -Au. we can compute

utt = -Au., _ -Au,. = -A(-Aus.). = A2u:: (10.11)

so that (10.10) becomes

u(x, t + k) = u(x, t) - kAur(x, t) + I k2A2urr(x, t) + (10.12)

The Lax-Wendroff method then results from retaining only the first three terms of (10.12)
and using centered difference approximations for the derivatives appearing there.

The Beam-Warming method is a one-sided version of Lax-Wendroff. It is also ob-
tained from (10.12), but now using second order accurate one-sided approximations of

the derivatives.

With the exception of the Leapfrog method, all of the methods in Table 10.1 are 2-level
methods. For time-dependent conservation laws, 2-level methods are almost exclusively
used. Methods involving more than 2 levels have additional difficulties. They require
more storage (a disadvantage primarily in two or three dimensional calculations) and
they require special startup procedures, since initially only one level of data is known.
We will study explicit 2-level methods almost exclusively, and introduce some special
notation for such methods, writing

Un+1 = I{k(U"). (10.13)

Here U"+' represents the vector of approximations U,+' at time to+1. The value U,` at
a particular point j typically depends on several values from the vector U" (depending
on how large the stencil is), and so we write

U"+1 =xk(U"i1) (10.14)

to signify that U,+' depends on the full vector U". For example, the 7{k operator for
method (10.7) takes the form

k
7k(U"+j)=U; -2h A(U;+I - U I). (10.15)
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Name Difference Equations Stencil

Backward Euler U;+' = Un - - A(Un+, - UJ 1)

One-sided Uj+' = Un - kA(U, -UU 1) J
One-sided Ui+' = U' - nA(Ui+1 - U,i) L
Lax-Friedrichs Un+' = 2(Ujt- 1 + Un+1) - hA(Ui+, - U 1)

Leapfrog U,+' = Ui _1 - hA(Un+1 - U 1)

Lax-Wendroff U,+' = Uj - - A(U;+1 - U"_1)
+A2(Uj}1 - 2Uj + U 1)

Beam-Warming U +1 = Uj - - A(3Uj - 4UU1 + UJ 2)

TABLE 10.1

Finite difference methods for the linear problem u1 + Au. = 0.
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The finite difference operator 7{k can be extended to apply to functions of x rather
than to discrete grid functions in a very natural way. If v(x) is an arbitrary function of
x then we define 7{k(v) to be the new function of x obtained by applying the difference
scheme to v at each point z. Pointwise values of 7{k(v) might be denoted by [7{k(v)](x),
or, for consistency with (10.14), by 7-lk(v; x). For example, applying the method (10.7) to
v(x) gives 7{k(v) defined by

7-(k(v; x) = [7{k(v)](x) = v(x) - 2h A(v(x + h) - v(x - h)). (10.16)

Notice in particular that if we apply this operator to the piecewise constant function
t) (defined by our discrete values via (10.4)) at any time t, we obtain the piecewise

constant function t + k), so'

Uk(x,t + k) = 7{k(Uk(.,t);x). (10.17)

This demonstrates a certain consistency in our notation, and we will use the same symbol
7{k to denote both the discrete and continuous operators.

Notice that all of the methods listed in Table 10.1 are linear methods, meaning that
7{k is a linear operator,

7{k(QU" +YV") = Q7{k(U") +,6hk(V") (10.18)

for any grid functions U" and V" and scalar constants a, 6. Linearity of difference
methods is heavily used in the study of discrete approximations to linear PDEs. If 7{k is
linear then we can write (10.13) in the form

U"+1 = 7{k U" (10.19)

where 7{k is now an mN x mN matrix in the discrete case (when solving a system of m
equations on a grid with N grid points).

10.1 The global error and convergence

We are ultimately interested in how well Uj approximates the true solution, and we define
the global error to be the difference between the true and computed solutions. We can
make this more precise in several ways. In studying smooth solutions it is usually most
convenient to consider the pointwise error,

Ej = Uj - u" (10.20)

'A note on notation: Uk(., t) denotes the function of z alone obtained by fixing t. The operator 9(k
applies only to functions of one variable.
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For conservation laws it is sometimes preferable to consider the error relative to the cell
average of the true solution,

E, =U, -n7. (10.21)

These can be unified to some extent by introducing the error function

Ek(x, t) = Uk(x, t) - u(x, t). (10.22)

Then E7 is the pointwise value Ek(x while Ej" is the cell average of Ek at time t,,.
With these definitions, we say that a method is convergent in some particular norm

II II if
t)II -* 0 as k --+ 0, (10.23)

for any fixed t > 0, and for all initial data uo in some class.

10.2 Norms

In discussing convergence we must make a choice of norm. It may happen that a method
is convergent in one norm but not in another. For conservation laws the natural norm to
use is the 1-norm, defined for a general function v(x) by

11.11. = f Iv(x)Idx, (10.24)

so that

I IEk(x,t)I dx
at each fixed t. This norm is natural since it requires essentially just integrating the
function, and the form of the conservaion law often allows us to say something about
these integrals.

Ideally one might hope for convergence in the oo-norm,

IIvII= = sup Iv(x)I, (10.25)

but this is unrealistic in approximating discontinuous solutions. The pointwise error in
the neighborhood of a discontinuity typically does not go to zero uniformly as the grid
is refined even though the numerical results may be perfectly satisfactory. The method
may well converge in the 1-norm but not in the oo-norm.

For linear equations a more popular norm is the 2-norm,

IIv112 Iv(x)I2dx]'1", (10.26)

since for linear problems Fourier analysis is applicable and Parseval's relation says that
the Fourier transform of v(x) has the same 2-norm as v. This can be used to simplify
the analysis of linear methods considerably.
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We will use the 1-norm almost exclusively, and so a norm with no subscript will
generally refer to the 1-norm. For the discrete grid function U" we use the discrete
1-norm defined by

IIU"III = hE IU, I. (10.27)
i

Note that this is consistent with the function version in the sense that

IIU"II1 = IIUk(.,tn)II1

Although our ultimate interest is in proving convergence, and better yet obtaining
explicit bounds on the size of the global error (and hence convergence rates), this is hard
to achieve directly. Instead we begin by examining the local truncation error and then
use stability of the method to derive estimates for the global error from the local error.

10.3 Local truncation error

The local truncation error Lk(x, t) is a measure of how well the difference equation models
the differential equation locally. It is defined by replacing the approximate solution U, in
the difference equations by the true solution u(xj, t.). Of course this true solution of the
PDE is only an approximate solution of the difference equations, and how well it satisfies
the difference equations gives an indication of how well the exact solution of the difference
equations satisfies the differential equation.

As an example, consider the Lax-Priedrichs method from Table 10.1. This method
is similar to the unstable method (10.7) but replaces U, by 2(Uj 1 + UU+1) and is stable
provided k/h is sufficiently small, as we will see later.

We first write this method in the form

lU'
+1 (U,-1 + Ui+1)J + 2h A(Ui+1 - Uj 1) = 0,

so that it appears to be a direct discretization of the PDE. If we now replace each U, by
the exact solution at the corresponding point, we will not get zero exactly. What we get
instead is defined to be the local truncation error,

Ls(x,t) = k [u(x,t + k) - 2(u(x - h,t) + u(x + h,t))J (10.28)

+ZA(u(x + h, t) - u(x - h, t)J.h
In computing the local truncation error we always assume smooth solutions, and so we
can expand each term on the right hand side of (10.28) in a Taylor series about u(x,t).
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Doing this and collecting terms gives (with u =_ u(x, t)):

Lk(x,t) = k [(u+ku,+Zk2u,,+...)-(u+ 1h2u::+...)1

+2h A [2hur + h3u + ]

x

= u t + Au=+ I (hun - k u:: + 0(h2). (10.29)
2 (

Since we assume that u(x, t) is the exact solution, ut + Au.. = 0 in (10.29). Using this
and also (10.11), we find that

Lk(x, t) = 2k A2 - X21 t) + 0(k2)

= 0(k) as k 0. (10.30)

Recall that we assume a fixed relation between k and h, k/h = constant, so that h2/k2
is constant as the mesh is refined. (This also justifies indexing Lk by k alone rather than
by both k and h.)

By being more careful in this analysis, using Taylor's theorem with remainder and
assuming uniform bounds on the appropriate derivatives of u(x, t), we can in fact show a
sharp bound of the form

JLk(x, t)J < Ck for all k < ko (10.31)

The constant C depends only on the initial data uo, since for the linear system we consider
here we can easily bound derivatives of u(x, t) in terms of derivatives of the initial data.
If we assume moreover that uo has compact support, then Lk(x, t) will have finite 1-norm
at each time t and we can obtain a bound of the form

t)jI < CLk for all k < ko (10.32)

for some constant CL again depending on uo.
The Lax-Friedrichs method is said to be first order accurate since the local error (10.32)

depends linearly on k.
We now extend these notions to arbitrary 2-level methods.

DEFINITION 10.1. For a general 2-level method, we define the local truncation
error by

Lk(x, t) =
k

(u(x, t + k) - t); x)]. (10.33)

DEFINITION 10.2. The method is consistent if

IILk(-, 0 II -. 0 as k -. 0. (10.34)
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DEFINITION 10.3. The method is of order p if for all sufficiently smooth initial data
with compact support, there is some constant CL such that

t)II < CLk" for all k < ko, t < T (10.35)

This is the local order of the method, but it turns out that for smooth solutions, the
global error will be of the same order provided the method is stable.

10.4 Stability

Note that we can rewrite (10.33) in the form

u(x, t + k) = t); x) + kLk(x, t). (10.36)

Since the numerical solution satisfies (10.17), we can obtain a simple recurrence relation
for the error in a linear method by subtracting these two expressions, obtaining

Ek(x, t + k) = t); x) - kLk(x, t). (10.37)

Note that linearity is strongly required here. Since the method is linear, we can rewrite
(10.37) in the functional form

Ek(-, t + k) = t) - t). (10.38)

The error (10.37) at time t + k is seen to consist of two parts. One is the new local
error -kLk introduced in this time step. The other part is the cumulative error from
previous time steps. By applying this relation recursively we obtain an expression for the
error at time t,,:

t.) = 0) - k E is-j). (10.39)

Here superscripts on 7{k represent powers of the matrix (or linear operator) obtained by
repeated applications.

In order to obtain a bound on the global error, we must insure that the local error
ti-1) is not unduly amplified by applying n - i steps of the method. This requires

stability of the method, and we use a form that is often referred to as Lax-Richtmyer
stability.

DEFINITION. The method is stable if for each time T there is a constant Cs and a
value ko > 0 such that

1I 11 5 Cs for all nk 5 T, k < ko. (10.40)
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Note in particular that the method is stable if IlxkII < 1, for then IIHHII 5 IIflsII' 5 1
for all n, k. More generally, some growth is allowed. For example, if

IIxkII 5 1 + ok for all k < ko (10.41)

then

II II 5 (1 + ok)n < eokn < e.T

for all k, n with nk < T.

10.5 The Lax Equivalence Theorem

This is the fundamental convergence theorem for linear difference methods, and says that
for a consistent, linear method, stability is necessary and sufficient for convergence.

A full proof may be found in [63] or [82]. Here I will just indicate why this is sufficient,
at least for smooth initial data, and also show why the global error should be of the same
order as the local truncation error. This follows quite easily from the expression (10.39).
Taking norms and using the triangle inequality gives

IIEk(', tn)II 5 IIf1I IIEk(', 0)II + kE IIn-'II IILk(', ti)II
i-1

From stability we have II7('II 5 Cs for i = 0, 1, ..., n and so

tn)II 5 Cs (lE5. 0)11 + kE t:)II)
:=r

(10.42)

(10.43)

If the method is pth order accurate then (10.35) holds, and so we have, for kn = to < T,

IIEk(', tn)II 5 Cs +TCykP). (10.44)

If there is no error in the initial data, then this gives the desired result. More generally, we
have convergence at the expected rate provided any error in the initial data also decays
at the rate O(kP) as k - 0. We then obtain a global error bound of the form

IIEk(', t) 11 5 CEkP (10.45)

for all fixed t < T and k < ko.

EXAMPLE 10.1. Consider the Lax-Friedrichs method applied to the scalar advection
equation u,+au. = 0. We will show that the method is stable provided that is and is are
related in such a way that

h I <
I.

(10.46)
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This is the stability restriction for the method. For the discrete operator Wk, we will
show that IIU"+'II <_ IIU"II and hence 117{kll < 1. Exactly the same proof carries over to
obtain the same bound for the continuous operator as well.

We have

and hence

U,+1=2(U' }Uj-")-2h(Uj+l-U 1)

IIU"+'II = hEIUU}1f

h Tall)
2 [I(1 h)Ui+. l +l \l+ U'

.I,.

But the restriction (10.46) guarantees that

1- h >0, 1+ h >_0

and so these can be pulled out of the absolute values, leaving

1
IIU"+111 < 2 L(1_ )iuii+(1+ )EiU li]

L\ i i

ZI(1 h)lIU"II+(1+ h)IIU"II,

IIU"ll

as desired. This shows that (10.46) is sufficient for stability. In fact, it is also necessary,
as we will see in the next section.

Now consider a linear system of equations, and recall that we can decouple the sys-
tem by making a change of variables to v(x, t) = R"u(x, t), where R is the matrix of
eigenvectors of A. Then v satisfies

v, + Av= = 0, (10.47)

giving m scalar advection equations.
We can apply this same approach to the difference equations. If we set V," = R-'UU

for all j and n and multiply the Lax-Friedrichs method by R-1, we obtain

V
i" + 1 = 2(Vi 1.}Vi+1)+

h A ( V i + 1 -Vi 1

This decouples to give m independent difference equations. The pth scalar equation is
stable provided

a--kl < 1 (10.48)
h



10.5 The Lax Equivalence Theorem 109

according to the previous analysis for the scalar case. If (10.48) is satisfied for all p =
1, 2, ..., m then Vj" converges to v(x, t) and hence Uj = RVj" converges to u(x, t) =
Rv(x, t). We see that the Lax-Friedrichs method is stable for a linear system provided
that (10.48) is satisfied for each eigenvalue ay of A.

EXAMPLE 10.2. Next consider the one-sided method
ak= Uj -
h

(U7 - UU ') (10.49)

for the scalar equation. Proceeding ass in Lax-Friedrichs, we find that

]]U"+'l]<hE
\I_ Ik/U'I+hF ' -.

If we now assume that
0 < h < 1 (10.50)

then the coefficients of Uj and Uj"_, are both nonnegative, and we obtain the stability
bound 1]U"+']I 51IU"]]

Note that the condition (10.50) requires in particular that a > 0, since k, h > 0. The
one-sided method (10.49) can only be used when a > 0. For a system of equations, the
same analysis as for Lax-Friedrichs shows that we require

0<Ahf`<1

for all eigenvalues of A. In particular, all of the eigenvalues must be nonnegative in order
to use this method.

Similarly, the one-sided method using data from the other direction,

Uj+' = Uj - hA(Ui+1 - U;) (10.51)

can be used only if all eigenvalues of A are nonpositive, and the stability restriction is

-1<Ahk<0. (10.52)

The approach used here to investigate the stability of Lax-Friedrichs and one-sided
methods works because these methods belong to a special class called "monotone meth-
ods". These will be discussed later for nonlinear problems, where a very similar stability
analysis can be applied. For methods such as Lax-Wendroff or Leapfrog, which are not
monotone methods, a more complicated stability analysis is required. For linear problems
this is usually accomplished using Fourier analysis (the von Neumann approach). This
very important technique will not be discussed here since it does not generalize to nonlin-
ear problems. (See [63) or [82], for example.) We simply note that the stability restriction
for both Lax-Wendroff and Leapfrog agrees with that for Lax-Friedrichs, and is given by
(10.48).
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10.6 The CFL condition

One of the first papers on finite difference methods for PDEs was written in 1928 by
Courant, Friedrichs, and Lewy[12]. (There is an English translation in [13].) They use
finite difference methods as an analytic tool for proving existence of solutions of certain
PDEs. The idea is to define a sequence of approximate solutions (via finite difference
equations), prove that they converge as the grid is refined, and then show that the limit
function must satisfy the PDE, giving existence of a solution.

In the course of proving convergence of this sequence (which is precisely what we
are interested in), they recognized that a necessary stability condition for any numerical
method is that the domain of dependence of the finite difference method should include
the domain of dependence of the PDE, at least in the limit as k, h -. 0. This condition
is known as the CFL condition after Courant, Friedrichs, and Lewy.

The domain of dependence D(a, 0 for the PDE has already been described in Chap-
ter 3. Recall that for the linear system (10.1), the set D(5,1) consists of the points
x - Apt, p = 1, 2, ... , m since only initial data at these points can affect the solution at

The numerical domain of dependence, Dk(5, t), for a particular method is similarly
defined. It is the set of points x for which initial data uo(x) could possibly affect the
numerical solution at (x, t].

EXAMPLE 10.3. Consider a three-point scheme with a stencil as on the left in
Figure 10.1. The value of Uk(x depends on values of Uk at time at the three
points xj+q, q = -1,0,1. These values in turn depend on Uk at time 4_2 at the points
xS+V for q = -2,-1,0,1,2. Continuing back to t = 0 we see that the solution at t
depends only on initial data at the points x,+, for q = -n,. .. , n, and so the numerical
domain of dependence satisfies

C {x : Ix - xil < nh},

or, in terms of a fixed point (a, i),

Dk(i, i) C {x : Ix - aI < (ilk)h}.

If we now refine the mesh with k/h fixed, say k/h = r, then in the limit this domain of
dependence fills out the entire set,

Do(5, l) _ {x : Ix - iI < t/r}. (10.53)

The CFL condition requires that

D(i, 0 C Do(-t' 0 . (10.54)
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(Z" t.)
to .

Figure 10.8. Computational triangle for a three-point scheme. The CFL condition requires
that characteristics lie within this triangle.

For a three-point scheme applied to a linear system, this requires that

I(x- hpt-)- 2I <t/r,

i.e., that

h < 1 (10.55)
h

for each eigenvalue Ap of A. This guarantees that the characteristics of the system lie
within the computational triangle shown in Figure 10.2.

The CFL condition is only a necessary condition for stability, not sufficient. The
fact that it is necessary stems from the observation that if (10.54) is violated then there
are points f in the true domain of dependence that are not in the numerical domain of
dependence. Changing the value of the initial data at t would thus effect the true solution
but not the numerical solution, and hence the numerical solution cannot possibly converge
to the true solution for all initial data.

For the Lax-Friedrichs method we have already seen that (10.55) is also a sufficient
condition for stability, hence it is necessary and sufficient. Similarly, the one-sided method
(10.51) has domain of dependence

Do(.t,t)= (x: a<x<i+t/r),

and hence the CFL condition requires precisely the condition (10.52) that we have already
shown to be sufficient.



112 10 Numerical Methods for Linear Equations

There are examples, however, when the CFL condition is not sufficient for stability.
For example, the three-point centered method (10.7) has the usual domain of dependence
(10.53) for a three-point method, and hence satisfies the CFL condition if (10.55) holds,
but turns out to be unstable for any mesh ratio as is easily shown by von Neumann
analysis.

The quantity

v = (10.56)

is often called the Courant number, or sometimes the CFL number, for a particular
calculation. A necessary condition for stability of centered three-point methods is thus
that the Courant number be no greater than 1.

10.7 Upwind methods

For the scalar advection equation with a > 0, the one-sided method (10.49) can be applied
and is stable provided (10.50) is satisfied. This method is usually called the first order
upwind method, since the one-sided stencil points in the "upwind" or "upstream"
direction, the correct direction from which characteristic information propagates. If we
think of the advection equation as modeling the advection of a concentration profile in a
fluid stream, then this is literally the upstream direction.

Similarly, the method (10.51) is the upwind method for the advection equation with
a<0.

For a system of equations, we have seen that a one-sided method can only be used if
all of the eigenvalues of A have the same sign. This is typically not the case in practice.
In the linearized Euler equations, for example, the eigenvalues of f(u) are v, v ± c and
these all have the same sign only if jvj > c. In this case the fluid speed is greater than the
sound speed and the flow is said to be supersonic. If lvi < c then the flow is subsonic
and any one-sided method will he unstable since there are sound waves propagating in
both directions and the CFL condition is violated.

When computing discontinuous solutions, upwind differencing turns out to be an im-
portant tool, even for indefinite systems with eigenvalues of mixed sign. The appropriate
application of upwind methods requires some sort of decomposition into characteristic
fields. For example, if we change variables and decouple the linear system into (10.47),
then each of the resulting scalar problems can be solved with an appropriate upwind
method, using the point to the left when .\p > 0 or to the right when Ap < 0.

This method can be written in a compact form if we introduce the notation

aD = max(Ap,0), A+ = diag(. ...... .X ), (10.57)

AP = min(Ap,0), A- = diag(A ,...,A ,). (10.58)
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Note that A+ + A- = A. Then the upwind method for the system (10.47) can be written
as

VJ°+, = VI - A+(Vjn - V 1) - TA-(V;+, - Vj°). (10.59)

We can transform this back to the original U variables by multiplying by R. This gives

where

U7 = Uj - hA+(U$ - U ,) - TA (Ui+, - UJ ). (10.60)

A+ = RA+R-1, A- = RA-R-'. (10.61)

Notice that A+ + A- = A. If all the eigenvalues of A have the same sign then either A+
or A- is zero and the method (10.60) reduces to a fully one-sided method.

For nonlinear systems analogous splittings can be introduced in various ways to incor-
porate upwinding. Many of these methods require solving Riemann problems in order to
accomplish the appropriate splitting between wave propagation to the left and right. The
fundamental method of this type is Godunov's method. We will see later that (10.60)
is precisely Godunov's method applied to a linear system.



11 Computing Discontinuous
Solutions

For conservation laws we are naturally interested in the difficulties caused by disconti-
nuities in the solution. In the linear theory presented so far we have assumed smooth
solutions, and used this in our discussion of the truncation error and convergence proof.
We now consider what happens when we apply a numerical method to a linear prob-
lem with discontinuous initial data, e.g., the Riemann problem for the scalar advection
equation

ui + our =O, -oo < x < oo, t > 0,
u0(x) I X<0

(11.1)0 x>0.

Of course the exact solution is simply uo(x - at), but we expect our numerical method to
have difficulty near the discontinuity. Note for example that a finite difference approxi-
mation to u= applied across the discontinuity in the true solution will blow up as it -t 0,
e.g.,

u(at+h,t)-u(at-h,t) _0-1 .-oo
2h

711

The local truncation error does not vanish as it - 0 and the proof of convergence pre-
sented in the previous chapter breaks down. This proof can be rescued by considering
approximations uo(x) to u0(x) that are smooth and approach uo as e -* 0. Although
convergence can again be proved for a stable and consistent method, the rate of conver-
gence may be considerably less than what is expected from the "order" of the method as
defined by its behavior on smooth solutions. Moreover, the numerical solution may look
very unsatisfactory on any particular finite grid.

Figures 11.1 and 11.2 show numerical solutions to the Riemann problem (11.1) com-
puted with some of the standard methods discussed in the previous chapter. In all cases
a = 1, k/h = 0.5 and the results are plotted at time t = 0.5 along with the exact solution.
In Figure 11.1, h = 0.01 while a finer grid with h = 0.0025 is used in Figure 11.2. Notice
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Figure 11.1. Numerical and exact solution to (11.1) with h = 0.01 and the following
methods: (a) Lax-Friedrichs, (b) Upwind, (c) Lax-Wendrojj, (d) Beam-Warming.

that the first order methods (Lax-Friedrichs and upwind) give very smeared solutions
while the second order methods (Lax-Wendroff and Beam-Warming) give oscillations.
This behavior is typical.

If we compute the 1-norm error in these computed solutions we do not see the expected
rates of convergence. Instead the "first order" methods converge with an error that is
0(k'/2) while the "second order" methods have an error that is O(k2l3) at best. These
convergence rates can be proved for very general initial data by a careful analysis using
smooth approximations. An indication of why this should be so will be given later in this
chapter.
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11.1 Modified equations

A useful technique for studying the behavior of solutions to difference equations is to
model the difference equation by a differential equation. Of course the difference equation
was originally derived by approximating a PDE, and so we can view the original PDE
as a model for the difference equation, but there are other differential equations that are
better models. In other words, there are other PDEs that the numerical method solves
more accurately than the original PDE.

At first glance it may seem strange to approximate the difference equation by a PDE.
The difference equation was introduced in the first place because it is easier to solve
than the PDE. This is true if we want to generate numerical approximations, but on
the other hand it is often easier to predict the qualitative behavior of a PDE than of
a system of difference equations. At the moment it is the qualitative behavior of the
numerical methods that we wish to understand. Good descriptions of the theory and use
of modified equations can be found in Hedstrom[37] or Warming- Hyett[961.

The derivation of the modified equation is closely related to the calculation of the
local truncation error for a given method. Consider Lax-Friedrichs, for example, where
we calculated the local truncation error Lk(x, t) from (10.29). Since u(x, t) is taken to be
the exact solution to ut+ Au = 0, we found that Lk(x, t) = 0(k). However, if we instead
take u(x, t) to be the solution of the PDE

tit + Aug. + 2 (uu - R uz = 0, (11.2)

then the truncation error would be 0(k2). We conclude that the Lax-Friedrichs method
produces a second orderaccurate approximation to the solution of (11.2). This equation is
called a modified equation for the Lax-Friedrichs method. (The term "model equation"
is also sometimes used.)

If we express the utt term in (11.2) in terms of x-derivatives we obtain an equation that
is easier to analyze. Note that we cannot use (10.11) directly since u no longer satisfies
the original PDE, but a similar manipulation using (11.2) shows that

1
h2utt = -Aut: -

2
(kuttt - k u::t

= -A[-Au, + O(k)] + O(k)
= A2u:: + O(k).

Using utt = A2u:: in (11.2) will give errors that are 0(k 2), the same order as other
terms that have already been ignored, and consequently the Lax-Friedrichs method is
also second order accurate on the modified equation

h2
I LA21 (11.3)

Fk, h2
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where I is the m x m identity matrix. For higher order methods this elimination of t-
derivatives in terms of x-derivatives can also be done, but must be done carefully and is
complicated by the need to include higher order terms. Warming and Hyett[961 present
a general procedure.

11.1.1 First order methods and diffusion
The modified equation (11.3) is an advection-diffusion equation of the form

u, + Au. = Dun

with a diffusion matrix D given by

(11.4)

D
2k

(I - (A)2). (11.5)

We expect solutions of this equation to become smeared out as time evolves, explaining at
least the qualitative behavior of the Lax-Friedrichs method seen in the above figures. In
fact this equation is even a good quantitative model for how the solution behaves. If we
plot the exact solution to (11.3) (with appropriate k and h) along with the Lax-Friedrichs
numerical solutions shown in Figures 11.1 and 11.2, they are virtually indistinguishable
to plotting accuracy.

Note that the modified equation (11.3) varies with k and h. The diffusive term is 0(k)
as k --+ 0 and vanishes in the limit as the grid is refined. The numerical solutions generated
by the Lax-Friedrichs method on a sequence of grids are thus good approximations to a
sequence of "vanishing viscosity" solutions u` that might be used to define the physically
relevant weak solution to the conservation law. In the linear case there is only one weak
solution, but for nonlinear problems it turns out that the Lax-Friedrichs method satisfies
a discrete entropy condition and converges more generally to the vanishing viscosity weak
solution as the grid is refined.

The modified equation for the upwind method can be derived similarly, and is found
to be \

u,+Au==1hA(I-h AIuu. (11.6)

This is again an advection-diffusion equation and so we expect similar behavior. Moreover,
for the values of k/h and A used in the computations presented above, the diffusion
coefficient is h/4 for upwind and 3h/4 for Lax-Friedrichs, so we expect upwind to be less
diffusive than Lax-Friedrichs, as confirmed in the numerical results.

Relation to stability. Notice that the equation (11.3) is mathematically well posed
only if the diffusion coefficient matrix D is positive semi-definite. Otherwise it behaves
like the backward heat equation which is notoriously ill posed. This requires that the
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eigenvalues of D be nonnegative. The matrix R of eigenvectors of A also diagonalizes D
and we see that the eigenvalues of D are

\ 1
2k

(1 - (t`h°°)

These are all nonnegative if and only if the stability condition (10.48) is satisfied. We
see that the modified equation also gives some indication of the stability properties of the
method.

Similarly, the diffusion matrix for the upwind method has nonnegative eigenvalues if
and only if the stability condition 0 < a°k/h < 1 is satisfied.

EXERCISE 11.1. Compute the modified equation for the method

Uj+t = Ui - ZhA(U)+I - UJ-t)-

Explain why this method might be expected to be unstable for all k/h (as in fact it is).

11.1.2 Second order methods and dispersion
The Lax-Wendroff method, which is second order accurate on ut+ Au. = 0, gives a third
order accurate approximation to the solution of the modified equation

ut+Au:= (11.7)

The Beam-Warming method has a similar modified equation,

h' ( 3k k )
(11.8)ut+Aus= A 21-

h
hA+AZ

6
U_

In the scalar case, both of these modified equations have the form

ut + an. = JAU- (11.9)

which is a dispersive equation. The theory of dispersive waves is covered in detail in
Whitham[971, for example. The key observation is that if we look at a Fourier series
solution to this equation, taking u(x, t) of the form

u(x,t)=f-

(11.10)

then the Fourier components with different wave number propagate at different speeds,
i.e., they disperse as time evolves. By linearity it is sufficient to consider each wave number
in isolation, so suppose we look for solutions to (11.9) of the form

ei(E=-C(f)t). (11.11)
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Putting this into (11.9) and canceling common terms gives

c(C) = aC + µC. (11.12)

This expression is called the dispersion relation for (11.9). The speed at which this
oscillating wave propagates is clearly c(C)/C, which is called the phase velocity cp(C) for
wave number C. This is the speed at which wave peaks travel. From (11.12) we find that

cp(C) = c(C)/C = a + µC2. (11.13)

Note that this varies with C and is close to the propagation speed a of the original advection
equation only for C sufficiently small.

It turns out that for general data composed of many wavenumbers, a more important
velocity is the so-called group velocity, defined by

c9(C) = c'(C) = a + 3µC2. (11.14)

This varies even more substantially with C than cp(C). The importance of the group
velocity is discussed in Whitham[97]. See also Brillouin[41 or Lighthill[52]. The utility
of this concept in the study of numerical methods has been stressed by Trefethen, in
particular in relation to the stability of boundary conditions. A nice summary of some of
this theory may be found in Trefethen[86].

A step function, such as the initial data we use in (11.1), has a broad Fourier spectrum:
u(C, 0) decays only like 1/C as ]C] -* 0. (By contrast, a C°° function has an exponentially
decaying Fourier transform.) As time evolves these highly oscillatory components dis-
perse, leading to an oscillatory solution as has already been observed in the numerical
solution obtained using Lax-Wendroff or Beam-Warming. It can be shown that at time
t, wavenumber C will be predominantly visible near x = c9(C)t. So, according to (11.14),
the most oscillatory components are found farthest from the correct location x = at. This
can also be seen in Figures 11.1 and 11.2.

For the scalar advection equation, the modified equation (11.7) for Lax-Wendroff is of
the form (11.9) with

µ = I h2a(v2 - 1) (11.15)

where v = ak/h is the Courant number. Since a > 0 and ]v] < 1 for stability, we have
p < 0 and hence c9(C) < a for all C according to (11.14). All wave numbers travel too
slowly, leading to an oscillatory wave train lagging behind the discontinuity in the true
solution, as seen in the figures.

For Beam-Warming, on the other hand,

µ = sh2a(2 - 3v + v2) (11.16)

which is easily seen to be positive for 0 < v < 1. Consequently c9(C) > a for all C and the
oscillations are ahead of the discontinuity.
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11.2 Accuracy

We now return to the question of the accuracy of a numerical method when applied to a
problem with discontinuities. As an example we will consider the Lax-Friedrichs method
applied to the problem (11.1). Since the numerical solution agrees so well with the true
solution of the modified equation, we can use the difference between the true solution of
the modified equation and the true solution to the advection equation as an estimate of
the error in the numerical approximation. This is not a rigorous error estimate, and is only
for the particular initial data of (11.1) anyway, but it does give an accurate indication of
what can be expected in general. The connection to the modified equation helps explain
why we typically lose accuracy near discontinuities.

The true solution to (11.4) with data uo(x) from (11.1) is simply

u°(x, t) = 1 -erf ((x - at)/ 4Dt (11.17)

where the "error function" erf is defined by

erf(x) =
f2 1 e--2 dz. (11.18)

From this and the fact that the solution to the pure advection problem is simply u(x, t) _
uo(x - at), we can easily compute that

t) - t)jj = 2j erf (x/ 4Dt dx

= 2 4Dt
0

I erf(z) dz

for some constant C, independent of D and t. For Lax-Friedrichs, D is given by (11.5)
and so we find that

IIu(-, i) - Uk(-, t)II C2 ht (11.19)

as h -. 0, for k/h fixed. This indicates that the 1-norm of the error decays only like h'/2
even though the method is formally "first order accurate".

Similar results for nonlinear scalar conservation laws can be found in Kuznetsov[43),
Lucier(54), or Sanders[70], for example.



12 Conservative Methods for
Nonlinear Problems

When we attempt to solve nonlinear conservation laws numerically we run into additional
difficulties not seen in the linear equation. Moreover, the nonlinearity makes everything
harder to analyze. In spite of this, a great deal of progress has been made in recent years.

For smooth solutions to nonlinear problems, the numerical method can often be lin-
earized and results from the theory of linear finite difference methods applied to obtain
convergence results for nonlinear problems. A very general theorem of this form is due
to Strang[S0[ (see also §5.6 of [631). We will not pursue this topic here since we are
primarily interested in discontinuous solutions, for which very reasonable looking finite
difference methods can easily give disasterous results that are obviously (or sometimes,
not so obviously) incorrect.

We have already seen some of the difficulties caused by discontinuous solutions even
in the linear case. For nonlinear problems there are additional difficulties that can arise:

The method might be "nonlinearly unstable", i.e., unstable on the nonlinear problem
even though linearized versions appear to be stable. Often oscillations will trigger
nonlinear instabilities.

The method might converge to a function that is not a weak solution of our original
equation (or that is the wrong weak solution, i.e., does not satisfy the entropy
condition).

The fact that we might converge to the wrong weak solution is not so surprising -
if there is more than one weak solution why should we necessarily converge to the right
one? (We must make sure that the finite difference approximations satisfy some discrete
form of the entropy condition, as we will do later.)

The fact that we might converge to a function that is not a weak solution at all is more
puzzling, but goes back to the fact that it is possible to derive a variety of conservation
laws that are equivalent for smooth solutions but have different weak solutions. For
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example, the PDEs

u, + (1Zus)s = 0 (12.1)

and

(u2), + (2u3) =0 (12.2)

have exactly the same smooth solutions, but the Rankine-Hugoniot condition gives dif-
ferent shock speeds, and hence different weak solutions. (Recall Example 3.3.)

Consider a finite difference method that is consistent with one of these equations,
say (12.1), using the same definition of consistency as for linear problems (expand in
Taylor series, etc.). Then the method is also consistent with (12.2) since the Taylor series
expansion (which assumes smoothness) gives the same result in either case. So the method
is consistent with both (12.1) and (12.2) and while we might then expect the method to
converge to a function that is a weak solution of both, that is impossible when the two
weak solutions differ.

EXAMPLE 12.1. If we write Burgers' equation (12.1) in the quasilinear form

(12.3)

then a natural finite difference method, obtained by a minor modification of the upwind
method for u, + aus = 0 (and assuming U; > 0 for all j, n) is

Uj"+1 =UjI -hU,(U; - U i) (12.4)

The method (12.4) is adequate for smooth solutions but will not, in general, converge to
a discontinuous weak solution of Burgers' equation (12.1) as the grid is refined. Consider,
for example, the data from (11.1), which in discrete form gives

U;={
0

I j<0
j>0. (12.5)

Then it is easy to verify from (12.4) that Uj = U° for all j. This happens in every
successive step as well and so Uj = U° for all j and n, regardless of the step sizes k and
h. As the grid is refined, the numerical solution thus converges very nicely to the function
u(x, t) = uo(x). This is not a weak solution of (12.1) (or of (12.2) either).

In this example the solution is obviously wrong, but similar behavior is seen with other
initial data that may give reasonable looking results that are incorrect. Figure 12.1 shows
the true and computed solutions at time t = 1 with Riemann data ul = 1.2 and u, = 0.4.
We get a nice looking solution propagating at entirely the wrong speed.

EXERCISE 12.1. Show that (12.4) is consistent with both (12.1) and (12.2).
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Figure 12.1. True and computed solutions to Burgers' equation using a nonconservative
method.

12.1 Conservative methods

Luckily, there turns out to be a very simple and natural requirement we can impose on
our numerical methods which will guarantee that we do not converge to non-solutions.
This is the requirement that the method be in conservation form, which means it has
the form

U , +t = U
i - h [F(U, .

, Ui-a+1, ... , Ui+c) - F(Ui-r-1, Ui-v+... , Uj"+q-1)] (12.6)

for some function F of p + q + 1 arguments. F is called the numerical flux function.
In the simplest case, p = 0 and q = 1 so that F is a function of only two variables and
(12.6) becomes

U,+1=Uj -hIF(U;,U'+1)-F(UJ 1,Uj)]. (12.7)

This form is very natural if we view U,' as an approximation to the cell average f
defined by (10.3). We know that the weak solution u(x,t) satisfies the integral form of
the conservation law,

ri+lla ,+1/2

u(x,t,+1)dx = u(x,t")dx (12.S)
r, _,1z s,_, 1

f(u(xi+1/s,
t)) dt

f(u(xi-1/2, t))dt]

Dividing by h and using the cell averages defined in (10.3), this gives

ii +1 = it, - f(u(xi+1/2,
t)) dt - r^"+, f(u(xi-U2+

t)) dt] (12.9)
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Comparing this to (12.7), we see that the numerical flux function F(U;, U;+1) plays the
role of an average flux through xj+112 over the time interval [t,,,

1 rt+t
F(U,, Ui+1) -

k I f (u(xi+t/z, t)) dt. (12.10)

One way to derive numerical methods in conservation form is to use standard finite dif-
ference discretizations but to start with the conservative form of the PDE rather than the
quasilinear form. For example, if we generalize the upwind method to Burgers' equation
using the form (12.1) rather than (12.3), we obtain

Uj+1=Ui-hIi (U,)z (U,-1)2

F(v,w) = v2. (12.12)

Here we again assume that U' > 0 for all j, n, so that the "upwind" direction is
always to the left. More generally, for a nonlinear system ut + f(u)= = 0 for which the
Jacobian matrix f'(Uj) has nonnegative eigenvalues for all Uj, the upwind method is of
the form (12.7) with

F(v,w)= f(v). (12.13)

Of course in general the Jacobian will have eigenvalues of mixed sign and it will not be
possible to use a completely one-sided method. Also note that for the nonlinear problem,
unlike the linear advection equation, the "upwind" direction depends on the data U; and
may vary from point to point. Even in the scalar case we need to introduce some way of
switching the directional bias based on the data. We will consider various generalizations
of (12.13) to handle this situation later. For now we simply note that if f'(U,) has only
nonpositive eigenvalues for all U, , then the upwind method always uses the point to the
right, and the flux becomes

F(v, w) = f (w). (12.14)

Lax-Friedrichs. The generalization of the Lax-Friedrichs method to nonlinear sys-
tems takes the form

U,+1 =2(Ui 1+Ui+i)- 2h(f(U;+1)-f(U 1)).

This method can be written in the conservation form (12.7) by taking

F(U,,U,+1) = 2k(Ui - U,+1)+ 2(f(US)+f(U,+1))

(12.15)

(12.16)
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12.2 Consistency

The method (12.7) is consistent with the original conservation law if the numerical flux
function F reduces to the true flux f for the case of constant flow. If u(x,t) _- u, say,
then by the correspondence (12.10) we expect

F(u,u) = f(u) VE IR. (12.17)

Some smoothness is also required, so that as the two arguments of F approach some
common value u, the value of F approaches f(u) smoothly. For consistency it suffices to
have F a Lipschitz continuous function of each variable. We say that F is Lipschitz at
u if there is a constant K > 0 (which may depend on u) such that

JF(v,w) - f(u)l <Kmax(Iv-ul, 1w-ui) (12.18)

for all v,w with Iv - ul and 1w - ul sufficiently small. We say that F is a Lipschitz
continuous function if it is Lipschitz at every point.

EXAMPLE 12.2. The upwind flux (12.13) is consistent since it clearly satisfies (12.17)
and is Lipschitz continuous provided f is Lipschitz. Since we are always assuming f is
smooth, this will be the case (Note that any differentiable function is Lipschitz).

EXERCISE 12.2. Verify that the Lax-F3iedrichs flux (12.15) is consistent (including
Lipschitz continuity).

More generally, if the flux F depends on more than two arguments, as in (12.6), the
method is consistent if F(u,u,...,u) = f(u) and the Lipschitz condition requires the
existence of a constant K such that

IF(U,-D,...,U,+q)-f(u)l5K max IUi+i - uI (12.19)

for all U,+; sufficiently close to u.

Notation. It is often convenient to write (12.6) in the form

Uj+" = U, - h(F(U";j) - F(U";j - 1)) (12.20)

where F(U"; j) is the flux function which is allowed to depend on any (finite) number of
elements of the vector U", "centered" about the jth point. For example, the upwind flux
(12.13) would simply take the form

F(U";j) = f(U7). (12.21)

In this notation, we can think of F(U"; j) as approximating the average flux

'"+,1 r
F(U";j) -

1 L: f(u(xi+1/2,t))dt. (12.22)
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The notation F( U"; j) is consistent with the notation UJ+1 = Nk(U"; j) introduced
in Chapter 10, and for a method in conservation form we have

xk(U°;1) = U; - h[F(U";J) - F(Un;1 - 1)]. (12.23)

Lax-Wendroff and MacCormack methods. Recall that the Lax-Wendroff method
for a constant coefficient linear hyperbolic system u, + Au,. = 0 has the form

U1 n}1 = U" -
2h
k A(U"1+1 - U1°1) +

2h2kz

Az(U"1+1 - 2U"!+ U1"1). (12.24)
1

There are various ways that this can be extended to give a second order method for
nonlinear conservation laws. If we let A(u) = f'(u) be the Jacobian matrix, then a
conservative form of Lax-Wendroff is

Uj+1 = t; - h(f(Ui+l) - f(U;-1))+ b2 [A,+1/2(f(U;+1) - f(U; ))

- A,_112(f(U;) - f(U 1)] , (12.25)

where A,t1/2 is the Jacobian matrix evaluated at '-z(Uj + Uj*1). The difficulty with this
form is that it requires evaluating the Jacobian matrix, and is more expensive to use than
other forms that only use the function f(u).

One way to avoid using A is to use a two-step procedure. This was first proposed by
Richtmyer, and the Richtmyer two-step Lax-Wendroff method is

U,+lz = 2(U' +UU+1)-2h
[f(U,+1f(Uj,)]

(12.26)

Un+1 = Un - h (f(Un+1/Z) - f(Un+1/z)]
1 ) l 1+1/Z j-1/Y

Another method of this same type was proposed by MacCormack[55]. MacCor-
mack's method uses first forward differencing and then backward differencing to achieve
second order accuracy:

U ; = UT-
h

[f(Uw+l)-f(Uj ) ] (12.27)

2(U' +U,)_2 [f(U')-f(Ui-1)1.

Alternatively, we could use backward differencing in the first step and then forward dif-
ferencing in the second step.

EXERCISE 12.3. Each of the methods (12.25), (12.26) and (12.27) reduces to (12.24)
in the constant coefficient linear case and is second order accurate on smooth solutions
(to nonlinear problems) and conservative. Verify these statements for at least one of these
methods and write it in conservation form, determining the numerical flux function.
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12.3 Discrete conservation

The basic principle underlying a conservation law is that the total quantity of a conserved
variable in any region changes only due to flux through the boundaries. This gave the
integral form of the conservation law,

J u(x,t2)dx=J6u(x,tl)dx- f(u(b,t))dt-I f(u(a,t))dt), (12.28)
1,

which holds for any a, b, t1 and t2. Notice in particular that if u is identically constant
outside some finite interval over the time interval tl < t < t2, say u =- u_- for x < a and
u =- u+o, for x > b, then we obtain

I6 u(x, t2) dx = I
e

u(x, t1) dx - (t2 - tl)(f(u+ao) - f(u--)). (12.29)

(Note that by finite propagation speed this will be the case if the initial data is constant
outside some finite interval.) If u+ = u_0 (e.g., if the data has compact support in which
case ut00 = 0), then the flux terms drop out altogether and the integral f; u(x, t) dx is
constant in time over any time interval for which the solution remains constant at a and
b.

We have already used (12.28) to motivate the conservation form (12.6) by applying
this with a = zj_112, b = zj+1/2 But we can easily show that a numerical solution
generated by a conservative method will also have a more global form of conservation,
analogous to (12.28) for arbitrary a, b. In the discrete case, if we let J < K be arbitrary
cell indices and sum (12.20) over j, we find that

K K K

hEUj+1 =hEU, - k E[F(U";j) - F(U";j - 1)]. (12.30)
j=J j=J j=J

The last sum here telescopes, and all fluxes drop out except for the fluxes at the extreme
cell boundaries xJ_1j2 and xK+1/2, so that (12.30) reduces to a discrete form of (12.28)
over the time interval [t", to+1]:

K K
hEU;}1 =hEU; - k[F(U"; K) - F(U"; J - 1)J. (12.31)

j=J j=J

In particular, if uo is constant outside some finite interval then so is U", since explicit
numerical methods have finite domain of dependence, and so for J and K sufficiently far
out, we can use consistency of the flux function F to obtain

K K
h E U7 +1 = h E U7 - klf (u+.) - f (u-.)). (12.32)

j=J j=J



12.4 The Lax-Wendroff Theorem 129

Applying this recursively gives, for N > n,

K K
h F U;' = h F, U7 - (IN - t,.)(f(u+-) - f(u-,,)), (12.33)

=J )=J

a discrete form of (12.29).

It follows that if
K =x}.

h E U°
q

= 1 uo(x) dx,
j=J ,/]

12.34)

which will hold for example if we take U° = ujo, the cell averages, then we also have

h E Uj = 1 u(x, dx, (12.35)
=J =, 1/]

for all n small enough that the solution remains constant in the neighborhood of XJ_I/2
and xK+l/z. Using the notation Uk(x,t) for the piecewise constant function defined by
UJ , we have

E}1/] =KIl/]
Uk(x,t")dx=l u(x,I,)dx, (12.36)

_,/2 _,_,/]

and so we say that the discrete method is conservative.
This discrete conservation means that any shocks we compute must, in a sense, be

in the "correct" location. Consider, for example, the test problem for Burgers' equation
with data (12.5). We have seen in Example 12.1 that a nonconservative method can give
a solution with the shock propagating at the wrong speed. This could not happen with
a conservative method, since the integral of Uk(x, t) is obviously increasing at the wrong
rate. The solution computed with a conservative method might have the shock smeared
out, but since the integral (12.36) is correct, it must at least be smeared about the correct
location.

Figure 12.2 shows the same test case as seen in Figure 12.1, but now using the conser-
vative upwind method (12.11). Note that the total integral of Uk - u appears to be zero,
as expected.

12.4 The Lax-Wendroff Theorem

The above discussion suggests that we can hope to correctly approximate discontinuous
weak solutions to the conservation law by using a conservative method.

Lax and Wendroff[46] proved that this is true, at least in the sense that if we converge
to some function u(x, t) as the grid is refined, through some sequence k1, h, -. 0, then this
function will in fact be a weak solution of the conservation law. The theorem does not
guarantee that we do converge. For that we need some form of stability, and even then
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 12.2. True and computed solutions to Burgers' equation using the conservative
upwind method.

if there is more than one weak solution it might be that one sequence of approximations
will converge to one weak solution, while another sequence converges to a different weak
solution (and therefore a third sequence, obtained for example by merging together the
first two sequences, will not converge at all!). See Exercise 12.4 below for an example of
this.

Nonetheless, this is a very powerful and important theorem, for it says that we can
have confidence in solutions we compute. In practice we typically do not consider a whole
sequence of approximations. Instead we compute a single approximation on one fixed
grid. If this solution looks reasonable and has well-resolved discontinuities (an indication
that the method is stable and our grid is sufficiently fine), then we can believe that it is
in fact a good approximation to some weak solution.

THEOREM 12.1 (LAX AND WENDROFF[46]). Consider a sequence of grids indexed
by I = 1,2,..., with mesh parameters k,, h, - 0 as I --. co. Let U,(x,t) denote the
numerical approximation computed with a consistent and conservative method on the Ith
grid. Suppose that Ur converges to a function u as I -. oo, in the sense made precise
below. Then u(x, t) is a weak solution of the conservation law.

We will assume that we have convergence of U, to u in the following sense:

1. Over every bounded set fI = [a, b] x [0, T] in x-t space,

T 6

I' JU,(x, t) - u(x, t)1 dx dt -+ 0 as 1 -. oo. (12.37)
a
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This is the 1-norm over the set fl, so we can simply write

Ill', - ujji,n -. 0 as 1-+ oo. (12.38)

2. We also assume that for each T there is an R > 0 such that

TV denotes the total variation function,

N

TV(v) = sup F, Iv(1i) - v(l:;_i)I (12.40)
j=1

where the supremum is taken over all subdivisions of the real line -oo = fo < f < <
t;N = oo. Note that for the total variation to be finite v must approach constant values
vf as x - too.

Another possible definition is

TV(v) = urn sup -J Iv(x)-v(x-E)Idx. (12.41)
t-o E o0

If v is differentiable then this reduces to

TV(v) = I lv'(x)Idx. (12.42)

We can use (12.42) also for nondifferentiable functions (distributions) if we interpret
v'(x) as the distribution derivative (which includes delta functions at points where v is
discontinuous).

Lax and Wendroff assumed a slightly different form of convergence, namely that U,
converges to u almost everywhere (i.e., except on a set of measure zero) in a uniformly
bounded manner. Using the fact that each U, is a piecewise constant function, it can be
shown that this requirement is essentially equivalent to (12.38) and (12.39) above. The
advantage of assuming (12.38) and (12.39) is twofold: a) it is these properties that are
really needed in the proof, and 6) for certain important classes of methods (e.g., the "total
variation diminishing" methods), it is this form of convergence that we can most directly
prove.

PROOF. We will show that the limit function u(x,t) satisfies the weak form (3.22),
i.e., for all m E Co,

I 1 [O,u+m:f(u)] dxdt=-I m(x,0)u(x,0)dx. (12.43)
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Let 0 be a Co test function and multiply the numerical method (12.20) by O(xj,t"),
yielding

4S(xj,tn)(7+1 = Oxj,tn)Ui - hc(xj,t")[F(U";J) - F(U";J - 1)]. (12.44)

This is true for all values of j and n on each grid 1. (Dropping the subscript I on k and
h and letting U7 represent the pointwise values of U, in order to make the formulas more
readable.)

If we now sum (12.44) over all j and n > 0, we obtain

L E O(xj,t")(Ui+I -Uj) (12.45)
n_0 j=-oo

= h O(xj,t")]F(U";j) - F(U";j - 1)].

We now use "summation by parts", which just amounts to recombining the terms in each
sum. A simple example is

Eaj(bj-b,_1) =
j=1

(alb,-alt/o)+(ast~i-asbl)+....}.(ambm-ambm-1)

= -a,bo + (alb, - axbl) + (azbz - a3b2) +

+ (am-Ibm-i - ambm-1) + ambm (12.46)

=
m-I

ambm - alto - E (a,+I - aj)b,.
j=1

Note that the original sum involved the product of ar with differences of b's whereas. the
final sum involves the product of bi with differences of a's. This is completely analogous
to integration by parts, where the derivative is moved from one function to the other.
Just as in integration by parts, there are also boundary terms ambm - a,bo that arise.

We will use this on each term in (12.45) (on the n-sum in the first term and on the
j-sum in the second term). By our assumption that 0 has compact support, 0

for Iii or n sufficiently large, and hence the boundary terms at j = too. n = oo all drop
out. The only boundary term that remains is at n = 0, where to = 0. This gives

- E W(xj,to)Uo - (W(xj,tn) - (xi,tn-I))Ul
j=-- n=1

k
(O(xj+1, 1.) - QS(xj, tn))F(U";7) = 0.

Note that each of these sums is in fact a finite sum since 0 has compact support. Multi-
plying by h and rearranging this equation gives

hk f ((x)tfl) k)U(1247)
1
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1 = 00- -
( (xj+1,tn) - W(x;, in))+E E 11\ h F(Un;j)J -h E

This transformation using summation by parts is completely analogous to the derivation
of (3.22) from (3.21).

Now let I --. oo, so that k,, h, -. 0. At this point our simplified notation becomes
difficult; the term U,' in (12.47) should be replaced by U,(x tn), for example, to explicitly
show the dependece on 1. It is reasonably straightforward, using the 1-norm convergence
of U, to u and the smoothness of 0, to show that the term on the top line of (12.47)
converges to f0 f°° O,(x,t)u(x,t)dx as 1 -. oo. If we take initial data U° = ui, for
example, then the right hand side converges to - f*_ 4(x,0)u(x,0)dx as well.

The remaining term in (12.47), involving F(Un; j), is more subtle and requires the
additional assumptions on F and U that we have imposed. The value of the numerical
flux function F appearing here, which depends on some p + q + 1 values of U,, can be
written more properly as

F(U,(x} - ph,in),..., U,(x, + gh,tn)). (12.48)

Since F is consistent with f, we have that

I F(U,(xi - ph, i n ) ,--- , U,(xi + qh, tn)) - f(U,(xi, tn))I
< K max IU,(xj + ih,tn) - UI(xj,tn)I

where K is the Lipschitz constant. Moreover, since 1) has bounded total variation,
uniformly in 1, it must be that

max IU,(x+ih,t)-U,(x,t)I 0 as 1- oo

for almost all values of x. Consequently, we have that the numerical flux function (12.48)
can be approximated by f (U,(x tn)) with errors that vanish uniformly almost everywhere.
This is the critical step in the proof, and together with some additional standard estimates
gives the convergence of (12.47) to the weak form (12.43). Since this is true for any test
function 0 E CO, we have proved that u is in fact a weak solution.

12.5 The entropy condition

This theorem does not guarantee that weak solutions obtained in this manner satisfy the
entropy condition, and there are many examples of conservative numerical methods that
converge to weak solutions violating the entropy condition.

EXAMPLE 12.3. Consider Burgers' equation with data

uo(x)
-1 x < 0

(12.49)+1 x>0
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which we might naturally discretize by setting

U' = {
+-1 j:50

1 j > 0 (12.50)

The entropy satisfying weak solution consists of a rarefaction wave, but the stationary
discontinuity u(x,t) = uo(x) (for all x and t) is also a weak solution. The Rankine-
Hugoniot condition with s = 0 is satisfied since f(-1) = f(1) for Burgers' equation.
There are very natural conservative methods that converge to this latter solution rather
than to the physically correct rarefaction wave.

One example is a natural generalization of the upwind methods (12.13) and (12.14)
given by

F(v,w) = r f(v) if (f(v) - f(w))/(v - w) > 0
(12.51)

Slt

f(w) if (f(v) - f(w))/(v - w) < 0.
This attempts to use the appropriate "upwind" direction even for problems where this
direction changes from point to point. In many cases this works adequately. However, for
the problem we consider here we will obtain Ui }1 = UT for all j and n since f (-I) = f (l)
and so all the flux differences cancel out. Consequently Uk(x, t) = Uk(x, 0) for all t, and
we converge to u(x, t) = uo(x) as the grid is refined.

Note the sensitivity of this numerical solution to our choice of initial data. If we

instead take a different discretization of (12.49), say

-1 j <0
U° = 0 j = 0 (12.52)

+1 j>0
then it turns out that the upwind method (12.51) gives the proper rarefaction wave

solution.

The physically correct solution to this problem is often called a transonic rarefaction
because of the fact that the wave speed passes through zero within the rarefaction wave.
(In the Euler equations, this only happens when an eigenvalue v ± c passes through zero,
where v is the fluid velocity and c is the sound speed. This means that the flow is subsonic
to one side and supersonic to the other.) It is in precisely this situation where entropy
violating shocks are most frequently computed.

For some numerical methods, it is possible to show that this can never happen, and
that any weak solution obtained by refining the grid must in fact satisfy the entropy
condition. Of course this supposes that we have a suitable entropy condition for the
system to begin with, and the most convenient form is typically the entropy inequality.
Recall that this requires a scalar entropy function q(u) and entropy flux >['(u) for which

(9 a
atq(u(x,t)) + 8i+,(u(x,t)) < 0 (12.53)
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in the weak sense (version IV of the entropy condition). This is equivalent to the statement
that

r- 0,q(u)+c:0(u)dxdt <-j 0(x,0),(u(x,0))dx (12.54)

for all 0 E Co with 5(x,t) > 0 for all x, t.
In order to show that the weak solution u(x, t) obtained as the limit of U1(x, t) satisfies

this inequality, it suffices to show that a discrete entropy inequality holds, of the form

0;+') <, (U;) - h [W(U";j) -'p(U";j - 1)). (12.55)

Here 41 is some numerical entropy flux function that must be consistent with >G in the
same manner that we require F to be consistent with f. If we can show that (12.55) holds
for a suitable 41, then mimicing the proof of the Lax-Wendroff Theorem (i.e., multiplying
(12.55) by O(x1,f"), summing over j and n, and using summation by parts), we can show
that the limiting weak solution u(x, t) obtained as the grid is refined satisfies the entropy
inequality (12.54).

In the next chapter we will study a version of the upwind method for which a discrete
entropy inequality of this form can be easily proved.

EXERCISE 12.4. Consider the upwind method with flux (12.51). Take k/h = 1/2 and
apply it to Burgers' equation with initial data

1-1 x<1uo(x) _
+1 X>1 (12.56)

discretized using U° = u° (cell averages). Based on the behavior of this method as described
above, justify the following statements:

1. The sequence Uj(x, t) for k, = 1/21 converges to the correct rarefaction wave solution
asI -+oo.

2. The sequence Uj(x,t) for ki = 1/(21 + 1) converges to an entropy violating shock as

1 - 00.

3. The sequence Ul(x, t) for ki = I/I does not converge as 1-4 oo.



13 Godunov's Method

Recall that one-sided methods cannot be used for systems of equations with eigenvalues
of mixed sign. For a linear system of equations we previously obtained a natural general-
ization of the upwind method by diagonalizing the system, yielding the method (10.60).
For nonlinear systems the matrix of eigenvectors is not constant, and this same approach
does not work directly. In this chapter we will study a generalization in which the local
characteristic structure, now obtained by solving a Riemann problem rather than by diag-
onalizing the Jacobian matrix, is used to define a natural upwind method. This method
was first proposed for gas dynamics calculations by Godunov[24).

Since solving a Riemann problem is a nontrivial task, we should first justify the need
for upwind methods. An alternative is to use a centered method such as the Lax-Friedrichs
method (12.15) which allows eigenvalues of either sign. In the scalar case, this turns out
to be stable provided

Ih f'(U; )I < 1 (13.1)

for all U; . However, in Chapter 11 we have seen for the linear advection equation that Lax-
Friedrichs is generally more dissipative than the upwind method, and gives less accurate
solutions. This is not surprising since the theory of characteristics tells us that the solution
at xi depends only on the data to the left of xi and the upwind method takes advantage
of this knowledge. In fact, for the advection equation we know that

u(xi,t"+,) = u(xi - ak,t") (13.2)

and both upwind and Lax-Friedrichs can be viewed as interpolation formulas to approx-
imate u at xi - ak from the values of u at the grid points. Upwind is better because it
interpolates using values at the two nearest grid points xi_1 and xi,

Ui+' =
h

[(h-ak)U7 +akU7_l] (13.3)

whereas Lax-Friedrichs interpolates using values at xi_1 and xi+,,

U7 +1 = 2h [(h - ak)U7+, + (h + ak)UJ"_,] . (13.4)

136
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By doing upwind differencing in the appropriate direction for each characteristic com-
ponent in a system of equations we can hope to obtain a similar improvement and decrease
the numerical dissipation.

Looking ahead, there are other reasons for introducing methods based on the solution
of Riemann problems. Both Lax-Friedrichs and the upwind method are only first order
accurate on smooth data, and even the less dissipative upwind method gives unacceptably
smeared shock profiles. We ultimately want to correct these deficiencies by developing
"high resolution" methods that are second order accurate in smooth regions and give much
sharper discontinuities. However, our experience with the linear advection equation (e.g.,
in Figure 11.1) indicates that natural second order methods, even one-sided methods like
Beam-Warming, give oscillatory solutions. We will be able to cure this only by using more
information about the local behavior of the solution. The first order Godunov method
introduced here forms a basis for many of the high resolution generalizations that will be
studied later.

EXERCISE 13.1. Show that the Lax- Wendroff method on ut + our = 0 can be de-
rived by approximating u(x, - ak,t,,) using quadratic interpolation based on the points
U"_1, Uj, Uj+,. Use this interpretation to explain why oscillations appear near a dis-
continuity with Lax-Wendroff but not with Upwind or Lax-Friedrichs. Similarly, Beam-
Warming corresponds to quadratic interpolation based on UU 2, U 1, Uj .

13.1 The Courant-Isaacson-Rees method

Historically, one of the first attempts at upwinding for the equations of gas dynamics
was made by Courant, Isaacson and Rees(141 in 1952. They proposed solving certain
equations along the characteristics going back from the point To evaluate the
characteristic variables at time t,,, this method uses interpolation based on the two nearest
grid values, which are (U,'_1, U;) or (U;, UU+1) depending on whether the corresponding
characteristic speed is positive or negative. Of course the exact path of the characteristic is
not known, but is approximated by a straight line with slope Ap(UJ ). This is schematically
illustrated in Figure 13.1.

For the scalar advection equation this reduces to the upwind method. For a scalar
nonlinear problem, in which u is constant along characteristics, it reduces to determining
Ui +' by an approximation to U at the point x; - f'(U; )k obtained by linear interpolation
of the data U". For example, if f'(U,) > 0 then we would interpolate between U;"_1 and
U; :

Ui }1 =

h

[(h - f'(U, )k)U; + f'(U; )kU 1) (13.5)

= U, - h AU,) P; - U 1J .
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t"+..............
.... ...».......--

A1(Uj)z'

n....t ......
zt_1 \l ' t

interpolate interpolate
between U,' 1, U, between Ui, Un+1

Figure 13.1. In the CIR method, characteristics are traced back from (x t"+1) and linear
interpolation used at time t".

This is a natural upwind approximation to ug+f'(u)ur = 0, but this is not agood method
for a problem involving shocks, since it is not in conservation form. (Recall our results
with the method (12.4), which is precisely the CIR method (13.5) on Burgers' equation.)

13.2 Godunov's method

In 1959, Godunov[241 proposed a way to make use of the characteristic information within
the framework of a conservative method. Rather than attempting to follow characteris-
tics backwards in time, Godunov suggested solving Riemann problems forward in time.
Solutions to Riemann problems are relatively easy to compute, give substantial informa-
tion about the characteristic structure, and lead to conservative methods since they are
themselves exact solutions of the conservation laws and hence conservative.

In Godunov's method, we use the numerical solution U" to define a piecewise constant
function u"(x, t") with the value U; on the grid cell x,_1,2 < x < x1+1l2. At time in this
agrees with the piecewise constant function Uk(x, t") that has already been introduced,
but the function u", unlike Uk, will not be constant over in < t < t"+,. Instead, we use
u"(x,t") as initial data for the conservation law, which we now solve exactly to obtain
u"(x, t) for in < t < t"+3. The equation can be solved exactly over a short time interval
because the initial data u"(x, t") is piecewise constant, and hence defines a sequence
of Riemann problems. The exact solution, up to the time when waves from neighboring
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--- - .... ................
n+1 ................:...........

1Tl'(T---------- 7

----......T.. j

V ......

X'-1/2 x)+1/2

Figure 13.2. Solution of independent Riemann problems for the piecewise constant data
6"(x, t") in the case m = 2.

Riemann problems begin to interact, is obtained by simply piecing together these Riemann
solutions. This is illustrated in Figure 13.2.

After obtaining this solution over the interval (t",t"+,), we define the approximate

solution Un}1 at time t"+, by averaging this exact solution at time t"+,,

U°+1 =
1_ r u"(x,t"+1)dx. (13.6)

=,,-1+n1n

h

These values are then used to define new piecewise constant data un}'(x,t,,+) and the

process repeats.
In practice this algorithm is considerably simplified by observing that the cell average

(13.6) can be easily computed using the integral form of the conservation law. Since it"
is assumed to be an exact weak solution, we know that

ti"(x1tn+1)dZ

f+1/2

a"(x,t") dx +
.+l

f(un(xi-1/2' t))dt

- I +1

f(u"(xt+l/s,t))dt.

Dividing by h, using (13.6), and noting that a"(x, t") = U; over the cell (x,_1/2, x/+1/2),

this equation reduces to

U,+1=U; _h[F(U;,Ujn+1)-F(U I,UU)] (13.7)

U;_, I/ Ui
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where the numerical flux function F is given by

F(Ui , Ui+1) = k f (u"(xi+1/s, t)) dt. (13.8)

This shows that Godunov's method can be written in conservation form. Moreover, note
that the integral we need to compute in (13.8) is trivial because u" is constant at the point
xi+l/s over the time interval (t,,, t"+1). This follows from the fact that the solution of the
Riemann problem at xj+112 is a similarity solution, constant along each ray (x-xj}1/2)/t =
constant.

The constant value of n" along the line x = xj+1/2 depends only on the data Uj' and
Ui+, for this Riemann problem. If we denote this value by Uj}1), then the flux
(13.8) reduces to

F(Ui , Ui+l) = f (u (Ui , uj+l )) (13.9)

and Godunov's method becomes

U,n+1=U; 1,U;))]. (13.10)

Note that the flux (13.9) is consistent with f since if Uj = UJ+1 = n then u
as well. Lipschitz continuity follows from smoothness of f.

For large t, of course, the solution may not remain constant at xj+1/2 because of the
effect of waves arising from neighboring Riemann problems. However, since the wave
speeds are bounded by the eigenvalues of f'(u) and the neighboring Riemann problems
are distance h away, n"(,,+,/s, t) will be constant over it,,, t"+1] provided k is sufficiently
small. We require that

I

hJ1o(U; )I < 1 (13.11)

for all eigenvalues Ao at each U; . The maximum of this quantity over the values of u
arising in a particular problem is called the Courant number, a natural generalization
of (10.56) from the linear problem.

Note that (13.11) allows the interaction of waves from neighboring Riemann problems
during the time step, provided the interaction is entirely contained within a mesh cell.
See Figure 13.3 for an example. In this case the solution a"(x,t) would be difficult or
impossible to calculate. However, we never explicitly calculate the full solution, since all
we require is the cell average (13.6). This is still easy to compute because u" remains
constant on each cell boundary.

13.3 Linear systems

For a constant coefficient linear system u1 + Au= = 0, solving the Riemann problem with
left and right states Uj and Uj}1 gives an intermediate value Uj}1) that can be
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This is simply the upwind method (10.60) for the linear system.
Notice that yet another expression for the flux F(U; , UU+1) can be obtained by aver-

aging the two expressions given in (13.13), obtaining

F(U ,Ui+i) =

=

ZA(Uj +UU+,)+2(A--A+)(UU+,-Ui)

I A(U, + Ui - U,)) - IIAI(Ui (13.15)+i +,2 2

where

JAI=A+-A-=RIAIR-' with (13.16)

If we use this form in Godunov's method we obtain an alternative formulation of the
linear upwind method,

U7+1 = Ui - k A(Ui+, - U,)+ k IAI(UU+, -2UU +Uj ,). (13.17)
2h 2h

The first two terms here correspond to the centered method (10.7) which is unconditionally
unstable, but the last term is a dissipative term that stabilizes the method. Note that
(UU+, - 2Uj + Uj ,) and that the diffusion matrix JAI has nonnegative
cigenvalues. This formulation of the upwind method for linear systems will prove useful
later.

13.4 The entropy condition

The function u"(x, i) for t" < t < t"+, is assumed to be a weak solution of the conservation
law. In situations where this weak solution is not unique, there may be several choices
for u". Different choices may give different values of u'(Uj , UU+,) and hence different
numerical solutions. The method is conservative and consistent regardless of what choice
we make, but in cases where there is a unique weak solution that satisfies some physically
motivated entropy condition, it makes sense to use the entropy-satisfying weak solution for
u" in each time step. We might hope that by doing this the numerical solution will satisfy
a discrete version of the entropy condition. This is in fact true, as we verify below. It
then follows from the theory of Chapter 12 that any limiting function obtained by refining
the grid must then be an entropy-satisfying weak solution. (If, on the other hand, we use
Riemann solutions that do not satisfy the entropy condition in defining u'(Uj , Uj+, ), then
our numerical solution may converge to a weak solution that does not satisfy the entropy
condition.)

Suppose that we have a convex entropy function q(u) and entropy flux >/i(u), and that
every u" satisfies the entropy inequality (12.53). Then we wish to derive a discrete entropy
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inequality of the form (12.55) for Godunov's method. Since u"(x,t) for t" < t < to+1
represents the exact entropy satisfying solution, we can integrate (12.53) over the rectangle

(xi-112,xi+112) x (tn,tn+1) to obtain

1 t ,+1/2 1 rte,+,/z
r J 17 (u"(x, to+l )) dx << h !-1/2 t,-1/2

q (ii" (X, tn)) dx

1
f

f.+, e" 1

h LJe"

/un(x,+1/2,())
dt -

+, (u"(xi_tt2,t))
dt]

This is almost what we need. Since u" is constant along three of the four sides of this
rectangle, all integrals on the right hand side can be evaluated to give

rt(u"(x, tn+1)) dx < rt(U") (13.18)

n' Ui+t) -
(u

(Ui Ui ))1h lu
k

Again u' represents the value propagating with velocity 0 in the solution of the Riemann
problem. If we define the numerical entropy flux by

'I'(Ul , U'"+ 1) = V, (u (Ui ' Ui+r )) , (13.19)

then 'I is consistent with ,G, and the right hand side of (13.18) agrees with (12.55).
The left hand side of (13.19) is not equal to q(Uj"}1), because ii" is not constant in this

interval. However, since the entropy function 9 is convex, we can use Jensen's inequality
which says that the value of'i evaluated at the average value of u" is less than or equal
to the average value of 17(u"), i.e.,

1 !=,+U2 1 Ir,+1/2
q

!
L"(x,tn+1)dx ti(it"(x,tn+t)) dx. (13.20)

h :, _,/, ,/,

The left hand side here is simply q(U, }1) while the right hand side is bounded by (13.18).
Combining (13.18), (13.19) and (13.20) thus gives the desired entropy inequality

ll(U;}1)51(Ui)-hIq'1Ui,Ui+1)-IY(U ,,Ui)j.

This shows that weak solutions obtained by Godunov's method satisfy the entropy con-
dition, provided we use entropy-satisfying Riemann solutions.

13.5 Scalar conservation laws

If we apply Godunov's method to a scalar nonlinear equation, we obtain generalizations
of the upwind methods defined by (12.13) and (12.14) for the case where the sign of f'(u)
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varies. Recall that the Riemann problem with data u,, u, always has one weak solution
consisting simply of the discontinuity propagating with speed s = (f(u,)- f(u,))/(u,-u,).
If we always use this Riemann solution (which may not satisfy the entropy condition),
then the intermediate value u' in the Riemann solution is given by

( )= fti u, ifs>0,
(13.21)

u, ifs < 0.

If s = 0 then this value is not well defined, but note that in this case f(u,) = f(u,) and so
the resulting flux, which is all that is required in Godunov's method, is the same whether
we define if = u, or u' = u,.

From (13.21) we thus find the flux function

F(u,,u,) = f(u'(ug,u,))
_ f(u,) if (f(u,) - f(u1))/(u. - u,) >_ 0,

(13.22)
f(u,) if (f(u,) - f(u,))/(u, - ur) < 0

Notice that this is precisely the flux (12.51) which, as we have already seen, gives a method
that may compute entropy-violating solutions.

To fix this, we should use the entropy-satisfying weak solution in implementing Go-
dunov's method. This may consist of a rarefaction wave rather than a shock (or of some
combination of shocks and rarefactions in the nonconvex case).

In the convex case, there are four cases that must be considered. The reader should
verify the following results in each case:

1. f'(u,), f'(u,) > 0 u' = u,,

2. f'(u,), f'(u,) <_ 0 if = u

3. f'(u,) > 0 > f'(u,) . u' = u, if [f]/[u] > 0 or u' = u, if [f]/[uJ < 0,

4. f'(u,) < 0 < f'(u,) u' = u, (transonic rarefaction).

In each of the first three cases, the value if is either u, or u, and the flux is correctly
given by (13.22). Note in particular that in Cases 1 and 2 it is irrelevant whether the
solution is a shock or rarefaction, since the value of if is the same in either case. This
shows that using Godunov's method with entropy-violating Riemann solutions does not
necessarily lead to entropy-violating numerical solutions!

It is only in Case 4, the transonic rarefaction, that the value of F differs from (13.22).
In this case if is neither u, nor u,, but is the intermediate value u, with the property that

f'(u,) = 0. (13.23)



13.5 Scalar conservation laws 145

This is the value of u for which the characteristic speed is zero, and is called the sonic
point.

We can modify (13.22) to include this possibility: if f'(ul) < 0 < f'(u,) then we
redefine

F(ul,u,) = f(u,)
The resulting flux function can be written in a simplified form, however, as

min f(u) if ul < u,
u,<u<w

F(ul, u,) = (13.24)
max f(u) if ul > u,.

EXERCISE 13.2. Verify this by considering all possible cases.

More surprisingly, it turns out that (13.24) is valid more generally for any scalar
conservation law, even nonconvex ones, and gives the correct Godunov flux corresponding
to the weak solution satisfying Olienik's entropy condition (3.46).

EXERCISE 13.3. Verify this claim, using the convex hull construction of the entropy-
satisfying Riemann solution presented in Chapter 4.

This also follows from a more general result due to Osher[58], who found a closed
form expression for the entropy solution u(x, t) = w(x/t) of a general nonconvex scalar
Riemann problem with data ul and u,. The solution w(x/t) = w({) satisfies the implicit
relation

f (w(f )) - Ew(f) = g(f) _

nun
If (u) - fu] if ul < u,

u,<u<ur

max
If (u) - {u) if ul > ur.

U'!5-!5'4

(13.25)

Setting = 0 gives f(w(0)) = f(u'(ul,u,)) which is precisely the numerical flux (13.24).
Osher goes on to show that an explicit expression for is obtained by differentiating
the above expression, yielding

w(f) = -9 (f) (13.26)

where g(t) is the function defined by the right side of (13.25).
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Godunov's method, and higher order variations of the method to be discussed later, re-
quire the solution of Riemann problems at every cell boundary in each time step. Although
in theory these Riemann problems can be solved, in practice doing so is expensive, and
typically requires some iteration for nonlinear equations.

Note that most of the structure of the resulting Riemann solver is not used in Go-
dunov's method. The exact solution is averaged over each grid cell, introducing large
numerical errors. This suggests that it is not worthwhile calculating the Riemann solu-
tions exactly and that we may be able to obtain equally good numerical results with an
approximate Riemann solution obtained by some less expensive means.

There are two distinct ways we could think of generalizing Godunov's method. One
is to start with the Codunov flux

F(ul,u,)= f(u'(ul,u,)) (14.1)

where u'(ul,u,) is the intermediate state w(O) arising in the similarity solution u(x,t) =
w(x/t) of the Riemann problem, and replace the function u'(ul,u,) by some approxima-
tion u'(ul,u,). This leads to the approximate Godunov method

U70 = U; - h [f (u (U, , u,+1)) - f (u (U1, U; ))J (14.2)

Note that this method will be conservative and consistent for any choice of the function
u', provided it satisfies the natural condition that u'(5, u) = u with appropriate Lipschitz
continuity.

We might define the function u' by first defining an approximate Riemann solution
u(x, t) = w(x/t) (see below) and then setting u'(ul, u,) = w(0).

A second approach to generalizing Godunov's method is to go back to the original
description of the method, where U71' is taken to be the cell average of u' (x, and
now replace u°(x, t) by an approximate solution u"(x, t). This can be defined by simply
piecing together approximate Riemann solutions at each cell interface, just as u" was
defined for the exact Riemann solutions. This requires that we define an approximate

146
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Riemann solution w(x/t) with finite propagation speeds, so that

= (ul for f < aj.
w({)

- u, for > a. (14.3)

where a,,,;" and a_ are the minimum and maximum propagation speeds (which typically
correspond closely to the range of eigenvalues of f'(ul) and f' (u,)). We need

A
I <

2
for all a between a.,j. and a_ (14.4)

in order for the construction of u"(x, 1) described above to work, but once we determine
the corresponding flux function this can be relaxed to require only jak/hi < 1 as in
Godunov's method with the exact Riemann solution.

Once the approximate solution u" is defined in the strip t" < t < t"+1, we can take
11 +1 to be the cell average at time t"+1:

U, +t =
h !i n u"(x,tn+t)dx. (14.5)

Note that this will not in general be the same method as (14.2) with u' = w(0). If u" is
not an exact solution, we can no longer integrate the conservation laws over the rectangle
(xi_1/2,x,+112) x (t",t,, 1) to obtain (14.2) from (14.5).

The second approach is the one more commonly used, but requires some care in
defining the approximate Riemann solution, since for arbitrary choices of w there is no
guarantee that (14.5) is even conservative. Harten, Lax and van Leer[33[ present some of
the general theory of such approximate Riemann solvers.

14.1 General theory

To be conservative, the approximate Riemann solution u(x,t) = w(x/t) must have the
following property that for M sufficiently large,

I_MtbW4=M(ul+u,)+f(ul)-Au'). (14.6)

Note that the exact Riemann solution w(x/t) has this property, as seen from the integral
form of the conservation law over [-M, M] x [0, 11.

If w satisfies (14.6) then we can write the resulting method in the standard conservation
form. In order to determine the numerical flux F(ul,u,), consider Figure 14.1. Since by
consistency the flux should reduce to f (u) wherever u is constant, we can integrate w
from 0 to M, for M sufficiently large, and expect to get

Im
w(e)ds = Mu, + F(ul,u,) - f(u,). (14.7)
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w(x)

1=0 ..................................................Y............................................°°..
-M 0 M

Figure 14.1. Integrating the approximate Riemann solution w gives the numerical flux.

Similarly, integrating from -M to 0 gives

J-u'(f)dd = Mu,+ f(u,)- F(u,,u,). (14.8)

The condition (14.6) insures that these two requirements on F can be satisfied simulta-
neously, and solving for F gives two different expressions,

M
F(u,,ur) = f(ur) - Mu, +J

0

or, equivalently,

(14.9)

F(u,,u,)=f(u,)+Mu,-Jo w(()dd. (14.10)
M

14.1.1 The entropy condition
Harten and Lax[32] (see also 133]) point out that the Godunov-type method (14.5) is
also consistent with the entropy condition provided the approximate Riemann solution
satisfies another condition analogous to (14.6):

IM
n(w(S)) dC < M(n(u,) + 0(ur)) + Mull - O(ur))-

From this it can be shown that the discrete entropy condition (12.55) is satisfied with the
numerical entropy flux

%'(u,,u.)=Tlt(u,)+Mq(u,)-fM dd'. (14.12)

Harten, Lax and van Leer present some approximate Riemann solvers that satisfy this
condition.
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14.1.2 Modified conservation laws
One natural way to obtain w(x/t) is to compute the exact Riemann solution to some mod-
ified conservation law fig + f(u)r = 0, with a flux function 1(u) that is presumably easier
to work with than the original flux f (u). By using the integral form of this conservation
law over [-M, M] x [0, 1], we see that the condition (14.6) will be satisfied provided that

f(ur) - I(u1) = f(u,) - f(u1).
The resulting numerical flux function is then given by

F(ul,ur) = f(w(0)) + f (u,) - f(ur).

EXERCISE 14.1. Verify (14.14).

(14.13)

(14.14)

14.2 Roe's approximate Riemann solver

One of the most popular Riemann solvers currently in use is due to Roe[641. The idea is
to determine u(x, t) by solving a constant coefficient linear system of conservation laws
instead of the original nonlinear system, i.e., we solve a modified conservation law as
described above with flux 1(u) = Au. Of course the coefficient matrix used to define this
linear system must depend on the u1 and u, in order for (14.13) to be satisfied, so we will
write the linear system for u as

fit + A(ul,u,)ur = 0. (14.15)

This linear Riemann problem is relatively easy to solve (see Section 6.5). If A has eigen-
values A, and eigenvectors f;, and if we decompose

u, - u1 = F, aprp, (14.16)

then

p

w(0 = u1 + apfp (14.17)

Zv<f

where the sum is over all p for which A. < t. Equivalently,

wW = u, - E apfp (14.18)

lr>E

We still have the problem of determining A(u1, u,) in a reasonable way. Roe suggested
that the following conditions should be imposed on A:

i) A(u1, u,)(u, - u1) = f(ur) - f (u1)
ii) A(u1,u,) is diagonalizable with real eigenvalues (14.19)

iii) A(u1,u,) -. f'(u) smoothly as u1,u, - u.
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Condition (14.191) has two effects. First, it is required by (14.13) and guarantees that
the condition (14.6) is satisfied. Another effect is that, in the special case where u, and u,
are connected by a single shock wave or contact discontinuity, the approximate Riemann
solution agrees with the exact Riemann solution. This follows from the fact that the

condition is satisfied for u, and u, in this case, so

f(u,) - f(u,) = s(u, - u,)

for some s (the speed of the shock or contact). Combined with (14.19i), this shows that
u, - u, must, in this situation, be an eigenvector of A with eigenvalue s and so the
approximate solution u(x, t) also consists of this single jump u, - u, propagating with
speed s.

Condition (14.19ii) is clearly required in order that the problem u, + Aii = 0 is
hyperbolic and solvable.

Condition (14.19iii) guarantees that the method behaves reasonably on smooth so-
lutions, since if JlU, - U,_,11 = 0(h) then the linearized equation u, + f'(U,)u, = 0 is
approximately valid. It is natural to require that the linear system (14.15) agree with
the linearization in this case. Since (14.19i) guarantees that the method behaves rea-
sonably on an isolated discontinuity, it is only when a Riemann problem has a solution
with more than one strong shock or contact discontinuity that the approximate Riemann
solution will differ significantly from the true Riemann solution. In practice this happens
infrequently - near the point where two shocks collide, for example.

One way to guarantee that both conditions (14.19is) and (14.19111) are satisfied is to
take

A(u,,u,) = f'(u.,.) (14.20)

for some average value of u, e.g., u.- = 21(u, + u,). Unfortunately, this simple choice of
u_ will not give an A that satisfies (14.191) in general. Harten and Lax[32] show (see
also Theorem 2.1 in [33]) that for a general system with an entropy function, a more
complicated averaging of the Jacobian matrix in state space can be used. This shows that
such linearizations exist, but is too complicated to use in practice.

Fortunately, for special systems of equations it is possible to derive suitable A matrices
that are very efficient to use relative to the exact Riemann solution. Roe[64] showed how
to do this for the Euler equations. Later in this chapter we will work through the analogous
derivation for the isothermal equations.

14.2.1 The numerical flux function for Roe's solver
For Roe's approximate Riemann solver, the function w(x/t) is in fact the exact solution
to a Riemann problem for the conservation law (14.15) with flux f(u) = Au. It follows



14.2 Roe's approximate Riemann solver 151

from (14.14) that

F(u1, u,) = Aw(0) + f (u,) - Au,

= f(u,)-AE apfp
xp>o

(14.21)

= f (u,) - ` xp aprp
p=1

where aD = max(ap,0). Alternatively, using (14.13) we obtain an equivalent expression,

F(u1, u,) = f (u1) + i ay oprp
p=1

(14.22)

where aD = min(ap, 0).
Note that if we average the two expressions (14.21) and (14.22), we obtain a third

form,

F(u!,u,) = 2(f(ul)+f(u,))-Elaps-prp,
p

2(f(u,) + f(u,)) - IAI(u, - u1), (14.23)

where the absolute value of the matrix is defined as in (13.16). This form is reminiscent
of the Godunov flux (13.15) for a linear system.

EXAMPLE 14.1. For a scalar conservation law the condition (14.19i) determines
a = A(u,,u,) uniquely as

f(u,) - f (u1).
(14.24)

u, u1

The linearized problem is the scalar advection equation fig +au = 0 and the approximate
Riemann solution consists of the jump u, - u1 propagating with speed a. But note that
a in (14.24) is the Rankine-Hugoniot shock speed for the nonlinear problem, and so the
"approximate" Riemann solution is in fact an exact weak solution (though one which
may violate the entropy condition). Roe's method in the scalar case thus reduces to
the method already discussed with flux (13.22), which we can rewrite using (14.22), for
example, as

F(u1, u,) = f(u,) + a-(u, - u,). (14.25)

14.2.2 A sonic entropy fix
One disadvantage of Roe's linearization is that the resulting approximate Riemann solu-
tion consists of only discontinuities, with no rarefaction waves. This can lead to a violation
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of the entropy condition, as has been observed previously for the scalar method (13.22)
with appropriate initial data.

Recall that in the scalar case, the use of an entropy-violating Riemann solution leads
to difficulties only in the case of a sonic rarefaction wave, in which J'(ur) < 0 < f'(u,).
This is also typically true when we use Roe's approximate Riemann solution for a system
of conservation laws. It is only for sonic rarefactions, those for which Ap < 0 to the left
of the wave while A. > 0 to the right of the wave, that entropy violation is a problem.

In the cage of a sonic rarefaction wave, it is necessary to modify the approximate
Riemann solver in order to obtain entropy satisfying solutions. There are various ways to
do this. One approach, discussed by Harten and Hyman[30], is outlined here.

For the wave in the pth family, traveling at speed ap according to the approximate
Riemann solver, compute the states to either side of this wave in u:

p-i

UPI = ui + airi, up, = UPI + spry. (14.26)

Also compute the true characteristic speed in the pth family for each of these states, say
Apj = Ap(up,) and Ap, = A,(up,). If App > Ap, then the characteristics are going into this
discontinuity. If Ap+ < Ap, then it should perhaps be a rarefaction wave, but it is only in
the transonic case where App < 0 < Ap, that we need to modify our approximate Riemann
solution.

Suppose that there appears to be a sonic rarefaction in the qth family for some q,
i.e., A,, < 0 < A,,. Then we replace the single jump , propagating at speed Aq by two
jumps propagating at speeds A,i and A,,, with a new state u9,,, in between. Conservation
requires that

(Aq, - A,i)uq+m = (A, - Agi)u,, + (Aq, - Aq)uq,

so that the integral of u is unaffected by this modification. This determines u,,,,:

(A, - Agr)ugr + (A,, - A,)u,,
(14.27)uq,,. _

Aq, - Aqr

From this we can easily compute that uq,,, - uqr and uq, - uqm are both scalar multiples
of the eigenvector

f (14 28uqm - uq! ,,
w

-,9 . )

rA
14 29uq, - uq,,, _ v,,r) av

(Aqr
- . )(

and of course the sum of these recovers uq, - u,g = a,r,. We can easily compute the
resulting flux function F(ur, u,) when the entropy fix is applied to the qth family. If we
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define -A
A A 14 30e,,= ,, ( . )

and

(14.31)

then

A

F(ut,u,) = f(ut) + AP Prv + Aata,i, (14.32)
P#1

= f(ur) - E AP -PrP - (14.33)

P#V

This can be written more concisely if we make the following definitions for all p =
1,2,...,m:

Pt=A A+ AP (14.34)
p - Pt

and

aP, = A (14.35)wIn
the sonic rarefaction case A- = A,1 and A+, = A. so these reduce to the formulas

(14.30) and (14.31). In all other cases it is easy to verify that Jyt reduces to a; while 1P,
reduces to aD , so that we can write the flux function in the more general case as

F(ut,u.) = f(ut)t(14.36)
P

(14.37)

with sonic rarefactions handled properly automatically.

EXERCISE 14.2. Verify these claims.

14.2.3 The scalar case

It is illuminating to consider the effect of this entropy fix in the scalar case. In this case
there is only one characteristic family with eigenvalue f'(u), and so we simplify notation
by identifying A,t = f'(ut) and Aa, = f'(u,). Moreover the Roe linearization gives the
jump (u, - ut) propagating with speed Ao = a = (f (u,) - f (ut))/(u* - ut).

In the sonic rarefaction case, f'(ut) < 0 < f'(u,) and the entropy fix discussed above
replaces the single jump propagating at speed a by two jumps propagating at speeds f'(ut)
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and f'(u,), separated by the state

_ (a - f'(ul))ul + (f (u') - a)u,Ur - f'(u*) - f'(ul)

ul +
f'(u,)

a (u, - ul) (14.38)f'(u,) - f'(ul)
using (14.27). The approximate Riemann solution

w(x/t) = l x /t < a
(14.39)! uu,

x/t > a

has been replaced by a modified approximate Riemann solution

Ul x/t < f'(ul)
w(x/t) = Um f'(ul) < x/t < f'(u,) (14.40)

U, x/t > f'(u,).

It is interesting to note that we can again interpret w(x/t) as the exact solution to a
modified conservation law, now slightly more complicated than the advection equation
u, + au, = 0 defining (14.39). The function w(x/t) in (14.40) is the exact Riemann
solution to the problem u1 + f(u), = 0, where

f(u)- f(u,)+(u-ul)f'(ul) u<um
(14.41)

f(U,)+(U-U,)f'(u,) U>Um
This piecewise linear function is shown in Figure 14.2. It is easy to verify that the point
um where the two tangent lines meet is the same point um defined by (14.38).

The flux function f (u) is not smooth at um, and so our standard theory does not apply
directly to determine the solution to this Riemann problem. However, we can approximate
1(u) arbitrarily well by smooth functions if we round off the corner at um, and in this
way justify the claim that w in (14.40) solves this Riemann problem.

EXERCISE 14.3. Determine the structure of the Riemann solution for a smoothed
version of j(u) and verify that it consists of two contact discontinuities separated by a
rarefaction wave, and approaches (14.40) in the limit of zero smoothing.

The resulting numerical flux F(ul,u,) can be evaluated from the general expression
(14.32), which in the scalar case reduces to

F(u,,u,) = f(ul) + f'(ul) (,[') , 1 ) (u, - u!). (14.42)

Alternatively, applying formula (14.14) in this case gives

F(ul,u,) = f(Ur), (14.43)
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F(ut,ur) = f(u,,,)

nt Ur

Figure 14.2. The piecewise linear function f(u) used to define the approximate Riemann
solution in the sonic rarefaction case.

since f(u,) = f(u,). Using (14.41) we see that this agrees with (14.42).
This gives a nice geometric interpretation to the numerical flux in the scalar case when

we apply the entropy fix. Moreover, we see from this that

F(ut,u,) < f(u,) (14.44)

where u, is the sonic point at which f'(u,) = 0 and f is a minimum. Recall that the
Godunov flux using the correct rarefaction wave solution of the original conservation law
is given by

F0(ut,u,) = f(u,) (14.45)

in this case. Hence the flux we use in Roe's method with the entropy fix is always less
than the Godunov flux. Since the flux for Roe's method always agrees with the Godunov
flux in every case except the sonic rarefaction, we see that

F(ut, u,) < Fc(ut, u,) V ut < u,,

F(ut,u,) ? Fo(ut,u,) V ut > u,,

(14.46)

where F. denotes the Godunov flux. The second inequality of (14.46) is in fact satisfied
as an equality for all ut > u,. It is written in the above form since it turns out that any
numerical method for a scalar conservation law with a flux satisfying (14.46) automatically
satisfies the entropy condition and can only converge to entropy-satisfying solutions. This
shows that, in the scalar case at least, the entropy fix presented here does indeed cure the
entropy problem.
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Numerical methods satisfying (14.46) are called E-schemes (E for entropy), a notion
introduced by Osher[58], who also discusses a related entropy fix for Roe's method and
some alternative approximate Riemann solvers. See also Tadmor(85] for a discussion of
these issues.

14.2.4 A Roe matrix for isothermal flow
As an example, we derive the Roe matrix for the isothermal equations of gas dynamics.
Roe[64] presents the analogous formulas for the full Euler equations.

In the isothermal equations,

u=

and

[ml'M. Au) m2/P + a2P J '
(14.47)

0 1

=
0 1

f/(u) = a2 - m2/p2 2m/p a2 - v2 2v (14.48)

with m = pv. To derive an averaged Jacobian satisfying (14.19), introduce the new

variables

z1 P1/2 P1/2z = pu, i.e.
[ z J

= [ m/p,/2 ] = p1/2v (14.49)
2 J

Then
11 1

f(u)_[a2z2+z2J. (14.50)
1 2

The motivation for this change of variables is that both (u1- u,) and (f (u,) - f (u,)) can
be expressed in the form of some matrix times (z, - z,). The averaging is done in terms
of the variables z:

1 _ 21 __ 1 Pi/2 + P:/2

2 z2 2 m1/Pi/2 + m,/P;

Then it is easy to check that

ui - u, =
[ 22,

0 (zl - Z Oi2 21
J

f2 itf(ui) - f(u*)
2a2 21 222

I (zr - z.) = C(z1- M.

Using [] to denote the jump in a quantity, we have Jul = B[z] and [f] = O[z], which can
be combined to give

[f] = CB-1[u]. (14.52)
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Condition (14.19i) is thus satisfied if we take

A(ui, u,) = CB-1 =
l az

0
2 -2

z-2
- J = l az

0

vz Zv
(14.53)

- z/ 1 i/ 1 l J

where we have defined the average velocity v by

v =
Zz

= Pi/zvl +
p'1/2,,'

(14.54)
21

P'1/Z + 1/2

This is often called the rho-averaged (Roe-averaged?) velocity. We can view A as being
the Jacobian matrix f'(u) from (14.48) evaluated at the averaged velocity U. Clearly, when
ui = u, and z = z1 = z the matrix A(u1, u1) reduces to f' (u7). Since the coefficients of A
are smooth functions of u1 and u this shows that (14.19iii) is satisfied. Finally, condition
(14.19ii) is also clearly satisfied since the eigenvalues and eigenvectors of A are given by:

iy
=

v-a
1

'

(14.55)

(14.56)

z=v+a

=
1

rz
v + a

Again, note the similarity to the expressions (7.6) and (7.7) for the eigenvalues and eigen-
vectors of f'(u).

The approximate solution to the Riemann problem with data ui and u, is thus

u, x/t < v - a
fi(x,t) = fim v - a < x/t < 6 + a (14.57)

u, z/t > v+a

where it, is the intermediate state. We can obtain this state by decomposing

u, - U1 = 016 + ozrz

and then

(14.58)

fi,,, = u1 +o1i'1. (14.59)

EXERCISE 14.4. Find a Roe matrix for the one-dimensional shallow water equations
(5.38).
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15.1 Convergence notions

The Lax-Wendroff Theorem presented in Chapter 12 does not say anything about whether
the method converges, only that if a sequence of approximations converges then the limit
is a weak solution. To guarantee convergence, we need some form of stability, just as for
linear problems. Unfortunately, the Lax Equivalence Theorem no longer holds and we
cannot use the same approach (which relies heavily on linearity) to prove convergence.
In this chapter we consider one form of nonlinear stability that allows us to prove con-
vergence results for a wide class of practical methods. So far, this approach has been
completely successful only for scalar problems. For general systems of equations with
arbitrary initial data no numerical method has been proved to be stable or convergent,
although convergence results have been obtained in some special cases (e.g. (201, (501,
(531).

You may wonder why we should bother carefully studying the scalar case, since it
has limited direct applicability to real-world problems. However, the fact is that many
of the most successful numerical methods for systems like the Euler equations have been
developed by first inventing good methods for the scalar case (where the theory provides
good guidance) and then extending them in a relatively straight forward way to systems
of equations. The fact that we can prove they work well for scalar equations is no guar-
antee that they will work at all for systems, but in practice this approach has been very
successful.

One difficulty immediately presents itself when we contemplate the convergence of a
numerical method for conservation laws. The global error Uk(x, t) - u(x, t) is not well
defined when the weak solution u is not unique. Instead, we measure the global error in
our approximation by the distance from Uk(x,t) to the set of all weak solutions W,

W = (w : w(x,t) is a weak solution to the conservation law). (15.1)

To measure this distance we need a norm, for example the 1-norm over some finite time

158
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interval 10, TI, denoted by

IIVIII.T = IT

I I_oo Iv(x,i)Idxdt.

The global error is then defined by

dist(Uk, W) = in f IIUk - wIII.T.

The convergence result we would now like to prove takes the following form:

(15.3)

If Uk is generated by a numerical method in conservation form, consistent with
the conservation law, and if the method is stable in some appropriate sense,
then

dist(Uk,W) --. 0 as k -. 0.

Note that there is no guarantee that IlUk - wlII,T -. 0 as k -. 0 for any fixed weak
solution w(x, t). The computed Uk might be close to one weak solution for one value of k
and close to a completely different weak solution for a slightly smaller value of the time
step k. (Recall Exercise 12.4.) This is of no great concern, since in practice we typically
compute only on one particular grid, not a sequence of grids with k -. 0, and what the
convergence result tells us is that by taking a fine enough grid, we can be guaranteed of
being arbitrarily close to some weak solution.

Of course in situations where there is a unique physically relevant weak solution sat-
isfying some entropy condition, we would ultimately like to prove convergence to this
particular weak solution. This issue will be discussed later, since it requires some dis-
crete entropy condition as well as consistency and stability, and is a stronger form of
convergence than we now consider.

15.2 Compactness

In order to prove a convergence result of the type formulated above, we must define an
appropriate notion of "stability". For nonlinear problems the primary tool used to prove
convergence is compactness, and so we will take a slight detour to define this concept and
indicate its use.

There are several equivalent definitions of a compact set within some normed space.
Here I will simply assert that certain classes of sets are compact without proof, since these
are standard examples from real or functional analysis and a complete discussion would
take us too far afield.
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The most important property of compact sets, in relation to our goals of defining
stability and proving convergence, is the following.

PROPOSITION 15.1. If 1C is a compact set in some normed space, then any infinite
sequence of elements of)C, (Kt, K2, K3, ...), contains a subsequence which converges to
an element of X.

This means that from the original sequence we can, by selecting certain elements from
this sequence, construct a new infinite sequence

{Ki Ki=, Ky, ...) (with it < iy < i3 < )
which converges to some element K E K,

Ilxij - KII ~ 0 as j -' 00.

The fact that compactness guarantees the existence of convergent subsequences, com-
bined with the Lax-Wendroff Theorem 12.1, will give us a convergence proof of the type
formulated above.

EXAMPLE 15.1. In the space iR with norm given by the absolute value, any closed
interval is a compact set. So, for example, any sequence of real numbers in [0,11 contains
a subsequence which converges to a number between 0 and 1. Of course there may be
several different subsequences one could extract, converging perhaps to different numbers.
For example, the sequence

{0,1,0,1,0,1,...}

contains subsequences converging to 0 and subsequences converging to 1.

EXAMPLE 15.2. In the same space as the previous example, an open interval is not
compact. For example, the sequence

{1, 10-1, 10-2, 10-3, ...}

of elements lying in the open interval (0, 1) contains no subsequences convergent to an
element of (0,1). (0f course the whole sequence, and hence every subsequence, converges
to 0, but this number is not in (0,1).) Also, an unbounded set, e.g.[0,oo), is not compact,
since the sequence {1, 2, 3, .. .} contains no convergent subsequence.

Finite dimensional spaces. Generalizing the first example above, in any finite
dimensional normed linear space, any closed and bounded set is compact. (In fact, these
are the only compact sets.)

EXAMPLE 15.3. In the n-dimensional space fir with any vector norm II . II, the
closed ball

Ba={xEIR^:IIzII:R}
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is a compact set.

Function spaces. Since we are interested in proving the convergence of a sequence of
functions Uk(x,1), our definition of stability will require that all the functions lie within
some compact set in some normed function space. Restricting our attention to the time
interval [0, T], the natural function space is the space L1,,. consisting of all functions of z
and t for which the 1,T-norm (15.2) is finite,

Ll,T = {v : IIvIII.T < oo}.

This is an infinite dimensional space and so it is not immediately clear what comprises a
compact set in this space. Recall that the dimension of a linear space is the number of
elements in a basis for the space, and that a basis is a set of linearly independent elements
with the property that any element can be expressed as a linear combination of the basis
elements. Any space with n linearly independent elements has dimension at least n.

EXAMPLE 15.4. The space of functions of x alone with finite 1-norm is denoted by
Li,

L, = (v(-) : Ilvll, < oo}.

This space is clearly infinite dimensional since the infinite set of functions

1 j<x<j+l
VAX) l

0 otherwise
(15.4)

are linearly independent.

Unfortunately, in an infinite dimensional space, a closed and bounded set is not nec-
essarily compact.

EXAMPLE 15.5. The sequence of function {v1, v2, ...} with vj defined by (15.4) all
lie in the closed and bounded unit ball

B1 = (v E L, : Ilulli 5 1),

and yet this sequence has no convergent subsequences.

The difficulty here is that the support of these functions is nonoverlapping and marches
off to infinity as j -. oo. We might try to avoid this by considering a set of the form

(v E L, : IIvIli 5 R and Supp(v) C (-M,M))

for some R, M > 0, where Supp(v) denotes the support of the function v, i.e., Supp(v) C
[-M, M] means that v(z) = 0 for lxl > M. However, this set is also not compact, as
shown by the sequence of functions {vi, v3, ...} with

vi(x)={0n(lx) lxl>1.
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Again this sequence has no convergent subsequences, now because the functions become
more and more oscillatory as j - oo.

15.3 Total variation stability

In order to obtain a compact set in L,, we will put a bound on the total variation of the
functions, a quantity already defined in (12.40) through (12.42). The set

{v E L, : TV(v) < R and Supp(v) C [-M,M]} (15.5)

is a compact set, and any sequence of functions with uniformly bounded total variation
and support must contain convergent subsequences. (Note that the 1-norm will also be
uniformly bounded as a result, with jlvij, < MR.)

Since our numerical approximations Uk are functions of x and i, we need to bound the
total variation in both space and time. We define the total variation over [0, T] by

TVT(u) = limsup I I lu(x+E,t)-u(x,t)Idxdt-0 E 0 ao

1 T 00

+ limsup -I I Ju(x,t+E)-u(x,t)Idxdt. (15.6)-0 E 0 ao

It can be shown that the set

)C = {u E L,,T : TVr(u) < R and t)) C [-M, MJ V t E [0,T]} (15.7)

is a compact set in L,,7..
Since our functions Uk(x, t) are always piecewise constant, the definition (15.6) of TVT

reduces to simply

T/k 00

TVr(U0) = r E. [kjUi+, - Uj-j + hjUj-+ - U7 jJ . (15.8)

Note that we can rewrite this in terms of the one-dimensional total variation and 1-norm
as

T/k

TVr(U") = T_ [kTV(U°)+ [IU°+` - U"11,1 . (15.9)
.=o

DEFINITION 15.1. We will say that a numerical method is total variation stable, or
simply TV-stable, if all the approximations Uk for k < ko lie in some fixed set of the
form (15.7) (where R and M may depend on the initial data uo and the flux function
f(u), but not on k).

Note that our requirement in (15.7) that Supp(u) be uniformly bounded over [0,T] is
always satisfied for any explicit method if the initial data uo has compact support and
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k/h is constant as k - 0. This follows from the finite speed of propagation under such a
method.

The other requirement for TV-stability can be simplified considerably by noting the
following theorem. This says that for the special case of functions generated by conser-
vative numerical methods, it suffices to insure that the one-dimensional total variation
at each time t" is uniformly bounded (independent of n). Uniform boundedness of TVr
then follows.

THEOREM 15.1. Consider a conservative method with a Lipschitz continuous numer-
ical flux F(U; j) and suppose that for each initial data no there exists some ko, R > 0 such
that

TV(U")<R Vn,kwith k<k0i nk<T. (15.10)

Then the method is TV-stable.

To prove this theorem we use the following lemma.

LEMMA 15.1. The bound (15.10) implies that there exists or > 0 such that

IIUn+l

-U"Ill<_ak Vn,kwithk<ko, nk<T. (15.11)

PROOF OF THEOREM 15.1. Using (15.10) and (15.11) in (15.9) gives

Tlk
TVT(U") _ E [kTV(U") + IIU"+1- U"IIl]

"=o
Tlk

< >[kR+ak)
n=0

< k(R+a)T/k=(R+a)T
for all k < ko, showing that TVr(U4) is uniformly bounded as k ' 0. This, together with
the finite speed of propagation argument outlined above, shows that all U4 lie in a set of
the form (15.7) for all k < ko and the method is TV-stable.

PROOF OF LEMMA 15.1. Recall that a method in conservation form has

U7+1 - Ui= h[F(U";j)-F(U";j-1))

and hence
W

IIU"+1-U"II1=k E IF(U";j)-F(U";j-1)1. (15.12)

The flux F(U; j) depends on a finite number of values U,_,,..., U;+,. The bound (15.10)
together with the compact support of each U" easily gives

117j "I < R/2 V j,n with nk < T. (15.13)
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This uniform bound on U, , together with the continuity of F(U;j) and its Lipschitz
continuity, allows us to derive a bound of the form

IF(U";j) - F(U";j - 1)1 < K max Uj'+:-11. (15.14)

It follows that

IF(U";1)-F(U",1 -1)1 <K t IUi+i-U,+:-1I
i=-p

and so (15.12) gives

[9^ EIIUn+1 - U"Ill < kK L L 1U]+i - U)+i-11

after interchanging sums. But now the latter sum is simply TV(U") for any value of i,
and so

IIU"+1 - U"111 < kK E TV(U")
i=-y

< kK(p+q+1)R

yielding the bound (15.11). 1

We are now set to prove our convergence theorem, which requires total variation
stability along with consistency.

THEOREM 15.2. Suppose Uk is generated by a numerical method in conservation
form with a Lipschitz continuous numerical flux, consistent with some scalar conservation
law. If the method is TV-stable, i.e., if TV(U") is uniformly bounded for all n, k with
k < ko, nk < T, then the method is convergent, i.e., dist(Uk,W) -. 0 as k - 0.

PROOF. To prove this theorem we suppose that the conclusion is false, and obtain a
contradiction. If dist(Uk, W) does not converge to zero, then there must be some e > 0
and some sequence of approximations {Uk U,.,, ...} such that k, --. 0 as j -. oo while

dist(Uk,, W) > e for all j. (15.15)

Since Uk, E K (the compact set of (15.7)) for all j, this sequence must have a conver-
gent subsequence, converging to some function v E X. Hence far enough out in this
subsequence, Uk, must satisfy

IIUk, - vi11,T < e for all j sufficiently large (15.16)

for the a defined above. Moreover, since the Uk are generated by a conservative and
consistent method, it follows from the Lax-Wendroff Theorem (Theorem 12.1) that the
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limit v must be a weak solution of the conservation law, i.e., v E W. But then (15.16)
contradicts (15.15) and hence a sequence satisfying (15.15) cannot exist and we conclude
that dist(Uk, W) -. 0 as k -* 0. 1

15.4 Total variation diminishing methods

We have just seen that TV-stability of a consistent and conservative numerical method is
enough to guarantee convergence, in the sense that dist(U5, W) -, 0 as k -+ 0.

One easy way to ensure TV-stability is to require that the total variation be nonin-
creasing as time evolves, so that the total variation at any time is uniformly bounded by
the total variation of the initial data. This requirement gives rise to the very important
class of TVD methods.

DEFINITION 15.2. The numerical method U;+' =7{(U"; j) is called total variation
diminishing (abbreviated TVD) if

TV(U"+') <TV(U") (15.17)

for all grid functions U".

If we compute using a TVD method, then

TV(U") <TV(U°) <TV(uo) (15.18)

for all n > 0.

It can be shown that the true solution to a scalar conservation law has this TVD

property, i.e., any weak solution u(x,t) satisfies

TV(u(., t2)) < TV(u(., t1)) for t2 > ti. (15.19)

If this were not the case then it would be impossible to develop a TVD numerical method.
However, since true solutions are TVD, it is reasonable to impose this requirement on the
numerical solution as well, yielding a TV-stable and hence convergent method. A number
of very successful numerical methods have been developed using this requirement. Several
such methods will be derived in Chapter 16.

15.5 Monotonicity preserving methods

Recall that one difficulty associated with numerical approximations of discontinuous so-
lutions is that oscillations may appear near the discontinuity. In an attempt to eliminate
this possibility, one natural requirement we might place on a numerical method is that it
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be monotonicity preserving. This means that if the initial data U° is monotone (either
nonincreasing or nondecreasing) as a function of j, then the solution Uj should have the
same property for all n. For example, if U° > U }1 for all j then we should have that
Ul > Uj}1 for all j and n (as for example in Figure 12.2). This means in particular that
oscillations cannot arise near an isolated propagating discontinuity, since the Riemann
initial data is monotone. For TVD methods we have this property.

THEOREM 15.3. Any TVD method is monotonicity preserving.

PROOF. This result follows from the fact that the appearance of oscillations would
increase the total variation. If U° > U°+1 for all j and TV(U°) < oo then we must have
that TV (U°) = IU_ - U _'I. Clearly, by finite domain of dependence arguments, we con-
tinue to have U" - Ua, as j -, ±oo at any later time t". So TV(U") > IUL - UPI. If
the method is TVD then it must be that in fact TV(U") = J U!_ - UPI. Any oscillations
in U" would give a larger total variation and cannot occur. I

Another attractive feature of the TVD requirement is that it is possible to derive
methods with a high order of accuracy which are TVD. By contrast, if we define "stability"
by mimicing certain other properties of the true solution, we find that accuracy is limited
to first order. Nonetheless, we introduce some of these other concepts because they are
useful and frequently seen.

15.6 11-contracting numerical methods

Any weak solution of a scalar conservation law satisfies

llu(.,t2)111 < Ilu(',tl)lll for t2 > tl.

In particular, if u° is the initial data at time t = 0, then

Ilu(., t)111 <- Iluolll Vt > 0.

(15.20)

(15.21)

The result (15.20) is true for any weak solution to a scalar conservation law. If we restrict
our attention to the entropy solution (which is unique) then (15.20) is a special case of
a more general result. If u(x,t) and v(x,t) are both entropy solutions of the same scalar
conservation law (but with possibly different initial data), and if uo - vo has compact
support (so that t) - t)II1 < oo for all t) then

IIu(',t2)-v(',12)1115 for t2>t1. (15.22)

This property is called L1-contraction: u-v is contracting in the 1-norm as time evolves.
We can derive (15.20) from (15.22) by taking v(x,t) _- 0, which is an entropy solution to
any conservation law.
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Note that we must restrict our attention to the unique entropy solution in order to

expect that (15.22) holds. Otherwise, we could take data u(x,ti) = v(x,t1) for which two
different weak solutions u(x,t2) and v(x, t2) exist, violating (15.22).

The standard proof of (15.22) proceeds by defining a finite difference equation sat-

isfying a discrete analogue of (15.22) and then proving convergence (see, e.g., Theorem

16.1 in [77]). This suggests that a discrete analogue of (15.22) could be useful in proving

convergence of difference methods.
The discrete space ll. For grid functions U = {U,} (at a fixed time, for example)

we define the 1-norm by

IIU111 = h > IU1[.

The space ll consists of all grid functions for which the 1-norm is finite:

11= {U : llUpl < oo).

(15.23)

(15.24)

Note that if we extend the grid function U to a piecewise constant function u(x) = U, for
xj_112 < x < xj+1/2, then

llUll1 = llulll. (15.25)

Conversely, if we take a function u(x) and restrict it to a grid function U by setting
Uj = uj, the cell average (10.3), then

11011 5 llulll. (15.26)

EXERCISE 15.1. Verify (15.25) and (15.26).

In analogy to the L1-contraction property (15.22) of the true solution operator, we say
that a numerical method

Uj+1 = 9't(U";j) (15.27)

is 11.contracting if, for any two grid functions U' and V" for which U' - V" has compact
support, the grid functions U"+' and Vn+' defined by (15.27) and V"+' = 7t(Vn; j) satisfy

IIUn+1 - vn+llll <- IlU^ - V"lll. (15.28)

The fact that lt-contracting methods are convergent follows from the next theorem and
our previous results.

TuEOREM 15.4. Any li-contracting numerical method is TVD.

PROOF. The proof depends on the following important relation between the 1-norm
and total variation: Given any grid function U, define V by shifting U,

V, = Uj-1 `d j. (15.29)
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Then
TV(U) = ilIU - Vf11. (15.30)

Now suppose the method (15.27) is 11-contracting and define Vj = Uj 1 for all j and n.
Note that the methods we are considering are translation invariant, so VT` = 7{(V"; j).
Then by 11-contraction and (15.30) we have

TV(U"+') _ 1IIU"+1 - v"+'

5 hIIU" - V"p,
TV(U")

and hence the method is TVD. I

EXAMPLE 15.6. We will show that the upwind method is 11-contracting and hence
TVD, provided the CFL condition is satisfied. Suppose, for simplicity, that f' (U,) > 0
and f'(VJ) > 0 for all j. Then the method for U and V reduces to

Uj+1 = U; - h [f( ") - f(UU_1)] (15.31)

and

V"+1 = V" -

h

[f(vi) - f(V;"_1)] - (15.32)

Since the characteristic wave speed is f'(u), the CFL condition requires that

0<hf'(u)<1

for all u in the range min1(U; , Vj) < u < max, (U; , V").
Letting W, = U; - V°, we find by subtracting (15.32) from (15.31) that

Wj+1 =WT -

h

[(f(u)-f(v; )) - (Vift- 1))]

Since f is smooth, the mean value theorem says that

f(UT) - f(vi") = f (8,)(U; - v")
= f'(8 )w';

for some 0, between UJ and V. Using this in (15.34) gives

_1.W;+'=(1-hf'(0)Iw +f'(6>>)Wj_

(15.33)

(15.34)
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By the CFL condition (since 0 falls in the appropriate range), we see that both of the
coefficients are nonnegative and so, letting of = (k/h) f'(0 ),

IW;+II 5 (1 - aj)IW;I +oj_IIW 1I. (15.35)

Summing over j gives the result for the 1-norm:

h>IWn+'I<hIW'l-hajlWnj+hF_oi_IIW II

Since Wj = 0 for Iji sufficiently large, the last two terms cancel out, and we obtain

IIW"+IIII<-IIW"Ill
(15.36)

showing 11-contraction. (Note the similarity of this proof to the earlier proof in Exam-
ple 10.2 that the upwind method is stable for the linear advection equation.)

EXERCISE 15.2. Show that the Lax-Friedrichs method (12.15) is 11-contracting pro-
vided the CFL condition Ikf'(u)/hI < 1 is satisfied for all u in the range minj(Uj ,Vj") <
u < maxj(Uj , V").

Note that if our numerical method is 11-contracting, then in particular we can obtain

a discrete version of (15.20) by taking Vo =- 0 (which leads to Vi" _- 0 for any consistent
method):

IjU"Ij1 < 11U°fl' do > 0. (15.37)

If we define the piecewise constant function Uk(x, t) in the usual way, we also have that

IIUk(', t)II1 <- IIUk(', 0)II15 IIuoII1

by using (15.25) and (15.26).

15.7 Monotone methods

(15.38)

Another useful property of the entropy-satisfying weak solution is the following: If we

take two sets of initial data ua and v0, with

v0(x) > u0(x) V x,

then the respective entropy solutions u(x,t) and v(x, t) satisfy

v(x,t)>u(x,t) Vx,t.

The numerical method Uj +' = 7{(U"; j) is called a monotone method if the analo-
gous property holds:

Vj" > Uj V j Vj"+I > Uj+' Vj (15.39)
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To prove that a method is monotone, it suffices to check that

8
8U7{(U"; j) > 0 for all i, j, U". (15.40)

This means that if we increase the value of any U, then the value of Uj ` cannot decrease
as a result.

EXAMPLE 15.7. The Lax-Friedrichs method (12.15) is monotone provided the CFL
condition is satisfied since

7t(U";j) = 2 (u'_, + U;+1) - 2h (f(U;+i) - f(Ui-1)) (15.41)

satisfies
z(1+,-,f'(U ,)) if i=j-1

(l - if i = j + 1 (15.42)

0 otherwise.
The CFL condition guarantees that 1 ± h f'(U;) > 0 for all i and so 87{(U"; j)/OU" > 0
for all i, j.

Monotone methods are a subset of I,-contracting methods, as the following theorem
shows.

THEOREM 15.5. Any monotone method is l,-contracting.

Because the condition (15.40) is usually easy to check, as the example above shows,
this is a useful theorem. It simplifies considerably the solution of Exercise 15.2 or Exam-
ple 15.6.

Proofs of Theorem 15.5 may be found in Keyfitz' appendix to 1311 or in Crandall and
Majda(16]. This latter paper contains a thorough discussion of monotone methods and
their properties.

To summarize the relation between the different types of methods considered above,
we have:

monotone . 11-contracting TVD . monotonicity preserving.

Although the monotone requirement (15.40) is often the easiest to check, the class of

monotone methods is greatly restricted as the following theorem shows.

THEOREM 15.6. A monotone method is at most first order accurate.

The proof of Theorem 15.6 can be found in (311, and relies on the "modified equation"
for the monotone method. As described in Chapter 11, by considering the local truncation
error and expanding in Taylor series, it can be shown that the numerical solution is in
fact a second order accurate approximation to the solution v(x, t) to some modified PDE

09
v, + f(v), = kz (,6(v)v,,) (15.43)
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where k is the time step and fl(v) is a function of v that depends on the derivatives of
'H with respect to each argument. The assumption that the method is monotone can be
used to show that fl(v) > 0 (except in certain trivial cases). But the equation (15.43)
is an 0(k) perturbation of the original conservation law and it follows that the solution
vk(x,t) differs from u(x,t) by 0(k) as well, at least for nontrivial initial data, and so

Ilvk - ull?Clk V k<ko

with C, > 0. Since our numerical solution is a second order accurate approximation to
the modified equation,

IIUk-vkll5 C,k2 Vk<ko.
It follows that it can only be first order accurate solution of the original conservation law,
since

IIUk - till >- IIu - vkll - IIUk - vkll
> C,k-C2ks

and hence the error is asymptotically bounded below by (Cl - e)k for some fixed e as
k 0.

The notion of total-variation stability is much more useful because it is possible to
derive TVD methods that have better than first order accuracy. This has been a prominent
theme in the development of high resolution methods, as we will see in the next chapter.

Numerical viscosity and the entropy condition. Note that the modified equation
(15.43) contains a dissipative term ke (fl(v)v.), as in the modified equation for first order
methods applied to the linear advection equation, discussed in Section 11.1.1. This is
similar to the viscous term evn we added to our conservation law to define the "vanishing
viscosity solution". The viscous term in (15.43) vanishes in the limit as k -+ 0. This
suggests that we can hope for more than mere stability of monotone methods. As the
grid is refined, we will in fact have convergence of any sequence of approximations to the
vanishing viscosity solution of the conservation law, as the next theorem states.

THEOREM 15.7. The numerical solution computed with a consistent monotone method
with k/h fixed converges to the entropy solution as k -. 0.

Although I have motivated this by the presence of numerical viscosity in the method,
the standard proof uses the fact that only the entropy solution u is L,-contracting in the
sense that

IIu(', t2) - w(', t2)II1 S IIu(', t1) - w(', t,)IIi for tz > it (15.44)

for all smooth solutions w. This, combined with Theorem 15.5, gives the proof (see [16]
or [31]).

Note that there is no explicit reference to stability bounds on k/h in Theorem 15.7,
but that the method will only be monotone for sufficiently small values of k/h (as in
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Example 15.7). The monotone property is a form of stability, but one that is too stringent
for most practical purposes because of Theorem 15.6. In the next chapter we begin our
study of higher order, total variation stable methods.



16 High Resolution Methods

In the previous chapter, we observed that monotone methods for scalar conservation laws
are TVD and satisfy a discrete entropy condition. Hence they converge in a nonoscillatory
manner to the unique entropy solution. However, monotone methods are at most first
order accurate, giving poor accuracy in smooth regions of the flow. Moreover, shocks tend
to be heavily smeared and poorly resolved on the grid. These effects are due to the large
amount of numerical dissipation in monotone methods. Some dissipation is obviously
needed to give nonoscillatory shocks and to ensure that we converge to the vanishing
viscosity solution, but monotone methods go overboard in this direction.

In this chapter we will study some "high resolution" methods. This term applies
to methods that are at least second order accurate on smooth solutions and yet give
well resolved, nonoscillatory discontinuities. We will first consider the scalar problem,
where we can impose the constraint that the method be total variation diminishing. This
insures that we obtain nonoscillatory shocks and convergence in the sense of Theorem 15.2.
These scalar methods will later be extended to systems of equations using an approximate
decomposition of the system into characteristic fields.

The main idea behind any high resolution method is to attempt to use a high order
method, but to modify the method and increase the amount of numerical dissipation in
the neighborhood of a discontinuity.

16.1 Artificial Viscosity

The most obvious way to do this is to simply take a high order method, say Lax-Wendroff,
and add an additional "artificial viscosity" term to the hyperbolic equation, perhaps
modeling the addition of a diffusive term proportional to u,,. This term must have a
coefficient that vanishes as k, h -+ 0, so that it remains consistent with the hyperbolic
equation. Moreover, we want this coefficient to vanish sufficiently quickly that the order
of accuracy of the high order method on smooth solutions is unaffected.

Since additional viscosity is typically needed only near discontinuities, we might also
want the coefficient to depend on the behavior of the solution, being larger near discon-

173
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tinuities than in smooth regions. We will introduce this complication shortly, but first
consider the effect of adding a viscous term that is independent of the solution.

As an example, consider the advection equation u1 + auz = 0 and suppose we modify
the standard Lax-Wendroff method from Table 10.1 as follows:

" I ) (16.1)U1"+' = U)"-(U")+l - U)"-1 )+1vs(U")+1 - 2U")+U)i

+kQ(U7+l-2Uj +U7_1)

where v = ak/h is the Courant number and Q is the newly-introduced artificial viscos-
ity. Clearly the truncation error L(x,t) for this method can be written in terms of the
truncation error LLW(x,t) for the Lax-Wendroff method as

L(x,t) = LLW(x,t) - Qfu(x + h,t) - 2u(x,t) + u(x - h,t)J

= LLW(x,t) - Qh'uzz(x,t) + 0(h4)

= 0(k') as k-.0
since LLW(x,t) = 0(k') and h' = 0(k') as k -. 0. The method remains second order
accurate for any choice of Q = constant.

The modified equation for (16.1) is similarly related to the modified equation (11.7)
for Lax-Wendroff. The method (16.1) produces a third order accurate approximation to
the solution of the PDE

u1 +auz = h'Quzz + sh'a(v' - 1)u,,,. (16.2)

The dispersive term that causes oscillations in Lax-Wendroff now has competition from a
dissipative term, and one might hope that for Q sufficiently large the method would be
nonoscillatory. Unfortunately, this is not the case. The method (16.1) with constant Q is
still a linear method, and is second order accurate, and so the following theorem due to
Godunov shows that it cannot be monotonicity preserving.

THEOREM 16.1 (GODUNOV). A linear, monotonicity preserving method is at most
first order accurate.

PROOF. We will show that any linear, monotonicity preserving method is monotone,
and then the result follows from Theorem 15.6.

Let U" be any grid function and let Uj for j 0 J while Vj > Uj". Then we need
to show that Vj"+' > Uj +' for all j, which implies that the method is monotone.

Let W" be the monotone Riemann data defined by

W" - JUr

so that W, is nondecreasing. Note that

j<J
j>J (16.3)

W' =W; 1+(VT -Uj) (16.4)
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for all j, since the last term is zero except when j = J. Since the method is linear, we
also have from (16.4) that

w, +J = w,," + (V"+'
- ui"+')

so that

(16.5)

(16.6)

But since the method is monotonicity preserving and W" is monotone with WI < WT,
we have that W, +' - WI,' > 0 and so (16.6) gives l;"+' > Un+'. This shows that the
method is monotone and hence first order.

Nonlinear methods. To have any hope of achieving a monotonicity preserving
method of the form (16.1), we must let Q depend on the data U" so that the method
is nonlinear, even for the linear advection equation. As already noted, allowing this
dependence makes sense from the standpoint of accuracy as well: where the solution
is smooth adding more dissipation merely increases the truncation error and should be
avoided. Near a discontinuity we should increase Q to maintain monotonicity (and also,
one hopes, enforce the entropy condition).

The idea of adding a variable amount of artificial viscosity, based on the structure of
the data, goes back to some of the earliest work on the numerical solution of fluid dynamics
equations, notably the paper of von Neumann and R.ichtmyer[95]. Lax and Wendroff[46]
also suggested this in their original presentation of the Lax-Wendroff method.

Note that in order to maintain conservation form, one should introduce variable vis-
cosity by replacing the final term of (16.1) by a term of the form

k [Q(U";j)(U'+1 - U') -Q(U";J - 1)(U7 - Uj t)I (16.7)

where Q(U"; j) is the artificial viscosity which now depends on some finite set of values of
U", say Ui D, ... , UU+4. More generally, given any high order flux function F,e(U; j) for a
general conservation law, the addition of artificial viscosity replaces this by the modified
flux function

F(U;j) = F5(U;j) - hQ(U;j)(Ui+1 - Ui). (16.8)

The difficulty with the artificial viscosity approach is that it is hard to determine an
appropriate form for Q that introduces just enough dissipation to preserve monotonic-
ity without causing unnecessary smearing. Typically these goals are not achieved very
reliably.

For this reason, the high resolution methods developed more recently are based on
very different approaches, in which the nonoscillatory requirement can be imposed more
directly. It is generally possible to rewrite the resulting method as a high order method
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plus some artificial viscosity, but the resulting viscosity coefficient is typically very com-
plicated and not at all intuitive.

There are a wide variety of approaches that can be taken, and often there are close
connections between the methods developed by quite different means. We will concentrate
on just two classes of methods that are quite popular: flux-limiter methods and slope-
limiter methods. More comprehensive reviews of many high resolution methods are given
by Colella and Woodward[98] and Zalesak(102].

16.2 Flux-limiter methods

In this approach, we begin by choosing a high order flux FH(U; j) (e.g., the Lax-Wendroff
flux) that works well in smooth regions, and a low order flux F,,(U; j) (typically some
monotone method) that behaves well near discontinuities. We then attempt to hybridize
these two into a single flux F in such a way that F reduces to F in smooth regions and to
FL near discontinuities. The main idea is outlined here, although for nonlinear problems
the actual hybridization may be more complicated.

We can view the high order flux as consisting of the low order flux plus a correction:

F,(U;j) = FL(U;j) + [F,(U;j) - Fr.(U;j)]. (16.9)

In a flux-limiter method, the magnitude of this correction is limited depending on the
data, so the flux becomes

F(U;j) = FL(U;j) + 4'(U;j) [FH(U;j) - FL(U;j)] (16.10)

where 4(U; j) is the limiter. If the data U is smooth near U; then 4(U; j) should be near
I while in the vicinity of a discontinuity we want 4(U; j) to be near zero. (In practice,
allowing a wider range of values for' often works better.)

Note that we can rewrite (16.10) as

F(U;j) = F,(U;j) - (1 - 4(U;j))[Fs(U;j) - FL.(U;j)1 (16.11)

and comparison with (16.8) gives the equivalent artificial viscosity for this type of method.
One of the earliest high resolution methods, the flux-corrected transport (FCT)

method of Boris and Book[2], can be viewed as a flux-limiter method. They refer to the
correction term in (16.9) as the antidiffusive flux, since the low order flux F. contains too
much diffusion for smooth data and the correction compensates. The FCT strategy is to
add in as much of this antidiffusive flux as possible without increasing the variation of
the solution, leading to a simple and effective algorithm.

Ilybrid methods of this form were also introduced by Harten and Zwas[36] at roughly
the same time. More recently, a wide variety of methods of this form have been proposed,

e.g., (27], (60], [651, [101].
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A reasonably large class of flux-limiter methods has been studied by Sweby[83), who
derived algebraic conditions on the limiter function which guarantee second order accuracy
and the TVD property. The discussion here closely follows his presentation.

To introduce the main ideas in a simple setting we first consider the linear advection
equation and take F to be the Lax-Wendroff flux while FL is the first order upwind flux.
If we assume a > 0, then we can rewrite Lax-Wendroff to look like the upwind method
plus a correction as follows:

Uj +i = Uj - v(U7 - Uj i) - 2v(1 - v)(Uj+r - 2Uj + Uj'(16.12)

The corresponding flux can be written as

F(U; j) = alli + 2a(1 - v)(Uj+i - Uj). (16.13)

The first term is the upwind flux and the second term is the Lax-Wendroff correction, so
that this gives a splitting of the flux of the form (16.9).

To define a flux-limiter method, we replace (16.13) by

F(U; j) = allj + 2a(1 - v)(Uj+1 - Uj)4j (16.14)

where 0j is shorthand for 1(U; j), and represents the flux-limiter.
There are various ways one might measure the "smoothness" of the data. One possi-

bility is to look at the ratio of consecutive gradients,

9 = U' - U'-1 (16.15)
- Uj+1 - Uj.

If Oj is near 1 then the data is presumably smooth near Uj. If Oj is far from 1 then there
is some sort of kink in the data at Uj. We can then take 4.j to be a function of Oj,

(16.16)

where 0 is some given function.
Note that this measure of smoothness breaks down near extreme points of U, where

the denominator may be close to zero and Oj arbitrarily large, or negative, even if the
solution is smooth. As we will see, maintaining second order accuracy at extreme points
is impossible with TVD methods. For the time being, we will be content with second
order accuracy away from these points, and the following theorem gives conditions on 4.
which guarantee this.

THEOREM 16.2. The flux limiter method with flux (16.14) (where c6j is given by
(16.16)) is consistent with the advection equation provided 4.(0) is a bounded function. It
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is second order accurate (on smooth solutions with u, bounded away from zero) provided
0(1) = 1 with 0 Lipschitz continuous at 0 = 1.

EXERCISE 16.1. Prove this theorem.

To see what conditions are required to give a TVD method, we use (16.14) to obtain
the following method (dropping the superscripts on Un for clarity):

U,+1 = Uj-h{a(Ui-Ui-1)+`la(I-v)[(Ui+i-Ui)4,-(Ui-Ui-1)4ii-1]}

2v(1 2v(I - U1). (16.17)

If we consider a general method of the form

U, +1 = Ui - Ci-1(Ui - Ui-1) + Di(Ui+1 - U,), (16.18)

then the following theorem of Harten[27] can be used to give constraints on the Oi.
THEOREM 16.3 (HARTEN). In order for the method (16.18) to be TVD, the following

conditions on the coefficients are sufficient:

Ci_, > 0 Vi

Di > 0 Vi

Ci + Di < I Vi

(16.19)

PROOF. The resulting method can be shown to be TVD by computing

U;}1'-Uj"+1 _ (I-Ci-D,)(Ui+1-Ui)+Di+1(Ui+2-Ui+1)
+Ci-'(Uj-Uj-').

We now sum IUj+, - (17+11 over j and use the nonnegativity of each coefficient as in
previous arguments of this type to show that TV(U"+') <TV(U°). I

EXERCISE 16.2. Complete this proof.

The form (16.17) suggests that we try taking

lCS-1 = v (I - 2(I - v)oi-'/

Di = -2v(1 - v)4,.

Unfortunately, there is no hope of satisfying the condition (16.19) using this, since Di < 0
when ¢i is near 1.
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However, we can also obtain (16.17) by taking

ci_' = V + I
(1- v)v [cb;Wi+t-Ui-mi_1(Ui-Ui-1)21U. _ U.

Di = 0.

The conditions (16.19) are then satisfied provided

0 < Ci_, < 1.

Using (16.15) and (16.16), we can rewrite the expression for C1_1 as

(16.20)

Ci-1 = v S I + 2(I - v) [± .3) - 4(Bi-1)] } . (16.21)
` l j

The condition (16.20) is satisfied provided the CFL condition Jvi < 1 holds along with
the bound

(Bi) - 0Bi_1)I < 2 for all Bi, Bi_1 (16.22)
Bi

If 0i < 0 then the slopes at neighboring points have opposite signs. The data then has
an extreme point near Ui and the total variation will certainly increase if the value at
this extreme point is accentuated. For this reason, it is safest to take q5(e) = 0 for 0 < 0
and use the upwind method alone. Note that this is unsatisfying since if the data is
smooth near the extreme point, we would really like to take 0 near 1 so that the high
order method is being used. However, the total variation will generally increase if we do
this. Osher and Chakravarthy[60] prove that TVD methods must in fact degenerate to
first order accuracy at extreme points.

More recently, it has been shown by Shu[75[ that a slight modification of these methods,
in which the variation is allowed to increase by O(k) in each time step, can eliminate this
difficulty. The methods are no longer TVD but are total variation stable since over a
finite time domain uniform bounds on the total variation can be derived. If we have

TV(U"+') < (1 +ok)TV(U"), (16.23)

where a is independent of U", then

TV(U") < (1 + ak)"TV(U°) < e°T TV(uo) (16.24)

for nk < T and hence the method is total variation stable.
For simplicity here, we will only consider TVD methods and assume that

0(0) = 0 for 0 < 0. (16.25)
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Figure 16.1. Regions in which function values 0(9) must lie in order to give TVD and
second order TVD methods.

Then (16.22) will be satisfied provided

0 < BBB) < 2 and

0.5

0.0

0 < 0(9) < 2 (16.26)

for all 0.
This region is shown in Figure 16.1. To obtain second order accuracy, the function

must also pass smoothly through the point ¢(1) = 1. Sweby found, moreover, that it
is best to take 0 to be a convex combination of the ¢ for Lax-Wendroff (which is simply
d =_ 1) and the 0 for Beam-Warming (which is easily seen to be 0(9) = 9). Other choices
apparently give too much compression, and smooth data such as a sine wave tends to turn
into a square wave as time evolves. Imposing this additional restriction gives the "second
order TVD" region of Sweby which is also shown in Figure 16.1.

EXAMPLE 16.1. If we define 0(9) by the upper boundary of the second order TVD
region shown in Figure 16.1, i.e.,

0(9) = max(0, min(1,20), min(0,2)), (16.27)

then we obtain the so-called "superbee" limiter of Roe[67).

A smoother limiter function, used by van Leer(89), is given by

4,(e) =
101 + 9

(16.28)
1+101-

16 High Resolution Methods
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Figure 16.2. Two possible limiter functions: Roe's "superbee" and van Leer's limiter.

These limiters are shown in Figure 16.2.
Sweby[83] gives several other examples and presents some numerical comparisons.

More extensive comparisons for the linear advection equation are presented in Zalesak[102].
Sweby also discusses the manner in which this approach is extended to nonlinear scalar

conservation laws. The basic idea is to replace v = ak/h by a "local v" defined at each
grid point by

// \\
vi=rlf(UU')U(U')I. (16.29)

\` ,+
-

, ///

The resulting formulas are somewhat complicated and will not be presented here. They
are similar to the nonlinear generalization of the slope-limiter methods which will be
presented below.

Generalization to arbitrary wave speeds. In the above description we assumed
a > 0. Obviously, a similar method can be defined when a < 0 by again viewing Lax-
Wendroff as a modification of the upwind method, which is now one-sided in the opposite
direction. It is worth noting that we can unify these methods into a single formula. This
is useful in generalizing to linear systems and nonlinear problems, where both positive
and negative wave speeds can exist simultaneously.

Recall that the upwind method for a linear system can be written in the form (13.15),
which in the scalar case reduces to

F.(U; j) = 2a(U, + Uj+i) - 2Ial(U,+1 - U,) (16.30)
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and is now valid for a of either sign. Also notice that the Lax-Wendroff flux can be written
as

FH(U;j) = 2-a(Uj + Uj+,) - 2va(Uj+, - U,,). (16.31)

This can be viewed as a modification of F,, and introducing a limiter as in (16.10) gives
the flux

F(U;j) = FL(U;j) + 20j(sgn(v) - v)a(Uj+, - Uj). (16.32)

Note that we have used the fact that Jal = sgn(v)a = sgn(v)a, since v = ak/h and
k, h > 0. The flux-limiter,i is again of the form qSi = b(9i), but we now take Bi to be a
ratio of slopes in the upwind direction, which depends on sgn(v). Setting j' = j - sgn(v)
(= j ± 1), we take

_ Ui'+1 - Ui,

e' Ui+t - Uj
(16.33)

16.2.1 Linear systems
The natural generalization to linear systems is obtained by diagonalizing the system
and applying the flux-limiter method to each of the resulting scalar equations. We can
reexpress this in terms of the full system as follows. Suppose A = RAR-' with R =
[rjJr21 . Jr,,,) and let

aj = R-'(Ui+, - Uj) (16.34)

be the vector with components apj for p = 1,2,...,m. Then we have

Uj+, - U, = E apirp
P=I

(16.35)

where rp is the pth eigenvector of A. Set

and

vo = Apk/h (16.36)

Bpj =
apj'-
api

(16.37)

where j' = j - sgn(vp). Recall that the upwind flux has the form (13.15),

Fc(U;j)=ZA(U,+Uj+,)-ZIAI(U,+,-U,). (16.38)

while the Lax-Wendroff flux is

FH(U;j)=2A(Uj+Uj+,)-2AAz(Uj+,-U,). (16.39)
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The difference between these is
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FH(U;j) - FL(U;j) (vi - hA2) (Uj+1 - U1)

= 2
D=1

and so the flux-limiter method has a flux of the form

F(U;j) = FL(U;j) +
2 t 0(ODi)(sgn(,,D) - UD)ADaDirD

D=1

(16.40)

For nonlinear systems of equations a similar form is possible, based on the extension to
nonlinear scalar problems indicated above coupled with a linearization based on Roe's
approximate Riemann solution. Again the details are omitted since the resulting method
is similar to the slope-limiter method presented below.

16.3 Slope-limiter methods

The second approach we will study is more geometric in nature. The basic idea is to
generalize Godunov's method by replacing the piecewise constant representation of the
solution by some more accurate representation, say piecewise linear.

Recall that Godunov's method can be viewed as consisting of the following three steps
(although it is not typically implemented this way):

ALGORITHM 16.1.

1. Given data {Uj }, construct a function u°(x, t.). (Piecewise constant in Godunov's
method.)

2. Solve the conservation law exactly with this data to obtain u°(x, 1,+,).

3. Compute cell averages of the resulting solution to obtain U7+1

To generalize this procedure, we replace Step 1 by a more accurate reconstruction, taking
for example the piecewise linear function

U7 + o'(x - xj) on the cell [xj_1/2ixj+,l21. (16.41)

Here aj is a slope on the jth cell which is based on the data U°. For a system of equations,
aJ E Rm is a vector of slopes for each component of u. Note that taking a' = 0 for all j
and n recovers Godunov's method.

The cell average of from (16.41) over [xf_112,xt+112] is equal to U; for any
choice of a'. Since Steps 2 and 3 are also conservative, the overall method is conservative
for any choice of o' .
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For nonlinear problems we will generally not be able to perform Step 2 exactly. The
construction of the exact solution u"(x, t) based on solving Riemann problems no longer
works when u"(x, t") is piecewise linear. However, it is possible to approximate the
solution in a suitable way, as will be discussed below.

The most interesting question is how do we choose the slopes a'? We will see below
that for the linear advection equation with a > 0, if we make the natural choice

n UJ+1 - U]oj = h (16.42)

and solve the advection equation exactly in Step 2, then the method reduces to the Lax-
Wendroff method. This shows that it is possible to obtain second order accuracy by this
approach.

The oscillations which arise with Lax-Wendroff can be interpreted geometrically as
being caused by a poor choice of slopes, leading to a piecewise linear reconstruction
u"(x, t") with much larger total variation than the given data U". See Figure 16.3a for
an example. We can rectify this by applying a slope limiter to (16.42), which reduces
the value of this slope near discontinuities or extreme points, and is typically designed to
ensure that

<TV(U"). (16.43)

The reconstruction shown in Figure 16.3b, for example, has this property. Since Steps 2
and 3 of Algorithm 16.1 are TVD, imposing (16.43) in Step 1 results in a method that
is TVD overall, proving the following result.

THEOREM 16.4. If the condition (16.43) is satisfied in Step I of Algorithm 16.1, then
the method is TVD for scalar conservation laws.

Methods of this type were first introduced by van Leer in a series of papers[88J through
[92] where he develops the MUSCL Scheme (standing for "Monotonic Upstream-centered
Scheme for Conservation Laws"). A variety of similar methods have since been proposed,
e.g., [91, [26].

The reconstruction of Step 1 can be replaced by more accurate approximations as
well. One can attempt to obtain greater accuracy by using quadratics, as in the piecewise
parabolic method (PPM) of Colella and Woodward[l01 or even higher order reconstruc-
tions as in the ENO (essentially nonoscillatory) methods[29J, 1341. (See Chapter 17.)

Again, we will begin by considering the linear advection equation, and then gen-
eralize to nonlinear equations. For the linear equation we can perform Step 2 of Al-
gorithm 16.1 exactly and obtain formulas that are easily reinterpreted as flux-limiter
methods. This shows the close connection between the two approaches and also gives a
more geometric interpretation to the TVD constraints discussed above.

For the advection equation, the exact solution u"(x, t"+,) is simply

u"(x,t"+1) = u"(x - ak,t") (16.44)
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(a) (b)

Figure 16.9. (a) Piecewise linear reconstruction using the Lax-Wendroff slopes (16.42).
(b) Piecewise linear reconstruction using the minmod slopes (16.51).

and so computing the cell average in Step 3 of Algorithm 16.1 amounts to integrating the
piecewise linear function defined by (16.41) over the interval [x1_112 - ak, xj}112 - ak].
It is straight forward to calculate that (for a > 0),

U;}1 = U; - v(U7 - U;°_1) - 2v(1 - v)(hoj - hoj 1). (16.45)

If of _- 0 this reduces to the upwind method, while for of given by (16.42) it reduces to
Lax-Wendroff, in the form (16.12).

Note that the numerical flux for (16.45) is

F(U;j) = all, + 2a(1 - v)ho, (16.46)

which has exactly the same form as the flux-limiter method (16.13) if we set

o, = (Ui+1_ Ui) mj. (16.47)

In this context the "flux-limiter" O, can be reinterpreted as a "slope-limiter".
More generally, for a of either sign we have

Ui+1 = Ui - v(UU, - Zv(sgn(v) - v)(ho,, - ho,,-1) (16.48)

where
1i ifa>0

j1 - l j +I ifa < 0.
(16.49)
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The corresponding flux function is

F(U; j) = all?, + Za(sgn(v) - v)hoj,. (16.50)

The first term here is simply the upwind flux and so again we have a direct correspondence
between this formula and the flux-limiter formula (16.32).

EXERCISE 16.3. Verify (16.45) and (16.48).

In studying flux-limiter methods, we derived algebraic conditions that O, must satisfy
to give a TVD method. Using the piecewise linear interpretation, we can derive similar
conditions geometrically using the requirement (16.43).

One simple choice of slopes satisfying (16.43) is the so-called minmod slope,

o minmod(Uj}1 - U U, - U,_1) (16.51), = h

where the minmod function is defined by

I a if Jai < Ibi and ab > 0
minmod(a,b) = b if IbI < jai and ab > 0 (16.52)

0

2(sgn(a) + sgn(b)) min(Ial,Ihi).

ifab<0

Figure 16.3b shows the minmod slopes for one set of data.
We can rewrite the minmod slope-limiter method as a flux limiter method using (16.47)

if we set

(0 if0<0
0(0) = {0 if0<0<1

1 if0>1.
max(0, min(1,0))

(16.53)

Recall that 0, = (U, - U,_1)/(U,+1 - U,) and so (16.47) with 4', = 41(0,) and 0 given
by (16.53) reduces to (16.51). This limiter function 0 lies along the lower boundary of
Sweby's "second order TVD region" of Figure 16.1b.

Note that again 4(0) = 0 for 0 < 0, which now corresponds to the fact that we set the
slope o, to zero at extreme points of U, where the slopes (U,+1 - U,)/h and (U, - U,_1)/h
have opposite signs. Geometrically, this is clearly required by (16.43) since any other
choice will give a reconstruction u"(x,t") with total variation greater than TV(U").

Although the minmod limiter (16.51) is a simple choice that clearly satisfies (16.43), it
is more restrictive than necessary and somewhat larger slopes can often be taken without
violating (16.43), and with greater resolution. Moreover, it is possible to violate (16.43)
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and still obtain a TVD method, since Step 3 of Algorithm 16.1 tends to reduce the total
variation, and may eliminate overshoots caused in the previous steps.

A variety of other slope limiters have been developed. In particular, any of the flux
limiters discussed above can be converted into slope limiters via (16.47). Conversely, a
geometrically motivated slope limiter can often be converted into a flux limiter function
0(0). (In fact, van Leer's limiter (16.28) was initially introduced as a slope limiter in [89).)

16.3.1 Linear Systems
For a linear system of equations, we can diagonalize the system and apply the algorithm
derived above to each decoupled scalar problem. Using the notation of Section 16.2.1, we
let V," = R-1Uj have components Vyi so that Uj = E'1 Viry. We also set

J ifA,>0' j+1 ifAy<0 (16.54)

generalizing j1 defined in (16.49). Then the method (16.48) for each VV takes the form

Vvi+1

= Vpi - vp(Vpi, - Vp.i,-1) + 2vp(sgn(vp) - vp)(hfpi, - hflp.i,-1) (16.55)

where vy = kAy/h and Opi is the slope for V. in the jth cell. For example, we might take

#yj = hminmod(Vp.i+1 - Vpi, Vpi - Vp6-1) = hminmod(api, ap.i-1). (16.56)

Multiplying (16.55) by ry and summing over p gives

Un+1 = V+1ri p) p
p=1

m

= Ui - h g(Vi,Apr, - Vpa,-iAprp) (16.57)

+ 2F_ A,(sgn(vp) - vp)(hopi, - hos.i,-t)
P--1

where opi is the slope vector for the pth family,

avi = airy E Rm.

Recalling that the upwind flux FL(U; j) in (13.15) can also be written as

FL.(U; j) _ ViAprp,
p=1

(16.58)

(16.59)
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we see that the flux for (16.57) has the form

F(U; j) = Fe(U;7) +
2 av(sgn(e,) - vv)hovio (16.60)

v=

Notice that this is identical with the flux (16.40) for the flux-limiter method on a linear
system if we identify

1avi
-vi, = 4S(8vi) h rv, (16.61)

generalizing (16.47).

EXERCISE 16.4. Verify that (16.61) holds when ovi is given by (16.56) and (16.58),
Ovi is given by (16.37), and 0 is the minmod limiter (16.53).

16.3.2 Nonlinear scalar equations.
In attempting to apply Algorithm 16.1 to a nonlinear problem, the principle difficulty is in
Step 2, since we typically cannot compute the exact solution to the nonlinear equation with
piecewise constant initial data. However, there are various ways to obtain approximate
solutions which are sufficiently accurate that second order accuracy can be maintained.

I will describe one such approach based on approximating the nonlinear flux function
by a linear function in the neighborhood of each cell interface, and solving the resulting
linear equation exactly with the piecewise constant data. This type of approximation
has already been introduced in the discussion of Roe's approximate Riemann solver in
Chapter 14. The use of this approximation in the context of high resolution slope limiter
methods for nonlinear scalar problems is studied in [26].

Here I will present the main idea in a simplified form, under the assumption that the
data is monotone (say nonincreasing) and that f'(u) does not change sign over the range
of the data (say f'(U;) > 0). A similar approach can be used near extreme points of U"
and sonic points, but more care is required and the formulas are more complicated (see
(26] for details). Moreover, we will impose the time step restriction

h max1f'(Uj )I < (16.62)

although this can also be relaxed to the usual CFL limit of 1 with some modification of
the method.

With the above assumptions on the data, we can define a piecewise linear function
j (u) by interpolation the values (U,, f(U, )), as in Figure 16.4. We now define u"(a, t)
by solving the conservation law

ii, + f(ii)y = 0 (16.63)

for t" < t < t"+,, with the piecewise linear data (16.41). The evolution of u"(x,t) is
indicated in Figure 16.5.
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U, Ul n

Figure 16.4. 1(u) is a piecewise linear approximation of the flux function obtained by
interpolation at the grid values.

4 n(x,

Figure 16.5. Evolution of the piecewise linear initial data with the conservation law with
piecewise linear flux function j(u).
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This flux is still nonlinear, but the nonlinearity has been concentrated at the points
Uj . Shocks form immediately at the points xi, but because of the time step restriction
(16.62), these shocks do not reach the cell boundary during the time step. Hence we can
easily compute the numerical flux

F(U";j) t))dt. (16.64)

At the cell boundary xi+112i the solution values lie between Uj and UU+1 for t" < t < to+I
and hence

f(u"(xi+112, t)) = f(U,) + (f+"(xi+1/2, t) - Uj )fii, (16.65)

where
a. _ f(Ui) (16.66)

Ui+1 - Ui

The conservation law fit + f (u) , = 0 reduces to the advection equation u. +aium = 0 near
xi+1/2 and so

u"(xi+1/2,t) = u"(xi+112 - (t - t")aj, t")

= U7+(2-(t-t")aj) 07.

Finally, again using (16.65), we compute the numerical flux (16.64) to be

1

F(U";j) =
h

kI" f(U7)+ 2-(t-t")aj ,,idt

"
2

(-= f (Uj) + -aj 1 - -aj hoj". (16.67)

For the linear advection equation this reduces to (16.46). For of 0 this reduces to the
upwind flux f(UU ). With the choice of slopes (16.42) it reduces to

FU4;j)=1(f(U")+f(U"1))- k ((f(U.1)_f(U;))S)
(16.68)

which is a form of the Lax-Wendroff method for scalar nonlinear problems. Also notice
the similarity of (16.67) to the flux-limiter formula (16.14). With the correspondence
(16.47), (16.67) is clearly a generalization of (16.14) to the nonlinear case. (Note that
kaj/h is precisely vj from (16.29).)

To obtain a high resolution TVD method of this form, we can again choose the slope
of as in the linear case, for example using the minmod slope (16.51), so that the total
variation bound (16.43) is satisfied.

Notice that although we do not solve our original conservation law exactly in Step 2
of Algorithm 16.1, we do obtain u" as the exact solution to a modified conservation law,
and hence fi" is total variation diminishing. By using a slope limiter that enforces (16.43),
we obtain an overall method for the nonlinear scalar problem that is TVD.
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16.3.3 Nonlinear Systems
The natural way to generalize this method to a nonlinear system of equations is to linearize
the equations in the neighborhood of each cell interface x,+112 and apply the method of
Section 16.3.1 to some linearized system

u, + A,ur = 0. (16.69)

This is what we did in the scalar case, when the linearization was given by (16.66). We
have already seen how to generalize (16.66) to a system of equations in our discussion of
Roe's approximate Riemann solution (Section 14.2). We take A, = A(U; , Uj}1), where A
is some Roe matrix satisfying conditions (14.19). We denote the eigenvalues and eigen-
vectors of A, by ip, and rp, respectively, so that

Airp7 = ipirpi for p = 1, 2, , ... , m.

Recall that the flux function for Godunov's method with Roe's approximate Riemann
solver is given by (14.22), which we rewrite as

FL(U; j) = f (ui) + E awapirpi (16.70)P=1

where aaj = min(ap, 0) and ap, is the coefficient of rp, in an eigenvector expansion of
U,+1 - U,,

U,+1 - U, _ apirpi (16.71)
P=1

If we set vp, = kip,/h, then the natural generalization of (16.60) to the nonlinear system
is

F(U; j) = FL(U; j) + - Api(sgn(vpi) - vpi)hapip (16.72)
2 p=1

where o, E 1R' is some slope vector for the pth family. Note that combining (16.56) and
(16.58) gives the following form for op, in the case of a linear system:

op, = hminmod(ap,, ap.i-1)rp (16.73)

For our nonlinear method, rp is replaced by rp,, which now varies with j. Moreover, it is
only the vectors ap,rp, and ap,,_1rp,,_1 that are actually computed in Roe's method, not
the normalized r and coefficient a separately, and so the natural generalization of (16.73)
to the nonlinear case is given by

op, = hminmod(api''pi,apa-lrp.i-1) (16.74)
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where the minmod function is not applied componentwise to the vector arguments.
Of course the minmod function in (16.74) could be replaced by any other slope limiter,

again applied componentwise. The "high resolution" results presented in Figure 1.4 were
computed by this method with the superbee limiter.

In deriving this method we have ignored the entropy condition. Since we use Roe's
approximate Riemann solution, which replaces rarefaction waves by discontinuities, we
must in practice apply an entropy fix as described in Section 14.2.2. The details will not
be presented here.

The flux (16.72) with slope (16.74) gives just one high resolution method for nonlinear
systems of conservation laws. It is not the most sophisticated or best, but it is a reasonable
method and our development of it has illustrated many of the basic ideas used in many
other methods. The reader is encouraged to explore the wide variety of methods available
in the literature.
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The methods discussed so far have all been fully discrete methods, discretized in both
space and time. At times it is useful to consider the discretization process in two stages,
first discretizing only in space, leaving the problem continuous in time. This leads to
a system of ordinary differential equations in time, called the "semi-discrete equations".
We then discretize in time using any standard numerical method for systems of ordinary
differential equations. This approach of reducing a PDE to a system of ODEs, to which
we then apply an ODE solver, is often called the method of lines.

This approach is particularly useful in developing methods with order of accuracy

greater than 2, since it allows us to decouple the issues of spatial and temporal accuracy.
We can define high order approximations to the flux at a cell boundary at one instant
in time using high order interpolation in space, and then achieve high order temporal

accuracy by applying any of the wide variety of high order ODE solvers.

This approach is also useful in extending methods to two or more space dimensions,
as we will see in Chapter 18.

17.1 Evolution equations for the cell averages

let U,(t) represent a discrete approximation to the cell average of u over the jth cell at
time t, i.e.,

1
Ui(t) ui(t) __ u(x,t)dx. (17.1)

We know from the integral form of the conservation law (2.15) that the cell average ui(t)
evolves according to

u',(t) = -1 [f(u(xi+1/2, t)) - f(u(xi-1/2,1))j = H(u(',t);j). (17.2)

We now let .F(U(t); j) represent an approximation to f (u(xi+,/2, t)), obtained from the
discrete data U(t) = {U,(t)}. For example, we might solve the Riemann problem with
data U,(t) and Ui+,(t) for the intermediate state u'(U,(t),U,+,(t)) and then set

f(U(t);j) = f (u (U,(t),U,+l(t))). (17.3)

193
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Replacing the true fluxes in (17.2) by F and the cell average iii(t) by Uj(t), we obtain a

discrete system of ordinary differential equations for the Uj(t),

-h[F(U(t);j) - F(U(t);j - 1)] = x(U(t);j). (17.4)

Note that this is a coupled system of equations since each of the fluxes F depends on two
or more of the U,(t).

We can now discretize in time. For example, if we discretize (17.4) using Euler's
method with time step k, and let Ui now represent our fully-discrete approximation to
Uj(t"), then we obtain

Ui +1 = Uj + k7{(U(t); j) (17.5)

= U11- T[-F(U";j)--F(U";j- 1)],

which is in the familiar form of a conservative method. In particular, if F is given by
(17.3), then (17.5) is simply Godunov's method. More generally, however, F(U(t);j)
represents an approximation to the value of f(u(xj+1/2i1)) at one point in time, whereas
the standard numerical flux F(U; j) used before has always represented an approximation
to the average of f (u(xj+1/2i t)) over the time interval [t", t,+1]. In Codunov's method
these are the same, since u(xj+1/2, t) is constant in time in the Riemann solution.

To obtain higher order accuracy, we must make two improvements: the value F ob-
tained by piecewise constant approximations in (17.3) must be improved, and the first
order accurate Euler method must be replaced by a higher order time-stepping method.
One advantage of the method of lines approach is that the spatial and temporal accuracy
are decoupled, and can be considered separately. This is particularly useful in several
space dimensions.

One way to obtain greater spatial accuaracy is to use a piecewise linear approximation
in defining F. From the data {U1(t)} we can construct a piecewise linear function ft(x)
using slope limiters as discussed in Chapter 16. Then at the interface xj+1/2 we have
values on the left and right from the two linear approximations in each of the neighboring
cells (see Figure 17.1). Denote these values by

L
Uj+1/2 =

h
Uj + 2oj (17.6)

R
Uj+1/2 =

h
Uj+1 - 2oj+1 (17.7)

A second order accurate approximation to the flux at this cell boundary at time t is then
obtained by solving the Riemann problem with left and right states given by these two
values, and setting

F(U;7) = f (u.(Ui+1/s, U,'.112)) . (17.8)
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U"

Figure 17.1. Piecewise linear reconstruction of 11(x) used to define left and right states at
xi+I/2.

This type of semi-discrete MUSCL scheme is discussed in more detail by Osher[59].
If we use this flux in the fully discrete method (17.5), then the method is second order

accurate in space but only first order accurate in time, i.e., the global error is O(h2 + k),
since the time discretization is still Euler's method. For time-dependent problems this
improvement in spatial accuracy alone is usually not advantageous, but for steady state
problems this type of method will converge as time evolves to a second order accurate
approximation to the steady state solution, in spite of the fact that it is not second order
accurate in time along the way.

To obtain a method that is second order accurate in time as well as space, we can
discretize the ODEs (17.4) using a second order accurate ODE method. One possibility
is the 2-stage Runge-Kutta method

U,
=

U' - 2h[f(U^;J) I)] (17.9)

Ui+' = U; - l)]. (17.10)

Note that this requires solving two Riemann problems at each cell boundary in each time
step. For further discussion of time discretizations, see for example (39], or [72].

17.2 Spatial accuracy

We first analyze the spatial accuracy of the semi-discrete method (17.4), i.e., we compute
the error U,(t) - u;(t) in the exact solution of the system of ODEs. Let e,(t) represent
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the global error,
e,(t) = U(t) - u,(t). (17.11)

Then subtracting (17.2) from (17.4) gives an evolution equation for e,(t):

''(i) = 71(U(t);j) - (17.12)

If we let u(t) be the vector with components u,(t), then we can rewrite (17.12) as

e,(t) = (%(U(t);j) - x(u(t);j)) + (7i(u(t);j) - (17.13)

We define the local truncation error Lh(j,t) by

Lt,(j,t) = 7{(u(t)j) - (17.14)

for smooth functions u(x,t) satisfying the ODEs (17.2). This is consistent with previous
definitions of local truncation error: it is the difference between the discrete operator

applied to the true solution and the exact operator applied to the true solution. It can

be shown that if f(U; j) is Lipschitz continuous and pth order accurate in the sense that

Lh(j, t)I 5 Chi',

then the semi-discrete method (17.4) is pth order accurate,

Ie,(t)I = O(h°) as h -. 0.

17.3 Reconstruction by primitive functions

(17.15)

(17.16)

To obtain high spatial accuracy we need to define F in such a way that f(u(t); j) is a
good approximation to f (u(x,+t/2, t)). Recall that u(t) is the vector of exact cell averages,
and from these we want to obtain a value U,+1/2 that approximates the pointwise value
u(x,+1/2,t). One approach to this was outlined above: define U+112 and UR,/2 using
slope-limited piecewise linears and then set

U+1/2 = u*(UjL+I/2' ) I/2)

To obtain higher order accuracy we can take the same approach but define UL.'+R
via

some higher order polynomial approximation to u over the cells to the left and right of
x,+1/2.

This raises the following question: Given only the cell averages u,(t), how can we

construct a polynomial approximation to u that is accurate pointwise to high order?
A very elegant solution to this problem uses the primitive function for u(x, t). This

approach was apparently first introduced by Colella and Woodward[10] in their PPM
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method and has since been used in a variety of other methods, particularly the ENO
methods discussed below.

At a fixed time t, the primitive function w(x) is defined by

w(x) =
J

u({,t) d{. (17.17)

The lower limit xt/z is arbitrary, any fixed point could be used. Changing the lower limit
only shifts w(x) by a constant, and the property of w that we will ultimately use is that

u(x,t) = w'(x), (17.18)

which is unaffected by a constant shift. Equation (17.18) allows us to obtain pointwise
values of u if we have a good approximation to w.

Now the crucial observation is that knowing cell averages of u gives us pointwise values
of w at the particular points xi+112. Set

Wi = w(xi+1/2) = u(t;,t) di. (17.19)

This is h times the average of u over a collection of j cells, and hence

i
Wi = h(t).

Of course this only gives us pointwise values of w at the points xi+1/2, but it gives
us the exact values at these points (assuming we start with the exact cell averages ui,
as we do in computing the truncation error). If w is sufficiently smooth (i.e., if u is
sufficiently smooth), we can then approximate w more globally to arbitrary accuracy using
polynomial interpolation. In particular, to approximate w in the jth cell (xi_1/2,xi+1/21,
we can use an interpolating polynomial of degree q passing through some q + I points
Wi_,, Wi_;+1, .. , W,-;+v for some i. (The choice of i is discussed below.) If we call
this polynomial po(x), then we have

pi(x) = w(x) +O(h°+') (17.20)

for x E [xi_11z,xi+112J, provided to E C°+' (which requires u(-, t) E Cu).
Using the relation (17.18), we can obtain an approximation to u(x, t) by differentiating

pi(x). We lose one order of accuracy by differentiating the interpolating polynomial, and

so

Pi(x) = u(x, t) + 0(h5) on [xi-1/2, xi+i 2j.

We can now use this to obtain approximations to u at the left and right cell interfaces,
setting

K

L ,

Ui+t/z = P'(xi+1/z)-
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Performing a similar reconstruction on the cell [xj+i12,xj+312] gives pj+,(x) and we set

and then define 7 as in (17.8). This gives spatial accuracy of order q for sufficiently

smooth u.

17.4 ENO schemes

In the above description of the interpolation process, the value of i was left unspecified
(recall we interpolate W,_;, .. , Wi_,+9 to approximate u on [xj-112,xj+i/21) When
u(-, t) E C° in the vicinity of xj, interpolation based on any value of i between 1 and q
will give 9th order accuracy. However, for a high resolution method we must be able to
automatically cope with the possibility that the data is not smooth. Near discontinuities
we do not expect to maintain the high order of accuracy, but want to choose a stencil
of interpolation points that avoids introducing oscillations. It is well known that a high
degree polynomial interpolant can be highly oscillatory even on smooth data, and certainly
will be on nonsmooth data.

In the piecewise linear version described initially, this was accomplished by using a
slope-limiter, for example the minmod slope which compares linear interpolants based
on cells to the left and right and takes the one that is less steep. This gives a global
piecewise linear approximation that is nonoscillatory in the sense that its total variation
is no greater than that of the discrete data.

This same idea can be extended to higher order polynomials by choosing the value of
i for each j so that the interpolant through W,_;, ..., Wj_i+q has the least oscillation
over all possible choices i = 1, ..., q. This is the main idea in the ENO (essentially
nonoscillatory) methods developed by Chakravarthy, Engquist, Harten and Oshcr, and
complete details, along with several variations, can be found in their papers[28], [29], [35],
[74], [73].

One variant uses the following procedure. Start with the linear function passing
through Wj_, and Wj to define pj(')(x) (where superscripts now indicate the degree of
the polynomial). Next compute the divided difference based on (Wj_2, Wj_,, 11'j) and
the divided difference based on { Wj_,, Wj, Wj+, }. Either of these can be used to extend
pj(')(x) to a quadratic polynomial using the Newton form of the interpolating polynomial.
We define pj(2)(x) by choosing the divided difference that is smaller in magnitude.

We continue recursively in this manner, adding either the next point to the left or to
the right to our stencil depending on the magnitude of the divided difference, until we
have a polynomial of degree q based on some q + I points.
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Note that the first order divided differences of W are simply the values n

W; - M-1
h - u;,

and so divided differences of W are directly related to divided differences of the cell
averages iii. In practice we need never compute the Wi. (The zero order divided difference,
l'' itself, enters pi(x) only as the constant term which drops out when we compute po(x).)

EXERCISE 17.1. Show that the ENO method described above with q = 2 (quadratic
interpolation of W) gives a piecewise linear reconstruction of u with slopes that agree with
the minrnod formula (16.51).



18 Multidimensional Problems

Most practical problems are in two or more space dimensions. So far, we have only
considered the one-dimensional (1D) problem. To some extent the 1D methods and
theory can be applied to problems in more than one space dimension, and some of these
extensions will be briefly described in this chapter. We look at the two-dimensional (2D)
case to keep the notation simple, but the same ideas can be used in three dimensions as
well.

In two space dimensions a system of conservation laws takes the form

ui + f(u): +g(u)y = 0 (18.1)

where u = u(x, y, t) E Qt'". Typically the problem geometry is complicated - we may
want to calculate the flow over an airfoil or other body, or through a nozzle or turbine. In
this case simply defining an appropriate numerical grid on which to compute a solution
can be a difficult problem, and the proper application of the physically relevant boundary
conditions introduces additional difficulties. The computational fluid dynamics books
referenced in Chapter 1 discuss these problems in some detail. Here I will only discuss
the case in which a rectangular, or Cartesian, grid is used, meaning that the grid points
are of the form (xi,yj) as i, j range through the integers, with

x;=ih, yj=jh. (18.2)

For convenience I assume the grid spacing is the same in both coordinate directions, but
this is not essential.

For conservation laws, it is again better to consider grid cells rather than grid points,
and let uij be the cell average of u(x, y, t) over the (i,j) cell [x,_j12, x;+1/21 x [yj_I/2, yj+I/2].
Then the integral form of the conservation law takes the form

dtu,j(t) =
-h2ly,,,,f(u(xt+112,y,t))-I(u(xi-1/2,y,t))dy

1 ='+40

- h2 -,n
9(u(x,yj+1/2,t)) - 9(u(x,Y,-I/2, 1))dx. (18.3)

200
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Numerical methods based on this viewpoint (updating cell averages based on fluxes
through the boundary of the cell) are often referred to as finite volume methods.

18.1 Semi-discrete methods

One approach to solving the 2D problem is to first introduce a semi-discrete approxima-
tion, as we did above in 1D, and then discretize the resulting system of ODES. We define
pointwise fluxes F and G approximating the appropriate integrals above:

Y /]

T(U;i,j) h
Y,_,n

f(u(x:+1/2,y,t))dy

G(U;i,j) h_J ...i]f(u(x,yi+t/a,t))dx:_,/]

and introduce approximations U;,(t) to u;,(t). We then obtain the ODEs

Usi(t) = - h [.F(U; i, j) - F(U; i - l,j) +G(U; i,j) - G(U; i,j -1)1 (18.4)

as our semi-discrete method.
The simplest method of this form, a generalization of Godunov's method to 2D, is

obtained by setting ,F(U; i, j) equal to f (u'), where u' is the intermediate state obtained
in solving the one dimensional Riemann problem

ui + f(u)r = 0 (18.5)

with data U;1(t) and U,+l j(t). Similarly, G(U;i, j) is equal to g(u'), where u' is now
obtained by solving the Riemann problem

ut + g(u)Y = 0 (18.6)

with data U;)(t) and Uj j+i(t). Discretizing in time using Euler's method then gives a 2D
generalization of Godunov's method, which is first order accurate.

Higher order accuracy can be obtained by introducing slopes in the x and y directions
(with slope limiters for nonoscillatory results) in order to calculate more accurate values
for F and G. Euler's method must then be replaced by a more accurate time-stepping
method in order to obtain second order accuracy in time as well as space.

ExERCtsE 18.1. Show that the two-dimensional version of Codunov's method de-
scribed above has a stability limit no greater than

k
hmax(If'(u)I, I9(u)I) - 2, (18.7)
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by considering the linear problem

u,+U,+uy=0

with data
Uo _ f 1 i+j <0,
' 10 i+j>0.

18.2 Splitting methods

Another approach to developing numerical methods in two space dimensions is to use any
of the fully discrete one-dimensional methods developed in the preceediug chapters, and
to apply them alternately on one-dimensional problems in the x and y directions.

The possibility that this might be successful is best illustrated by considering the 2D
scalar advection equation

with initial data

The exact solution is

u, + au + buy = 0 (18.8)

u(x,Y,O) = uo(x,Y)

u(x,y,t) = uo(x - at,y - bl).

Suppose we attempt to solve this equation by instead solving a pair of 1D problems. We
first solve

u + au, = 0 (18.9)

with data

U, (X, Y,0) = uo(x, Y)

to obtain u'(x,y,t). We then use this function of x and y as initial data and solve the 1D
problem

u + buy = 0 (18.10)

with data

u"(x,Y,0) = u*(x,Y,t)

to obtain u"(x, y, t).
How well does u"(x, y, t) approximate u(x, y, t)? We easily compute that

u'(x,y,t) = uo(x - at,y)
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is the exact solution of the advection equation (18.9), and hence solving (18.10) gives

u"(x,y,t) = u"(x,y-bt,0)
= u'(x,y - bt,l)

= uo(x-at,y-bi)
u(x,y,t).

We see that u- is in fact the exact solution, in this linear scalar case.
To develop a more general theory, let S, represent the exact solution operator for the

1D equation (18.9) over time t, so that we can write

u'(., , t) = Si 0).

Similarly, let S, be the solution operator for the advection equation (18.10) and let S, be
the solution operator for the full problem (18.8). Then what we have found above is that

u(., , t) = S1uo

= Si Si uo,

S, = S; S, (18.11)

for all times 1. The solution operator for the 2D problem splits as the product of two ID
solution operators.

For the advection equation we can write the solution operator formally as

S; = e-`°a (18.12)

where a, is short for and the operator on the right hand side is defined by the power
series

The relation (18.12) follows from the Taylor series expansion of the solution u'(x,y,t) to
(18.9),

u'(x,Y,t) = u'(x,Y,O) + tau'(x,Y,O) + It2a,u'(x,Y,0) + ...

_ (1 + ta, + 2' j20,2 + . . . 1

and the fact that u; _ -au., which implies more generally that 0,'u" _ (-a)°aIu'.
Similarly,

S° = e-tba,,
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and

SI = c-II°a`+ba'1.

The relation (18.11) then follows from the product rule for exponentials.
In order to use this splitting in a numerical method, we simply replace the exact

solution operators S, and S, by numerical methods 9-(k and fk for the corresponding ID
problems over each time step of length k. This gives a numerical method of the form

U°+1 _ HkfkU". (18.13)

If Hk and Hk both represent pth order accurate methods, then the split method (18.13)
will also be pth order accurate for this scalar linear problem, since there is no splitting
error introduced.

Now consider a linear system of equations in 2D,

ul + Au. + Bus = 0, (18.14)

and define S, , S, -and SI as before, so

SI: = e-IAa,
Ss = e-IBas

SI e-IIAa,+Ba 1

For matrices, the product rule no longer holds exactly, except in the case where A and B
commute. Expansion of these operators in power series and formal multiplication of the
series shows that in general

e-Iaa,e-IAa, = e-I(Aa,+Bas) _ I t2(AB - BA)8r81, + 0(t).

If we replace the 2D solution operator by the product of ID solution operators, we intro-
duce an error which depends on the commutator AB - BA. However, this error is O(t2)
for small t, which suggests that using a splitting of this form in each time step of length
k will introduce a splitting error of magnitude 0(k2). After dividing by k this translates
into a truncation error which is O(k), leading to a method that is consistent and first
order accurate for the original 2D equation (18.14).

Strang[81] pointed out that the accuracy of splitting methods can be increased to
second order if we approximate the 2D solution operator by a slightly different product
of I D solution operators. The Strang splitting has the form

e-;kAa,e-keaye-;kaa, = e k(Aa,+Bas) +O(k3). (18.15)

In a numerical method based on this splitting, the exact ID solution operators r.- kAa,

and c-kBa are replaced by 11) numerical methods, giving a method with the form

ll"+1 = Hk12HkH1'11U". (18.16)
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If each of the methods 71' and NY is second order accurate, then so is the split method
(18.16).

EXERCISE 18.2. Compute the local truncation error for the method (18.16) in terms
of the truncation errors of the ID methods and the splitting error.

At first glance the Strang split method (18.16) seems to be more expensive to imple-
ment than the first order method (18.13), since three applications of 1D operators are
required in each time step rather than two. In practice, however, several time steps are
taken together and the Nk1, operators can be combined to yield

U" = xk/2(7ik71k)"-'7 tk/2U°.

In this form the expense of this method is little more than that of the first order method

U. = (7Nk)"U°.
It is only at the beginning and end of the computation (and at any intermediate times
where output is desired) that the half step operators 7{k/2 must be employed.

For a nonlinear system of conservation laws, a fractional step method still takes the
form (18.16), where Nk and fk now represent numerical methods for the corresponding 1 D
conservation laws (18.5) and (18.6). If each of these methods is second order accurate, then
the split method (18.16) remains second order accurate on smooth solutions of nonlinear
problems. This can be shown by appropriate expansions in Taylor series[48].

For nonsmooth solutions, some results for scalar conservation laws have been obtained
by Crandall and Majda[15]. In this case we let S, , S, and S, represent the exact solution
operators yielding the (unique) entropy-satisfying weak solutions. Then the ID solution
operators can be combined using either the Strang splitting or the simpler first order
splitting to yield an approximation to the 2D solution operator which converges as k -+ 0.

THEOREM 18.1 (CRANDALL AND MAJDA[15]). If the exact solution operator is
used in each step of the fractional step procedure, then the method converges to the weak
solution of the 2D scalar conservation law, i.e.,

IISTUO - (SSSf]" UOII1 - 0

and

IISTUO - [s,2Sksk121"u.11
r

0

ask-.0 andn -'oo with nk= T.
This shows that there is hope that numerical methods based on these splittings will

also converge to the solution of the 2D problem. If we use monotone methods for each
1 D problem, then this can in fact be shown:

THEOREM 18.2 (CRANDALL AND MAJDA[15)). If the exact solution operators S', Sy
in the above theorem are replaced by monotone methods 7{y, Hy for the 1D conservation
laws, then the results still hold.
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18.3 TVD Methods

Recall that monotone methods are at most first order accurate. We would like to prove
convergence of methods which have a higher order of accuracy. In one dimension we found
it convenient to consider the total variation of the function. In two dimensions the true
solution to a scalar conservation law is still total variation diminishing, where the total
variation is now defined as in (15.6) but with t replaced by y:

TV(u) = limsup 1 :J I Iu(x+e,y) - u(x,y)I dxdy
i-.0 E o0 00

+ limsup -J f Iu(x,y+c)-u(x,y)Idxdy. (18.17)
,-.0 a o0 00

We can define the total variation of a discrete grid function analogously by

TV(U) = h E IIU++id-U,,I+lU,.i+1-U.,I]. (18.18)

If the discrete method is TVD, then we again have all of our approximations lying in
some compact set and we obtain a convergence result analogous to Theorem 15.2. In

one dimension, it is possible to develop second order accurate TVD methods and so this
is a very useful concept. Unfortunately, in two dimensions it turns out that this is not
possible.

THEOREM 18.3 (GOODMAN AND LEVEQUE[25]). Except in certain trivial cases,
any method that is TVD in two space dimensions is at most first order accurate.

In spite of this negative result, numerical methods obtained using high resolution ID
methods combined with the Strang splitting typically work very well in practice. They
remain second order accurate on smooth solutions and usually give nonoscillatory and
sharp solutions in spite of the fact that they are not technically TVD methods. As in the
case of systems of equations in one space dimension, the mathematical theory is lagging
behind the state-of-the-art computational methods.

18.4 Multidimensional approaches

The use of 1D methods via one of the approaches discussed above has various advantages:
the methods are relatively easy to develop in two or three dimensions, and to some extent
the 1D theory carries over. However, there are obvious disadvantages with this approach
as well. Two or three dimensional effects do play a strong role in the behavior of the
solution locally, and any approach that only solves 1D Riemann problems in the coordinate
directions is clearly not using all the available information. We are also introducing a
directional bias in the coordinate directions, and wave propagation is typically anisotropic
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as a result. Shock waves at a large angle to the coordinate directions will be less well
resolved than shocks aligned with the grid. In practical calculations this is sometimes
avoided by choosing grids that fit the problem well, so the shock wave is dearly aligned
with the grid. This is easiest to accomplish for steady state problems, although some
adaptive methods for time dependent problems also manage this.

In spite of these difficulties, many high quality computer codes have been developed
that are based to a large extent on the solution of 1D Riemann problems and relatively
straightforward extensions of the ideas developed in the previous chapters. It should
be noted, however, that many of these methods do take into account considerably more
information about the 2D structure than the above brief description indicates (see, for
example, [8] or [101]). Methods are evolving in the direction of using even more infor-
mation about the multidimensional behavior. One interesting possibility is to determine
the direction of primary wave propagation, based on the data, rather than simply using
the coordinate directions, and to employ wave propagation in other directions as well

(e.g.[181, [19], [49], [691, 162]).
The development of outstanding fully multidimensional methods (and the required

mathematical theory!) is one of the exciting challenges for the future in this field.
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