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Shear Flow Analysis

shear flows are non-normal

Non-self adjoint operators;
Eigenfunctions are not ortogonal;

(non-Hermitian system)

Modal analysis fall
(eigenvalue+eigenfunction)

- exponential behavior
- algebraic behavior
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Shear Flow Analysis

Rigorous consideration of non-Hermitian systems

- pseudospectral,
Threfethen et al. 1993

- non-modal analysis;

uniform shear: Kelvin modes,

differential rotation — local frame: Goldreich Lynden-Bell 1965,
kinematically complex shear: Mahajan & Rogava 1999,
nonuniform shear: Volponi & Yoshida 2002
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Shear Flow Analysis

shearing sheet transformation,;
spatial iInnomogeneity -> temporal inhomgeneity

Spatial Fourier transform;
Dynamics of SFH in time;

k=k(t)
Linear drift of harmonics; (effect of shearing background)

= a(t)
modes with variable frequencies
modified initial value problem
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Shear Flow Analysis

transient growth (algebraic behavior, flow stability)

Two linear channels of energy exchange:

background flow <> perturbations
(WKB, adiabatic, non-adiabatic)

perturbation «-> perturbations
(different modes; adiabatic,non-adiabatic)

emphasis on: Linear Coupling
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Linear Mode coupling

Temporal dynamics of SFH

Linear modes are coupled
Velocity shear originates coupling terms in linear equations

two types of coupling:

- resonant
(wave-wave)

- non-resonant
(vortex-wave, wave-wave, spectrally unstable modes)
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Linear Mode coupling: Resonant mode conversion

Resonant wave interactions
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Linear Mode coupling: Resonant mode conversion

Mathematical formalism:;

dQ@I (t) ) -
5 T (1) = —A®(1),
5 TWEOP(t) = A®L(2),

Resonance conditions:

1. the system should have a the degeneracy region, where

w0 - 30 < |

b

2. the degeneracy region should be crossed slowly:

AN
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Linear Mode coupling: Resonant mode conversion

Horizontal shear flow in the uniform
magnetic field along the streamlines:

77T V,=(Ay,0,0) , B,=(B,,0,0)

Unbounded 3D ideal compressible MHD shear flow

M Fast magnetosonic and Alfven waves

OF & W)? (5<1, k,/k << 1)
M Alfven and slow magnetosonic waves

2 =~ 0f (5>1)
M Fast, slow magnetosonic and Alfven waves

OF & 0p° & 0P (=1, k,/k, <<1)
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Transformation of the Alfven into
the fast magnetosonic wave

k,(0)/k, =2,
kK, = 0.25,
AI(V, k) = 0.025

Triple Resonance
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The case of double transformation: Alfvenic
perturbations generates fast and slow
magnetosonic waves simultaneously.

B= 1, k (0)/k, = 5, k,/k, = 0.05,
A/(Ck) = 0.1
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Linear Mode coupling: Resonant mode conversion

- More complex magnetic configurations;

- Stratification;

- Rotation;

- analytic form of the transformation coefficients;
(asymptotic cases)

Direct resonance:
Energy exchange between the linear modes

Resonance conditions:
increase of the shear parameter may decrease of the transformation rate
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Linear Mode coupling: non-resonant mode conversion

Coupling formalism

2D unbounded compressible parallel shear flow: V = (Ay,0)

zero shear limit: (Vortex + Wave)

d? -
ﬁ@,g,w)(t) + Cﬁkzﬂigw) (t) =0

kzvgf) =k, 1.

velocity shear induced coupling: (Vortex + Wave)

2 ‘ ‘
@“U;r(t) HE Cikg (t)v;lf(t) — kat!(t)l‘

vortex is able to excite wave: non-resonant interaction
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Linear Mode coupling: non-resonant mode conversion
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Linear Mode coupling: non-resonant mode conversion

HD Keplerian disks

Interplay of the transient growth and mode conversion

HD turbulence transition: bypass model
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Linear Mode coupling: non-resonant mode conversion

complex systems

vortex generation: baroclinic production;
Differentially rotating disk: Entropy gradient S=5(r)

Multi mode conversion

Coupling scheme:
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Linear Mode coupling: non-resonant mode conversion

Linear interaction of spectrally unstable modes and
waves: wave excitation
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The ratio of the vibrational to the thermal energy of the SFH of
perturbations (Eyp/FEeon) vs time is shown at different velocity shear rates.
Here K, = K. =10, K,(0) = 200 and 0 = —0.055 (v = 0.95). R =0.2,1,2,5
on the a, b, ¢ and d graphs respectively. The time interval is chosen to show
symmetric values of K, (7): |K,(0)] = |Ky(277)] and K, (7%) = 0, where
7" =100, 20, 10,4 on the a, b, ¢ and d graphs, respectively.
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Linear Mode coupling: non-resonant mode conversion

Excitation asymmetry: Vortex -> wave
PV conservation prevents generation of the vortices

Excitation rate growth with shear parameter

Wave excitation is quite abrupt
waves are excited when ky(t) =0

Excited waves are fed by the mean shear flow energy
Generated waves can have more energy then the source vortex: vortical
perturbations only trigger the wave excitation while the energy is supported by the
mean shear flow

Generated waves are spatially correlated with sources
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DNS results

- Linear dynamics of vortices in plane shear flows;
mode conversion;

- Dynamics of vortices in Keplerian disks:
global HD simulations
Riemann, Godunov DNS

Linear amplitudes;
Nonlinear consequences;

Transition to turbulence - bypass model
HD nonlinearities| pseudospectral code;
transverse cascade
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DNS results

Localized vortex
packet with linear
geometry

Enhencement of the
vortex packet
amplitude is followed
by the wave excitation

Excited waves
propagate in the
opposite directions
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DNS results

Ring-type vortex

A.G. Tevzadze, Linear coupling of modes in shear flows | CNES2007



DNS results

Keperian disk flow:

Nonlinear self-sustained vortices
mode conversion

Density perturkation,

development of shock waves

A.G. Tevzadze, Linear coupling of modes in shear flows | CNES2007



1.06

1.04F
w.ozf
w.oof
O.98f
o.%f
o.94f

0.92L

DNS results

Keperian disk flow:

Potential Vorticity (t=10)
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DNS results

Nonlinear interactions in shear flows: transverse cascade
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DNS results

- Plane shear flows

vortices with different configuration generate waves linearly

- Keplerian Disk flows

linear wave excitation
nonlinear excitation
Planet formation models
Shock development

- Nonlinear interaction of modes in shear

flows

transverse cascade — bypass model
L-H transition in tokamaks
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Summary

multiple brunches in linear spectrum — shear flow couples all of them
(some restrictions due to the nonlinear invariants, e.g. conservation of PV)

modes can fall in resonanse (subject to resonance conditions)

modes interact nonadiabatically at higher shear rates
(trigger excitation, energy comes from background)

new energy channels between intrinsically different modes
(vortices, waves, unstable branches)

mode coupling is efficient even at nonlinear amplitudes
number of applications can play a central role and define the flow

structure/stability itself
(vortex stability, HD turbulence, increased energy supply)
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