
Nonlinear Dynamics of Vortices in 2D Keplerian Disks:

High Resolution Numerical Simulations

> Vortices in Protoplanetary Disks > **Problem Parameters** > Numerical Setup > Nonlinear Adjustment threshold, stability, adjustment time-scales resolution study, structure/spatial-scales, Pot. vorticity and density adjustments Generation of Waves – Nonlin. Development > Summary **Open Issues**

Vortices in Protoplanetary Disks

Protoplanetary Disk: pressure supported { gas + dust + particles } Planet formation:

- Early stages need for planetesimals
- Keplerian differential rotation strong shear flow

Long-lived vortices can promote the formation of planetesimals (von Weizacker 1944, Adams & Watkins 1995)

Importance of the vorticity: Nonlinear dynamics

Vortices in Protoplanetary Disks

Previous contributions:

Bracco et al. 1998,1999(incompress. Dust trapping)Godon & Livio 1999a,b,c(2D compress. Global, 128x128)Chavanis 2000(dust capturing)Davis 2000,2002(2D compress. Global,125x300)Johansen et al. 2004(dust in anticylones, local)Barranco & Marcus 2005(3D spectral, local)Bodo et al. 2005(2D global. Linear waves)

High resolution global compressible <u>2D</u> Numerical simulations of the <u>small scale</u> nonlinear vortex structures

Vortices in Protoplanetary Disks

- Stability of anticyclonic vortices
 - **Detailed Quantitative Description**
- Development Time
- Developed Vortex Size
- **Developed Vortex Structure**
- **Wave Generation Aspects**
- **Solution** Numerical Requirements

Problem Parameters:

time-scales

 $\omega_R^2 = rac{3}{4} rac{\Omega_0}{r} rac{k_y}{k_\pi^2 + k_\pi^2},$

 $\omega_{DS}^2 = \Omega_0^2 + c_s^2 (k_x^2 + k_u^2),$

Linear Perturbations:

 $T(SD) \sim 1/\omega_{SD}$ $T(\text{shear}) \sim 4/3 \Omega_0^{-1}$

 $T(R)^* \sim 1/\omega_R$

Vortex dynamics: $T(R)^* >> T(shear) > T(SD)$

Monlinear Perturbations:

 $T(nonlin) \sim (nonlinear adjustment / num. simulations)$

Vortex dynamics

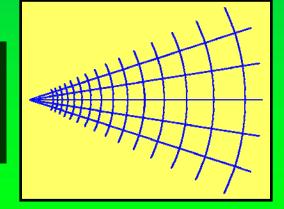
 $T(R)^{**} >> T(nonlin.) > T(shear,SD)$

 $T(R)^{**} > T(R)^{*}$

Problem Parameters:

- H disk thickness
- r disk radius at vortex
- L vortex length-scale
- L_R Rossby length-scale

spatial-scales


Thin disk model:	H/r << 1			
2D Perturbations:	L > H			
Vortex in disk:	$L < L_R$			

L > H: $L > C_{S}/\Omega_{0}$ L < L_{R} : $\{T_{non}/2\pi\} (\Omega_{0} L/r)^{1/2} << 1$ L_{R} >H: $C_{S} < r / (T_{non}/2\pi)^{2} = r / N^{2};$

Numerical Setup

PLUTO Polar grid – radially stretched Angular momentum conservation form; FARGO Outflow boundary conditions radially

Resolution:
$$(N_R \times N_{\Phi})$$

 $N_R = f(N_{\Phi}, R_{in} R_{out})$

Numerical Setup

	<u>endian</u>	<u>Polar</u> <u>Rho</u> jpg global/local	<u>rho</u> jpg 2avi	<u>Total #</u> <u>of</u> <u>revolut.</u>	<u>Vort.</u>	Dom.	Notes	
E:\disc\vs10-1								
eps01a01R1500x550	ok	+/	0	12		2π		
eps02a01R1500x550	ok	+/	0	12		2π		
eps03a01R1500x550	ok	+/	0	12		2π		
eps05a01R1500x550	ok	+/	0	23		2π		
eps08a01R1500x550	ok	+/	0	12		2π		
E:\disc\vs10-2								
eps01a01r1500x550								
eps01a01r2000x733	swap			10		2π		
eps01a01r4000x1466	swap			7?		2π		
eps1a01r4000x1466	swap			-				
eps02a01r2000x733	ok	+/	0	20		2π		
eps03a01r1000x366	ok	+/	0	20		2π		
eps03a01r2000x733	swap	+/	0	19		2π		
eps03a01r4000x1466	swap	+/		19		2π		
eps05a01r4000x1466	swap	+/		15		2π		
eps022a01r4000x1466	ok			20/1		$\pi/2$		
eps025a01r4000x1466	ok	+/	0	20/1		$\pi/2$		
eps028a01r4000x1466	ok	+/	0	20/1		π/2		
eps05a001r2000x733	ok	+/		20/1		2π	Resol:	00
eps05a005r2000x733	ok	+/		20/1		2π		
eps05a005r2000x733_s	ok	+/		3/8		2π		
eps05a01r2000x733	ok	+/		80/1		2π		
eps05a02r2000x733	ok	+/		20/1		2π		
eps05a001r4000x1466	ok	/+		17/1		2π	Resol:	000
eps05a005r8000x1559	ok	/+		10/1		2π		
eps05a01r4000x1466				50/1		2π		
eps01a01r4000x1466				20/1		2π		

Initial Conditions

$$v'_{x}(x, y, 0) = \epsilon_{r} \frac{y - y_{0}}{b} \exp\left[-\frac{(x - x_{0})^{2}}{a^{2}} - \frac{(y - y_{0})^{2}}{b^{2}}\right]$$
$$v'_{y}(x, y, 0) = -\epsilon_{r} \frac{x - x_{0}}{a} \exp\left[-\frac{(x - x_{0})^{2}}{a^{2}} - \frac{(y - y_{0})^{2}}{b^{2}}\right]$$
$$\rho'(x, y, 0) = 0$$

Circular vortex: $a=b$
Elliptic vortex: $a/b = q$ (aspect ratio)

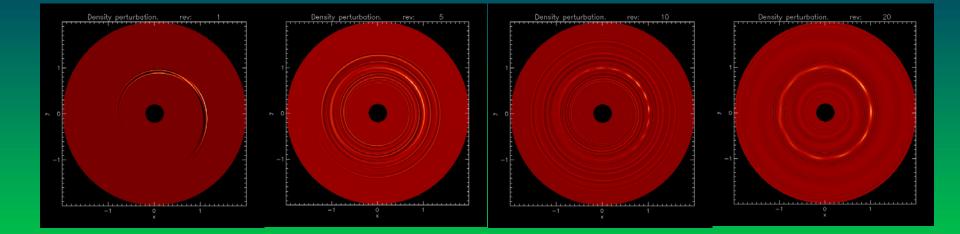
Nonlinear Adjustment

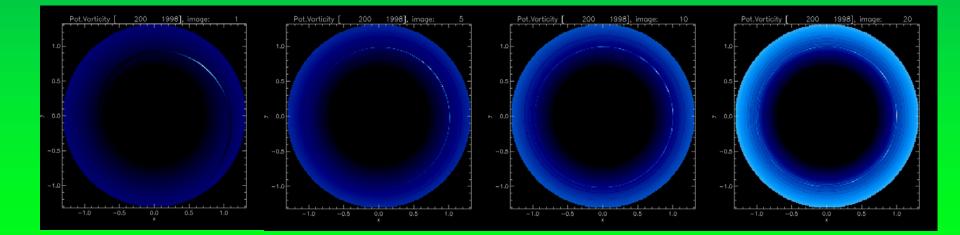
Transition from the initial unbalanced to the final nonlinear self-sustained configuration

✓ Initial Imbalance (amount of nonlinearity, ϵ)

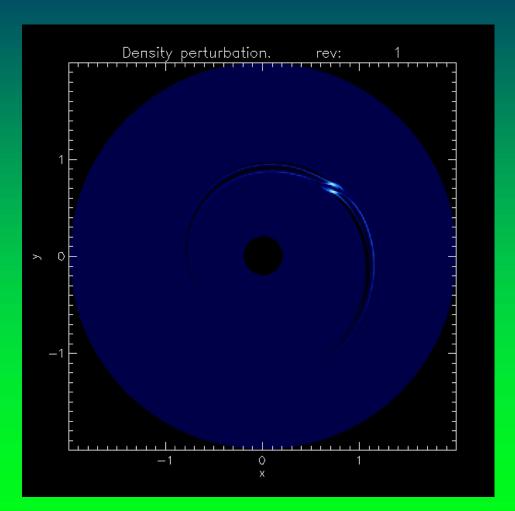
✓ Spatial Scale (initial vortex size, *a*)

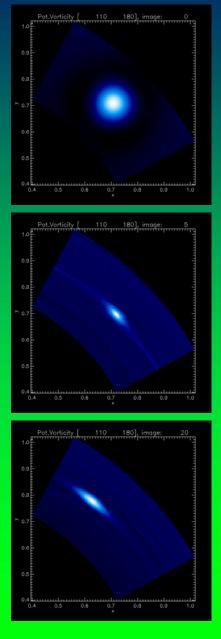
✓ Adjustment time (Resolution, *Cs*)

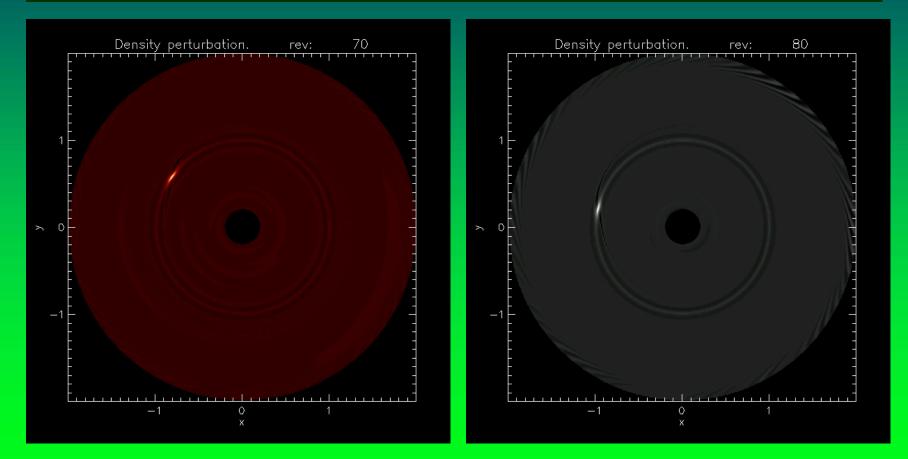

long-lived self-sustained anticyclonic vortex nonlinear balance configuration

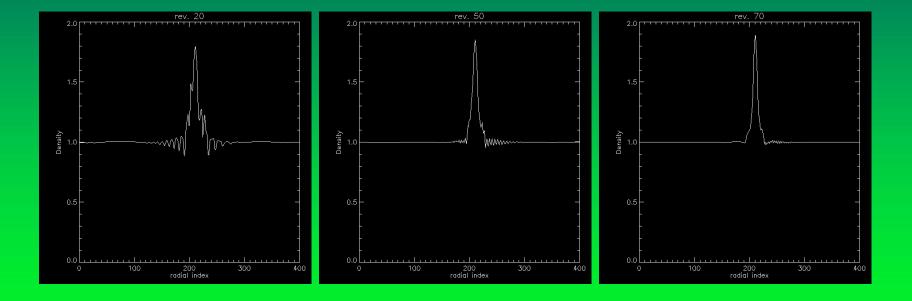

Threshold Value

Amplitude of initial vortex - two nonlinear thresholds:


- **1. Linear case:** $\varepsilon < 0.1$
- 2. Weakly nonlinear case, not sufficient for direct adjustment $0.1 < \varepsilon < 0.25$
- 3. Strongly nonlinear case, direct adjustment to single vortex $0.25 < \varepsilon$


eps = 0.2 a = 0.1 res: (2000x733)


eps = 0.5 a = 0.1 res: (2000x733)


Vortex Stability

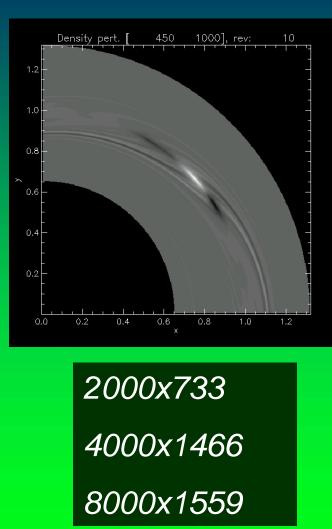
ɛ=0.5 *a*=0.1 res: (2000x733)

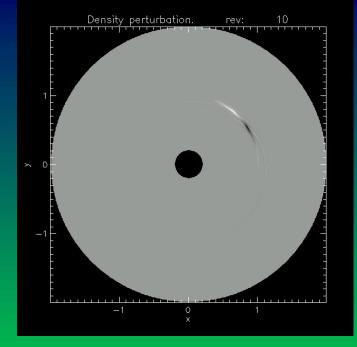
Vortex Stability

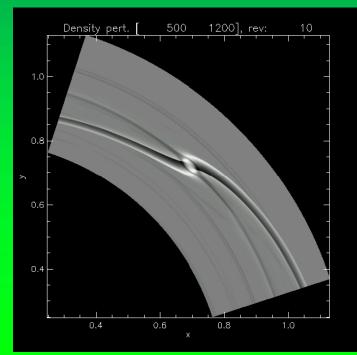
ɛ=0.5 *a*=0.1 res: (2000x733)

Adjustment Time

Depends on the initial imbalance:

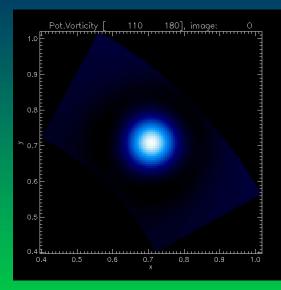

- *a=0.05* 3 revolutions
- *a=0.1* 4 revolutions

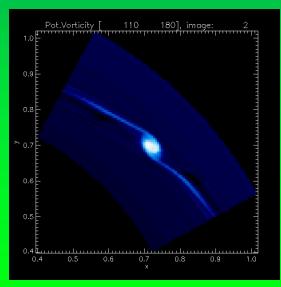

a=0.2 6 revolutions

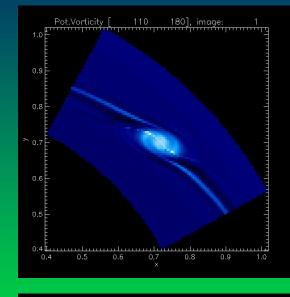

Does not depends on the wave speed

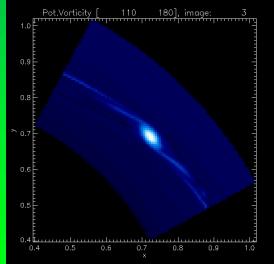
 $Cs = 10^{-1}, 10^{-2}$

Resolution Study

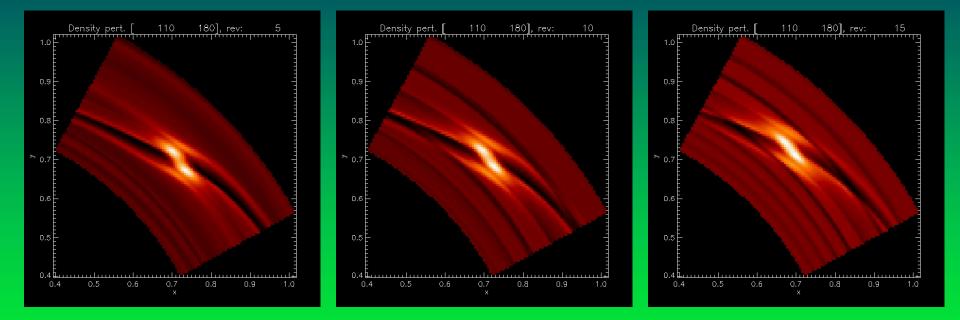


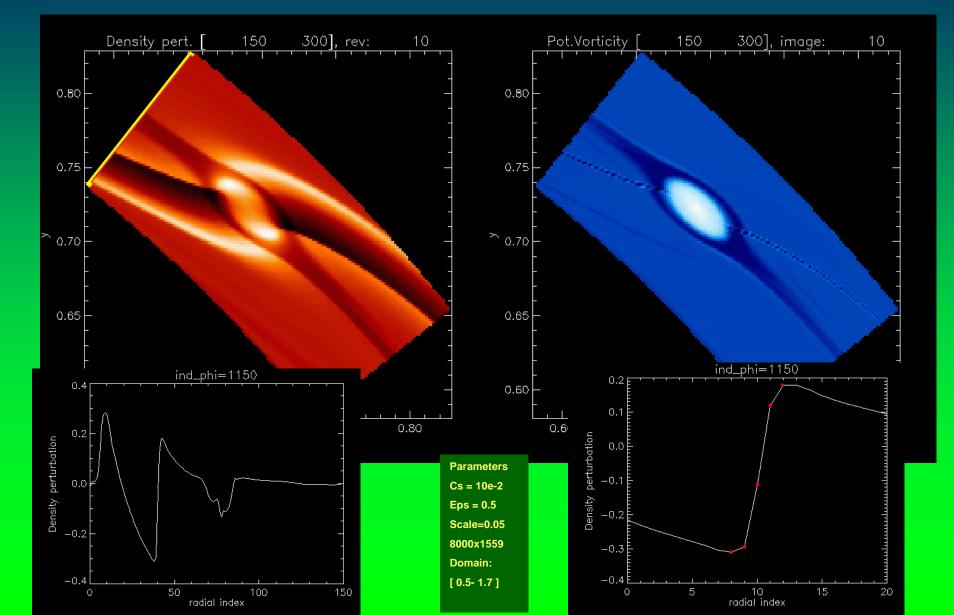


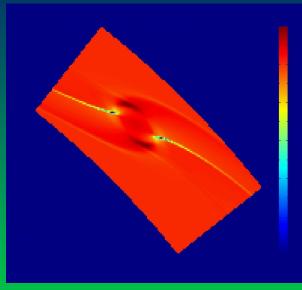


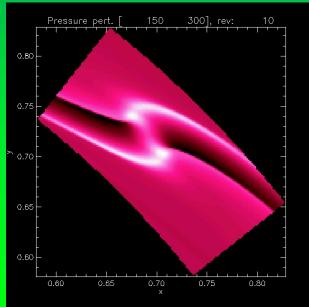

Potential vorticity gradient is steepening, decreasing in size. Size of the final vortex: $Cs = 10^{-2}$ A ~ 0.02 *a* > 0.02 Double core vortex structure: Adjustment of the potential vorticity (4) (12) Adjustment of the mass Different adjustment times scales?

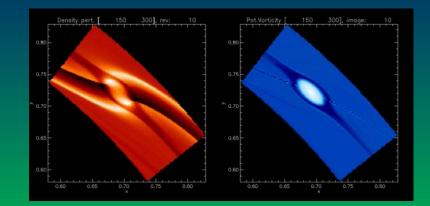
Adjustment of Potential Vorticity

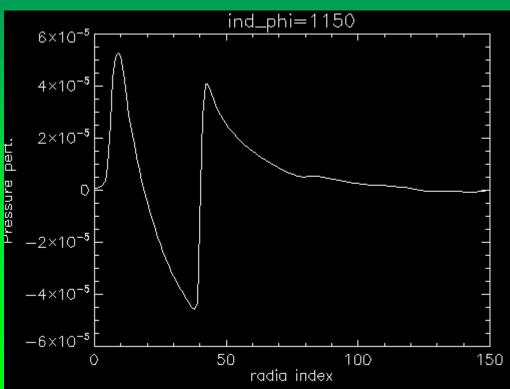





Double Core Vortex




Wave Generation and Development: SHOCKS?



Wave Generation and Development: SHOCKS?

Summary

Stability

Long lived anticyclonic vortices: stability 80+ revolutions Initial amplitude threshold values: 0.1,0.25

Nonlinear Adjustment

Depends on the initial scale, not on the SD wave speed

Adjustment time: Pot. Vort. – 4 revolutions (steepening) Density – 15 revolutions (double core)

Size of the final vortex decreases to certain value if initial vortex is oversized (0.02)

Waves evolve into shocks (?)

Requirements on the minimal resolution for global simulations

Open Issues

- Shocks? Do they dissipate faster then vortices?
- Momentum transport by waves/shocks
- Azimuthal diffusion dense ring. Numerical?
- Slow drifting of the vortex. Numerical? (v2=1.003, rev:50)