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Abstract

In this paper we report on the nonresonant conversion of convectively
unstable linear gravity modes into acoustic oscillation modes in shear
flows. The convectively unstable linear gravity modes can excite acoustic
modes with similar wave-numbers. The frequencies of the excited oscil-
lations may be qualitatively higher than the temporal variation scales of
the source flow, while the frequency spectra of the generated oscillations
should be intrinsically correlated to the velocity field of the source flow.
We anticipate that this nonresonant phenomenon can significantly con-
tribute to the production of sound waves in the solar convection zone.

INTRODUCTION

The excitation and propagation of waves are important for understanding the
dynamics of the sun and stars. It is believed that most of the solar mechanical
energy is accumulated in the turbulent motions in its convection zone. In the
convection zone the gravitational stratification drives the convective instability
providing the dynamical activity of this relatively thin region. The dynamics
of the solar convection is studied to explain many observational features of the
Sun. Notably, it is thought that the solar acoustic oscillations are excited by
the turbulence in the convection zone [1-5].

Lighthill’s ideas of aerodynamic sound generation form the basis of the the-
oretical investigation of the wave excitation in a hydrodynamic medium [6,7].
This theory of wave excitation by a free turbulence has been generalized for
stratified fluids by Stein [8]. From a physical point of view, Lighthill’s theory
of wave generation employs the concept of stochastic excitation of oscillations
(waves). In Lighthill’s theory perturbations are described by an inhomogeneous
wave equation, with linear terms forming the oscillatory part and the inhomo-
geneous terms standing for the source function. The source terms, which may
be classified by their multipole order, are stochastically created by the turbulent
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perturbations. The amplifying effect of a sheared mean flow on the fluctuations
of the Reynolds stress (nonlinear source term) and thus on the wave production
has been noted by Lighthill [7]. However, this effect has not received further
attention within the context of stochastic excitation.

Significant advances in the investigation of the dynamics of flows with veloc-
ity shear have been achieved together with the disclosure of specific features of
shear flow phenomena [9,10]. Operators arising in the mathematical formalism
of the canonical modal analysis in the study of the linear dynamics of shear flows
are not self-adjoint. Consequently eigenmode interference introduces principal
complications. The nonmodal approach has proved to be an alternative success-
ful route for exploring the dynamics of shear flows. This approach employs the
study of temporal evolution of the spatial Fourier harmonics of perturbations.

Impressive progress has been made by use of the nonmodal analysis (see
e.g., [11-16]). This approach has led to the discovery of new channels of energy
exchange between different modes in shear flows. Resonant phenomena of wave
transformations have been studied in [17-23]. The nonresonant phenomenon of
the conversion of vortices into acoustic waves has been described in [24]. The
same mechanism is found to operate for magnetosonic [25] as well as for plasma
Langmuir oscillations [21].

In this report we introduce a new dynamical source of acoustic waves in
unstably stratified shear flows. Namely, the linear nonresonant conversion of
convective into acoustic wave modes in a stratified shear flows. Convectively
unstable exponentially growing buoyancy perturbations generate acoustic wave
oscillations in presence of a sheared mean flow. We identify this linear conversion
of modes in shear flows as a new excitation mechanism of the solar oscillations
and waves. It differs in principle from the stochastic excitation mechanism and
should significantly contribute to the process of acoustic wave generation in the
solar convection zone.

Physical approach

The equations governing the dynamics of a compressible stratified flow are:

[∂t + (V∇)] ρ + ρ(∇V) = 0, (1.a)

[∂t + (V∇)]V = −∇P/ρ + g, (1.b)

[∂t + (V∇)] P = (γP/ρ) [∂t + (V∇)] ρ. (1.c)

We consider the hydrodynamic situation where a horizontal shear flow V0 =
(Ay, 0, 0) occurs in a vertically stratified medium g = (0, 0,−g). For simplicity
we assume that A = const and g = const. This yields the stratified equilibrium
state:

P0(z)/P0(0) = ρ0(z)/ρ0(0) = exp(−zkH), (2)
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where kH ≡ γg/c2
s and c2

s ≡ γP0/ρ0. We introduce the linear perturbations in
the following way:

V = V0 + V′ρ0(0)/ρ0(z), P = P0 + P ′, ρ = ρ0 + ρ′. (3)

Here the velocity perturbations are normalized to exclude the exponential height
dependence due to the vertical stratification of the background flow. We use the
Cowling approximation [26] and neglect the perturbations of the gravitational
acceleration. Following the standard method of nonmodal analysis (see [27]
for a rigorous mathematical interpretation) we introduce the spatial Fourier
harmonics (SFH) of the perturbations with time dependent phases:

Ψ(r, t) = ψ(k(t), t) exp(ikxx + iky(t)y + ik̃zz), (4.a)

ky(t) = ky(0)−Akxt, (4.b)

where k̃z ≡ kz + ikH/2. For compactness of notation we introduce the gener-
alized vector of perturbations and their SFHs as follows: Ψ ≡ (V′, p′, ρ′) and
ψ ≡ (u, p, ρ). To avoid complex coefficients in the dynamical equations, we con-
struct the normalized entropy and vertical velocity perturbation SFHs in the
following way:

s ≡ (ic2
sk̃
∗
z/g − 1)(p− c2

sρ)/(γ − 1), (5.a)

v ≡ (c2
sk̃
∗
z + ig)uz, (5.b)

where k̃∗z = kz−ikH/2. From Eqs. (1-5) we obtain, by the use of straightforward
manipulations, the following set of differential equations that govern the SFH
of the linear perturbations in stratified shear flow:

.
p(t) = c2

s(kxux + ky(t)uy) + v, (6.a)
.
ux(t) = −Auy − kxp, (6.b)

.
uy(t) = −ky(t)p, (6.c)

.
v(t) = (N2

B − c2
sk̄

2
z)p−N2

Bs, (6.d)
.
s(t) = v. (6.e)

N2
B is the square of the frequency of the Brunt-Väisälä: N2

B ≡ gkH(γ − 1)/γ

and k̄2
z = |k̃z|2 = k2

z + k2
H/4. In an unstably stratified flow negative buoyancy

(N2
B < 0) requires that the adiabatic index γ < 1. Such an effective value may

be assigned to this parameter under a certain thermodynamic approach [28].
However, in Eqs (6.a-e) we retain only N2

B and argue that these equations are
more general than the underling γ prescription.

Further we note that vorticity is conserved in the wave-number space: I =
kxuy − ky(t)ux − (A/c2

s)(p − s). The spectral energy of the perturbations can
be defined as follows:

E = ρ0/(2c2
s) (EK + EP + ET) , (7.a)
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EK = c2
s(u

2
x + u2

y) + v2/(c2
sk̄

2
z −N2

B), (7.b)

EP = p2, ET = N2
Bs2/(c2

sk̄
2
z −N2

B). (7.c, d)

where EK, EP and ET correspond to the kinetic, elastic and thermobaric en-
ergies of the perturbations, respectively. Formally the perturbation energy is
conserved in the shearless limit:

.
E = Ac2

suxuy. The instability of the convective
eddies corresponds to a negative value of the thermobaric energy.

Linear modes in the shearless limit

The linear modes may be classified explicitly in the shearless limit (A = 0). In
this case the full Fourier expansion of the linear perturbations Ψ(r, t) ∝ ψ̃(k, ω)
yields the dispersion equation:

ω(ω4 − c2
sk

2ω2 + N2
Bc2

sk
2
⊥) = 0, (8)

where k2
⊥ ≡ k2

x + k2
y and k2 = k2

⊥ + k̄2
z . The solutions of Eq. (8) describe the

stability and characteristic temporal variation scales of the existing modes:

ωv = 0, (9.a)

ω2
s,c =

1
2
c2
sk

2

{
1±

(
1− 4N2

Bk2
⊥

c2
sk̄

4

)1/2
}

, (9.b)

where the subscripts v, s, c define the frequencies of the vortex, acoustic and
convective modes, respectively. In an unstably stratified flow, i. e., when N2

B <
0, iωc defines the growth rate of the buoyancy perturbations.

Obviously the I = constant law demonstrates the existence of the stationary
(ω = 0) vortex mode in the linear spectum. The conserved vorticity I may be
considered as the vortex mode measure. The physical eigenfunctions of the
acoustic Φs(t) and convective Φc(t) modes may be rigorously defined in this
limit:

Φs(t) ≡ p(t) + N2
B

Ω2
s − ω2

s

Ω4
c

(
s(t)− k̄2

z

k2
p(t)

)
(10.a)

Φc(t) ≡ s(t)− k̄2
z

k2
p(t)− Ω2

c − ω2
c

N2
B

p(t) (10.b)

where Ω2
s ≡ c2

sk
2 and Ω2

c ≡ N2
Bk2
⊥/k2. Hence the equations governing the dy-

namics of the perturbations of the different modes may be decoupled as follows:
..
Φs(t) + ω2

sΦs(t) = 0, (11.a)
..
Φc(t) + ω2

cΦc(t) = 0. (11.b)

Starting from this simple situation we study the velocity shear effects on the
perturbation modes.
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Effects of a sheared flow

To study the effects of the velocity shear on the linear modes we introduce
the small-scale approximation: k2

z À k2
H . This approximation strongly simpli-

fies the mathematical formulation and is justified for the following two reasons.
Firstly, our analysis needs constant vertical gravity, an assumption that may be
adopted for perturbations with vertical height scales shorter than the stratifi-
cation scale. Secondly, this approximation is necessary for our assumption of a
constant linear shear of the flow velocity, especially in the turbulent flows. Us-
ing Eq. (7) this approximation may be represented by the following condition:
c2
sk

2
z À N2

B. In terms of the frequencies it yields (Ω2
s − ω2

s) ≈ (Ω2
c − ω2

c ) ≈ 0,
which strongly simplifies the characteristic physical quantities of the perturba-
tion modes: Φs(t) ≈ p(t) and Φc(t) ≈ (s(t) − k̄2

zp(t)/k2(t)). To analyze the
dynamics of acoustic oscillations in the shear flow we rewrite Eqs. (6.a-e) in the
form of coupled second order differential equations for the variables p(t) and
y(t): ..

p (t) + f(t)
.
p(t) + Ω2

1(t)p(t) = λ1(t)
.
y(t) + λ2(t)y(t), (12.a)

..
y (t) + Ω2

2(t)y(t) = 0, (12.b)

where the convection variable y(t) is introduced as follows:

y(t) ≡ k⊥(t)
k(t)

(
s(t)− k̄2

z

k2(t)
p(t)

)
(13)

and

Ω2
1(t) = c2

sk
2(t) + 2A2 k2

x

k2(t)
− 4A2

k2
xk2

y(t)k̄2
z

k2
⊥(t)k4(t)

, (14.a)

Ω2
2(t) = N2

B

k2
⊥(t)

k2(t)
+ 2A2 k2

xk2
z

k4
⊥(t)k4(t)

[
3k2
⊥(t)k2(t)− 4k2

y(t)k2
⊥(t)− k2

y(t)k̄2
z

]
,

(14.b)

f(t) = 2A
kxky(t)
k2(t)

, (14.c)

λ1(t) = −2A
kxky(t)

k⊥(t)k(t)
, (14.d)

λ2(t) = −2A2 k2
xk⊥(t)
k3(t)

(
1− k2

y(t)k̄2
z

k4
⊥(t)

)
. (14.e)

In deriving Eqs. (12.a-b) we have used the following two simplifications. Firstly,
we have retained only the terms describing the effect of the buoyancy pertur-
bations on the acoustic waves, and we have neglected the effect of the acoustic
pressure perturbations on the evolution (exponential amplification) of the buoy-
ancy perturbations in the right hand side (rhs) of Eq. (12.b). Secondly, we have
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neglected the source terms in the rhs of the two dynamical equations that de-
scribe the shear induced coupling between the vortex and acoustic wave modes
(in Eq. 12.a) and vortex and buoyancy modes (in Eq. 12.b). In fact, the cou-
pling of the vortex and acoustic wave is a process that has been studied to reveal
the mean flow shear induced nonresonant mode conversion phenomenon in [24].
However, in the present case, the source terms of the acoustic waves that are
proportional to the vortex mode measure, conserved quantity I, are dominated
by the source terms, associated with the exponentially amplifying convective
modes: y(t) and

.
y(t). It should be emphasized that the present approach is

justified only for a convectively unstable medium with N2
B < 0, so that the

buoyancy modes undergo exponential amplification in the linear regime.
The dynamics of the acoustic waves in the absence of the buoyancy per-

turbations is described by the homogeneous part of Eq. (12.a). The acoustic
wave frequency and amplitude variations are described by the parameters Ω2

1(t)
and f(t) (see [19] for a detailed study). The dynamics of the convective mode
is described by Eq. (12.b). Eq. (16.b) shows the transient stabilization effect
of the sheared mean flow in an unstably stratified medium. The stabilization
occurs at times, when |ky(t)/kx| < 1 and reaches its maximum at t = t∗, when
ky(t∗) = 0 (see Eq. 16.b).

The terms λ1(t)
.
y(t) and λ2(t)y(t) in the rhs of Eq. (14.a) describe the cou-

pling between the convective and acoustic waves modes. The shear flow origin of
these source terms is obvious from Eqs. (16.d,e). Hence, Eqs. (14.a,b) describe
the mean flow shear induced buoyancy – acoustic wave mode conversion in a con-
vectively unstable medium. Some specific features of this phenomenon are due
to its linear nature; SFH of the exponentially growing buoyancy perturbations
are able to generate SFH of the acoustic waves with the same wave-numbers.
The amplitude of the excited wave mode depends on the values of the source
terms λ1(t) and λ2(t). So, convective modes with kx = 0 can not generate acous-
tic waves at all (λ1 = λ2 = 0). While maximal efficiency of the mode conversion
phenomenon should occur at kz = 0, or in a realistic physical approximation
(see Eq. 12) at k2

z ≥ N2
B/c2

s. Naturally, acoustic wave emission from convection
should generally increase when the mean flow shear parameter A increases.

We numerically analyze Eqs. (6.a-e) to verify the analytical results obtained
from the approximate equations (12.a,b). We select the initial perturbations in
a specific manner, which enables us to excite the convective and acoustic wave
modes individually at the initial moment of time. It appears that exponen-
tially growing buoyancy perturbations instantly excite the acoustic wave mode
harmonics at a given point in time, when the perturbation wave-number along
the flow velocity shear is zero: t = t∗, ky(t∗) = 0. The generation of acoustic
waves is clearly traced from the pressure variation, as well as the compression
of the perturbations. Numerical analysis shows that the efficiency of this mode
conversion phenomenon increases with the flow shear parameter.
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DISCUSSION AND CONCLUSIONS

We have presented a study of compressible convection in shear flows. In partic-
ular we have focused on linear small-scale perturbations in unstably stratified
flows with constant shear of velocity. The linear character of the system enables
us to identify the perturbation modes and to study their dynamics individually.
We find a mode conversion that originates from the velocity shear of the flow:
exponentially growing perturbations of convection are able to excite acoustic
waves. This process offers a novel approach to the hydrodynamic problem of
the acoustic wave generation.

This wave excitation phenomenon can be important for the acoustic oscilla-
tions of the sun. Being responsible for the wave generation in high shear regions
of a stratified turbulent flow, this nonresonant phenomenon can contribute to
the production of sound in the solar convection zone. Moreover, the process of
the wave excitation should be triggered by a weak vertical magnetic field. In this
case we anticipate the production of high frequency compressional MHD waves.
The latter process will considerably increase the extraction of the mechanical
energy of the convection by waves.

Specific to this phenomenon is that perturbations of buoyancy are able to
excite acoustic waves with similar wave-numbers. This property makes it clearly
distinct from stochastic excitation, where the generated frequencies are similar
to the life-times of the source perturbations. In contrast, frequencies of the
oscillations generated by the mean flow velocity shear induced mode conversion
may be qualitatively higher than the temporal variation scales of the perturba-
tions in the source flow of a compressible convection. The frequency spectrum of
the excited acoustic waves should be intrinsically correlated to the velocity field
of the turbulent source flow. Shear flow induced wave excitation in stratified
flows offers a natural explanation of the fact, that the solar acoustic oscillation
are mainly excited in the high shear regions of the convection, intergranular
dark lanes [29]. It also explains the puzzling wave-number dependence of the
observed mode energies at fixed frequencies (see [5] and references therein). A
detailed comparison with observational data requires a more realistic physical
model. The simplicity of our model is used to demonstrate the basic features of
this excitation phenomenon.

Finally we note that in the present formalism we have focused on the waves
with frequencies higher than the characteristic cut-off frequency for the acoustic
waves in the convection zone. Shear flow initiates the qualitative change of
the temporal variation scales of perturbations and the excitation of the waves
that are not trapped in the convective envelope. Hence, this mode conversion
presents a new significant contribution into the channel of energy transfer from
the dynamically active interior to the atmosphere of the Sun.
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