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The nonlinear aerodynamic sound generation by turbulence has been long
analyzed since the foundation of the theory of aerodynamic sound in pioneer-
ing paper by Lighthill [1]. Also, it was Lighthill [2] who noted that velocity
shear can increase the acoustic wave emission in the aerodynamic situation
due to the existence of linear terms in the inhomogeneous part of the analogy
equations (second derivative of the Reynolds stress). In [3] it was disclosed
and described a linear aerodynamic sound generation mechanism. Specifically,
it was shown that the flow non-normality induced linear phenomenon of the
conversion of vortex mode into the acoustic wave mode is the only contributor
to the acoustic wave production of the unbounded shear flows in the linear
regime. From the physical point of view the potential vorticity was identified
as the linear source of acoustic waves in shear flows.

We perform comparative analysis of linear and nonlinear aerodynamic
sound generation by turbulent perturbations in constant shear flows and study
numerically the generation of acoustic waves by stochastic/turbulent pertur-

uniform background density and pressure ( U0(Ay, 0); A, ρ0, P0 = const). The
governing hydrodynamic equations of the considered 2D compressible flow are:
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where γ – adiabatic index, c2s ≡ γP0/ρ0 – sound speed. The potential vorticity
is defined as: W = [curlU]z/ρ.
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bations embedded in 2D planar unbounded inviscid constant shear flow with
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Only stochastic streamwise and crossstream perturbation velocities are
embedded in the flow at t = 0:

ux(x, y, 0) �= 0; uy(x, y, 0) �= 0; ρ′(x, y, 0) = 0; P ′(x, y, 0) = 0. (4)

The embedded perturbation is localized in the crossstream direction and it
is homogeneous in the streamwise direction. ux(x, y, 0) and uy(x, y, 0) are
defined by the following stream function:
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where ζ(kx, ky) is random number in the range [0, 1] different for different
kx and ky; Ll – the localization scale in the crossstream direction; k0 – the
peak center in the steamwise wavenumber Kx axis. The half-width of the
spectrum of the inserted perturbation meets the condition Δk0 � k0, that
allows to discriminate linearly and nonlinearly generated acoustic waves and,
thus, to carry out comparative analysis of linear and nonlinear aerodynamic
sound generation by turbulent perturbation. The perturbations are inserted
in the flow in the physical plane at the parameters B = 0.5 × 104; Ll =
3; k0 = 10; cs = 1; A = 4 at t = 0. Simulations were performed using the
hydrodynamics module of the PLUTO code [4]. The domain and the grid were
−10 ≤ x, y ≤ 10 and 1024 × 1024 respectively. Finer grid (2048 × 2048) was
used to test the results of the simulations. Dissipative effects are only those
related to the use of a mesh of finite width Euleir equations are solved using
the PLUTO code.

A fault of acoustic analogy treatment in the identification of the

true linear sources of aerodynamic sound

The specificity of the acoustic analogy approach is that results strongly depend
on the form of the analogy equation as well as on the aero-acoustic variable
chosen to analyze the process. This is more essential when the convective
terms are important and the model should take into account the background
flow. Hence, the acoustic analogy equation have been the subject to various
approximations in order to take into account the effect of the background
inhomogeneous flow correctly. However, identification of the true sources of
aerodynamic sound remains relevant [5]. Discussing the true linear sources of
aerodynamic sound, we compare the linear acoustic wave production in the
unbounded shear flows induced by the non-normality of the flow (described in
the paper [3]) with the linear part of the acoustic analogy source. The linear
part of the acoustic analogy source may be defined as:
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Fig. 1. The linear source of the acous-
tic analogy equation at t = 0 in the
wavenumber plane (S(l)(kx, ky, 0)).
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The spectrum of the source (S(l)(kx, ky)) in our case at t = 0 is presented
in Fig. 1. It shows that the acoustic analogy linear source is distributed in all
quadrants of the wavenumber plane. I.e. the linear source generates acoustic
field with kxky < 0 too. However, according to [3] density perturbation is
generated at ky ≤ kx and the linear generation of acoustic wave Spatial Fourier
Harmonics (SFH) by the related vortex mode SFH takes place just at the
moment of the crossing of the Kx axis by the last one. Consequently, the
acoustic analogy linear source located in the quadrants II and IV (and having
kxky < 0) is the fault of acoustic analogy treatment. In our opinion, this is a
very important conclusion of our research.

Comparative analysis of linear and nonlinear aerodynamic sound

generation by turbulent perturbations

The energy of the linearly generated acoustic waves is defined by the mean
flow shear parameter and the potential vorticity of the turbulent perturbations
and the spectrum, by the kx spectrum of the potential vorticity at ky = 0.
The nonlinear source we define by the nonlinear part of the acoustic analogy
source:
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The spectrum of these sources at t = 0 are presented in Figs. 2 and 3.
Fig. 2 shows that the potential vorticity of the perturbations along Kx axis is
located in a streamwise wavenumber range [k0−Δk0, k0+Δk0]. Consequently,
the linear aerodynamic sound should be located in the same range of kx. At
the same time Fig. 3 shows that S(nl)(kx, ky, 0) is located in a range [2k0 −
2Δk0, 2k0 + 2Δk0], i.e. about twice farther than the potential vorticity from
the center of the plane.

The density field in the wavenumber plane for parameters B = 0.5 ×
104; Ll = 3; k0 = 10; cs = 1; A = 4 at t = 0.1 is presented in Fig. 4.
The density field in the physical plane for the same parameters at t = 2
(in basic unites [m] and [sec]) is presented on Fig. 5. Fig. 4 shows that the
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Fig. 2. The potential vorticity field at
t = 0 in the wavenumber plane.

Fig. 3. The acoustic analogy nonlinear
source at t = 0 in the wavenumber plane
(S(nl)(kx, ky, 0)).

Fig. 4. The density field in the
wavenumber plane at t = 0.1.

Fig. 5. The density field in the physical
plane at t = 2.

density field of the perturbations along Kx axis is mainly located around k0

with an extension to 2k0. The density field around k0 relates to the linear
mechanism of the wave generation. The density field close to 2k0 relates to
the nonlinear mechanism. The figure shows that in the considered case the
linear aerodynamic sound is stronger than the nonlinear one. According to
Fig. 2, for the considered parameters, the mean flow vorticity is larger than
the perturbation potential vorticity – the case when Rapid Distortion Theory
(RDT) of turbulence is at work. According to our study the linear aerody-
namic sound dominates over nonlinear one at moderate and high shear rates:
R ≡ A/k0cs ≥ 0.3. The dominance of the linear aerodynamic sound occurs
up to quite large amplitudes of the turbulent perturbations for which RDT is
at work.
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